JP2004212775A - High polymer optical waveguide element and manufacturing method - Google Patents

High polymer optical waveguide element and manufacturing method Download PDF

Info

Publication number
JP2004212775A
JP2004212775A JP2003001092A JP2003001092A JP2004212775A JP 2004212775 A JP2004212775 A JP 2004212775A JP 2003001092 A JP2003001092 A JP 2003001092A JP 2003001092 A JP2003001092 A JP 2003001092A JP 2004212775 A JP2004212775 A JP 2004212775A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
photosensitizer
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003001092A
Other languages
Japanese (ja)
Inventor
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003001092A priority Critical patent/JP2004212775A/en
Publication of JP2004212775A publication Critical patent/JP2004212775A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide element that enables an optical waveguide to be joined to an optical component to be connected such as an optical fiber without aligning, so that the connection is made possible with low loss, and to provide the manufacturing method of the element. <P>SOLUTION: The manufacturing method of the high polymer optical waveguide element is characterized in that a laser beam having a wavelength λ1 is made incident to a solution in which a photosensitizer for absorbing and decomposing light having the wavelength λ1 is mixed in a photosetting resin, thereby hardening the optical path of the laser beam to form the core, and then the entirety is hardened by irradiating it with photosetting light to form a clad. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高分子光導波路に関し、特に安価、低接続損失な光集積回路、光インターコネクション、あるいは光学部品などの光導波路を製造する方法に関する。
【0002】
【従来の技術】
近年、光ファイバと光導波路を接続する際またはレーザダイオードと光ファイバや光導波路を接続する際、レーザ溶接や接着剤による固定やレンズ系を用いたモードフィールドマッチングなどが行われている。光ファイバあるいは光導波路が高分子の場合、レーザ溶接などが使用出来ないため、主に紫外線硬化型の接着剤を用いて固定している。この場合、光ファイバと光導波路の実装における調芯に時間がかかり、また、軸ずれ等の原因により、接続損失が大きくなってしまう。また、レーザダイオードと光ファイバ、光導波路の場合、レンズ系を用いるため、非常に高価になってしまう。レーザダイオード内の光導波路部分にスポットサイズ変換機能を付けモードフィールドマッチングさせる方法もあるが、レーザダイオード自身非常に高価になってしまう。そのため、無調芯で光部品と接続できる光導波路が望まれる。
【0003】
屈折率の異なる2つの樹脂を用いた自己形成光導波路が提案されている(特許文献1:特開平11−326660)。アルゴンレーザ光やUVを当てることにより屈折率の高い樹脂をより多く硬化させ、コアを形成する方法が報告されている。しかしながら、この場合、コアとクラッドの材料に制限があり、特定のレーザ光でしか光導波路を形成することが出来ない。任意のレーザ光で光導波路が形成することが出来ることにより、光導波路形成した光でそのまま情報を光伝送することを可能にし、例えば、レーザダイオードに直接この自己形成光導波路ができることにより、今まで困難であった無調心結合が可能となり、また、その他幅広い用途展開が可能となる。しかしながら、まだ、これを実現する方法は提案されていない。
【0004】
【特許文献1】特開平11−326660号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、光ファイバなどの被接続光学部品と光導波路を無調心で接合し、それにより低損失な接続を可能とする光導波路素子およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、鋭意検討した結果、光硬化樹脂中に光増感剤を混合した溶液中にレーザ光を照射させ、溶液伝搬光の広がりを抑えながらコアとクラッドを形成することにより前記課題を解決することを見出し本発明を完成させた。
【0007】
すなわち本発明は、光硬化樹脂中に波長λ1の光を吸収してかつ分解する光増感剤を混合した溶液中に、波長λ1のレーザ光を入射させてレーザ光の光路を硬化させながらコアを形成し、その後全体に光硬化させるための光を照射して硬化させてクラッドを形成することを特徴とする高分子光導波路素子の製造方法である。
【0008】
また本発明は、高分子からなるコアとクラッドを備えた光導波路素子であり、波長λ1のレーザ光を吸収してかつ分解する光増感剤のクラッドにおける濃度がコアにおける濃度よりも大であることを特徴とする高分子光導波路素子である。
【0009】
本発明において、光増感剤の吸収ピーク波長が、光導波路素子が伝播すべき光波長λ2よりも長波長側にあることことが好ましい。さらに光増感剤が色素であることが好ましい。これにより光増感剤が分解した後のコア部と分解していないクラッドでの屈折率差が光の閉じ込めに利用できるのに充分なものとなる。
【0010】
ここで高分子光導波路素子は、高分子光導波路に受光素子、発光素子、光ファイバー、光導波路のいずれかが接合されたものでもよい。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。光硬化樹脂としては、UV硬化型、可視光硬化型など、また、エポキシ、アクリル、ウレタンなど色々な材料が挙げられる。光増感剤にしても、色素や可視光重合開始剤など色々な材料が考えられる。
【0012】
ここで用いる光増感剤の含有量の大小で屈折率分散曲線の極大、極小値が変化する。光増感剤の屈折率の分散曲線は図2のように表される。光増感剤の吸収ピークよりも短波長側で光増感剤が多いほど屈折率は低くなり、長波長側で光増感剤が多いほど屈折率は高くなることが分かる。
【0013】
