JP2005043760A - Optical circuit and its manufacturing method - Google Patents

Optical circuit and its manufacturing method Download PDF

Info

Publication number
JP2005043760A
JP2005043760A JP2003279283A JP2003279283A JP2005043760A JP 2005043760 A JP2005043760 A JP 2005043760A JP 2003279283 A JP2003279283 A JP 2003279283A JP 2003279283 A JP2003279283 A JP 2003279283A JP 2005043760 A JP2005043760 A JP 2005043760A
Authority
JP
Japan
Prior art keywords
resin material
groove
optical waveguide
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003279283A
Other languages
Japanese (ja)
Other versions
JP4230850B2 (en
Inventor
Shinji Koike
真司 小池
Yoshimitsu Arai
芳光 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003279283A priority Critical patent/JP4230850B2/en
Publication of JP2005043760A publication Critical patent/JP2005043760A/en
Application granted granted Critical
Publication of JP4230850B2 publication Critical patent/JP4230850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical circuit of which loss is low and in which optical design is easily reflected. <P>SOLUTION: The optical circuit is configured so that a dielectric multilayered film wavelength filter 2 is fixed in the groove provided in the substrate 4 of an optical waveguide with a photosetting resin material and also a photosetting resin material region 13 where the photosetting resin material is filled is formed on the substrate and, on the other hand, lens-shaped media 5-a, 5-b are self-formed by irradiating the photosetting resin material of the photosetting resin material region 13 with formation light having a wavelength which gives the change of a refractive index. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光導波路中の溝内の自己形成レンズ状媒質又は自己形成光導波路による光回路及びその製造方法に関する。   The present invention relates to an optical circuit using a self-forming lenticular medium or a self-forming optical waveguide in a groove in an optical waveguide, and a method for manufacturing the same.

キラーアプリケーションとしてウェブブラウザの登場によりインターネットの急速な普及をもたらし、通信トラヒックが増加し、さらなる爆発的な進展が予想された。その結果、西暦2000年を前後して北米を中心にロングホール市場には波長分割多重光通信システム用の部品の進展が過剰に予測され、ドットコム企業への期待と光部品の生産拡大が過熱しすぎた結果、光バブルが発生した。楽観論に基づくこれまでの右肩上がりの予測は崩壊し、過剰に投資した光部品市場は行方を求めるべくメトロ・アクセス系の光通信の未整備な分野へのマーケット展開を図り始めた。しかしながら、これまで同様の量産効果による部品コストの低廉化が期待できない現状や過大な投資が必要となるハイエンド技術の積極的な展開には誰しも疑念をいだかざるを得ない。これからの通信用光部品の開発トレンドには調達部品のマルチソース化といったマーケット調整は元より、低廉化した既開発品をより安い部品集積化技術により高度化していくことが必須となる。   The advent of web browsers as killer applications brought about the rapid spread of the Internet, increased communication traffic, and further explosive progress was expected. As a result, the development of components for wavelength division multiplexing optical communication systems is overestimated in the long-haul market around North America around 2000 AD, and expectations for dotcom companies and the expansion of optical component production are overheating. As a result, a light bubble was generated. The soaring forecast based on optimism has collapsed, and the excessively invested optical component market has begun to expand into the undeveloped area of metro access optical communications to seek whereabouts. However, everyone has to be skeptical about the current situation in which the cost reduction of parts due to the same mass production effect can not be expected and the active development of high-end technology that requires excessive investment. In the future development trend of optical components for communication, it will be essential not only to adjust the market such as multi-sourced procurement parts, but also to upgrade the cheaper developed products by using cheaper component integration technology.

図13に従来の光導波回路基板内に設けた溝部に誘電体多層膜波長フィルタを挿入して形成する波長分割多重光回路を、図14にはフィルタ挿入部の詳細図を示す。両図中、1は光導波路、1−aは入力光ポート、1−b1はフィルタ透過光出力ポート、1−b2はフィルタ反射光出力ポート、2は誘電体多層膜波長フィルタ、3は光硬化性樹脂材料が充填されたフィルタ挿入溝、4は光導波路基板、4−1,4−2は光導波路基板4の入力・反射光ポート側及び透過光ポート側である。   FIG. 13 shows a wavelength division multiplexing optical circuit formed by inserting a dielectric multilayer wavelength filter into a groove provided in a conventional optical waveguide circuit substrate, and FIG. 14 shows a detailed view of the filter insertion part. In both figures, 1 is an optical waveguide, 1-a is an input optical port, 1-b1 is a filter transmitted light output port, 1-b2 is a filter reflected light output port, 2 is a dielectric multilayer wavelength filter, and 3 is photocuring. Filter insertion grooves filled with a conductive resin material, 4 is an optical waveguide substrate, and 4-1 and 4-2 are an input / reflection light port side and a transmission light port side of the optical waveguide substrate 4.

また、図15には溝内に誘電体多層膜波長フィルタ2の挿入固定後、すなわち入力光ポート1−aから固化後の光硬化性樹脂材料中への信号光伝搬の様子を解析した結果を示した。従来技術によるフィルタ溝3内の信号光伝搬解析結果に相当する。ここで、図15(a)は光硬化性樹脂材料屈折率分布、図15(b)は信号光(1550nm)伝搬解析結果、図15(c)は信号光(1550nm)伝搬解析位相分布結果をそれぞれ示している。また、図15(a)は屈折率差Δnが0.000の場合を示すとともに、図15(b)中の符号151、152、153、154は、相対光強度等高線が0.1、0.2、0.3、0.4の各場合をそれぞれ示している。   FIG. 15 shows the result of analyzing the state of signal light propagation after insertion and fixing of the dielectric multilayer wavelength filter 2 in the groove, that is, from the input optical port 1-a into the photocurable resin material after solidification. Indicated. This corresponds to the signal light propagation analysis result in the filter groove 3 according to the prior art. Here, FIG. 15A shows the refractive index distribution of the photocurable resin material, FIG. 15B shows the signal light (1550 nm) propagation analysis result, and FIG. 15C shows the signal light (1550 nm) propagation analysis phase distribution result. Each is shown. 15A shows a case where the refractive index difference Δn is 0.000, and reference numerals 151, 152, 153, and 154 in FIG. 15B indicate the relative light intensity contours of 0.1,. Each case of 2, 0.3, and 0.4 is shown.

図13に示す波長フィルタ挿入形による波長分割多重光回路は加入者系光合分波回路部品類においても数々提案されてきた従来形光回路構成である(例えば、特開昭57−68098号公報)。当該光回路は種々の機能を有する光学薄膜と光回路基板とが分離されているため、それぞれの部品について低コスト・高品質な部品調達を追求できる可能性と、光学フィルタ部品を溝部へ簡易位置決めできるパッシブアライメントにより達成できるローコスト組立技術の2点から低廉化に有利な光部品集積化技術と考えられ、各種構成が検討されてきた。   The wavelength division multiplexing optical circuit using the wavelength filter insertion type shown in FIG. 13 has a conventional optical circuit configuration that has been proposed in many subscriber optical multiplexing / demultiplexing circuit components (for example, Japanese Patent Laid-Open No. 57-68098). . Since the optical circuit has an optical thin film and an optical circuit board separated from each other, there is a possibility of pursuing low-cost and high-quality parts procurement for each part, and easy positioning of the optical filter part in the groove. From the two points of low-cost assembly technology that can be achieved by passive alignment that can be performed, it is considered to be an optical component integration technology advantageous for cost reduction, and various configurations have been studied.

かかる波長分割多重光回路における波長分割多重動作について述べる。従来技術の波長分割多重光回路によれば、図13、図14に示す入力光ポート1−aの光導波路1を伝播してきた波長λ1及びλ2の多重信号光が、光導波路1を分断するように形成されたフィルタ挿入溝3に出射することになる。出射光はフィルタ挿入溝3の部分で放散するが、誘電体多層膜波長フィルタ2の透過帯域内信号光の波長λ2はこの誘電体多層膜波長フィルタ2を透過し、対向して配置されたフィルタ透過光出力ポート1−b1に光結合が実現される。一方、透過帯域外の信号光の波長λ1については誘電体多層膜波長フィルタ2の面で反射後、フィルタ挿入溝3内を伝搬して、反射光ポート用のフィルタ反射光出力ポート1−b2に光結合する構成をとる。本構成をとることによって、波長多重信号光は波長λ1と波長λ2に分割可能となる。   The wavelength division multiplexing operation in such a wavelength division multiplexing optical circuit will be described. According to the wavelength division multiplexing optical circuit of the prior art, the multiplexed signal light having the wavelengths λ1 and λ2 propagating through the optical waveguide 1 of the input optical port 1-a shown in FIGS. It will radiate | emit to the filter insertion groove | channel 3 formed in this. The emitted light is dissipated in the filter insertion groove 3, but the wavelength λ2 of the signal light in the transmission band of the dielectric multilayer wavelength filter 2 is transmitted through the dielectric multilayer wavelength filter 2 and is disposed opposite to the filter. Optical coupling is realized at the transmitted light output port 1-b1. On the other hand, the wavelength λ1 of the signal light outside the transmission band is reflected by the surface of the dielectric multilayer film wavelength filter 2 and then propagates in the filter insertion groove 3 to the reflected light output port 1-b2 for the reflected light port. It is configured to be optically coupled. By adopting this configuration, the wavelength multiplexed signal light can be divided into the wavelength λ1 and the wavelength λ2.

図15中には光導波路1からフィルタ挿入溝3へ出射する信号光の伝搬の様子を示す。ここで、図14に示す座標軸は図15中の座標軸と一致している。すなわち、x軸が光導波路1の端面における導波路伝搬方向に対して垂直方向を示し、z軸がフィルタ挿入溝3の長手方向(導波路伝搬方向)を示している。   FIG. 15 shows a state of propagation of signal light emitted from the optical waveguide 1 to the filter insertion groove 3. Here, the coordinate axes shown in FIG. 14 coincide with the coordinate axes in FIG. That is, the x-axis indicates the direction perpendicular to the waveguide propagation direction at the end face of the optical waveguide 1, and the z-axis indicates the longitudinal direction (waveguide propagation direction) of the filter insertion groove 3.

次に解析結果について順次説明を行う。図15中(a)は光硬化性樹脂材料充填領域(図14参照。)における屈折率分布の等高線分布を示している。図中、等高線分布を持たないことから一様な屈折率分布であることを示している。これは従来技術によって形成されたフィルタ挿入溝3の内部の屈折率分布構成に該当する。入力光ポート1−aを有する導波路1(本図中当該導波路1は直線導波路を仮定して解析を行っている。)から、このような均一屈折率分布を持つフィルタ挿入溝3部への信号光伝搬の解析を行った。このときの伝搬解析光強度分布を図15(b)に、位相分布を図15(c)にそれぞれ示した。図15(b)に示すように、光導波路から出射した光はすぐ様広がる様子が観察される。また図15(c)において等位相面の伝搬の様子を観察すれば(図中同段階の色調線部分)中央部のフラットな線分布の伝搬軸方向(z軸)には、狭まりと波面湾曲の増大が観察され、導波光がフィルタ挿入溝3中へ出射することで急峻に空間的に広がることが位相分布においても確かめることができる。なお、この種の公知技術を開示する特許文献としては、次の公開公報が存在する。   Next, the analysis results will be described sequentially. (A) in FIG. 15 shows the contour distribution of the refractive index distribution in the photocurable resin material filling region (see FIG. 14). In the figure, a uniform refractive index distribution is shown because there is no contour distribution. This corresponds to the refractive index distribution configuration inside the filter insertion groove 3 formed by the prior art. From the waveguide 1 having the input optical port 1-a (in the figure, the waveguide 1 is analyzed assuming that it is a straight waveguide), the filter insertion groove 3 having such a uniform refractive index distribution is used. The signal light propagation to was analyzed. The propagation analysis light intensity distribution at this time is shown in FIG. 15B, and the phase distribution is shown in FIG. 15C. As shown in FIG. 15B, it is observed that the light emitted from the optical waveguide spreads immediately. Further, in FIG. 15C, if the state of propagation of the equiphase surface is observed (the color tone line portion in the same stage in the figure), the narrow line and the wavefront curvature are observed in the propagation axis direction (z axis) of the flat line distribution at the center. In the phase distribution, it can be confirmed that the guided light is spread into the filter insertion groove 3 sharply and spatially. In addition, the following publications exist as patent documents disclosing this kind of known technology.

特開昭57−68098号公報JP-A-57-68098

上述の如き従来技術に係る誘電体多層膜波長フィルタ挿入形の波長分割多重光回路においては、フィルタ挿入溝3内の誘電体多層膜波長フィルタ2への入射信号光の放散が著しいため、平面的に積層された誘電体多層膜波長フィルタ2に対して、種々の方向を向いた波数ベクトルからなる信号光が入射することになり、平面内に積層された誘電体多層膜波長フィルタ2の分波特性(中心波長、透過帯域幅)の劣化を招き、当該誘電体多層膜波長フィルタ2本来の設計通りの特性が得られない(伊藤正宣、小山二三夫「誘電体多層膜フィルタのスポットサイズ依存性」2002年電子情報通信学会エレクトロニクスソサエティ大会c−3−90参照。)。加えて、誘電体多層膜波長フィルタ2における反射波、透過波いずれの場合においても、それぞれのビーム伝搬の広がりを抑えることが困難となるため、フィルタ特性の劣化は入射ビーム特性から決定される劣化要因に加えて、フィルタ反射光出力ポート1−b2又はフィルタ透過光出力ポート1−b1のそれぞれの光導波路1と誘電体多層膜波長フィルタ2によって反射もしくは透過した光との結合効率の劣化が加わる。かくして、当該従来技術の構成による誘電体多層膜波長フィルタ2の挿入損失の増大を招いていた。   In the wavelength division multiplexing optical circuit of the dielectric multilayer wavelength filter insertion type according to the prior art as described above, since the radiation of incident signal light to the dielectric multilayer wavelength filter 2 in the filter insertion groove 3 is significant, it is planar. Signal light having wave vector vectors directed in various directions is incident on the dielectric multilayer wavelength filter 2 laminated on the substrate, and the demultiplexing of the dielectric multilayer wavelength filter 2 laminated in a plane is performed. The characteristics (center wavelength, transmission bandwidth) are deteriorated, and the characteristics as originally designed for the dielectric multilayer wavelength filter 2 cannot be obtained (Massunori Ito, Fumio Koyama “Spot size dependence of dielectric multilayer filters” “See 2002 IEICE Electronics Society Conference c-3-90.) In addition, in both cases of the reflected wave and the transmitted wave in the dielectric multilayer film wavelength filter 2, it is difficult to suppress the spread of each beam propagation, so that the deterioration of the filter characteristics is determined by the incident beam characteristics. In addition to the factors, the degradation of the coupling efficiency between the optical waveguide 1 of the filter reflected light output port 1-b2 or the filter transmitted light output port 1-b1 and the light reflected or transmitted by the dielectric multilayer wavelength filter 2 is added. . Thus, the insertion loss of the dielectric multilayer wavelength filter 2 according to the configuration of the related art is increased.

本発明は、上記従来技術に鑑み、より低損失で、且つ光学設計を反映し易い光回路及びその作成方法を提供することを目的とする。   The present invention has been made in view of the above prior art, and an object of the present invention is to provide an optical circuit having a lower loss and easily reflecting an optical design, and a method for producing the optical circuit.

上記目的を達成する本発明の構成は、次の点を特徴とする。   The configuration of the present invention that achieves the above object is characterized by the following points.

1) 光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される光学薄膜と、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路を介して前記光硬化性樹脂材料に伝搬・放射させることで前記溝の内面に面した前記光導波路のコア部端部、又は前記溝に設置した前記光学薄膜の面の近傍に形成したレンズ構造とを有すること。
1) an optical thin film that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The core portion end of the optical waveguide facing the inner surface of the groove by propagating and radiating forming light having a wavelength that gives a refractive index change to the photocurable resin material to the photocurable resin material through the optical waveguide Or a lens structure formed in the vicinity of the surface of the optical thin film installed in the groove.

2) 光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される誘電体多層膜波長フィルタと、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路を介して前記光硬化性樹脂材料に伝搬・放射させることで前記溝の内面に面した前記光導波路のコア部端部、または前記溝に設置した前記誘電体多層膜波長フィルタの面の近傍に形成したレンズ構造とを有すること。
2) a dielectric multilayer wavelength filter that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The core portion end of the optical waveguide facing the inner surface of the groove by propagating and radiating forming light having a wavelength that gives a refractive index change to the photocurable resin material to the photocurable resin material through the optical waveguide Or a lens structure formed in the vicinity of the surface of the dielectric multilayer film wavelength filter installed in the groove.

3) 光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される光学薄膜と、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を前記光導波路を介して前記光硬化性樹脂材料に二回以上伝搬・放射させることで前記溝の内面に面した前記光導波路のコア部より前記光学薄膜又はその近傍部分まで形成した光導波路コア構造とを有すること。
3) an optical thin film that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed with a photocurable resin material that fills the grooves;
The optical waveguide facing the inner surface of the groove by propagating and radiating forming light having a wavelength that gives a refractive index change to the photocurable resin material to the photocurable resin material at least twice through the optical waveguide. And an optical waveguide core structure formed from the core part to the optical thin film or the vicinity thereof.

4) 光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される誘電体多層膜波長フィルタと、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を前記光導波路を介して前記光硬化性樹脂材料に伝搬・照射させることで前記溝の内面に面した前記光導波路のコア部より前記誘電体多層膜波長フィルタ又はその近傍部分まで形成した光導波路コア構造とを有すること。
4) A dielectric multilayer wavelength filter that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The core portion of the optical waveguide facing the inner surface of the groove by propagating and irradiating the photocurable resin material with a wavelength that gives a refractive index change to the photocurable resin material through the optical waveguide And an optical waveguide core structure formed up to the dielectric multilayer film wavelength filter or the vicinity thereof.

5) 上記1)又は3)に記載する光回路において、
光硬化性樹脂材料を充填する充填領域の溝形態が菱形構造であって、その対角位置に光学薄膜を挿入して固定するようにしたこと。
5) In the optical circuit described in 1) or 3) above,
The groove shape of the filling region filled with the photocurable resin material has a rhombus structure, and the optical thin film is inserted and fixed at the diagonal position.

6) 状2)又は4)に記載する光回路において、
光硬化性樹脂材料を充填する充填領域の溝形態が菱形構造であって、その対角位置に誘電体多層膜波長フィルタを挿入して固定するようにしたこと。
6) In the optical circuit described in the state 2) or 4),
The groove shape of the filling region filled with the photocurable resin material has a rhombus structure, and a dielectric multilayer film wavelength filter is inserted and fixed at the diagonal position.

7) 光導波路基板中に設けた1つ以上の溝中に光学薄膜を挿入して形成する光回路の製造方法において、
前記光学薄膜を前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、1回伝搬・放射させることで、前記溝の内面に面した前記光導波路のコア部端部、又は溝に設置した前記光学薄膜の面の近傍においてレンズ構造を形成し、
その後前記レンズ構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された光学薄膜と前記光導波路とを光学的に位置決め固定すること。
7) In a method for manufacturing an optical circuit in which an optical thin film is inserted into one or more grooves provided in an optical waveguide substrate,
The optical thin film is positioned and fixed in the groove, and the forming light having a wavelength that changes the refractive index of the photocurable resin material is formed from the optical waveguide in the groove filled with the photocurable resin material. Propagating and radiating into the groove once to form a lens structure in the vicinity of the core portion end of the optical waveguide facing the inner surface of the groove or the surface of the optical thin film installed in the groove,
Thereafter, the light-curing resin material in a portion excluding the lens structure forming portion is subjected to light irradiation with an intensity capable of polymerization, irradiation with other wavelength light, or a heat treatment step on the entire light-curing resin material, The photocurable resin material is solidified as a whole, and the optical thin film inserted into the groove and the optical waveguide are optically positioned and fixed.

8) 光導波路基板中に設けた1つ以上の溝中に誘電体多層膜波長フィルタを挿入して形成する光回路の製造方法において、
前記誘電体多層膜波長フィルタを前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、1回伝搬・放射させることで、前記溝の内面に面した前記光導波路のコア部端部、又は溝に設置した前記誘電体多層膜波長フィルタの面の近傍においてレンズ構造を形成し、
その後前記レンズ構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された誘電体多層膜波長フィルタと前記光導波路とを光学的に位置決め固定すること。
8) In a method for manufacturing an optical circuit in which a dielectric multilayer wavelength filter is inserted into one or more grooves provided in an optical waveguide substrate,
Positioning and fixing the dielectric multilayer film wavelength filter in the groove, and forming light having a wavelength that gives a refractive index change to the photocurable resin material in the groove filled with the photocurable resin material. In the vicinity of the end of the core portion of the optical waveguide facing the inner surface of the groove or the surface of the dielectric multilayer wavelength filter installed in the groove by being propagated and emitted once into the groove from the optical waveguide Forming the lens structure,
Thereafter, the light-curing resin material in a portion excluding the lens structure forming portion is subjected to light irradiation with an intensity capable of polymerization, irradiation with other wavelength light, or a heat treatment step on the entire light-curing resin material, The photocurable resin material is solidified as a whole, and the dielectric multilayer wavelength filter inserted in the groove and the optical waveguide are optically positioned and fixed.

9) 光導波路基板中に設けた1つ以上の溝中に光学薄膜を挿入して形成する光回路の製造方法において、
前記光学薄膜を前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、2回以上伝搬・放射させることで、前記溝の内側面に面した前記光導波路のコア部端部から前記光学薄膜又はその近傍まで光導波路コア構造を形成し、
その後前記光導波路コア構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された光学薄膜と前記光導波路とを光学的に位置決め固定すること。
9) In a method of manufacturing an optical circuit in which an optical thin film is inserted into one or more grooves provided in an optical waveguide substrate,
The optical thin film is positioned and fixed in the groove, and the forming light having a wavelength that changes the refractive index of the photocurable resin material is formed from the optical waveguide in the groove filled with the photocurable resin material. By propagating and radiating twice or more into the groove, an optical waveguide core structure is formed from the core portion end of the optical waveguide facing the inner surface of the groove to the optical thin film or the vicinity thereof,
Thereafter, the entire photocurable resin material is subjected to light irradiation with a strength capable of polymerizing the portion of the photocurable resin material excluding the optical waveguide core structure forming portion, irradiation with other wavelength light, or a heat treatment step. The photocurable resin material is solidified as a whole, and the optical thin film inserted into the groove and the optical waveguide are optically positioned and fixed.

10) 光導波路基板中に設けた1つ以上の溝中に誘電体多層膜波長フィルタを挿入して形成する光回路の製造方法において、
前記誘電体多層膜波長フィルタを前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、2回以上伝搬・放射させることで、前記溝の内側面に面した前記光導波路のコア部端部から前記誘電体多層膜波長フィルタ又はその近傍まで光導波路コア構造を形成し、
その後前記光導波路コア構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された誘電体多層膜波長フィルタと前記光導波路とを光学的に位置決め固定すること。
10) In a method for manufacturing an optical circuit in which a dielectric multilayer wavelength filter is inserted into one or more grooves provided in an optical waveguide substrate,
Positioning and fixing the dielectric multilayer film wavelength filter in the groove, and forming light having a wavelength that gives a refractive index change to the photocurable resin material in the groove filled with the photocurable resin material. Optical waveguide core structure from the optical waveguide core end facing the inner surface of the groove to the dielectric multilayer wavelength filter or the vicinity thereof by propagating and radiating into the groove from the optical waveguide twice or more Form the
Thereafter, the entire photocurable resin material is subjected to light irradiation with a strength capable of polymerizing the portion of the photocurable resin material excluding the optical waveguide core structure forming portion, irradiation with other wavelength light, or a heat treatment step. The photocurable resin material is solidified as a whole, and the dielectric multilayer wavelength filter inserted in the groove and the optical waveguide are optically positioned and fixed.

11) 上記7)乃至10)の何れか一つに記載する光回路の製造方法において、
前記光硬化性樹脂材料が充填された溝部に形成光を導入するために、前記光硬化性樹脂材料が充填された溝部と前記光導波路により接続された光硬化性樹脂材料を充填前の溝部に、45度付近の角度で斜め加工されたフィルム形光導波回路又は45度付近の角度で斜め加工された光ファイバを前記光硬化性樹脂材料の充填前の前記溝部分に挿入して形成光を前記溝部に導入・照射すること。
11) In the method for manufacturing an optical circuit described in any one of 7) to 10) above,
In order to introduce the formation light into the groove filled with the photocurable resin material, the groove filled with the photocurable resin material and the photocurable resin material connected by the optical waveguide to the groove before filling. A film-type optical waveguide circuit obliquely processed at an angle of approximately 45 degrees or an optical fiber obliquely processed at an angle of approximately 45 degrees is inserted into the groove portion before filling with the photocurable resin material to form light. Introducing and irradiating the groove.

12) 上記1)又は2)に記載する光回路の製造方法において、
前記光硬化性樹脂材料を充填した溝中へレンズ構造を形成するにあたり、前記光導波路基板のうち少なくとも2ポート以上の光導波路を用いてコヒーレントな形成光の導入を図り、該複数ポートからの形成光を相互位相干渉させることによって、前記光硬化性樹脂材料で充填した溝中の任意位置にレンズ構造を形成すること。
12) In the method for manufacturing an optical circuit described in 1) or 2) above,
In forming the lens structure in the groove filled with the photo-curable resin material, the coherent forming light is introduced using at least two or more ports of the optical waveguide substrate to form the plurality of ports. Forming a lens structure at an arbitrary position in the groove filled with the photo-curing resin material by causing the phases to interfere with each other.

上記構成の本発明によれば、光導波回路内に設けた溝中に光学薄膜部品を挿入して実現される光回路において、光導波路から光学薄膜部品への光結合に際して光導波路からの出射ビームが放散してしまい、光学薄膜部品の特性が十分に再現できず、光回路としての機能が劣化するという問題を解決することができる。すなわち、本発明による溝内自己形成レンズもしくは自己形成光導波路を用いることによって、光導波路から収斂したビームを光学薄膜部品に光入射させることが可能になるとともに、光学薄膜部品からの反射又は光学薄膜部品を透過した信号光が光導波路と高効率に光結合が実現可能となるため、より低損失でかつ光学設計を反映しやすい光学薄膜部品挿入形の光回路を実現することができる。   According to the present invention configured as described above, in an optical circuit realized by inserting an optical thin film component into a groove provided in the optical waveguide circuit, an outgoing beam from the optical waveguide upon optical coupling from the optical waveguide to the optical thin film component This can solve the problem that the characteristics of the optical thin film component cannot be sufficiently reproduced and the function as an optical circuit is deteriorated. That is, by using the in-groove self-forming lens or the self-forming optical waveguide according to the present invention, a beam converged from the optical waveguide can be incident on the optical thin film component, and the reflection from the optical thin film component or the optical thin film can be obtained. Since the signal light transmitted through the components can be optically coupled with the optical waveguide with high efficiency, an optical thin film component insertion type optical circuit with lower loss and easily reflecting the optical design can be realized.

先ず本発明の実施例に共通の原理を説明しておく。図1には本発明の各実施例中、共通して使用する光硬化性樹脂材料の屈折率変化の照射光量依存性を示している。   First, the principle common to the embodiments of the present invention will be described. FIG. 1 shows the irradiation light quantity dependency of the refractive index change of the photo-curing resin material used in common in each embodiment of the present invention.

自己形成光導波路又は自己形成レンズ状媒質の製作においては照射光量に応じた樹脂内部屈折率差をもたらすために、
(1) 光硬化性樹脂材料として複数の樹脂材料の混合溶液を使用して2段階で波長を変えて露光を行う工程(山下達弥、各務学、伊藤博「マルチモード光ファイバを用いた光硬化性樹脂中の光導波路自己形成」信学技報,pp.31-36,(1999-10) 及び渡邊則利、宮田健太郎、村田佳一、三上修「グリーンレーザを用いた自己形成光導波路の作製」信学技報,pp.11-13,(2002-6)参照。)、
(2) ポリイミドワニスに感光基をドープした材料を用いて、露光により照射光量に応じた屈折率分布を得た後に、熱処理工程を経て導波構造を実現する工程(山下兼一、橋本崇、尾江邦重、宗和範、内藤龍介、望月周:「感光性ポリイミドを用いた自己形成光導波路のコア−クラッド新形成技術」第50回応用物理学会関係連合講演会27a−W−3。)、
及び
(3) 屈折率の高い部分を構成する樹脂を固化する光強度と屈折率の低い部分を構成する樹脂を固化する光強度とで十分な差を設けて実現する手法(広瀬直宏「光導波路の形成方法」特開2002−258095参照。)
の3工程が代表的な工程となる。
In producing a self-forming optical waveguide or a self-forming lenticular medium, in order to bring about a resin internal refractive index difference according to the amount of irradiation light,
(1) Process of exposure by changing the wavelength in two stages using a mixed solution of a plurality of resin materials as a photo-curable resin material (Tatsuya Yamashita, Kagami Gaku, Hiroshi Ito “Photo-curing using multi-mode optical fiber” "Self-formation of optical waveguides in conducting resins", IEICE Technical Report, pp.31-36, (1999-10) and Noritoshi Watanabe, Kentaro Miyata, Keiichi Murata, Osamu Mikami, Self-Forming Optical Waveguides Using Green Lasers ”Production Science Report, pp.11-13, (2002-6).),
(2) Using a material obtained by doping a polyimide varnish with a photosensitive group to obtain a refractive index distribution corresponding to the amount of irradiation light by exposure, and then realizing a waveguide structure through a heat treatment process (Kenichi Yamashita, Takashi Hashimoto, Kunishige Oe, Noriyoshi Munekazu, Ryusuke Naito, Shu Mochizuki: "New core-cladding technology for self-formed optical waveguides using photosensitive polyimide" 50th Japan Society of Applied Physics, 27a-W-3).
And (3) A method of realizing a sufficient difference between the light intensity for solidifying the resin constituting the high refractive index portion and the light intensity for solidifying the resin constituting the low refractive index portion (Naohiro Hirose “Optical Waveguide”) (See Japanese Patent Application Laid-Open No. 2002-258095.)
These three steps are representative steps.