図1に本発明の光導波路製造方法を示す。容器1内に光硬化樹脂と光増感剤を混合した溶液2を充填させる(図1(a)、(b))。その溶液2に光ファイバ3を挿入し(図1(c))、光増感剤の吸収ピークにマッチングしたあるいは若干ずれたレーザ光4を光ファイバー3を通して照射させる(図1(d))。レーザ光4が照射された部分が硬化する。硬化部5は光増感剤が分解して未硬化部よりも屈折率が高いため、レーザ光は閉じ込められ(図1(e))、ほぼ直線の樹脂硬化部が得られる。その後、UV光6により全体を硬化させる(図1(f))。光増感剤が色素の場合、レーザ光による硬化部5は周りと比べて色素による着色が少なくなる。
【0014】
図2によると吸収ピークよりも短波長側では、光増感剤が多いほど屈折率が低くなることが分かる。よって、レーザ硬化部の屈折率が周りよりも高くなり、光導波路として機能することが分かる。こうしてコア7とクラッド8が形成され、光ファイバーが接合した高分子光導波路素子が得られる(図1(g))。
【0015】
一方、長波長側では光増感剤が多いほど屈折率が高くなるので、レーザ硬化部の屈折率は周りよりも低くなり、光導波路にはならない。このようにして、光ファイバと無調心で接続可能な光導波路が形成できる。光増感剤の吸収ピーク波長よりも短波長側のレーザダイオードを用いることにより、レーザダイオードに直接結合された光導波路が形成できる。
【0016】
引き続いて、実施例を用いて本発明を更に詳しく説明する。なお、種々の光硬化樹脂および光増感剤を用いることにより数限りない本発明の光導波路が得られることは明らかである。したがって、本発明はこれらの実施例に限定されるものではない。
【0017】
(実施例)
市販のアクリレート系UV硬化剤に、光増感剤としてエタノールに溶解させたローダミン6Gの色素を混合させた。この溶液を容器13に充填し、コア径50ミクロンのマルチモード光ファイバを溶液中に挿入した。次に532nmの全固体レーザ光(1mW)を光ファイバに通して溶液中に入射させた。このとき、レーザ光線に沿って硬化することが観測された。レーザ光照射1時間以上経過したとき、硬化部は色素に起因する着色が脱色していることが分かった。その後、UV光を全体に照射させ、全体を硬化させた。このようにして光導波路が作製できる。アルゴンレーザ514.5nmの光をこの532nmレーザ光硬化部に入射させたときアルゴンレーザ光は硬化部内を伝搬していることが分かった。一方、ヘリウムネオンレーザ632.8nmの光を532nmレーザ光硬化部に入射させたとき、ヘリウムネオンレーザ光は硬化部からもれていることが確認された。これにより、吸収ピークよりも短波長側で光導波路が形成されていることが確認された。
【0018】
【本発明の効果】
本発明による高分子光導波路作製方法により、光ファイバーなどの光学部品と低接続損失な高分子光導波路が実現できる。
【図面の簡単な説明】
【図1】本発明の高分子光導波路製造工程の一例
【図2】色素の屈折率の分散曲線
【符号の説明】
1:容器、 2:溶液、 3:光ファイバ、4:レーザ光
5:硬化部、6:UV光、 7:コア、8:クラッド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer optical waveguide, and more particularly to a method for manufacturing an optical waveguide such as an optical integrated circuit, an optical interconnection, or an optical component, which is inexpensive and has low connection loss.
[0002]
[Prior art]
In recent years, when connecting an optical fiber to an optical waveguide or when connecting a laser diode to an optical fiber or an optical waveguide, laser welding, fixing with an adhesive, mode field matching using a lens system, and the like have been performed. When the optical fiber or the optical waveguide is made of a polymer, laser welding or the like cannot be used. Therefore, the optical fiber or the optical waveguide is mainly fixed using an ultraviolet-curable adhesive. In this case, alignment takes a long time in mounting the optical fiber and the optical waveguide, and a connection loss becomes large due to a cause of axis deviation or the like. In the case of a laser diode, an optical fiber, and an optical waveguide, a lens system is used, so that the cost is extremely high. There is a method in which a spot size conversion function is provided to the optical waveguide portion in the laser diode to perform mode field matching, but the laser diode itself becomes very expensive. For this reason, an optical waveguide that can be connected to an optical component without any adjustment is desired.
[0003]
A self-formed optical waveguide using two resins having different refractive indexes has been proposed (Patent Document 1: Japanese Patent Application Laid-Open No. H11-326660). A method has been reported in which a resin having a high refractive index is hardened more by applying argon laser light or UV to form a core. However, in this case, the materials of the core and the clad are limited, and the optical waveguide can be formed only by a specific laser beam. The ability to form an optical waveguide with an arbitrary laser beam enables light to be transmitted as it is with the light formed by the optical waveguide. It is possible to achieve the difficult alignment without centering, and to develop a wide range of other applications. However, a method for achieving this has not yet been proposed.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. H11-326660