いずれの工程でも照射過程に加えてもう一過程を経る必要がある。図1では溝中の光硬化性樹脂材料内で屈折率差分布を初期付与する第1過程での、光硬化性樹脂材料の屈折率差の照射光量依存性を示している。光硬化性樹脂材料の反応光照射量依存による屈折率変化は同図に示すように、ある臨界照射量以下ではほとんどその屈折率変化がみられず、その臨界照射量を越えると照射光量に応じて屈折率が増加していく。その一方、ある一定以上の照射量となると屈折率は飽和し、屈折率変化を与えることは困難となる。このような照射量に対する屈折率変化については、丸山等の報告(:丸山英樹、満山照樹、清村圭博、春名正光「低コヒーレンス光干渉を用いた屈折率と厚さ同時測定の樹脂硬化性評価への応用」電子情報通信学会論文誌C,vol. J85-C, no.2, pp.103-106, 2002年2月参照。)に
おいて実測定結果が報告されている。本報告結果と本発明による原理説明図中の屈折率変化曲線と同一傾向を示すことが確認できる。原理説明に用いる図1は光硬化性樹脂材料の光照射量に対する屈折率依存性の典型的な傾向を示すものと考察できる。
In any process, it is necessary to go through another process in addition to the irradiation process. FIG. 1 shows the irradiation light amount dependency of the refractive index difference of the photocurable resin material in the first process of initially providing the refractive index difference distribution in the photocurable resin material in the groove. As shown in the figure, the refractive index change due to the reaction light dose dependence of the photo-curing resin material shows almost no change in the refractive index below a certain critical dose. As a result, the refractive index increases. On the other hand, when the dose exceeds a certain level, the refractive index is saturated and it is difficult to change the refractive index. Regarding the change in the refractive index with respect to the irradiation dose, reports by Maruyama et al. (Hideki Maruyama, Teruki Mitsuyama, Yasuhiro Kiyomura, Masamitsu Haruna “Resin Curing with Simultaneous Measurement of Refractive Index and Thickness Using Low Coherence Interference The actual measurement results are reported in "Application to sex assessment", IEICE Transactions C, vol. J85-C, no.2, pp.103-106, February 2002). It can be confirmed that this report shows the same tendency as the refractive index change curve in the principle explanatory diagram according to the present invention. FIG. 1 used for explaining the principle can be considered to show a typical tendency of the refractive index dependency with respect to the light irradiation amount of the photocurable resin material.

上述の如き屈折率の照射量依存性を示す光硬化性樹脂材料を溝部に充填し、形成光(波長600nm以下の光)を直線光導波路を介して適切な光量で照射する構成をモデル化し、計算機シミュレーションによる解析を行った結果を図2に示す。解析の前提にあたり、形成光照射量と光硬化性樹脂材料の屈折率変化量との関係はAnthony S. Kewitsch らの提案する関係式(1)(Anthony S. Kewitsch and Amnon Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization," Optics Letters, vol,21, no.1,pp.24-26(1996) 参照。)に従った。図2中、13は光硬化性樹脂材料充填領域、1−aは入力光ポート、4−1は光導波路基板4の入力・反射光ポート側、5は光硬化性樹脂材料充填領域13に形成されたレンズ状媒質である。同図中(a)には解析座標を、(b)には解析結果として1ショット照射によって形成されたレンズ状媒質の屈折率分布の等高線分布を、(c)には形成されたレンズ状媒質屈折率分布における信号光伝搬特性を示している。   Fill the groove with a photo-curable resin material showing the dependency of the refractive index on the irradiation amount as described above, and model the configuration in which the formation light (light having a wavelength of 600 nm or less) is irradiated with an appropriate amount of light through the linear optical waveguide, The result of the analysis by computer simulation is shown in FIG. Based on the premise of the analysis, the relationship between the irradiation amount of the formed light and the refractive index change amount of the photo-curing resin material is the relational expression (1) proposed by Anthony S. Kewitsch et al. (Anthony S. Kewitsch and Amnon Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization, "Optics Letters, vol. 21, no. 1, pp. 24-26 (1996)). In FIG. 2, 13 is a photocurable resin material filling region, 1-a is an input light port, 4-1 is an input / reflection light port side of the optical waveguide substrate 4, and 5 is a photocurable resin material filling region 13. Lenticular medium. In FIG. 6, (a) shows the analysis coordinates, (b) shows the contour distribution of the refractive index distribution of the lenticular medium formed by one-shot irradiation as an analysis result, and (c) shows the lenticular medium formed. The signal light propagation characteristics in the refractive index distribution are shown.

また、図中(a)に示すように、入力光ポート1−aから形成光(波長600nm以下の紫外光)を励振、直線導波路を経て溝部である光硬化性樹脂材料充填領域13に出射・照射させる。照射量として20.0×10-6mJで1回照射を行う。この照射過程で得られた屈折率分布の解析結果を図2(b)に示す。同図に示すように、屈折率分布はレンズ状に膨らみを持った形態となる。全照射量を一致させて、複数回照射した場合には光導波路形態すなわち直線形態となることも確認された(図示せず。)。この結果については参考文献(S.J.Frisken, “Light-induced optical waveguide uptapers," Optics, Letters, vol.18, no.13, pp.1035-1037,(1993))に類似の報告を見ることができる。すなわち、照射回数が少ない場合には屈折率変調を受ける領域が照射口から広がりを持つ傾向(前記文献中:“uptaper" と標記)を示す実験結果の報告と本実施例との間で整合が認められる。 Further, as shown in (a) in the figure, the formation light (ultraviolet light having a wavelength of 600 nm or less) is excited from the input light port 1-a, and emitted to the photocurable resin material filling region 13 which is a groove through a straight waveguide.・ Irradiate. Irradiation is performed once at an irradiation amount of 20.0 × 10 −6 mJ. An analysis result of the refractive index distribution obtained in this irradiation process is shown in FIG. As shown in the figure, the refractive index distribution has a lens-like bulge. It was also confirmed that when the irradiation was performed a plurality of times with the same total irradiation amount, an optical waveguide form, that is, a linear form was formed (not shown). A similar report on this result can be found in the reference (SJFrisken, “Light-induced optical waveguide uptapers,” Optics, Letters, vol. 18, no. 13, pp. 1035-1037, (1993)). That is, when the number of times of irradiation is small, there is a consistency between the report of the experimental results indicating that the region subjected to refractive index modulation tends to spread from the irradiation port (in the above-mentioned document: “uptaper”) and this example. Is recognized.

なお、図2(b)中、符号21、22、23、24、25でそれぞれ屈折率差Δnが0.000、0.002、0.004、0.006、0.008の場合を示している。   In FIG. 2B, reference numerals 21, 22, 23, 24, and 25 denote cases where the refractive index difference Δn is 0.000, 0.002, 0.004, 0.006, and 0.008, respectively. Yes.

形成された屈折率分布に信号光(波長:λ=1550nm)を伝搬させた場合の結果を図2(c) に示す。図2(c) と図14(b)とを比較すると明らかであるように、レンズ効果によって光導波路からの出射光の広がりは抑制され収束したビーム姿態で伝搬していく様子が観察できる。このことから光硬化性樹脂材料充填領域13における光導波路端でレンズ形成を行うことで、誘電体多層膜波長フィルタデバイスをはじめとする光学薄膜デバイスに収斂されたビームで光入射が実現可能となる。なお、図2(c)中、符号26、27、28、29でそれぞれ相対光強度等高線が0.1、0.2、0.3、0.4の場合をそれぞれ示している。   FIG. 2C shows the result when signal light (wavelength: λ = 1550 nm) is propagated through the formed refractive index distribution. As is apparent from a comparison between FIG. 2C and FIG. 14B, it is possible to observe a state in which the spread of the light emitted from the optical waveguide is suppressed by the lens effect and propagates in a converged beam form. Thus, by forming a lens at the end of the optical waveguide in the photocurable resin material filling region 13, light incidence can be realized with a beam converged on an optical thin film device such as a dielectric multilayer wavelength filter device. . In FIG. 2C, reference numerals 26, 27, 28, and 29 denote cases where the relative light intensity contour lines are 0.1, 0.2, 0.3, and 0.4, respectively.

以下、本発明の実施例について説明するが、本発明はこれらの例のみに限定されるものではない。また、各実施例において共通に用いる光硬化性樹脂材料は、形成光(波長600nm以下の紫外光)に対し、図1に示された照射光量と屈折率変化の関係を満たす光硬化性樹脂材料であり、例えばエポキシ樹脂、アクリル樹脂、又はこれらの樹脂を混合した樹脂等を用いることができる。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, the photocurable resin material commonly used in each example is a photocurable resin material that satisfies the relationship between the irradiation light amount and the refractive index change shown in FIG. 1 with respect to the formation light (ultraviolet light having a wavelength of 600 nm or less). For example, an epoxy resin, an acrylic resin, or a resin in which these resins are mixed can be used.

[第1実施例]
本実施例に係る光回路では誘電体多層膜波長フィルタを溝内に挿入して波長分割する光導波回路中の光導波路コアの溝端面にレンズ状媒質を有する場合である。図3に示すように、本実施例に係る光回路は、入力光ポート1−a、透過光出力ポート1−b1、反射光出力ポート1−b2、誘電体多層膜波長フィルタ2、光硬化性樹脂材料充填領域13、溝付近の光導波路基板4の入力・反射光ポート側4−1、溝付近の光導波路基板4の透過光ポート側4−2を有しており、光硬化性樹脂材料充填領域13にはレンズ状媒質5−a、5−bが形成されている。
[First embodiment]
In the optical circuit according to this embodiment, a dielectric multilayer wavelength filter is inserted into the groove to divide the wavelength, and the optical waveguide core in the optical waveguide core has a lens-like medium at the groove end surface. As shown in FIG. 3, the optical circuit according to the present embodiment includes an input light port 1-a, a transmitted light output port 1-b1, a reflected light output port 1-b2, a dielectric multilayer film wavelength filter 2, a photo-curing property. It has a resin material filling region 13, an input / reflected light port side 4-1 of the optical waveguide substrate 4 in the vicinity of the groove, and a transmitted light port side 4-2 of the optical waveguide substrate 4 in the vicinity of the groove. In the filling region 13, lenticular media 5-a and 5-b are formed.

本実施例に係る光導波回路構成及びその解析座標系を示す図3(a)を参照すれば明らかな通り、本実施例では、入力光ポート1−aから光硬化性樹脂材料充填領域13に出射した光が、誘電体多層膜波長フィルタ2の面で反射され(図中λ1)て反射光出力ポート1−b2に効率良く光結合できるとともに、誘電体多層膜波長フィルタ2を透過して(図中λ2)透過光出力ポートに効率よく光結合できるように構成される。その際、曲げ損失及び偏波依存損失の抑制を考慮した曲げ半径・角度により溝部端面に光導波路が導入される回路構成が一般的となる。本光導波路構成において、レンズ形態実現の可否を解析にて検討した結果を同図(b)に示した。同図中、符号31、32、33、34、35は、それぞれ屈折率差Δnが0.000、0.002、0.004、0.006、0.008の場合について示している。   As is apparent from FIG. 3A showing the configuration of the optical waveguide circuit and the analysis coordinate system according to this embodiment, in this embodiment, the input optical port 1-a is connected to the photocurable resin material filling region 13. The emitted light is reflected by the surface of the dielectric multilayer wavelength filter 2 (λ1 in the figure) and can be efficiently optically coupled to the reflected light output port 1-b2 and transmitted through the dielectric multilayer wavelength filter 2 ( In the figure, λ2) is configured so that it can be optically coupled efficiently to the transmitted light output port. At that time, a circuit configuration in which an optical waveguide is introduced into the end face of the groove with a bending radius and angle considering suppression of bending loss and polarization dependent loss is common. In the present optical waveguide configuration, the result of studying whether or not the lens form can be realized is shown in FIG. In the figure, reference numerals 31, 32, 33, 34, and 35 indicate cases where the refractive index difference Δn is 0.000, 0.002, 0.004, 0.006, and 0.008, respectively.

まず、第1ステップにおいて、図3(a) にも示すように入力光ポート1−aから形成光(波長600nm以下の紫外光)を照射光量8.0×10-6mJで光硬化性樹脂材料充填領域13の光硬化性樹脂材料に照射してレンズ状媒質の形成を図った。次に、第2ステップとして同様の形成光条件で透過光出力ポート1−b2を介して光硬化性樹脂材料充填領域13の光硬化性樹脂材料に照射してレンズ状媒質の形成を行った。さらに、第3ステップとして同様の形成光条件で反射光出力ポート1−b1から光硬化性樹脂材料充填領域13の光硬化性樹脂材料に照射しレンズ状媒質の形成を行った。 First, in the first step, as shown in FIG. 3 (a), the photocurable resin is irradiated with the light formed from the input light port 1-a (ultraviolet light having a wavelength of 600 nm or less) at an irradiation light amount of 8.0 × 10 −6 mJ. The light-curing resin material in the material filling region 13 was irradiated to form a lenticular medium. Next, as a second step, a lenticular medium was formed by irradiating the photocurable resin material in the photocurable resin material filling region 13 through the transmitted light output port 1-b2 under the same formation light conditions. Further, as a third step, a lenticular medium was formed by irradiating the photocurable resin material in the photocurable resin material filling region 13 from the reflected light output port 1-b1 under the same formation light conditions.

その結果、図3中(b)に示すように各光ポート1−a、1−b2の光導波路端面において先端球状形態を有し、光波伝搬方向に伸びたレンズ状媒質が実現できることが明らかとなった。(ただし、本図中では透過光ポート1−b1の導波路端面のレンズについては図示していない。)   As a result, as shown in FIG. 3B, it is clear that a lens-like medium having a tip spherical shape at the end face of the optical waveguide of each of the optical ports 1-a and 1-b2 and extending in the light wave propagation direction can be realized. became. (However, the lens at the waveguide end face of the transmitted light port 1-b1 is not shown in the figure.)

図4には図3に示した本実施例に基づき、信号光(波長:λ=1550nm)の導波路端レンズからの出射ビームの伝搬解析結果を示した。同図(a) は形成された導波路端レンズの屈折率分布形態を、同図(b)は信号光のレンズ状媒質中の伝搬解析結果を、同図(c) は信号光伝搬の位相分布解析結果を、それぞれ示している。なお、図中、符号41、42、43、44、45は屈折率差Δnが0.000、0.002、0.004、0.006、0.008の場合について、また符号46、47、48、49、50、51、52は相対光強度等高線が0.05、0.1、0.15、0.2、0.25、0.3、0.35の場合についてそれぞれ示している。   FIG. 4 shows the propagation analysis result of the outgoing beam of the signal light (wavelength: λ = 1550 nm) from the waveguide end lens based on the present embodiment shown in FIG. (A) shows the refractive index profile of the formed waveguide end lens, (b) shows the propagation analysis result of the signal light in the lens-like medium, and (c) shows the phase of the signal light propagation. Each distribution analysis result is shown. In the figure, reference numerals 41, 42, 43, 44, and 45 denote cases where the refractive index difference Δn is 0.000, 0.002, 0.004, 0.006, and 0.008, and reference numerals 46, 47, Reference numerals 48, 49, 50, 51, and 52 show the cases where the relative light intensity contour lines are 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35, respectively.

図4(b)に示すように、レンズ状媒質中を伝搬する信号光は図15(b)の信号光伝搬解析結果とは異なり、収斂したビーム伝搬特性が確認された。また、図4(c)に示す位相分布においても明らかなように、等位相面(図中同一段階の色調を有する線帯)を観察すると、伝搬方向とともにビームが平面波的に伝搬していく様子が観察される。   As shown in FIG. 4B, the signal light propagating in the lenticular medium is different from the signal light propagation analysis result of FIG. Further, as is apparent from the phase distribution shown in FIG. 4C, when an equiphase surface (a line band having the same color tone in the figure) is observed, the beam propagates in a plane wave along with the propagation direction. Is observed.

以上の結果から、実際に使用する光導波路構成においてもレンズ形成が可能であり、本光結合形態で多層膜フィルタ特性の向上が可能となることが明らかとなった。   From the above results, it is clear that lenses can be formed even in an optical waveguide configuration that is actually used, and the multilayer filter characteristics can be improved with this optical coupling configuration.

[第2実施例]
図5は本発明の第2の実施例に係る光回路を示す図であって、同図(a) はその構造及び解析のための座標系を示しており、同図(b)は形成されたレンズ状媒質の屈折率分布を示す。また、図中、1−aは入力光ポート、1−b1は透過光出力ポート、1−b2は反射光出力ポート、2は誘電体多層膜波長フィルタ、13は光硬化性樹脂材料充填領域、4−1は溝付近の光導波路基板4の入力・反射光ポート側、4−2は溝付近の光導波路基板4の透過光ポート側、5は形成されたレンズ状媒質を示している。
[Second Embodiment]
FIG. 5 is a diagram showing an optical circuit according to a second embodiment of the present invention. FIG. 5 (a) shows the structure and a coordinate system for analysis, and FIG. 5 (b) is formed. 2 shows a refractive index distribution of a lenticular medium. In the figure, 1-a is an input light port, 1-b1 is a transmitted light output port, 1-b2 is a reflected light output port, 2 is a dielectric multilayer wavelength filter, 13 is a photocurable resin material filling region, Reference numeral 4-1 denotes the input / reflected light port side of the optical waveguide substrate 4 near the groove, 4-2 denotes the transmitted light port side of the optical waveguide substrate 4 near the groove, and 5 denotes the formed lenticular medium.

本実施例においてはインコヒーレントな光を入力光ポート1−aからと反射光出力ポート1−b2の両方から同時に照射した場合の結果を示している。この時に使用しているフィルタは形成光についてはほぼ100%透過特性を有すると仮定している。本実施例では、それぞれのポートから全照射量として10.0×10-6mJの形成光を入射した。その形成されたレンズ状媒質の屈折率分布の解析結果を同図(b)に示している。図中に示すように屈折率分布は屈折率の高い部分が3角型に配列した形態となった。なお、図中の符号53、54、55、56、57で屈折率差Δnが0.000、0.002、0.004、0.006、0.008の場合についてそれぞれ示している。 In the present embodiment, a result is shown when incoherent light is simultaneously irradiated from both the input light port 1-a and the reflected light output port 1-b2. It is assumed that the filter used at this time has almost 100% transmission characteristics for the formed light. In this example, 10.0 × 10 −6 mJ of forming light was incident from each port as the total irradiation amount. The analysis result of the refractive index distribution of the formed lenticular medium is shown in FIG. As shown in the figure, the refractive index distribution has a form in which portions having a high refractive index are arranged in a triangular shape. Note that reference numerals 53, 54, 55, 56, and 57 in the drawing respectively show cases where the refractive index difference Δn is 0.000, 0.002, 0.004, 0.006, and 0.008.

本実施例におけるレンズ形態はフィルタ面を透過するビームについては収斂したビームが得られ、かつフィルタ面反射光ビームについては反射光ポートに収束できる機能を有するようになる。   The lens form in the present embodiment has a function that a converged beam is obtained for the beam that passes through the filter surface, and that the reflected light beam for the filter surface can be converged on the reflected light port.

図6には第2実施例によるレンズ状媒質屈折率分布形態での入・反射信号光(波長:λ=1550nm)ビーム伝搬特性を示した。図6(a)、(b)には入射側信号光伝搬解析結果を、図6(c)、(d)には誘電体多層膜波長フィルタ2によって反射された信号光ビームの伝搬の様子を示した。同図(a)、(b)には光強度等高線図、(c)、(d)にはその鳥瞰図を示した。これらの図に示すように、誘電体多層膜波長フィルタ2の面に入射する信号光が反射されるとともに、反射光と入射光との定在波を観察することができる。また、その定在波生成領域から、反射光として反射光出力ポート1−b2側へ伝搬していく様子を、図6(c)の光強度分布等高線図、図6(d)の鳥瞰図にて示した。特に図6(d)の鳥瞰図に着目すると明らかなように、光導波路端部に向けて反射ビームが伝搬するにつれ、これが収束している様子が観察できる。なお、図6中の符号61、62、63、64で相対光強度等高線が0.1、0.2、0.3、0.4の場合について、符号65、66、67、68、69で相対光強度等高線が0.05、0.1、0.15、0.2、0.25の場合についてそれぞれ示している。   FIG. 6 shows the beam propagation characteristics of incident / reflected signal light (wavelength: λ = 1550 nm) in a lenticular medium refractive index profile according to the second embodiment. FIGS. 6A and 6B show the incident side signal light propagation analysis results, and FIGS. 6C and 6D show the propagation state of the signal light beam reflected by the dielectric multilayer wavelength filter 2. Indicated. The light intensity contour map is shown in FIGS. 4A and 4B, and the bird's-eye view is shown in FIGS. As shown in these drawings, the signal light incident on the surface of the dielectric multilayer film wavelength filter 2 is reflected and standing waves of the reflected light and the incident light can be observed. Further, the state of propagation from the standing wave generation region to the reflected light output port 1-b2 side as reflected light is shown in the light intensity distribution contour diagram of FIG. 6C and the bird's-eye view of FIG. 6D. Indicated. As is apparent from the bird's eye view of FIG. 6D in particular, it can be observed that the reflected beam is converged as the reflected beam propagates toward the end of the optical waveguide. In the case where the relative light intensity contour lines are 0.1, 0.2, 0.3, and 0.4 with reference numerals 61, 62, 63, and 64 in FIG. 6, the reference numerals 65, 66, 67, 68, and 69 indicate The cases where the relative light intensity contour lines are 0.05, 0.1, 0.15, 0.2, and 0.25 are shown.

以上のことから本実施例によるレンズ状媒質がフィルタ反射ビームの反射光出力ポートとの結合特性を向上させることが明らかとなり、本実施例によるレンズ形態により、挿入形フィルタの問題点のひとつである結合効率の向上を期待できることが明らかとなった。   From the above, it is clear that the lenticular medium according to the present embodiment improves the coupling characteristics of the filter reflected beam with the reflected light output port, which is one of the problems of the insertion type filter due to the lens form according to the present embodiment. It was revealed that the coupling efficiency can be improved.

本実施例によれば透過光出力ポート1−b1から形成光入射が不要となり第1実施例に比べて工程削減可能となる。   According to the present embodiment, it is not necessary to form light from the transmitted light output port 1-b1, and the number of processes can be reduced as compared with the first embodiment.

[第3実施例]
図7は本発明の第3実施例を説明する図であって、同図(a) はその構成及び解析のための座標系を示しており、同図(b)は第3実施例の製作条件のもとで解析によって得られたレンズ状媒質の屈折率分布を示す。
[Third embodiment]
FIG. 7 is a diagram for explaining a third embodiment of the present invention. FIG. 7 (a) shows a configuration and a coordinate system for analysis, and FIG. 7 (b) shows the production of the third embodiment. The refractive index distribution of the lenticular medium obtained by analysis under the conditions is shown.

図中、1−aは入力光ポート、1−b1は透過光出力ポートを、1−b2は反射光出力ポート、1−cは予備ポート、2は誘電体多層膜波長フィルタ、13は光硬化性樹脂材料充填領域を、4−1は溝付近の光導波路基板4の入力・反射光ポート側、4−2は溝付近の光導波路基板4の透過光ポート側、5−a,5−b,5−cはそれぞれ入力光ポート端に形成されたレンズ状媒質、反射光入力ポート端に形成されたレンズ状媒質、コヒーレント光同時照射によって形成されたレンズ状媒質を示している。   In the figure, 1-a is an input optical port, 1-b1 is a transmitted light output port, 1-b2 is a reflected light output port, 1-c is a spare port, 2 is a dielectric multilayer wavelength filter, and 13 is photocuring. 4-1 is the input / reflected light port side of the optical waveguide substrate 4 near the groove, 4-2 is the transmitted light port side of the optical waveguide substrate 4 near the groove, 5-a, 5-b , 5-c respectively indicate a lenticular medium formed at the input light port end, a lenticular medium formed at the reflected light input port end, and a lenticular medium formed by coherent light simultaneous irradiation.

本実施例においてはコヒーレントな光を入力光ポート1−a及び反射光出力ポート1−b2の両方から同時に照射した場合の結果を示している。この時に使用している誘電体多層膜波長フィルタ2は形成光についてはほぼ100%透過特性を有すると仮定している。本実施例では、それぞれのポートから全照射量として6.0×10-6mJの形成光を入射した。その解析によって求められたレンズ状媒質の屈折率分布解析結果を同図(b)に示している。図中に示すように光導波路端レンズ状媒質(図中5−a、5−b)のみならずフィルタ配置位置にレンズ状媒質の屈折率分布(図中5−c)が得られた。なお、図中の符号71、72、73、74で屈折率差Δnが0.002、0.004、0.006、0.008の場合についてそれぞれ示している。 In this embodiment, the result is shown when coherent light is simultaneously irradiated from both the input light port 1-a and the reflected light output port 1-b2. It is assumed that the dielectric multilayer film wavelength filter 2 used at this time has almost 100% transmission characteristics for the formed light. In this example, 6.0 × 10 −6 mJ of formation light was incident from each port as the total irradiation amount. The refractive index distribution analysis result of the lenticular medium obtained by the analysis is shown in FIG. As shown in the figure, the refractive index distribution (5-c in the figure) of the lenticular medium was obtained not only at the optical waveguide end lenticular medium (5-a, 5-b in the figure) but also at the filter arrangement position. Note that reference numerals 71, 72, 73, and 74 in the figure respectively indicate cases where the refractive index difference Δn is 0.002, 0.004, 0.006, and 0.008.

本実施例におけるレンズ形態では入力光ポート1−aからの出射光はコリメート化されてビームが収斂するが、伝搬距離の増大とともに広がりをみせる。この場合に誘電体多層膜波長フィルタ2の面に配置されたレンズ構成によって、ビームが再度収束して誘電体多層膜波長フィルタ2の面に到達可能となる。また誘電体多層膜波長フィルタ2の面で反射したビームについても上述と逆過程で伝搬することが可能となる。   In the lens form according to the present embodiment, the light emitted from the input light port 1-a is collimated and the beam is converged, but spreads as the propagation distance increases. In this case, the lens structure disposed on the surface of the dielectric multilayer film wavelength filter 2 allows the beam to converge again and reach the surface of the dielectric multilayer film wavelength filter 2. Further, the beam reflected by the surface of the dielectric multilayer film wavelength filter 2 can also propagate in the reverse process.

なお、本実施例では2ポートからの誘電体多層膜波長フィルタ2の面でのレンズ状媒質の形成を図ったが、透過光出力ポート1−b1側及びこれと対称に配置した予備ポート1−cからの合計4ポートからの形成光入射によっても、誘電体多層膜波長フィルタ2の面でのレンズ形態の成形が実現可能となるのは言うまでもない。   In this embodiment, the lenticular medium is formed on the surface of the dielectric multilayer wavelength filter 2 from two ports. However, the side of the transmitted light output port 1-b1 and the spare port 1 arranged symmetrically therewith. Needless to say, the lens shape can be formed on the surface of the dielectric multilayer film wavelength filter 2 by the incident incident light from the total four ports from c.

さらに、各種ポートからの出射光の位相調整を図ることにより、任意位置にレンズ状媒質の形成を行うことも可能である。   Furthermore, it is possible to form a lenticular medium at an arbitrary position by adjusting the phase of light emitted from various ports.

[第4実施例]
図8は本発明の第4の実施例を説明する図であって、同図(a)はその構成及び解析のための座標系を、同図(b)は形成された光導波路の屈折率分布を示す。同図中、1−aは入力光ポート、1−b1は透過光出力ポート、1−b2は反射光出力ポートを、2は誘電体多層膜波長フィルタ、13は光硬化性樹脂材料充填領域、4−1は溝付近の光導波路基板4の入力・反射光ポート側、4−2は溝付近の光導波路基板4の透過光ポート側を、11は自己形成光導波路を示している。なお、図中の符号81、82、83、84、85で屈折率差Δnが0.000、0.002、0.004、0.006、0.008の場合についてそれぞれ示している。
[Fourth embodiment]
FIG. 8 is a diagram for explaining a fourth embodiment of the present invention. FIG. 8A shows a coordinate system for the configuration and analysis, and FIG. 8B shows a refractive index of the formed optical waveguide. Show the distribution. In the figure, 1-a is an input light port, 1-b1 is a transmitted light output port, 1-b2 is a reflected light output port, 2 is a dielectric multilayer film wavelength filter, 13 is a photocurable resin material filling region, Reference numeral 4-1 denotes an input / reflection light port side of the optical waveguide substrate 4 near the groove, 4-2 denotes a transmission light port side of the optical waveguide substrate 4 near the groove, and 11 denotes a self-forming optical waveguide. Note that reference numerals 81, 82, 83, 84, and 85 in the figure indicate cases where the refractive index difference Δn is 0.000, 0.002, 0.004, 0.006, and 0.008, respectively.

かかる本実施例においてはインコヒーレント光を入力光ポート1−a及び反射光出力ポート1−b2の両方から同時に複数回に分けて照射した場合の結果を示している。この時に使用している誘電体多層膜波長フィルタ2は形成光についてはほぼ100%反射特性を有すると仮定している。本実施例では、それぞれのポートから全照射量として10.0×10-6mJの形成光を3回に分けて入射した。その解析結果を図8(b)として示している。同図に示すように屈折率分布は誘電体多層膜波長フィルタ2の配置位置まで光導波路状の屈折率分布が得られた。本光導波路形態では、入力光ポート1−aからの出射光が自己形成光導波路11中を伝搬し、導波路中の伝搬光線角度からなるビームが誘電体多層膜波長フィルタ2の面に入射可能となる。また誘電体多層膜波長フィルタ2の面で反射したビームについても上述と逆過程で自己形成光導波路11中を伝搬することが可能となる。 In this embodiment, the result is shown in the case where incoherent light is irradiated from both the input light port 1-a and the reflected light output port 1-b2 simultaneously in a plurality of times. It is assumed that the dielectric multilayer film wavelength filter 2 used at this time has almost 100% reflection characteristics with respect to the formed light. In this example, 10.0 × 10 −6 mJ of forming light was incident in three times from each port. The analysis result is shown as FIG. As shown in the figure, a refractive index distribution in the form of an optical waveguide was obtained up to the arrangement position of the dielectric multilayer wavelength filter 2. In this optical waveguide form, the outgoing light from the input optical port 1-a propagates in the self-forming optical waveguide 11, and a beam having a propagation ray angle in the waveguide can enter the surface of the dielectric multilayer film wavelength filter 2. It becomes. Also, the beam reflected by the surface of the dielectric multilayer film wavelength filter 2 can propagate through the self-formed optical waveguide 11 in the reverse process.