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide device and a method for manufacturing the same, in which a connected optical component such as an optical fiber and an optical waveguide are joined without any alignment, thereby enabling low-loss connection.
[0006]
[Means for Solving the Problems]
The present inventor has conducted extensive studies, and as a result, irradiates a laser light into a solution obtained by mixing a photosensitizer in a photocurable resin, and forms the core and the clad while suppressing the spread of the solution propagation light. The present invention was found to be solved, and the present invention was completed.
[0007]
That is, the present invention relates to a method in which a laser beam having a wavelength of λ1 is incident on a solution in which a photosensitizer that absorbs and decomposes light having a wavelength of λ1 is mixed in a photocurable resin, thereby curing an optical path of the laser beam. And then irradiating the entire surface with light for photocuring and curing to form a clad, thereby forming a polymer optical waveguide device.
[0008]
Further, the present invention relates to an optical waveguide device having a polymer core and a clad, wherein the concentration in the clad of the photosensitizer that absorbs and decomposes the laser light of wavelength λ1 is higher than the concentration in the core. A polymer optical waveguide device characterized in that:
[0009]
In the present invention, it is preferable that the absorption peak wavelength of the photosensitizer is on the longer wavelength side than the light wavelength λ2 to be propagated by the optical waveguide device. Further, the photosensitizer is preferably a dye. As a result, the difference in the refractive index between the core portion after the photosensitizer has been decomposed and the clad that has not been decomposed is sufficient for confining light.
[0010]
Here, the polymer optical waveguide element may be one in which a light receiving element, a light emitting element, an optical fiber, or an optical waveguide is joined to the polymer optical waveguide.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. Examples of the photocurable resin include various materials such as a UV curable resin and a visible light curable resin, and epoxy, acrylic, and urethane. As the photosensitizer, various materials such as a dye and a visible light polymerization initiator can be considered.
[0012]
The maximum value and the minimum value of the refractive index dispersion curve change depending on the content of the photosensitizer used here. The dispersion curve of the refractive index of the photosensitizer is shown in FIG. It can be seen that the refractive index decreases as the amount of the photosensitizer increases on the shorter wavelength side of the absorption peak of the photosensitizer, and increases as the amount of the photosensitizer increases on the longer wavelength side.
[0013]
FIG. 1 shows a method for manufacturing an optical waveguide according to the present invention. A container 2 is filled with a solution 2 in which a photocurable resin and a photosensitizer are mixed (FIGS. 1A and 1B). An optical fiber 3 is inserted into the solution 2 (FIG. 1C), and a laser beam 4 matched or slightly shifted from the absorption peak of the photosensitizer is irradiated through the optical fiber 3 (FIG. 1D). The part irradiated with the laser beam 4 is cured. Since the photosensitizer is decomposed and has a higher refractive index than the uncured portion in the cured portion 5, the laser beam is confined (FIG. 1 (e)), and a substantially linear resin cured portion is obtained. Thereafter, the whole is cured by the UV light 6 (FIG. 1F). When the photosensitizer is a dye, the hardened portion 5 by the laser beam is less colored by the dye than the surroundings.