なお、本実施例では2ポートからの形成光入力により誘電体多層膜波長フィルタ2の面までの自己形成光導波路11の形成を図った結果を示したが、透過光出力ポート1−b1側からの形成光入射によっても、誘電体多層膜波長フィルタ2の面までの自己形成光導波路11の形態の成形が実現可能となるのは言うまでもない。   In the present embodiment, the result of forming the self-forming optical waveguide 11 up to the surface of the dielectric multilayer wavelength filter 2 by forming light input from the two ports is shown, but from the transmitted light output port 1-b1 side. It goes without saying that the formation of the self-forming optical waveguide 11 up to the surface of the dielectric multilayer wavelength filter 2 can be realized even by the incident forming light.

本実施例によれば誘電体多層膜波長フィルタ2の面への入射光ビーム径の拡大は伴わないため、フィルタ透過波長特性中の透過幅特性設計値からの予測困難な偏差が考えられ、帯域幅、中心波長特性の向上は望めないものの、反射光出力ポートならびに透過光出力ポートのそれぞれに伝搬するビームとの結合効率の向上を図ることができる。   According to this embodiment, since the incident light beam diameter on the surface of the dielectric multilayer wavelength filter 2 is not enlarged, a deviation that is difficult to predict from the design value of the transmission width characteristic in the filter transmission wavelength characteristic can be considered. Although improvement in the width and center wavelength characteristics cannot be expected, it is possible to improve the coupling efficiency with the beam propagating to each of the reflected light output port and the transmitted light output port.

[第5実施例]
図9-1乃至図9-7は第5実施例を説明する図であって、4チャネル波長分割多重光回路の概要及びその製作工程を示す。これらの図中、図9-1は4チャネル波長分割多重光回路の動作を説明する図、図9-2乃至図9-7はその製作工程を説明する図である。図9-2乃至図9-7中、製作工程として工程順序をI→II→IIIと示している。また、レンズ形成基本工程には2形態があり、第1、第2、第4実施例に相当するA型と第3実施例に相当するB型に区分できる。
[Fifth embodiment]
FIGS. 9-1 to 9-7 are diagrams for explaining the fifth embodiment and show an outline of a 4-channel wavelength division multiplexing optical circuit and its manufacturing process. In these drawings, FIG. 9A is a diagram for explaining the operation of the 4-channel wavelength division multiplexing optical circuit, and FIGS. 9-2 to 9-7 are diagrams for explaining the manufacturing process. In FIG. 9-2 to FIG. 9-7, the process order is shown as I → II → III as a manufacturing process. There are two basic lens forming steps, which can be classified into A type corresponding to the first, second and fourth examples and B type corresponding to the third example.

さらに、第II工程以下、使用するフィルタの透過波長特性により形成光照射方法が2種類あるため、2タイプに分けて工程を別々に記載する。すなわち、搭載する誘電体多層膜波長フィルタ2が形成光についても透過する場合の工程をI型、形成光を反射する場合の工程についてはII型と本文中では区分することとした。   Furthermore, since there are two types of forming light irradiation methods depending on the transmission wavelength characteristics of the filter used in the second and subsequent steps, the steps are described separately for the two types. In other words, the process in which the dielectric multilayer wavelength filter 2 to be mounted also transmits the formed light is classified as I type, and the process in the case of reflecting the formed light is classified as Type II in the text.

従って、工程標記方法として
<(工程順序:I、II、III)−(レンズ形成基本工程種別:A、B)−(フィルタ種別:I型、II型=1、2)>
とした。
Accordingly, the process marking method is as follows: <(Process order: I, II, III)-(Lens formation basic process type: A, B)-(Filter type: I type, II type = 1, 2)>
It was.

例えばII工程で第1、第2、及び第4実施例で示したレンズ状媒質を製作する場合で、かつ誘電体多層膜波長フィルタ2が形成光を透過する場合には、<II−A−1>と標記する。   For example, when the lens-like medium shown in the first, second, and fourth embodiments is manufactured in the II step and the dielectric multilayer wavelength filter 2 transmits the formed light, <II-A- 1>.

次に、これら製作工程図中の光ポートの名称を下記標記法に従い本文中ならびに図中に表示した。
1−a:λ1〜λ4までの多重化波長信号の入力光ポート
(1−b1、λ1):波長λ1の透過光出力ポート
(1−b2、λ1):波長λ1以外の反射光出力ポート
もしくは(1−a、λ2):波長λ2の透過用フィルタ部への入力光ポート
(1−c、λ1):波長λ1の透過型フィルタ設置部の予備ポート
(1−b1、λ2):波長λ2の透過光出力ポート
(1−b2、λ2):波長λ2以外の反射光出力ポート
もしくは(1−a、λ3)(ただし、本光回路構成では反射光ポートは次段フィルタ部への入射光ポートとなりうるため、当該標記法に従えば2種類の標記をとりうるが、本実施例説明文中では混乱を避けるため反射光ポート側番号で標記統一した。):波長λ3の透過光フィルタ部への入力光ポート
(1−c、λ2):波長λ2の透過型フィルタ設置部の予備ポート
(1−b1、λ3):波長λ3の透過光出力ポート
(1−b2、λ3):波長λ3以外の反射光出力ポート
もしくは(1−a、λ4)(ただし、本光回路構成では反射光ポートは次段フィルタ部への入射光ポートとなりうるため、当該標記法に従えば2種類の標記をとりうるが、本実施例説明文中では混乱を避けるため反射光ポート側番号で標記統一した。):波長λ4の透過光出力ポート(ただし、波長λ4の透過型波長フィルタは図中には存在しないので本標記は実効無意味。)
(1−c、λ3):波長λ3の透過型フィルタ設置部の予備ポート
また、本図中の誘電体多層膜波長フィルタ2については
2−1:波長λ1の透過型波長フィルタ
2−2:波長λ2の透過型波長フィルタ
2−3:波長λ3の透過型波長フィルタ
から構成される。
Next, the names of the optical ports in these production process diagrams are displayed in the text and in the drawings according to the following notation.
1-a: input optical port of multiplexed wavelength signals from λ1 to λ4 (1-b1, λ1): transmitted light output port of wavelength λ1 (1-b2, λ1): reflected light output port other than wavelength λ1 or ( 1-a, λ2): input optical port to the transmission filter portion of wavelength λ2 (1-c, λ1): spare port of the transmission filter installation portion of wavelength λ1 (1-b1, λ2): transmission of wavelength λ2 Optical output port (1-b2, λ2): Reflected light output port other than wavelength λ2 or (1-a, λ3) (However, in this optical circuit configuration, the reflected light port can be an incident light port to the next stage filter section. Therefore, according to the notation method, two kinds of marks can be taken, but in the description of the present embodiment, the marks are unified with the reflected light port side number in order to avoid confusion.): Input light to the transmitted light filter unit of wavelength λ3 Port (1-c, λ2): Transparent wavelength λ2 (1-b1, λ3): Transmitted light output port of wavelength λ3 (1-b2, λ3): Reflected light output port other than wavelength λ3 or (1-a, λ4) (however, this In the optical circuit configuration, since the reflected light port can be an incident light port to the next-stage filter section, two kinds of marks can be taken according to the marking method. However, in the description of this embodiment, the reflected light port side is used to avoid confusion. The number is unified with the number.): Transmitted light output port with wavelength λ4 (However, this symbol is meaningless because there is no transmissive wavelength filter with wavelength λ4 in the figure)
(1-c, λ3): Spare port of transmission filter installation section with wavelength λ3 For dielectric multilayer wavelength filter 2 in this figure, 2-1: Transmission wavelength filter with wavelength λ1 2-2: Wavelength λ2 transmission wavelength filter 2-3: a transmission wavelength filter of wavelength λ3.

以上の標記に従い、以下本発明に係る第5実施例を説明する。まず、 図9-1を用いて入力光ポート1−aから伝搬してきた4波長λ1、λ2、λ3、λ4からなる多重化した信号光を分離する光回路の動作を説明する。同図に示すように、入力光ポート1−aの光導波路を伝搬してきた4波長多重信号はまず、フィルタ2−1にて波長λ1が信号透過し、透過光出力ポート(1−b1、λ1)と光結合することになる。λ1以外の波長信号光はフィルタ2−1にて反射されて反射光出力ポート(1−b2、λ1)に光結合する。その後、本光導波路伝搬後にフィルタ2−2に入射し、波長λ2の信号光のみ透過し透過光出力ポート(1−b1、λ2)と光結合することになる。一方、それ以外の波長λ3とλ4の光信号は反射光出力ポート(1−b2、λ2)と光結合することになる。同様に、本光導波路伝搬後、フィルタ2−3に入射し波長λ3は透過光出力ポート(1−b1、λ3)に光結合を行う。また、波長λ4の反射光については反射光出力ポート(1−b2、λ3)に光結合する。   A fifth embodiment according to the present invention will be described below in accordance with the above-described notation. First, the operation of an optical circuit that separates multiplexed signal light composed of four wavelengths λ1, λ2, λ3, and λ4 propagated from the input optical port 1-a will be described with reference to FIG. As shown in the figure, the wavelength λ1 of the 4-wavelength multiplexed signal that has propagated through the optical waveguide of the input optical port 1-a is first transmitted through the filter 2-1 and transmitted through the transmitted light output ports (1-b1, λ1). ). Wavelength signal light other than λ1 is reflected by the filter 2-1, and optically coupled to the reflected light output port (1-b2, λ1). Then, after propagating this optical waveguide, it enters the filter 2-2, transmits only the signal light of wavelength λ2, and is optically coupled to the transmitted light output port (1-b1, λ2). On the other hand, the optical signals of the other wavelengths λ3 and λ4 are optically coupled to the reflected light output port (1-b2, λ2). Similarly, after propagation through the optical waveguide, the light enters the filter 2-3 and the wavelength λ3 is optically coupled to the transmitted light output port (1-b1, λ3). Further, the reflected light of wavelength λ4 is optically coupled to the reflected light output port (1-b2, λ3).

以上の過程を経て4波長λ1〜λ4は各4ポートに信号分配されることになる。   Through the above process, the four wavelengths λ1 to λ4 are distributed to the four ports.

第1、第2、第4の実施例で説明を行ったレンズ状媒質を各フィルタ挿入溝部で順次製作する工程を図9-2<I−A>、図9-3<II−A−1>、図9-4<II−A−2>、図9-5<III −A−1>及び図9-6<III −A−2>を用いて述べる。これらの図に示す光回路を構成する部品として第1乃至第3形成用光源(例えばUV光源、アルゴンレーザ:波長λ=488nm、グリーンレーザ:波長λ=532nm 等)7−1、7−2、7−3、光導波路1(光導波路各ポート標記は前述)、波長λ1の透過型の誘電体多層膜波長フィルタ2−1、波長λ1の透過型フィルタ搭載部の光硬化性樹脂材料充填領域13−1、形成光導入端子(タイプ1及びタイプ2)6−1,6−2、光分岐回路8、可変遅延光回路9、光ファイバ10、波長λ2の透過型の誘電体多層膜波長フィルタ2−2、波長λ3の透過型の誘電体多層膜波長フィルタ2−3、波長λ2の透過型フィルタ搭載部の光硬化性樹脂材料充填領域13−2、波長λ3の透過型フィルタ搭載部の光硬化性樹脂材料充填領域13−3から構成される。   The process of sequentially manufacturing the lenticular medium described in the first, second, and fourth embodiments in each filter insertion groove is shown in FIG. 9-2 <IA> and FIG. 9-3 <II-A-1. >, FIG. 9-4 <II-A-2>, FIG. 9-5 <III-A-1>, and FIG. 9-6 <III-A-2>. As components constituting the optical circuit shown in these drawings, first to third light sources (for example, UV light source, argon laser: wavelength λ = 488 nm, green laser: wavelength λ = 532 nm, etc.) 7-1, 7-2, 7-3, optical waveguide 1 (each optical waveguide port is described above), transmission-type dielectric multilayer film wavelength filter 2-1 having wavelength λ1, and photocurable resin material filling region 13 of the transmission filter mounting portion having wavelength λ1 -1, forming light introducing terminals (type 1 and type 2) 6-1 and 6-2, an optical branching circuit 8, a variable delay optical circuit 9, an optical fiber 10, and a transmission type dielectric multilayer film wavelength filter 2 having a wavelength λ2. -2, transmission type dielectric multilayer film wavelength filter 2-3 of wavelength λ3, photocurable resin material filling region 13-2 of transmission filter mounting portion of wavelength λ2, photocuring of transmission filter mounting portion of wavelength λ3 Resin Material Filling Region 13-3 Et al constructed.

以下、図9-2に示す<I−A>工程から順に説明する。同図に示すように、第1乃至第4実施例で述べたレンズ状媒質の実現にあたっては、波長λ1の透過光出力ポート(1−b1、λ1)、波長λ1〜λ4の波長多重光の入力光ポート1−a、波長λ1以外の信号光の反射光出力ポート(1−b2、λ1)から形成光を入射して、各ポートにてレンズ状媒質もしくは自己形成光導波路を光導波路端に形成する。まず、誘電体多層膜波長フィルタ2−1を該当溝中へ設置前に、反射光出力ポート(1−b2、λ1)に形成光を導入するために、誘電体多層膜波長フィルタ2−2の搭載溝に形成光導入端子6−1又は6−2を設置する。すなわち形成光導入端子として、光ファイバ6−1−aとフィルム形態の光導波路6−1−bを光接続し、光導波路端部に45度斜めカットを施したものを用いて形成光を導入した。また、ファイバに斜め研磨を施した斜め研磨ファイバ6−2も試みた。これら手法により形成光を導入・照射して、誘電体多層膜波長フィルタ2−1の搭載溝部での形成光照射光強度を測定して、第1乃至第3の形成用光源7−1乃至7−3との照射光強度とのバランスを調整した。その後溝内に誘電体多層膜波長フィルタ2−1の搭載及び光硬化性樹脂材料の充填を行い、照射光強度バランスを考慮して光硬化性樹脂材料内に形成光を照射し、各実施例に応じたレンズ状媒質を各光ポートにて形成した。なお、第2実施例で述べたレンズ状媒質構成形成時には前述の形成光入力ポートをすべて使用せず、透過光出力ポート(1−b1、λ1)からの形成光入力を取り止め、照射光量を増加することで実現できるのは言うまでもない。   In the following, description will be made in order from the <IA> step shown in FIG. As shown in the figure, in realizing the lenticular medium described in the first to fourth embodiments, the transmitted light output port (1-b1, λ1) having the wavelength λ1 and the wavelength multiplexed light having the wavelengths λ1 to λ4 are input. Forming light is incident from the reflected light output port (1-b2, λ1) of signal light other than the optical port 1-a and wavelength λ1, and a lenticular medium or a self-forming optical waveguide is formed at the end of the optical waveguide at each port. To do. First, before installing the dielectric multilayer wavelength filter 2-1 into the corresponding groove, in order to introduce the formed light to the reflected light output port (1-b2, λ1), the dielectric multilayer wavelength filter 2-2 The forming light introduction terminal 6-1 or 6-2 is installed in the mounting groove. That is, as the forming light introduction terminal, the optical fiber 6-1-a and the optical waveguide 6-1-b in the form of a film are optically connected, and the forming light is introduced by using a 45 ° oblique cut at the end of the optical waveguide. did. In addition, an oblique polishing fiber 6-2 in which the fiber is obliquely polished was also tried. The formation light is introduced and irradiated by these methods, the formation light irradiation light intensity in the mounting groove portion of the dielectric multilayer film wavelength filter 2-1 is measured, and the first to third formation light sources 7-1 to 7- The balance with the irradiation light intensity of 3 was adjusted. Then, the dielectric multilayer wavelength filter 2-1 is mounted in the groove and filled with the photocurable resin material, and the formation light is irradiated into the photocurable resin material in consideration of the irradiation light intensity balance. A lenticular medium corresponding to each was formed at each optical port. When forming the lens-shaped medium configuration described in the second embodiment, not all of the above-described formed light input ports are used, the formed light input from the transmitted light output port (1-b1, λ1) is canceled, and the amount of irradiation light is increased. Needless to say, this can be achieved.

次に、第<II>工程について順次説明を行う。まず、フィルタ種別のI型に関する工程を述べる。波長λ2の透過型の波長フィルタ部のレンズ状媒質形成時には、図9-3の工程<II−A−1>に示すように予備ポート(1−c、λ1)と反射光出力ポート(1−b2、λ2)を経て形成光(1)の入力を行う。これにより誘電体多層膜波長フィルタ2−1を経て誘電体多層膜波長フィルタ2−2の搭載溝中へ形成光(1)を導入する。これについても前述の<I>工程の説明通り、光硬化性樹脂材料を誘電体多層膜波長フィルタ2−2の搭載溝内に充填前に照射光強度測定・調整を行う。他の透過光出力ポート(1−b1、λ2)及び反射光出力ポート(1−b2、λ2)の2ポートにもそれぞれ形成光(2)、(3)を第<I>工程と同様手法により光入力を行いレンズ状媒質又は光導波路を誘電体多層膜波長フィルタ2−2の搭載溝内で形成する。   Next, the <II> process will be sequentially described. First, steps related to the filter type I type will be described. At the time of forming a lenticular medium in the transmission type wavelength filter section of wavelength λ2, as shown in step <II-A-1> in FIG. 9C, the spare port (1-c, λ1) and the reflected light output port (1- The formation light (1) is input through b2, λ2). As a result, the formation light (1) is introduced into the mounting groove of the dielectric multilayer film wavelength filter 2-2 through the dielectric multilayer film wavelength filter 2-1. Also for this, as described in the above <I> step, the irradiation light intensity is measured and adjusted before filling the mounting groove of the dielectric multilayer film wavelength filter 2-2 with the photocurable resin material. Form the formed light (2) and (3) on the other transmitted light output ports (1-b1, λ2) and reflected light output ports (1-b2, λ2), respectively, in the same manner as in step <I>. Optical input is performed, and a lenticular medium or an optical waveguide is formed in the mounting groove of the dielectric multilayer film wavelength filter 2-2.

続いて図9-4に示すフィルタ種別のII型に関する工程<II−A−2>について述べる。形成光(1)が誘電体多層膜波長フィルタ2−1において反射する場合は形成光(1)を多重信号光(波長λ1〜λ)の入力光ポート1−aから入射して誘電体多層膜波長フィルタ2−1で反射させた後、誘電体多層膜波長フィルタ2−2の搭載部へと導入する。他の形成光についてはI型と同様の手法で溝内に形成光(2)、(3)の導入・照射を行う。   Next, the process <II-A-2> relating to the filter type II shown in FIG. 9-4 will be described. When the formation light (1) is reflected by the dielectric multilayer film wavelength filter 2-1, the formation light (1) is incident from the input light port 1-a of the multiplexed signal light (wavelengths λ1 to λ) and is dielectric multilayer film. After being reflected by the wavelength filter 2-1, it is introduced into the mounting portion of the dielectric multilayer film wavelength filter 2-2. For the other forming light, the forming light (2) and (3) are introduced and irradiated into the groove by the same method as in the I type.

工程<III −A−1>及び工程<III −A−2>について図9-5及び図9-6を用いて説明する。図9-5に示す工程<III −A−1>の場合には、形成光(2)の予備ポート(1−c、λ2)から入射させ、誘電体多層膜波長フィルタ2−2、反射光出力ポート(1−b2、λ2)を経て誘電体多層膜波長フィルタ2−3の搭載溝内へ形成光(2)を導入する。他の2ポートである透過光出力ポート(1−b1、λ3)及び反射光出力ポート(1−b2、λ3)への形成光の入力については形成光(1)は誘電体多層膜波長フィルタ2−3の透過光出力ポート(1−b1、λ3)から入力する。一方、形成光(3)については反射光出力ポート(1−b2、λ3)から導入して、溝内の光硬化性樹脂材料に照射を行う。この場合の形成光の導入に際して光硬化性樹脂材料を誘電体多層膜波長フィルタ2−3の搭載溝に注入前に照射光強度測定・調整を行う必要があるのはいうまでもない。   Step <III-A-1> and step <III-A-2> will be described with reference to FIGS. 9-5 and 9-6. In the case of the process <III-A-1> shown in FIG. 9-5, the incident light is incident from the spare port (1-c, λ2) of the forming light (2), and the dielectric multilayer film wavelength filter 2-2 and the reflected light are incident. Forming light (2) is introduced into the mounting groove of the dielectric multilayer film wavelength filter 2-3 via the output port (1-b2, λ2). Regarding the input of the formed light to the other two ports, the transmitted light output port (1-b1, λ3) and the reflected light output port (1-b2, λ3), the formed light (1) is the dielectric multilayer film wavelength filter 2 -3 transmitted light output port (1-b1, λ3). On the other hand, the formation light (3) is introduced from the reflected light output port (1-b2, λ3) and irradiated to the photocurable resin material in the groove. Needless to say, it is necessary to measure and adjust the irradiation light intensity before the photocurable resin material is injected into the mounting groove of the dielectric multilayer wavelength filter 2-3 when introducing the forming light in this case.

次に、図9-6に基づき工程<III −A−2>について述べる。本工程については誘電体多層膜波長フィルタ2−1、2−2が形成光を反射する場合であるため形成光(1)を入力光ポート1−aから入射して誘電体多層膜波長フィルタ2−1、2−2で反射させた後に誘電体多層膜波長フィルタ2−3の搭載溝内に導入する。他の形成光(2)、(3)については前述の工程<III−A−1>と同様である。   Next, step <III-A-2> will be described with reference to FIG. Since this process is a case where the dielectric multilayer film wavelength filters 2-1 and 2-2 reflect the formed light, the formed light (1) is incident from the input optical port 1-a and the dielectric multilayer film wavelength filter 2 is incident. After being reflected at −1, 2-2, it is introduced into the mounting groove of the dielectric multilayer film wavelength filter 2-3. Other formation lights (2) and (3) are the same as those in the above-described step <III-A-1>.

次に、第3実施例で述べたレンズ状媒質の具体的形成工程(レンズ形成基本工程B型)について図9-7に基づく工程<I−B>として説明する。   Next, the specific formation process (lens formation basic process B type) of the lenticular medium described in the third embodiment will be described as a process <IB> based on FIG. 9-7.

第3実施例におけるレンズ状媒質形成工程は入力光ポート1−aからの形成光(1)、反射光出力ポート(1−b2、λ1)からの形成光(1)′、透過光出力ポート(1−b1、λ1)からの形成光(1)″とで位相関係を保ってレンズ状媒質を形成する工程となる。そのため、同一の形成用光源7−1から光分岐回路8で3ポートに光分岐を行った後、それぞれの光路において可変遅延光回路9を用いて各々の光路(図中形成光(1)、形成光(1)′と形成光(1)″)で位相が合うように調整を行う。調整過程は誘電体多層膜波長フィルタ2の溝中設置前にフィルタ設置同一位置において受光素子を仮設置した後(図示せず)、全光路から出射される形成光同士が干渉した結果、最大光強度が検出できるように、可変遅延光回路9を調整して行う。次に、受光素子に変えて誘電体多層膜波長フィルタ2−1を溝内搭載し光硬化性樹脂材料の注入充填を行い、前述の設定遅延量でもって光導波路溝端から光硬化性樹脂材料に形成光照射を行い、三つの光ポートである透過光出力ポート(1−b1、λ1)、反射光出力ポート(1−b2、λ1)、入力光ポート(1−a、λ1)の端面のそれぞれ及びフィルタ搭載面にレンズが形成できることになる。   In the third embodiment, the lens-shaped medium forming step includes forming light (1) from the input light port 1-a, forming light (1) ′ from the reflected light output port (1-b2, λ1), and transmitted light output port ( 1-b1, λ1) from the formed light (1) ″ to maintain the phase relationship and form a lenticular medium. Therefore, the same forming light source 7-1 is split into three ports by the optical branch circuit 8. After the optical branching, the phase of each optical path (forming light (1), forming light (1) ′ and forming light (1) ″ in the figure) is matched using the variable delay optical circuit 9 in each optical path. Make adjustments. In the adjustment process, after the light receiving element is temporarily installed (not shown) at the same position where the filter is installed before being installed in the groove of the dielectric multilayer wavelength filter 2, the maximum light is generated as a result of interference between the formed lights emitted from all the optical paths. The variable delay optical circuit 9 is adjusted so that the intensity can be detected. Next, in place of the light receiving element, the dielectric multilayer film wavelength filter 2-1 is mounted in the groove, and the photocurable resin material is injected and filled. From the end of the optical waveguide groove to the photocurable resin material with the set delay amount as described above. Each of the end faces of the transmitted light output port (1-b1, λ1), the reflected light output port (1-b2, λ1), and the input light port (1-a, λ1), which are three optical ports, is irradiated In addition, a lens can be formed on the filter mounting surface.

また工程においても第1、第2、第4実施例によるレンズ状媒質形成工程と同様に工程<II−A−1>、<III −A−1>、<II−A−2>、<III −A−2>と同様の工程種別を経ることで実現を行うため、本基本工程Bによる次後工程の説明については省略する。   Also in the process, the steps <II-A-1>, <III-A-1>, <II-A-2>, <III are the same as the lenticular medium forming steps according to the first, second, and fourth embodiments. In order to realize the process through the same process type as that of -A-2>, the description of the next post-process by the basic process B will be omitted.

以上4チャネル波長分割多重光回路を例に製作工程を述べたが、チャネル規模等は本実施例に限定されるものではないのは明らかである。   Although the manufacturing process has been described above by taking the 4-channel wavelength division multiplexing optical circuit as an example, it is clear that the channel scale and the like are not limited to this embodiment.

[第6実施例]
図10は第6の実施例を説明する図であって、同図(a)は本実施例によるフィルタ固定法とフィルタ−光導波路間の構成に係る菱形構造溝の上面図、同図(b)はそのa−a′線断面を示す断面図、同図(c)は図(a)のA部の詳細を示す基板カット型の上面図、同図(d)は光導波路伝搬方向垂直カット型の上面図である。同図中、1−aは入力光ポート、1−b1は透過光出力ポート、1−b2は反射光出力ポート、1−cは予備ポート、2は誘電体多層膜波長フィルタ、13は光硬化性樹脂材料充填領域、3−4は菱形溝、3−5はフィルタ溝である。ここで、図(d)に示す端面とiii-iii' は一致している。また、図11は図10(c)、(d)に示す溝付近の光導波路コア端面形状の相違によって得られる自己形成レンズ構造の相違について説明する図であって、同図(a) は溝端面が光導波路伝搬方向に対して斜めに切断された場合(図10(c)に示す基板カット型)に得られる自己形成レンズを、同図(b)は溝端面が光導波路伝搬方向に対して垂直方向に切断された場合(図10(d)に示す光導波路端面カット型)に得られる自己形成レンズを示している。なお、図11中、符号(111,116)、(112,117)、(113,118)、(114,119)は屈折率差Δnが0.002、0.004、0.006、0.008の場合についてそれぞれ示している。
[Sixth embodiment]
FIG. 10 is a diagram for explaining the sixth embodiment, in which FIG. 10 (a) is a top view of the rhombic structure groove according to the filter fixing method and the configuration between the filter and the optical waveguide according to this embodiment. ) Is a cross-sectional view showing a cross-section along the line aa ′, FIG. 10C is a top view of a substrate-cut type showing details of part A in FIG. It is a top view of a type | mold. In the figure, 1-a is an input optical port, 1-b1 is a transmitted light output port, 1-b2 is a reflected light output port, 1-c is a spare port, 2 is a dielectric multilayer wavelength filter, and 13 is photocuring. 3-4 is a rhombus groove, and 3-5 is a filter groove. Here, iii-iii ′ coincides with the end face shown in FIG. FIG. 11 is a diagram for explaining the difference in the self-forming lens structure obtained by the difference in the shape of the end face of the optical waveguide core in the vicinity of the groove shown in FIGS. 10 (c) and 10 (d). FIG. 10B shows a self-forming lens obtained when the surface is cut obliquely with respect to the optical waveguide propagation direction (substrate cut type shown in FIG. 10C). FIG. 10 shows a self-forming lens obtained when cut in the vertical direction (the optical waveguide end face cut type shown in FIG. 10D). In FIG. 11, reference numerals (111, 116), (112, 117), (113, 118), and (114, 119) indicate that the refractive index difference Δn is 0.002, 0.004, 0.006, 0. The case of 008 is shown respectively.

以下図面を用いて第6の実施例を説明する。従来例として図13に示したフィルタ挿入形波長分割多重光回路においては、挿入溝はダイシングソーなどによって直線溝形態に形成される。このためフィルタの溝挿入時にフィルタの横方向位置が精度よく定まらず、かつフィルタの倒れが生じて光導波路との位置関係を正確に決定することが困難であった。そこで、図10に示すように、反応性イオンエッチング法によって菱形構造に溝形成することによって、光導波路と対向し、かつその対角位置に誘電体多層膜波長フィルタ2を挿入することによって、誘電体多層膜波長フィルタ2の横倒れの防止が可能となるとともに、位置決定が正確にできるようになった。なお、誘電体多層膜波長フィルタ2の仮固定については菱形溝底面に設けたフィルタ溝3−5によって実現した。   The sixth embodiment will be described below with reference to the drawings. In the filter insertion type wavelength division multiplexing optical circuit shown in FIG. 13 as a conventional example, the insertion groove is formed in a linear groove shape by a dicing saw or the like. For this reason, the lateral position of the filter is not accurately determined when the groove of the filter is inserted, and the filter is tilted, and it is difficult to accurately determine the positional relationship with the optical waveguide. Therefore, as shown in FIG. 10, by forming grooves in the rhombus structure by reactive ion etching, the dielectric multilayer wavelength filter 2 is inserted in the diagonal position so as to face the optical waveguide, and dielectric The body multilayer wavelength filter 2 can be prevented from falling down and the position can be determined accurately. The temporary fixing of the dielectric multilayer film wavelength filter 2 was realized by the filter groove 3-5 provided on the bottom surface of the rhombic groove.