[0014]
According to FIG. 2, it can be seen that on the shorter wavelength side than the absorption peak, the refractive index decreases as the amount of the photosensitizer increases. Therefore, it is understood that the refractive index of the laser hardened portion becomes higher than that of the surroundings, and functions as an optical waveguide. Thus, the core 7 and the clad 8 are formed, and the polymer optical waveguide device in which the optical fibers are joined is obtained (FIG. 1 (g)).
[0015]
On the other hand, on the long wavelength side, the refractive index increases as the amount of the photosensitizer increases, so that the refractive index of the laser-cured portion becomes lower than that of the surroundings and does not become an optical waveguide. In this way, an optical waveguide that can be connected to the optical fiber without any alignment can be formed. By using a laser diode on the shorter wavelength side than the absorption peak wavelength of the photosensitizer, an optical waveguide directly coupled to the laser diode can be formed.
[0016]
Subsequently, the present invention will be described in more detail with reference to Examples. It is clear that an unlimited number of optical waveguides of the present invention can be obtained by using various photocurable resins and photosensitizers. Therefore, the present invention is not limited to these examples.
[0017]
(Example)
A commercially available acrylate UV curing agent was mixed with a dye of rhodamine 6G dissolved in ethanol as a photosensitizer. This solution was filled in a container 13, and a multimode optical fiber having a core diameter of 50 microns was inserted into the solution. Next, 532 nm all-solid-state laser light (1 mW) was passed through an optical fiber and incident on the solution. At this time, curing along the laser beam was observed. When one hour or more had elapsed from the irradiation with the laser beam, it was found that the cured portion had decolored due to the dye. Thereafter, the whole was irradiated with UV light to cure the whole. Thus, an optical waveguide can be manufactured. When the light of an argon laser 514.5 nm was incident on the 532 nm laser beam hardened portion, it was found that the argon laser beam propagated in the hardened portion. On the other hand, when helium-neon laser 632.8 nm light was incident on the 532-nm laser light cured portion, it was confirmed that the helium-neon laser light was leaking from the cured portion. Thereby, it was confirmed that the optical waveguide was formed on the shorter wavelength side than the absorption peak.
[0018]
[Effects of the present invention]
According to the method for producing a polymer optical waveguide according to the present invention, a polymer optical waveguide having low connection loss with an optical component such as an optical fiber can be realized.
[Brief description of the drawings]
FIG. 1 shows an example of a process for producing a polymer optical waveguide of the present invention. FIG. 2 shows a dispersion curve of the refractive index of a dye.
1: container, 2: solution, 3: optical fiber, 4: laser light 5: cured part, 6: UV light, 7: core, 8: clad

Claims (4)

光硬化樹脂中に波長λ1の光を吸収してかつ分解する光増感剤を混合した溶液中に、波長λ1のレーザ光を入射させてレーザ光の光路を硬化させながらコアを形成し、その後全体に光硬化させるための光を照射して硬化させてクラッドを形成することを特徴とする高分子光導波路素子の製造方法。    A core is formed while irradiating a laser beam having a wavelength of λ1 into a solution in which a photosensitizer that absorbs and decomposes light having a wavelength of λ1 in a photocurable resin is mixed to cure the optical path of the laser beam, and then A method for manufacturing a polymer optical waveguide device, comprising irradiating light for light curing on the entire surface and curing the light to form a clad. 光増感剤の吸収ピーク波長が、光導波路素子が伝播すべき光波長λ2よりも長波長側にあることを特徴とする請求項1に記載の高分子光導波路素子の製造方法。    2. The method according to claim 1, wherein the absorption peak wavelength of the photosensitizer is longer than the light wavelength [lambda] 2 to be propagated by the optical waveguide device. 前記光増感剤が色素であることを特徴とする請求項1または2に記載の高分子光導波路素子の製造方法。    The method according to claim 1, wherein the photosensitizer is a dye. 高分子からなるコアとクラッドを備えた光導波路素子であり、波長λ1のレーザ光を吸収してかつ分解する光増感剤のクラッドにおける濃度がコアにおける濃度よりも大であることを特徴とする高分子光導波路素子。    An optical waveguide device comprising a polymer core and a clad, wherein a concentration of a photosensitizer that absorbs and decomposes laser light having a wavelength of λ1 in the clad is larger than that in the core. Polymer optical waveguide device.
JP2003001092A 2003-01-07 2003-01-07 High polymer optical waveguide element and manufacturing method Pending JP2004212775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001092A JP2004212775A (en) 2003-01-07 2003-01-07 High polymer optical waveguide element and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001092A JP2004212775A (en) 2003-01-07 2003-01-07 High polymer optical waveguide element and manufacturing method

Publications (1)

Publication Number Publication Date
JP2004212775A true JP2004212775A (en) 2004-07-29

Family

ID=32819206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001092A Pending JP2004212775A (en) 2003-01-07 2003-01-07 High polymer optical waveguide element and manufacturing method

Country Status (1)

Country Link
JP (1) JP2004212775A (en)

Similar Documents

Publication Publication Date Title
US9676154B2 (en) Apparatus for making an optical waveguide
Terasawa et al. Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling
JP6788436B2 (en) Optical module
Tan et al. Two-photon absorption light-induced self-written waveguide for single-mode optical interconnection
JP2004318081A (en) Optical waveguide element and its manufacturing method
JP4446618B2 (en) Method for forming optical waveguide
JP5096252B2 (en) Optical waveguide, optical module, and manufacturing method thereof
JPH10148729A (en) Formation of ridge pattern of core part of polymer optical waveguide
JP2009003338A (en) Method of splicing optical fibre
Mohammed Integration of self-standing X-and Y-shaped polymer coupler and splitter with single mode optical fibers
JP4642739B2 (en) Optical component connection method
JP2004212775A (en) High polymer optical waveguide element and manufacturing method
JP4024031B2 (en) Manufacturing method of optical waveguide
JP2007206309A (en) Method for splicing optical fiber
JP2003014972A (en) Method for forming optical waveguide
JP4352944B2 (en) Optical circuit manufacturing method
JP2007121503A (en) Method for splicing optical fibers
JP2009003337A (en) Method of splicing optical fibre
JPS5929210A (en) Production of optical transmission coupler
Kagami et al. Light-induced self-written optical waveguides
JP2007322628A (en) Method for splicing optical fiber
Ozawa et al. Self-written waveguide connection across diced waveguide gaps
JP2004334003A (en) Manufacture method of optical coupler and optical recording device
Marushima et al. Direct fabrication for multimode/single-mode polymer optical waveguides on printed circuit board using the mosquito method
JP2002031733A (en) Method for manufacturing polymer optical waveguide element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204