次に光導波路の菱形溝端面における光導波路コア端面形状の違いによるレンズ形状への影響について述べる。図10(c)、(d)は光導波路伝搬方向と溝端面との位置関係を示したものであって、同図に示すように、基板カット型(a)と光導波路伝搬方向垂直カット型(d)とで形成光の伝搬の様子が異なる。図中には光導波路を伝搬する波面を<i−i′>→<ii−ii′>→<iii − iii′>として二重線で示している。図10(c)に示す基板カット型では光導波路1−aのwg−a〜wg−b辺とwg−a′〜wg−b′辺とで見た場合、光硬化性樹脂材料中に先に伝搬する波面(同図中iii − iii′)が両辺で位相差が生じることがわかる。一方、図10(d)に示す光導波路伝搬方向垂直カット型では光導波路1−aから光硬化性樹脂材料中に伝搬開始する際、wg−a〜wg−b辺とwg−a′〜wg−b′辺とで見た場合、波面(同図中iii−iii′)が光導波路端面で一致し、両辺で見た場合に位相差が生じず、対称性が高くかつ、指向性の良いレンズ形態が実現できると予想できる。   Next, the effect on the lens shape due to the difference in the shape of the end face of the optical waveguide core at the end face of the rhombic groove of the optical waveguide will be described. FIGS. 10C and 10D show the positional relationship between the optical waveguide propagation direction and the groove end surface. As shown in FIG. 10, the substrate cut type (a) and the optical waveguide propagation direction vertical cut type are shown. The state of propagation of the formed light differs between (d) and (d). In the figure, the wavefront propagating through the optical waveguide is indicated by a double line as <ii ′> → <ii-ii ′> → <iii−iii ′>. In the substrate cut type shown in FIG. 10C, when viewed on the wg-a to wg-b side and the wg-a 'to wg-b' side of the optical waveguide 1-a, It can be seen that there is a phase difference on both sides of the wavefront propagating to (iii-iii 'in the figure). On the other hand, in the optical waveguide propagation direction vertical cut type shown in FIG. 10 (d), when propagation starts from the optical waveguide 1-a into the photocurable resin material, the side of wg-a to wg-b and wg-a 'to wg. When viewed from the -b 'side, the wavefront (iii-iii' in the figure) coincides at the end face of the optical waveguide, and when viewed from both sides, no phase difference occurs, high symmetry, and good directivity. It can be expected that a lens configuration can be realized.

図11はこれら光導波路コア端面形状の違いによるレンズ状媒質形態の差異を解析によって示したものである。基板カット型の光導波路形態ではwg−b部(図10(c)参照。)から形成光の照射が開始される影響から、基板カット型(図10(c)参照。)と光導波路伝搬方向垂直カット型(図10(d)参照。)とで比較すると基板カット型の方がwg−b側の膨らみが大きくなっており、ビーム伝搬方向に対する対称性ならびに指向性が光導波路伝搬方向垂直カット型と比べて悪いことが分かる。従って、光導波路伝搬方向に対して垂直な面に溝端面を形成することによって、指向性が高くかつ対称性のよい光ビームが得られることになる。   FIG. 11 shows the difference in the shape of the lenticular medium due to the difference in the shape of the end face of the optical waveguide core. In the substrate cut type optical waveguide form, the substrate cut type (see FIG. 10C) and the optical waveguide propagation direction are affected by the effect of starting the irradiation of the forming light from the wg-b portion (see FIG. 10C). Compared with the vertical cut type (see FIG. 10 (d)), the substrate cut type has a larger bulge on the wg-b side, and the symmetry and directivity with respect to the beam propagation direction are perpendicular to the optical waveguide propagation direction. You can see that it is bad compared to the mold. Therefore, by forming the groove end face in a plane perpendicular to the propagation direction of the optical waveguide, a light beam having high directivity and good symmetry can be obtained.

また、図12には図10で述べた菱形溝構造にさらに機能付与した構成を述べたものである。本実施例の説明で述べてきたように、菱形溝構造を実現することによってフィルタの倒れ防止が可能であったり、さらに菱形溝を構成する辺角度(図中θ)を調整することによって光導波路のコア部に形成するレンズ構造を対称性よく作りこむことができることを示してきた。しかしながら、菱形構造溝を構成する辺を延長するだけでは、菱形溝構造のフィルタ挿入対角線部において把持可能なフィルタサイズでフィルタを挿入することが困難な場合が発生した。図中のフィルタの幅が図中の幅wに比べて大きいためである。   FIG. 12 shows a configuration in which functions are further given to the rhombic groove structure described in FIG. As described in the description of the present embodiment, it is possible to prevent the filter from falling by realizing the rhombic groove structure, and further, by adjusting the side angle (θ in the figure) constituting the rhombic groove, the optical waveguide It has been shown that the lens structure formed in the core part can be made with good symmetry. However, there are cases where it is difficult to insert a filter with a filter size that can be gripped at the filter insertion diagonal portion of the rhombic groove structure only by extending the sides constituting the rhombus structure groove. This is because the width of the filter in the figure is larger than the width w in the figure.

一方、十分な菱形対角線長(図中L)を設けた場合には光導波路端からフィルタ面までの距離も長くなり、自己形成レンズもしくは自己形成光導波路による光結合系設計が困難な状況が発生した。そこで図12に示すように、菱形溝構造部の対角線部にフィルタとほぼ同一サイズの矩形溝3−6を反応性イオンエッチングにより製作をおこない、図10で述べた菱形溝構造でのフィルタサイズ制限を十分回避することが可能となった。   On the other hand, if a sufficient rhombus diagonal length (L in the figure) is provided, the distance from the end of the optical waveguide to the filter surface also increases, and it becomes difficult to design an optical coupling system using a self-forming lens or a self-forming optical waveguide. did. Therefore, as shown in FIG. 12, rectangular grooves 3-6 having the same size as the filter are manufactured by reactive ion etching in the diagonal portion of the rhombic groove structure, and the filter size limit in the rhombus structure described in FIG. Can be avoided sufficiently.

以上、誘電体多層膜波長フィルタを対象にこれまでの実施例を述べてきたが、当然のことながら本発明は誘電体多層膜波長フィルタのみに制約されるものではなく、誘電体多層膜ミラー、金属ミラー、磁性薄膜、波長板フィルタ等他の光学薄膜部品にも応用できるのは言うまでもない。   As described above, the embodiments so far have been described with respect to the dielectric multilayer wavelength filter. However, as a matter of course, the present invention is not limited only to the dielectric multilayer wavelength filter, Needless to say, the present invention can also be applied to other optical thin film components such as metal mirrors, magnetic thin films, and wave plate filters.

本発明はユビキタス通信をはじめとする情報通信処理装置用光部品類光結合技術・光導波回路構成技術に適用して有用なものである。   INDUSTRIAL APPLICABILITY The present invention is useful when applied to optical parts optical coupling technology and optical waveguide circuit construction technology for information communication processing devices such as ubiquitous communication.

光硬化性樹脂材料の屈折率変化の照射光量依存性を示す特性図である。It is a characteristic view which shows the irradiation light quantity dependence of the refractive index change of a photocurable resin material. 本発明の実施例に共通(原理説明)の導波路端部球形レンズの形成結果と信号光の伝搬の様子を示す図で、(a)はその構成及び解析座標を示す説明図、(b)はそのレンズ状媒質の屈折率分布を示す特性図、(c)は前記レンズ状媒質の屈折率分布における信号光伝搬特性を示す特性図である。It is a figure which shows the formation result of a waveguide end spherical lens common to the Example of this invention, and the mode of propagation | transmission of signal light, (a) is explanatory drawing which shows the structure and analysis coordinates, (b) Is a characteristic diagram showing the refractive index distribution of the lenticular medium, and (c) is a characteristic chart showing the signal light propagation characteristic in the refractive index distribution of the lenticular medium. 第1実施例に係る光回路を示す図で、(a)はその構成及び解析座標を示す説明図、(b)はそのレンズ状媒質の屈折率分布を示す特性図である。1A and 1B are diagrams illustrating an optical circuit according to a first embodiment, where FIG. 3A is an explanatory diagram illustrating the configuration and analysis coordinates, and FIG. 2B is a characteristic diagram illustrating a refractive index distribution of the lens-shaped medium. 第1実施例に係る光回路の屈折率分布とその信号光伝搬の様子を示す特性図で、(a) は形成された導波路端レンズの屈折率分布特性を、(b)は信号光のレンズ状媒質中の伝搬解析特性を、(c) は信号光伝搬の位相分布解析特性をそれぞれ示している。FIG. 6 is a characteristic diagram showing the refractive index distribution of the optical circuit according to the first embodiment and the state of signal light propagation, where (a) shows the refractive index distribution characteristic of the formed waveguide end lens, and (b) shows the signal light propagation. The propagation analysis characteristics in the lenticular medium and (c) show the phase distribution analysis characteristics of the signal light propagation. 第2実施例に係る光回路を示す図で、(a)はその構成及び解析座標を示す説明図、(b)はそのレンズ状媒質の屈折率分布を示す特性図である。It is a figure which shows the optical circuit based on 2nd Example, (a) is explanatory drawing which shows the structure and analysis coordinate, (b) is a characteristic view which shows the refractive index distribution of the lenticular medium. 第2実施例に係る光回路のレンズ形態でのビーム伝搬解析結果を示す特性図で、同図(a)、(b)には入射側信号光伝搬解析特性を、同図(c)、(d)には誘電体多層膜波長フィルタ2によって反射された信号光ビームの伝搬特性をそれぞれ示した。FIG. 6 is a characteristic diagram showing the result of beam propagation analysis in the lens configuration of the optical circuit according to the second example. FIGS. 6A and 6B show the incident side signal light propagation analysis characteristics, and FIGS. In (d), the propagation characteristics of the signal light beam reflected by the dielectric multilayer film wavelength filter 2 are shown. 第3実施例に係る光回路を示す図で、(a)はその構成及び解析座標を示す説明図、(b)はそのレンズ状媒質の屈折率分布を示す特性図である。It is a figure which shows the optical circuit based on 3rd Example, (a) is explanatory drawing which shows the structure and analysis coordinate, (b) is a characteristic view which shows the refractive index distribution of the lenticular medium. 第4実施例に係る光回路を示す図で、(a)はその構成及び解析座標を示す説明図、(b)はその光導波路の屈折率分布を示す特性図である。It is a figure which shows the optical circuit based on 4th Example, (a) is explanatory drawing which shows the structure and analysis coordinate, (b) is a characteristic view which shows the refractive index distribution of the optical waveguide. 第5実施例に係る光回路を示す図で、4チャンネル波長分割多重光回路の構造を示す説明図である。It is a figure which shows the optical circuit which concerns on 5th Example, It is explanatory drawing which shows the structure of a 4-channel wavelength division multiplexing optical circuit. 第5実施例に係る光回路の製造工程を示す図で、工程パターンI−Aを示す説明図である。It is a figure which shows the manufacturing process of the optical circuit which concerns on 5th Example, and is explanatory drawing which shows process pattern IA. 第5実施例に係る光回路の製造工程を示す図で、工程パターンII−A−1を示す説明図である。It is a figure which shows the manufacturing process of the optical circuit which concerns on 5th Example, and is explanatory drawing which shows process pattern II-A-1. 第5実施例に係る光回路の製造工程を示す図で、工程パターンII−A−2を示す説明図である。It is a figure which shows the manufacturing process of the optical circuit which concerns on 5th Example, and is explanatory drawing which shows process pattern II-A-2. 第5実施例に係る光回路の製造工程を示す図で、工程パターンIII−A−1を示す説明図である。It is a figure which shows the manufacturing process of the optical circuit which concerns on 5th Example, and is explanatory drawing which shows process pattern III-A-1. 第5実施例に係る光回路の製造工程を示す図で、工程パターンIII−A−2を示す説明図である。It is a figure which shows the manufacturing process of the optical circuit which concerns on 5th Example, and is explanatory drawing which shows process pattern III-A-2. 第5実施例に係る光回路の製造工程を示す図で、工程パターンI−Bを示す説明図である。It is a figure which shows the manufacturing process of the optical circuit which concerns on 5th Example, and is explanatory drawing which shows process pattern IB. 第6実施例を説明する図であって、同図(a)は本実施例によるフィルタ固定法とフィルタ−光導波路間の構成に係る菱形構造溝の上面図、同図(b)はそのa−a′線断面を示す断面図、同図(c)は(a)のA部の詳細を示す基板カット型の上面図、同図(d)は光導波路伝搬方向垂直カット型の上面図である。It is a figure explaining 6th Example, The figure (a) is a top view of the rhombus structure groove | channel concerning the structure between a filter fixing method and a filter-optical waveguide by a present Example, The figure (b) is the a FIG. 4C is a top view of a substrate cut type showing the details of part A of FIG. 4A, and FIG. 3D is a top view of a vertical cut type in the optical waveguide propagation direction. is there. 第6実施例の解析結果を示す図で、図(a)が図10(c)に、図(b)が図10(d)にそれぞれ対応した屈折率分布を示す特性図である。It is a figure which shows the analysis result of 6th Example, and Fig.10 (a) is a characteristic view which shows refractive index distribution corresponding to FIG.10 (c) and FIG.10 (b), respectively. 上記菱形構造溝の他の例を示す上面図、(b)はそのa−a‘線断面図である。The top view which shows the other example of the said rhombus structure groove | channel, (b) is the aa 'line sectional drawing. 従来技術に係る波長分割多重光回路の構成を示す斜視図である。It is a perspective view which shows the structure of the wavelength division multiplexing optical circuit which concerns on a prior art. 図13に示す波長分割多重光回路の上面図である。FIG. 14 is a top view of the wavelength division multiplexing optical circuit shown in FIG. 13. 図13に示す波長分割多重光回路の解析結果を示す特性図で、(a)は光硬化性樹脂材料屈折率分布特性、(b)は信号光の伝搬解析特性、(c)は信号光の伝搬解析位相分布特性をそれぞれ示している。FIG. 14 is a characteristic diagram showing an analysis result of the wavelength division multiplexing optical circuit shown in FIG. 13, (a) is a photocurable resin material refractive index distribution characteristic, (b) is a signal light propagation analysis characteristic, and (c) is a signal light propagation characteristic. The propagation analysis phase distribution characteristics are shown.

符号の説明Explanation of symbols

1 光導波路
1−a 入力光ポート
1−b1 透過光出力ポート
1−b2 反射光出力ポート
1−c 予備ポート
2、2−1、2−2、2−3 誘電体多層膜波長フィルタ
3−4 菱形溝
3−5 フィルタ溝
3−6 矩形溝
4 光導波路基板
4−1 入力・反射光ポート側
4−2 透過光ポート側
5、5−a、5−b、5−c レンズ状媒質
6 形成光導入端子
6−1 導波路型形成光導入端子
6−1−a 光ファイバ
6−1−b 光導波路
6−2 斜め研磨光ファイバ
7−1、7−2、7−3 形成用光源
8 光分岐回路
9 遅延光回路
10 光ファイバ
11 自己形成光導波路
13、13−1、13−2、13−3 光硬化性樹脂材料充填領域

DESCRIPTION OF SYMBOLS 1 Optical waveguide 1-a Input light port 1-b1 Transmitted light output port 1-b2 Reflected light output port 1-c Spare port 2, 2-1, 2-2, 2-3 Dielectric multilayer wavelength filter 3-4 Diamond groove 3-5 Filter groove 3-6 Rectangular groove 4 Optical waveguide substrate 4-1 Input / reflected light port side 4-2 Transmitted light port side 5, 5-a, 5-b, 5-c Formation of lenticular medium 6 Light Introducing Terminal 6-1 Waveguide-Type Forming Light Introducing Terminal 6-1-a Optical Fiber 6-1-b Optical Waveguide 6-2 Obliquely Polished Optical Fiber 7-1, 7-2, 7-3 Light Source for Formation 8 Branch circuit 9 Delay optical circuit 10 Optical fiber 11 Self-forming optical waveguide 13, 13-1, 13-2, 13-3 Photocurable resin material filling region

Claims (12)

光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される光学薄膜と、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路を介して前記光硬化性樹脂材料に伝搬・放射させることで前記溝の内面に面した前記光導波路のコア部端部、又は前記溝に設置した前記光学薄膜の面の近傍に形成したレンズ構造とを有することを特徴とする光回路。
An optical thin film that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The core portion end of the optical waveguide facing the inner surface of the groove by propagating and radiating forming light having a wavelength that gives a refractive index change to the photocurable resin material to the photocurable resin material through the optical waveguide Or a lens structure formed in the vicinity of the surface of the optical thin film placed in the groove.
光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される誘電体多層膜波長フィルタと、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路を介して前記光硬化性樹脂材料に伝搬・放射させることで前記溝の内面に面した前記光導波路のコア部端部、または前記溝に設置した前記誘電体多層膜波長フィルタの面の近傍に形成したレンズ構造とを有することを特徴とする光回路。
A dielectric multilayer wavelength filter that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The core portion end of the optical waveguide facing the inner surface of the groove by propagating and radiating forming light having a wavelength that gives a refractive index change to the photocurable resin material to the photocurable resin material through the optical waveguide Or a lens structure formed in the vicinity of the surface of the dielectric multilayer film wavelength filter installed in the groove.
光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される光学薄膜と、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を前記光導波路を介して前記光硬化性樹脂材料に二回以上伝搬・放射させることで前記溝の内面に面した前記光導波路のコア部より前記光学薄膜又はその近傍部分まで形成した光導波路コア構造とを有することを有することを特徴とする光回路。
An optical thin film that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The optical waveguide facing the inner surface of the groove by propagating and radiating forming light having a wavelength that gives a refractive index change to the photocurable resin material to the photocurable resin material at least twice through the optical waveguide. And an optical waveguide core structure formed from the core portion to the optical thin film or the vicinity thereof.
光導波路基板中に設けた1つ以上の溝中に挿入するとともに前記溝中に充填する光硬化性樹脂材料で位置決め固定される誘電体多層膜波長フィルタと、
前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を前記光導波路を介して前記光硬化性樹脂材料に伝搬・照射させることで前記溝の内面に面した前記光導波路のコア部より前記誘電体多層膜波長フィルタ又はその近傍部分まで形成した光導波路コア構造とを有することを特徴とする光回路。
A dielectric multilayer wavelength filter that is inserted into one or more grooves provided in the optical waveguide substrate and positioned and fixed by a photocurable resin material that fills the grooves;
The core portion of the optical waveguide facing the inner surface of the groove by propagating and irradiating the photocurable resin material with a wavelength that gives a refractive index change to the photocurable resin material through the optical waveguide And an optical waveguide core structure formed to the dielectric multilayer wavelength filter or the vicinity thereof.
請求項1又は請求項3に記載する光回路において、
光硬化性樹脂材料を充填する充填領域の溝形態が菱形構造であって、その対角位置に光学薄膜を挿入して固定するようにしたことを特徴とする光回路。
In the optical circuit according to claim 1 or 3,
An optical circuit characterized in that a groove in a filling region filled with a photocurable resin material has a rhombus structure, and an optical thin film is inserted and fixed at a diagonal position.
請求項2又は請求項4に記載する光回路において、
光硬化性樹脂材料を充填する充填領域の溝形態が菱形構造であって、その対角位置に誘電体多層膜波長フィルタを挿入して固定するようにしたことを特徴とする光回路。
In the optical circuit according to claim 2 or 4,
An optical circuit characterized in that a groove shape of a filling region filled with a photocurable resin material has a rhombus structure, and a dielectric multilayer film wavelength filter is inserted and fixed at a diagonal position thereof.
光導波路基板中に設けた1つ以上の溝中に光学薄膜を挿入して形成する光回路の製造方法において、
前記光学薄膜を前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、1回伝搬・放射させることで、前記溝の内面に面した前記光導波路のコア部端部、又は溝に設置した前記光学薄膜の面の近傍においてレンズ構造を形成し、
その後前記レンズ構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された光学薄膜と前記光導波路とを光学的に位置決め固定することを特徴とする光回路の製造方法。
In a method for manufacturing an optical circuit, in which an optical thin film is inserted into one or more grooves provided in an optical waveguide substrate,
The optical thin film is positioned and fixed in the groove, and the forming light having a wavelength that changes the refractive index of the photocurable resin material is formed from the optical waveguide in the groove filled with the photocurable resin material. Propagating and radiating into the groove once to form a lens structure in the vicinity of the core portion end of the optical waveguide facing the inner surface of the groove or the surface of the optical thin film installed in the groove,
Thereafter, the light-curing resin material in a portion excluding the lens structure forming portion is subjected to light irradiation with an intensity capable of polymerization, irradiation with other wavelength light, or a heat treatment step on the entire light-curing resin material, A method for producing an optical circuit, comprising: solidifying a photocurable resin material as a whole and optically positioning and fixing an optical thin film inserted into the groove and the optical waveguide.
光導波路基板中に設けた1つ以上の溝中に誘電体多層膜波長フィルタを挿入して形成する光回路の製造方法において、
前記誘電体多層膜波長フィルタを前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、1回伝搬・放射させることで、前記溝の内面に面した前記光導波路のコア部端部、又は溝に設置した前記誘電体多層膜波長フィルタの面の近傍においてレンズ構造を形成し、
その後前記レンズ構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された誘電体多層膜波長フィルタと前記光導波路とを光学的に位置決め固定することを特徴とする光回路の製造方法。
In a manufacturing method of an optical circuit formed by inserting a dielectric multilayer wavelength filter into one or more grooves provided in an optical waveguide substrate,
Positioning and fixing the dielectric multilayer film wavelength filter in the groove, and forming light having a wavelength that gives a refractive index change to the photocurable resin material in the groove filled with the photocurable resin material. In the vicinity of the end of the core portion of the optical waveguide facing the inner surface of the groove or the surface of the dielectric multilayer wavelength filter installed in the groove by being propagated and emitted once into the groove from the optical waveguide Forming the lens structure,
Thereafter, the light-curing resin material in a portion excluding the lens structure forming portion is subjected to light irradiation with an intensity capable of polymerization, irradiation with other wavelength light, or a heat treatment step on the entire light-curing resin material, A method for producing an optical circuit, comprising: solidifying a photocurable resin material as a whole, and optically positioning and fixing a dielectric multilayer wavelength filter inserted in the groove and the optical waveguide.
光導波路基板中に設けた1つ以上の溝中に光学薄膜を挿入して形成する光回路の製造方法において、
前記光学薄膜を前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、2回以上伝搬・放射させることで、前記溝の内側面に面した前記光導波路のコア部端部から前記光学薄膜又はその近傍まで光導波路コア構造を形成し、
その後前記光導波路コア構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された光学薄膜と前記光導波路とを光学的に位置決め固定することを特徴とする光回路の製造方法。
In a method for manufacturing an optical circuit, in which an optical thin film is inserted into one or more grooves provided in an optical waveguide substrate,
The optical thin film is positioned and fixed in the groove, and the forming light having a wavelength that changes the refractive index of the photocurable resin material is formed from the optical waveguide in the groove filled with the photocurable resin material. By propagating and radiating twice or more into the groove, an optical waveguide core structure is formed from the core portion end of the optical waveguide facing the inner surface of the groove to the optical thin film or the vicinity thereof,
Thereafter, the entire photocurable resin material is subjected to light irradiation with a strength capable of polymerizing the portion of the photocurable resin material excluding the optical waveguide core structure forming portion, irradiation with other wavelength light, or a heat treatment step. A method for producing an optical circuit, comprising: solidifying the photocurable resin material as a whole and optically positioning and fixing the optical thin film inserted into the groove and the optical waveguide.
光導波路基板中に設けた1つ以上の溝中に誘電体多層膜波長フィルタを挿入して形成する光回路の製造方法において、
前記誘電体多層膜波長フィルタを前記溝中に位置決め固定するとともに、該溝を光硬化性樹脂材料によって充填した溝内で、前記光硬化性樹脂材料に屈折率変化を与える波長を持つ形成光を光導波路より前記溝内へ、2回以上伝搬・放射させることで、前記溝の内側面に面した前記光導波路のコア部端部から前記誘電体多層膜波長フィルタ又はその近傍まで光導波路コア構造を形成し、
その後前記光導波路コア構造形成部を除いた部分の光硬化性樹脂材料の重合が可能な強度の光照射、他の波長光による照射、又は熱処理工程を前記光硬化性樹脂材料全体に行うことによって、該光硬化性樹脂材料を全体的に固化し、前記溝部に挿入された誘電体多層膜波長フィルタと前記光導波路とを光学的に位置決め固定することを特徴とする光回路の製造方法。
In a manufacturing method of an optical circuit formed by inserting a dielectric multilayer wavelength filter into one or more grooves provided in an optical waveguide substrate,
Positioning and fixing the dielectric multilayer film wavelength filter in the groove, and forming light having a wavelength that gives a refractive index change to the photocurable resin material in the groove filled with the photocurable resin material. Optical waveguide core structure from the optical waveguide core end facing the inner surface of the groove to the dielectric multilayer wavelength filter or the vicinity thereof by propagating and radiating into the groove from the optical waveguide twice or more Form the
Thereafter, the entire photocurable resin material is subjected to light irradiation with a strength capable of polymerizing the portion of the photocurable resin material excluding the optical waveguide core structure forming portion, irradiation with other wavelength light, or a heat treatment step. A method for producing an optical circuit comprising: solidifying the photocurable resin material as a whole, and optically positioning and fixing the dielectric multilayer film wavelength filter inserted in the groove and the optical waveguide.
請求項7乃至請求項10の何れか一つに記載する光回路の製造方法において、
前記光硬化性樹脂材料が充填された溝部に形成光を導入するために、前記光硬化性樹脂材料が充填された溝部と前記光導波路により接続された光硬化性樹脂材料を充填前の溝部に、45度付近の角度で斜め加工されたフィルム形光導波回路又は45度付近の角度で斜め加工された光ファイバを前記光硬化性樹脂材料の充填前の前記溝部分に挿入して形成光を前記溝部に導入・照射することを特徴とする光回路の製造方法。
In the manufacturing method of the optical circuit as described in any one of Claim 7 thru | or 10,
In order to introduce the formation light into the groove filled with the photocurable resin material, the groove filled with the photocurable resin material and the photocurable resin material connected by the optical waveguide to the groove before filling. A film-type optical waveguide circuit obliquely processed at an angle of approximately 45 degrees or an optical fiber obliquely processed at an angle of approximately 45 degrees is inserted into the groove portion before filling with the photocurable resin material to form light. An optical circuit manufacturing method comprising introducing and irradiating the groove.
請求項1又は請求項2に記載する光回路の製造方法において、
前記光硬化性樹脂材料を充填した溝中へレンズ構造を形成するにあたり、前記光導波路基板のうち少なくとも2ポート以上の光導波路を用いてコヒーレントな形成光の導入を図り、該複数ポートからの形成光を相互位相干渉させることによって、前記光硬化性樹脂材料で充填した溝中の任意位置にレンズ構造を形成することを特徴とする光回路の製造方法。
In the manufacturing method of the optical circuit of Claim 1 or Claim 2,
In forming the lens structure in the groove filled with the photo-curable resin material, the coherent forming light is introduced using at least two or more ports of the optical waveguide substrate to form the plurality of ports. A method of manufacturing an optical circuit, wherein a lens structure is formed at an arbitrary position in a groove filled with the photo-curing resin material by causing phase interference of light.
JP2003279283A 2003-07-24 2003-07-24 Optical circuit and manufacturing method thereof Expired - Fee Related JP4230850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279283A JP4230850B2 (en) 2003-07-24 2003-07-24 Optical circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279283A JP4230850B2 (en) 2003-07-24 2003-07-24 Optical circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005043760A true JP2005043760A (en) 2005-02-17
JP4230850B2 JP4230850B2 (en) 2009-02-25

Family

ID=34265438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279283A Expired - Fee Related JP4230850B2 (en) 2003-07-24 2003-07-24 Optical circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4230850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249099A (en) * 2006-03-20 2007-09-27 Toyota Central Res & Dev Lab Inc Method of manufacturing optical module
WO2020105412A1 (en) * 2018-11-19 2020-05-28 日本電信電話株式会社 Optical interconnect structure and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249099A (en) * 2006-03-20 2007-09-27 Toyota Central Res & Dev Lab Inc Method of manufacturing optical module
JP4736880B2 (en) * 2006-03-20 2011-07-27 株式会社豊田中央研究所 Manufacturing method of optical module
WO2020105412A1 (en) * 2018-11-19 2020-05-28 日本電信電話株式会社 Optical interconnect structure and method for manufacturing same
JP2020085983A (en) * 2018-11-19 2020-06-04 日本電信電話株式会社 Optical connection structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP4230850B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
Li et al. Silica-based optical integrated circuits
JP5728140B1 (en) High-order polarization conversion element, optical waveguide element, and DP-QPSK modulator
US7062128B2 (en) Holographic spectral filter
CA2673455C (en) Method for designing wave propagation circuits and computer program therefor
JP5966021B2 (en) Polarization conversion element
EP2140295B1 (en) Device and method for a grating multiplexer with optical waveguide coupling
US20040036933A1 (en) Planar holographic multiplexer/demultiplexer
JPH1073735A (en) Optical power splitter
JP3794327B2 (en) Optical coupler and manufacturing method thereof
JP7477761B2 (en) Mode conversion element
Henry Silicon optical bench waveguide technology
US20030206694A1 (en) Photonic multi-bandgap lightwave device and methods for manufacturing thereof
Yu et al. Free‐Form Micro‐Optics Enabling Ultra‐Broadband Low‐Loss Off‐Chip Coupling
JP4230850B2 (en) Optical circuit and manufacturing method thereof
Lee Transmission and routing of optical signals in on-chip waveguides for silicon microphotonics
US9091806B2 (en) Surface-normal optical coupling using a holographic recording material
WO2020245723A1 (en) Flexible waveguide having an asymmetric optical-loss performance curve and improved worst-case optical-loss performance
Prajzler et al. Large core optical planar splitter for visible and infrared region
JP2005301301A (en) Optical coupler
JP2006323210A (en) Spot size converter
JP2006139269A (en) Optical system having optical waveguide and optical multiplexer/demultiplexer
Galán Addressing fiber-to-chip coupling issues in silicon photonics
JP3011140B2 (en) Fiber type optical isolator and method of manufacturing the same
Nadovich Forked Grating Coupler Optical Vortex Beam Interface for Integrated Optics
JP2023040871A (en) Optical waveguide device and optical integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees