JP2007248827A - 可変形状鏡 - Google Patents

可変形状鏡 Download PDF

Info

Publication number
JP2007248827A
JP2007248827A JP2006072368A JP2006072368A JP2007248827A JP 2007248827 A JP2007248827 A JP 2007248827A JP 2006072368 A JP2006072368 A JP 2006072368A JP 2006072368 A JP2006072368 A JP 2006072368A JP 2007248827 A JP2007248827 A JP 2007248827A
Authority
JP
Japan
Prior art keywords
electrode
drive
capacitance
signal
capacitance detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072368A
Other languages
English (en)
Other versions
JP4756642B2 (ja
Inventor
Masahiro Nishio
真博 西尾
Kenji Murakami
賢治 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006072368A priority Critical patent/JP4756642B2/ja
Priority to US11/710,807 priority patent/US7474455B2/en
Priority to EP07104295A priority patent/EP1835322A1/en
Publication of JP2007248827A publication Critical patent/JP2007248827A/ja
Application granted granted Critical
Publication of JP4756642B2 publication Critical patent/JP4756642B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】反射面の複数位置の変形量を同時に検出できる可変形状鏡を提供すること。
【解決手段】反射面101及びCOM電極110が形成された変形部140と、変形部140を固定する固定部104と、COM電極110に対向して設けられた複数の駆動兼センサ電極105a等を有し、COM電極110と駆動兼センサ電極105a等との間に電位差を印加することで変形部140を駆動する駆動兼センサ電極105a等(駆動力発生手段)と、COM電極110と駆動兼センサ電極105a等との間の複数の容量を各々同時に検出する容量検出回路122を有する
【選択図】 図2

Description

本発明は、静電力を用いて反射面形状を制御する可変形状鏡に関するものである。
従来、静電力により反射面の形状を変えるMEMS技術を用いた可変形状鏡が注目されている。反射面の変形を高精度に制御するには、その変形形状を測定することが必要になる。反射面形状を測定する方法としては、例えば、特許文献1に提案されているように静電容量の変化を測定して変形形状を知る方法がある。
図19は、従来例の可変形状鏡の構成を示している。従来例の可変形状鏡は、圧電制御基板1と上部基板5とから構成されている。上部基板5には、静電引力によって変形する反射面と上部電極6とを有する可撓性薄膜8が形成されている。
圧電制御基板1には、可撓性薄膜8に対向して配置された制御用と容量検出用とを兼ねた制御電極2と、電圧制御回路3とが形成されている。また、これらの基板には、それぞれ外部リード電極4、7が形成されている。
反射面は、上部電極6と制御電極2との間に電圧を印加することで発生する静電駆動力によって変形する。その変形量は、上部電極6と制御電極2との間の容量を測定することにより算出できる構成である。
検出回路構成としては、図20に示されるような構成が提案されている。制御電極2に抵抗を介して高電圧10aを印加する。静電容量検出電極2’に高周波電圧10bが印加されると制御電極2の電位が変化する。この変化が上部電極6を通して静電容量検出回路6Aで電流変化としてモニターされる。この電流の位相及び振幅により、静電容量の変化、即ち反射面の変位が検出される。
従来例のような静電駆動型の可変形状鏡では、反射面形状を自由に変えられるように、1つの上部電極6に対して制御電極2を複数に分割する構成も考えられている。この場合には、複数の制御電極2について、それぞれの容量を順次測定する。そして、対応する反射面の形状を順次求める方法が示されている。
特開2002―228813号公報
しかしながら、上述したような、複数の制御電極を有する構成の可変形状鏡では、各制御電極ごとの容量を順次測定して反射面形状を求めなければならない。このため、処理に時間がかかってしまう場合もある。また、反射面の複数位置の変形量を時間連続的、特に同時に求めることは困難であるが、反射面の形状を高速に変形させるときには重要となる。
本発明は、上記問題点に鑑みてなされたものであって、反射面の複数位置の変形量を同時に検出できる可変形状鏡を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明によれば、反射面及び第1の電極が形成された変形部と、変形部を固定する固定部と、第1の電極に対向して設けられた複数の第2の電極を有し、第1の電極と第2の電極間とに電位差を印加することで変形部を駆動する駆動力発生手段と、第1の電極と第2の電極間の複数の容量を各々同時に検出する容量検出手段を有することを特徴とする可変形状鏡を提供できる。
また、本発明の好ましい態様によれば、容量検出手段は、容量検出手段の動作に必要な異なった識別因子を有する参照信号を、第2の電極に個別に印加する参照信号印加手段と、複数の参照信号を用いて、第1の電極及び複数の第2の電極間の容量を重畳した全容量検出信号を検出するための、第1の電極に接続された容量検出手段と、全容量検出信号を識別因子に基づいて個々の第2の電極に対応する容量検出信号に分離する検出信号分離手段を有することが望ましい。
また、本発明の好ましい態様によれば、識別因子は周波数であり、検出信号分離手段は周波数に基づいて信号を分離することが望ましい。
また、本発明の好ましい態様によれば、識別因子は位相であり、検出信号分離手段は位相に基づいて信号を分離することが望ましい。
また、本発明の好ましい態様によれば、容量検出手段は、容量検出手段の動作に必要な参照信号を、第1の電極に印加する参照信号生成手段と、個々の第2の電極に接続された、第1の電極と第2の電極間の容量を検出する容量検出回路からなることが望ましい。
本発明に係る可変形状鏡は、反射面の複数位置の変形量を同時に検出できるという効果を奏する。
以下に、本発明に係る可変形状鏡の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
本発明の実施例1に係る可変形状鏡100について説明する。図1は、可変形状鏡100の上面図を示している。図2は、図1に示すA−A’位置での断面図を示している。図3は、可変形状鏡100の電極基板107を説明する図である。図4は、可変形状鏡100のミラー基板111を説明する図である。図3、4に示すように可変形状鏡100は電極基板107とミラー基板111とに分けることができる。
図3に示すように、電極基板107には、分割された5つの駆動兼センサ電極105a、105b、105c、105d、105eが配置されている。駆動兼センサ電極105a、105b、105c、105d、105eは、引出し電極103a、103b、103c、103d、103eのそれぞれに対して配線によって電気的に接続される。
本実施例では、駆動兼センサ電極105a〜105eが第2の電極に相当する。引出し電極103a〜103eから外部への電気接続は、図示していないが通常ワイヤボンディングによって行われる。
図2に示すように、電極基板107とミラー基板111とは、スペーサ106を介して固定される。このとき、駆動兼センサ電極105a〜105eに対向する位置と、ミラー基板111に形成された変形部140の位置とが一致するように固定される。
ミラー基板111は、支持部と変形部140とからなる。支持部は、変形部140を支持する。同時に、支持部は、ミラー基板111を、電極基板107にスペーサ106を介して固定するときの固定部104として用いられる。
また、図4に示すように、ミラー基板111の駆動兼センサ電極105a〜105eに対向する面には、金属などの導電性材料が全面に形成され、COM電極110として用いられる。COM電極110は、第1の電極に相当する。
COM電極110の形成された面を裏面としたとき、ミラー基板111の表面には、変形部140上に金属等を成膜した反射面101が形成されている。成膜される材料は可変形状鏡100の仕様によって異なる。例えば、好適には、アルミニウム、金、誘電体多層膜を用いることができる。アルミニウムなど酸化性のある金属の場合は、さらにシリコン酸化物などで表面をコーティングすることが望ましい。
また、スペーサ106は、電極基板107とミラー基板111との間隔を確保しながら固定するために用いられる。スペーサ106の材料は、ガラス、シリコン基板といった無機物材料や金属等を用いることができる。その他に、電極基板107とミラー基板111との間隔を確保するため、ビーズを含む有機接着剤を用いることもできる。
ミラー基板111に形成したCOM電極110を、電極基板107上に形成したCOM用引出し電極102(図1参照)に電気的に接続する。そのために、ミラー基板111の支持体上のCOM電極110の一部を接続部とする。そして、その接続部を、ミラー基板111を固定するとき、電極基板107上に形成された電気接続用導電材130(図2、図3参照)に電気的に接続させる。電気的接続は、金属の圧接によって接続させても良いし、導電性ペースト等で接続させても良い。この結果、ミラー基板上のCOM電極110と電極基板107上のCOM用引出し電極102とは、電気的に接続される。
本実施例の可変形状鏡100は、静電力によって変形部140上の反射面101を変形させる静電駆動方式を採用している。静電力は、COM電極110と駆動兼センサ電極105a〜105eとの間に電位差を与えることによって発生させることができる。静電力は引力を発生させるため、反射面101は、変形部140と共に電極基板107側に変形する。
スペーサ106の高さによって定まる電極基板107とミラー基板111との間隔は、反射面101の最大変形量から決定することができる。一般的に、最大変形量の約3倍以上の基板間隔が望ましい。
反射面101の変形は、COM電極110をGNDとして電圧を印加する際に、分割配置されている複数の駆動兼センサ電極105a〜105eのうちのどの電極に電圧を印加するか、どの程度の電圧を印加するかを考慮することで制御することができる。
例えば、図5に示すように、複数の電極のうち中央に配置された駆動兼センサ電極105cに駆動信号発生器112cによって電圧を印加する場合について考える。この場合には、図6の上面構成図、及び図7の断面構成図に示すように、反射面101の中心領域が大きく変形する形状を作ることができる。
また、図8に示すように、図中において左上部分に配置された駆動兼センサ電極105aに駆動信号発生器112aによって電圧を印加する場合を考える。この場合には、図9の上面構成図、及び図10の断面構成図に示すように、反射面101のうちの駆動兼センサ電極105aに対向する領域が大きく変形する形状となる。
さらに図示はしないが、駆動兼センサ電極105a、105b、105c、105d、105eに印加する電圧量をそれぞれ変えることにより、反射面101は複雑な凹形状を作ることができる。なお、例えば、駆動信号発生器112aと、駆動兼センサ電極105aと、COM電極110とが駆動力発生手段に対応する。さらに、駆動信号発生器112d等は図示しないが、駆動兼センサ電極105b〜105eにおける駆動力発生手段との対応関係も同様である。
次に、可変形状鏡100の反射面形状のセンシング手順について説明する。駆動兼センサ電極105a〜105eは、任意の数を配置することが可能だが、ここでは、説明を簡単にするため2つの駆動兼センサ電極105a、105bを有する可変形状鏡ユニット150を例に説明する。
以下の説明においては、適宜、駆動兼センサ電極105aを用いて駆動する場合を例に説明を行う。なお、駆動兼センサ電極105bに対しても、対応する駆動信号発生器112bと参照信号発生器120bと信号重畳器121bとが、後述する駆動兼センサ電極105aと同一の構成で接続されている。
変形部140は、上述したように、駆動兼センサ電極105a、105bとCOM電極110との間に静電力を発生させることで変形する。このとき、駆動兼センサ電極105a、105bとCOM電極110との間の間隔(以下、適宜「静電ギャップ108」という。図2参照。)は、減少する。
このことを図11に示すような等価回路として考えると、静電ギャップ108の減少に応じて、駆動兼センサ電極105a、105bとCOM電極110との間の静電容量Ca、Cbが増加することに相当する。
例えば、反射面101の異なる2箇所の位置で、それぞれが異なる変形をするとき、2つの独立した静電容量において、それぞれの電極間隔変化に対応した容量変化が発生する。これら静電容量値を測定することで、各変形量に対応する静電ギャップ108を検出できる。従って、静電容量値を測定すれば、反射面101の変形形状を検出することが可能になる。
本実施例において、上述の静電容量を検出するための回路構成について説明する。図12は、可変形状鏡ユニット150の等価回路に対して、駆動兼センサ電極105a、105bとCOM電極110との間の容量を検出する回路のブロック図を示している。図中、COM電極110は共通であり、結線されている。また、可変形状鏡ユニット150の等価回路は、COM電極110を図中の下にして示している。
図12において、可変形状鏡ユニット150は、COM電極110に対して、駆動信号発生器112aからの駆動信号(電圧)を駆動兼センサ電極105aに印加することで駆動される。駆動兼センサ電極105aには、さらに駆動兼センサ電極105aとCOM電極110との間の容量を検出するための参照信号が印加される。
駆動信号発生器112aと参照信号発生器120aとは、信号重畳器121aに接続される。駆動信号と参照信号とは信号重畳器121aで重畳され、可変形状鏡ユニット150の駆動兼センサ電極105aに印加される。
参照信号は、周期性を有する信号である。ここでは、正弦波を用いた場合について説明する。しかしながら、これに限られず、矩形波、三角波、さらに周期性の任意波形を用いることもできる。
静電容量値は、上述の参照信号を静電容量に印加して静電容量のインピーダンスを検出すること、又は静電容量にチャージされた電荷を検出することで検出できる。ここで、参照信号は、静電容量値の検出に使用されるだけでなく、駆動力を発生する。従って、参照信号の周波数は、変形部140の駆動帯域よりも十分高くする必要がある。また、参照信号の周波数は、変形部140の高次共振周波数を避けて設定されることが望ましい。
それぞれの駆動兼センサ電極105a、105bに印加される参照信号は、それぞれ固有の特徴、即ち識別因子が与えられている。例えば、駆動兼センサ電極105a、105bに対応する参照信号Sa、Sbは、図13に示すように信号の周波数が異なるようなもの、又は図14に示すように信号の位相が異なるものを用いることができる。
参照信号Sa、Sbそれぞれに与えられた固有な特徴(識別因子)は、静電容量を検出する際に、駆動兼センサ電極105a、105bの特定するために用いられる。
駆動兼センサ電極105a、105bに、それぞれ印加された参照信号Sa、Sbは、駆動兼センサ電極105a、105bとCOM電極110との間の容量に基づいて変化し、COM電極110に出力される。このとき、COM電極110より出力される信号は、参照信号Sa、Sbに基づくそれぞれの信号が重畳されたものである。
容量検出回路122は、COM電極110から出力された信号を駆動兼センサ電極105a、105bの容量を重畳した全容量検出信号123に変換し、出力する。その後、検出信号分離器124によって駆動兼センサ電極105a、105bにそれぞれ応じた容量検出信号VOa、VObに分離される。
次に、信号重畳器121aと、容量検出回路122と、検出信号分離器124とについて、それぞれ説明する。
(信号重畳器)
信号重畳器121aは、駆動信号発生器112aと参照信号発生器120aと駆動兼センサ電極105aとに接続されている。信号重畳器121aは、駆動信号と参照信号を重畳して駆動兼センサ電極105aに印加する機能を有する。
図15は、信号重畳器121aの構成の一例である。信号重畳器121aは、結合抵抗CRaと結合容量CCaとで構成されている。駆動信号発生器112aは、結合抵抗CRaを介して駆動兼センサ電極105aへ接続されている。参照信号発生器120aは、結合容量CCaを介して駆動兼センサ電極105aへ接続される。
駆動信号発生器112aが生成する駆動信号の帯域である低周波領域では、結合容量CCaは、略開放とみなすことができる。このため、駆動信号発生器112aが生成する駆動信号は、駆動兼センサ電極105aへ印加される。
また、参照信号発生器120aが生成する参照信号の帯域である高周波領域では、結合抵抗CRaの抵抗値に比べて結合容量CCaのインピーダンスが十分低くなる。このため、参照信号発生器120aが生成する参照信号は、駆動兼センサ電極105aへ印加される。
以上をまとめて全周波数帯域について考えると、低周波数の駆動信号と高周波数の参照信号とが重畳されて駆動兼センサ電極105aへ印加されている事と等価となる。本実施例では、参照信号の周波数が駆動信号の周波数よりも十分高い事を利用し、図15に示すような結合抵抗CRaと結合容量CCaとで構成された回路を用いる。これにより、高耐圧の増幅器などを用いることなく、容易に高電圧の印加と静電容量の検出を同一の電極に対して行うことができる。
(容量検出回路)
図16は、容量検出回路122及び検出信号分離器124の構成例を示している。容量検出回路122は、COM電極110より出力された電流値を検出する回路である。例えば、差動増幅器と抵抗とで構成されている。
容量検出回路122は、COM電極110の出力する信号を入力し、全容量検出信号123を出力する。全容量検出信号123は、検出信号分離器124に入力される。検出信号分離器124は、容量検出信号VOa、VObを出力する。
(信号検出分離器)
検出信号分離器124は、例えば、参照信号Sa、Sbの固有の特徴(識別因子)を周波数とした場合、図16で示すように、異なる通過帯域周波数を有する2つのバンドパスフィルタBPFa、BPFbで構成することができる。
また、バンドパスフィルタBPFaの通過中心周波数(fc)をfa、バンドパスフィルタBPFbの通過中心周波数(fc)をfbとそれぞれ設定する。さらに、図12で示す参照信号発生器120aが発生する信号を周波数faの正弦波とする。参照信号発生器120bが発生する信号を周波数fbの正弦波とする。
図12に示す容量検出回路122から出力される全容量検出信号123は、周波数faの信号と、周波数fbの信号とが重畳した信号である。検出信号分離器124のうちのバンドパスフィルタBPFaは、全容量検出信号123から周波数faの成分のみを取り出す。これにより、駆動兼センサ電極105aとCOM電極110との間の静電容量値に基づいて変化する容量検出信号VOaが出力される。
同様にして、検出信号分離器124のバンドパスフィルタBPFbからは、駆動兼センサ電極105bとCOM電極110間の静電容量値に基づいて変化する容量検出信号VObが出力される。
本実施例の構成によれば、検出信号分離器124からの容量検出信号VOa、VObを同時に検出することが可能である。このため、短時間、特に同時に複数の駆動兼センサ電極105a、105bに対応した容量検出信号を得ることができる。
容量検出信号VOa、VObは、それぞれ各駆動兼センサ電極105a、105bに対向する位置の変形部の変形量を示している。各容量検出信号VOa、VObを総合することにより、各駆動兼センサ電極105a、105bに対向する位置の変形形状を検出できる。即ち、反射面101形状を知ることができる。
また、各駆動兼センサ電極105a、105bに対応する複数の容量検出信号VOa、VObを時間連続的に、特に同時に検出できる。即ち、反射面101の異なる位置の変形形状を同時に検出することが可能になる。従って、反射面101の異なる位置の変形形状を時間連続的に、特に同時にモニターする手段として利用することもできる。また、容量検出信号VOa等を用いて、反射面101の変形形状を制御することも可能になる。
このように、本実施例では、上述したように複数の駆動兼センサ電極105a〜105e(第2の電極)のそれぞれに対して、個々の駆動兼センサ電極105a〜105eを識別できる固有の周波数や位相を有する参照信号を印加する。そして、COM電極110(第1の電極)と、駆動兼センサ電極105a〜105eとの間に生じる静電容量の値を検出して容量検出信号を生成する。
駆動兼センサ電極105a〜105eから出力された容量検出信号は、複数の駆動兼センサ電極105a〜105e全ての容量検出信号が重畳されている。次に、検出信号分離器124(検出信号分離手段)に、重畳された容量検出信号を通す。これにより、個々の駆動兼センサ電極105a〜105eに対応した容量検出信号を得ることができる。
この構成により、個々の駆動兼センサ電極105a〜105eに固有の参照信号を用いることで、重畳されて求められる容量検出信号から検出信号分離器124によって同時に個々の駆動兼センサ電極105a〜105eに対応する容量検出信号を求めることができる。そのため、時間連続的に、特に同時に個々の駆動兼センサ電極105a〜105eに対応した容量を測定することができる。この結果、それぞれの容量信号に基づいて複数位置の反射面形状を同時に求めることができる。
次に、本発明の実施例2に係る可変形状鏡について説明する。図17は、本実施例に係る可変形状鏡の容量検出のための回路示すブロック図である。可変形状鏡の構成と、作用並びに可変形状鏡に対応する等価回路の考え方については、上述の実施例1において、図1から図11を用いて説明した内容と同一である。このため、同一部分には同一の符号を付し、重複する説明は省略する。
また、実施例1と同様に、回路ブロック図は、2つの駆動兼センサ電極105a、105bを備えるものを例に説明する。ここで、駆動兼センサ電極105bに対しても、対応する駆動信号発生器112bと参照信号発生器120と出力信号分離器201bとが、後述する駆動兼センサ電極105aに関する回路と同一の構成で接続されている。このため、以下の説明においては、適宜、駆動兼センサ電極105aを用いて駆動する場合を例に説明を行う。
図17において、可変形状鏡ユニット150は、駆動信号発生器112aが生成した駆動信号(電圧)を駆動兼センサ電極105aに印加することによって駆動される。また、COM電極110には、参照信号を生成する参照信号発生器120が接続されている。
参照信号は、実施例1と同様に周期性を有する信号である。本実施例では、正弦波を用いた場合について説明する。しかしながら、これに限られず、矩形波、三角波、さらに周期性の任意波形を用いる場合が考えられる。参照信号の周波数帯域については、実施例1において説明した帯域と同様である。
容量検出回路122aと駆動信号発生器112aとは、出力信号分離器201aを介して駆動兼センサ電極105aに接続されている。参照信号は、COM電極110と駆動兼センサ電極105aとの間の容量変化に基づいて変化した出力信号となり、容量検出回路122aに入力される。容量検出回路122aは、この出力信号を容量信号に変換する。駆動信号発生器112aは、駆動兼センサ電極105aに印加する駆動信号(電圧)を生成する。出力信号分離器201aは、出力信号と駆動信号を分離する。
この構成により、出力信号分離器201aによって、出力信号は容量検出回路122aに伝達されると共に駆動信号が駆動兼センサ電極105aに伝達される。
この検出構成では、実施例1と異なり、参照信号は1つだけである。COM電極110からの参照信号は、駆動兼センサ電極105a、105bとCOM電極110との間の容量変化に応じて変化する。容量変化に対応して変化した出力信号a、bが、駆動兼センサ電極105a、105bにそれぞれ発生する。
出力信号a、bは、それぞれ出力信号分離器201a、201bを介して対応する容量検出回路122a、122bに導かれる。容量検出回路122a、122bは、出力信号a、bに応じた容量検出信号VOa、VObを出力する。このようにして、1つの参照信号だけで、複数の駆動兼センサ電極105a、105bのそれぞれの変位に応じた複数の容量検出信号VOa、VObを得ることができる。
従って、容量検出回路122a、122bからの容量検出信号VOa、VObを同時に検出することが可能である。このため、実時間で複数の駆動兼センサ電極105a、105bに対応した容量検出信号VOa、VObを得ることができる。
容量検出信号VOa、VObは、それぞれ各駆動兼センサ電極105a、105bに対向する位置の変形部の変形量を示している。各容量検出信号VOa、VObを総合することにより、各駆動兼センサ電極105a、105bに対向する位置の変形形状が明らかになる。即ち、反射面101形状を知ることができる。
また、各駆動兼センサ電極105a、105bに対応する複数の容量検出信号VOa、VObを時間連続的、特に同時に検出、すなわち、反射面101の異なる位置の変形形状を同時に検出することが可能になる。従って、反射面101の異なる位置の変形形状を時間連続的、特に同時にモニターする手段として利用することもできる。また、容量検出信号VOa等を用いて、反射面101の変形形状を制御することも可能になる。
この方式は、実施例1と比べて、1つの可変形状鏡ユニット150に対して参照信号発生器120を1つ備えるだけで良い。さらに、検出信号分離器124は、必要なくなる。このため、実施例1と同様の効果に加えて、さらに検出回路の構成を単純化できる点で有利である。
次に、本実施例における容量検出回路と出力信号分離器について説明する。
容量検出回路122aは、実施例1の構成と同様なので、重複する説明を省略する。次に出力信号分離器201aについて詳細を説明する。図18は、出力信号分離器201aの概略構成を示している。出力信号分離器201aは、結合抵抗CRaと結合容量CCaとで構成されている。
出力信号分離器201aは、駆動信号発生器112aと容量検出回路122aとに接続される。出力信号分離器201aは、駆動信号Vdrvaを印加しながら、駆動兼センサ電極105aから出力される出力信号aを分離する働きを有している。
駆動信号発生器112aは、結合抵抗CRaを介して駆動兼センサ電極105aへ接続されている。また、容量検出回路122aは結合容量CCaを介して駆動兼センサ電極105aへ接続されている。
駆動信号発生器112aが生成する駆動信号Vdrvaが存在する低周波数領域では、結合容量CCaは略開放とみなすことができる。このため、駆動信号Vdrvaは、容量検出回路122aには印加されず駆動兼センサ電極105aヘ印加される。
また、駆動兼センサ電極105aからの出力信号は、参照信号と同じ周波数帯域の電流信号である。その周波数は、駆動信号Vdrvaの周波数に比べて高い。参照信号発生器120が生成する参照信号が存在する高周波数領域では、結合抵抗CRaの抵抗値に比べて結合容量CCaのインピーダンスが十分低くなる。出力信号である電流信号は、結合容量CCaを経由して容量検出回路122bへ入力される。
以上をまとめて全周波数帯域について考えると、低周波数の駆動信号Vdrvaは、容量検出回路122aに印加されることなく駆動兼センサ電極105aへ印加される。また、駆動兼センサ電極105aより出力される電流信号は、容量検出回路122aに入力される。
このように、参照信号の周波数が駆動信号Vdrvaの周波数よりも十分高いことを利用し、図18に示すような結合抵抗CRaと結合容量CCaとで構成される回路を用いる。これにより、高耐圧の増幅器などを用いることなく、容易に高電圧の印加と静電容量の検出を同一の電極に対して行うことが可能になる。
以上説明したように、本実施例では、一つの参照信号をCOM電極110(第1の電極)に印加する。そして、COM電極と駆動兼センサ電極105a、105b(第2の電極)との間の容量を、個々の駆動兼センサ電極105a、105bそれぞれに設けられた容量検出回路122a、122bによって検出する。
この構成によれば、駆動兼センサ電極105a、105bそれぞれに容量検出回路122a、122bを接続するだけで、直接、個々の駆動兼センサ電極105a、105bに対応した容量検出信号を同時に得ることができる。このため、回路構成が単純であり、かつ時間連続的、特に同時に個々の駆動兼センサ電極105a、105bに対応した容量を測定することができる。この結果、それぞれの容量信号に基づいて複数位置の反射面形状を同時に求めることができる。
なお、各実施例において、駆動兼センサ電極の数、即ち反射面を独立して変形駆動させる複数の領域の数量は、上述したものに限られず、複数であれば任意の数量で良い。駆動兼センサ電極の数が多くなるほど、本発明の効果が顕著になることは言うまでもない。また、各実施例において、容量検出器から出力される容量検出信号を、駆動信号発生器を含む駆動系にフィードバックすることにより、反射面形状を高精度に制御することができる。このとき、容量検出信号の比較対象となる容量目標信号は、フィードバックループ外から入力される信号であるとともに、容量検出信号の非線形性に基づく補償処理を施した後の信号とすることが好ましい。これにより、非線形補償処理を全く行わない構成よりも、制御の追従性が向上するのはもちろん、非線形補償処理をフィードバックループ内で行う構成と比較しても、非線形補償処理に係る諸パラメータの変更・追加等を、より高い自由度の下に行うことが可能となる。なお、このような非線形補償処理は、駆動兼センサ電極の数・形状等に依拠することなく適用可能であることは言うまでもない。このように、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。
以上のように、本発明に係る可変形状鏡は、複数の制御電極を有する構成の可変形状鏡に有用であり、特に、反射面の複数位置の変形形状を同時に測定、制御するものに適している。
本発明の実施例1の可変形状鏡の上面図である。 実施例1の可変形状鏡の断面図である。 実施例1の可変形状鏡の電極基板を説明する図である。 実施例1の可変形状鏡のミラー基板を説明する図である。 実施例1の中心部分の電極を駆動する構成を示す図である。 中心部分の電極を駆動したときの反射面の変形を示す上面図である。 中心部分の電極を駆動したときの反射面の変形を示す断面図である。 実施例1の他の電極を駆動する構成を示す図である。 他の電極を駆動したときの反射面の変形を示す図である。 他の電極を駆動したときの反射面の変形を示す断面図である。 可変形状鏡の等価回路を示す図である。 実施例1の容量検出回路を説明するブロック図である。 参照信号を示す図である。 参照信号を示す他の図である。 信号重畳器の概略構成を示す図である。 容量検出回路と検出信号分離器の概略構成を示す図である。 実施例2の容量検出回路を説明するブロック図である。 出力信号分離器と容量検出回路の概略構成を示す図である。 従来例の可変形状鏡の構成を示す図である。 従来例の可変器状鏡の容量検出回路の構成を示す図である。
符号の説明
100 可変形状鏡
101 反射面
102 COM用引出し電極
103a〜103e 駆動兼センサ用引出し電極
104 固定部
105a〜105e 駆動兼センサ電極
106 スペーサ
107 電極基板
108 静電ギャップ
109 導電材用接続部
110 COM電極
111 ミラー基板
112a、112b、112c 駆動信号発生器
120、120a、120b 参照信号発生器
121a、121b 信号重畳器
122、122a、122b 容量検出回路
123 全容量検出信号
124 検出信号分離器
130 電気接続用導電材
140 変形部
150 可変形状鏡ユニット
201a、201b 出力信号分離器
1 圧電制御基板
2 圧電制御電極
2’ 静電容量検出電極
3 電圧制御回路
4、7 外部リード電極
5 上部基板
6 反射面兼上部電極
8 可撓性薄膜
10a 定電圧
10b 高周波電源

Claims (5)

  1. 反射面及び第1の電極が形成された変形部と、
    前記変形部を固定する固定部と、
    前記第1の電極に対向して設けられた複数の第2の電極を有し、
    第1の電極と前記第2の電極間とに電位差を印加することで変形部を駆動する駆動力発生手段と、
    前記第1の電極と前記第2の電極間の複数の容量を各々同時に検出する容量検出手段を有することを特徴とする可変形状鏡。
  2. 前記容量検出手段は、
    前記容量検出手段の動作に必要な異なった識別因子を有する参照信号を、前記第2の電極に個別に印加する参照信号印加手段と、
    複数の前記参照信号を用いて、前記第1の電極及び複数の前記第2の電極間の容量を重畳した全容量検出信号を検出するための、前記第1の電極に接続された容量検出手段と、
    前記全容量検出信号を識別因子に基づいて個々の前記第2の電極に対応する容量検出信号に分離する検出信号分離手段を有することを特徴とする請求項1に記載の可変形状鏡。
  3. 前記識別因子は周波数であり、
    前記検出信号分離手段は周波数に基づいて信号を分離することを特徴とする請求項2に記載の可変形状鏡。
  4. 前記識別因子は位相であり、
    前記検出信号分離手段は位相に基づいて信号を分離することを特徴とする請求項2に記載の可変形状鏡。
  5. 前記容量検出手段は、
    前記容量検出手段の動作に必要な参照信号を、前記第1の電極に印加する参照信号生成手段と、
    個々の前記第2の電極に接続された、前記第1の電極と前記第2の電極間の容量を検出する容量検出回路からなることを特徴とする請求項1に記載の可変形状鏡。
JP2006072368A 2006-03-16 2006-03-16 可変形状鏡 Expired - Fee Related JP4756642B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006072368A JP4756642B2 (ja) 2006-03-16 2006-03-16 可変形状鏡
US11/710,807 US7474455B2 (en) 2006-03-16 2007-02-26 Deformable mirror
EP07104295A EP1835322A1 (en) 2006-03-16 2007-03-16 Deformable mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072368A JP4756642B2 (ja) 2006-03-16 2006-03-16 可変形状鏡

Publications (2)

Publication Number Publication Date
JP2007248827A true JP2007248827A (ja) 2007-09-27
JP4756642B2 JP4756642B2 (ja) 2011-08-24

Family

ID=38042490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072368A Expired - Fee Related JP4756642B2 (ja) 2006-03-16 2006-03-16 可変形状鏡

Country Status (3)

Country Link
US (1) US7474455B2 (ja)
EP (1) EP1835322A1 (ja)
JP (1) JP4756642B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230867A (ja) * 2009-03-26 2010-10-14 Olympus Corp 可変形状鏡システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242044A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 可変形状ミラー装置
JP2009042458A (ja) * 2007-08-08 2009-02-26 Toshiba Corp 形状可変鏡装置およびこの形状可変鏡装置を用いた眼底観察装置
JP2009205004A (ja) * 2008-02-28 2009-09-10 Olympus Corp 可変形状鏡システム及び可変形状鏡駆動装置
JP5578810B2 (ja) * 2009-06-19 2014-08-27 キヤノン株式会社 静電容量型の電気機械変換装置
TWM374606U (en) * 2009-08-03 2010-02-21 Minlad Invest Ltd Integrated touch panel
JP5473579B2 (ja) * 2009-12-11 2014-04-16 キヤノン株式会社 静電容量型電気機械変換装置の制御装置、及び静電容量型電気機械変換装置の制御方法
US20140104184A1 (en) * 2012-10-11 2014-04-17 Qualcomm Mems Technologies, Inc. Backplate electrode sensor
CN104907241B (zh) * 2015-06-17 2017-10-10 河南大学 满足多频率需求的宽频带超声换能器复合机构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228813A (ja) * 2001-01-31 2002-08-14 Olympus Optical Co Ltd 変位検出機能を備えた可変形状鏡
JP2005099682A (ja) * 2003-09-03 2005-04-14 Fujitsu Ltd 光スイッチ制御装置および移動体制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022745A (en) * 1989-09-07 1991-06-11 Massachusetts Institute Of Technology Electrostatically deformable single crystal dielectrically coated mirror
US5231559A (en) * 1992-05-22 1993-07-27 Kalt Charles G Full color light modulating capacitor
US5526172A (en) * 1993-07-27 1996-06-11 Texas Instruments Incorporated Microminiature, monolithic, variable electrical signal processor and apparatus including same
US6480645B1 (en) * 2001-01-30 2002-11-12 Tellium, Inc. Sidewall electrodes for electrostatic actuation and capacitive sensing
US6538802B2 (en) * 2001-07-31 2003-03-25 Axsun Technologies, Inc System and method for tilt mirror calibration due to capacitive sensor drift
US6958850B2 (en) 2002-03-12 2005-10-25 Corning Incorporated Pointing angle control of electrostatic micro mirrors with modified sliding mode control algorithm for precision control
US7075700B2 (en) * 2004-06-25 2006-07-11 The Boeing Company Mirror actuator position sensor systems and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228813A (ja) * 2001-01-31 2002-08-14 Olympus Optical Co Ltd 変位検出機能を備えた可変形状鏡
JP2005099682A (ja) * 2003-09-03 2005-04-14 Fujitsu Ltd 光スイッチ制御装置および移動体制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230867A (ja) * 2009-03-26 2010-10-14 Olympus Corp 可変形状鏡システム

Also Published As

Publication number Publication date
US7474455B2 (en) 2009-01-06
JP4756642B2 (ja) 2011-08-24
EP1835322A1 (en) 2007-09-19
US20070217041A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4756642B2 (ja) 可変形状鏡
JP5578810B2 (ja) 静電容量型の電気機械変換装置
JP5649810B2 (ja) 静電容量式センサ
US5424650A (en) Capacitive pressure sensor having circuitry for eliminating stray capacitance
JP4874067B2 (ja) 角速度センサ
US6539804B1 (en) Two-axis yaw rate sensor
US9255782B2 (en) MEMS device including a mobile element and a resistive sensor, and method for generating a signal indicating the position of the mobile element
JP4899781B2 (ja) 容量式力学量検出装置
US10254355B2 (en) Magnetic sensor including a Lorentz force transducer driven at a frequency different from the resonance frequency, and method for driving a Lorentz force transducer
CN108663796B (zh) 光学模块及光学模块的驱动方法
US20140360272A1 (en) Capacitive transducer drive device and object information acquiring device
US7343802B2 (en) Dynamic-quantity sensor
JP2019060794A (ja) 物理量測定装置、電子機器及び移動体
JP2010066231A (ja) 加速度センサ
EP1821127A1 (en) Deformable mirror
JP2013083769A (ja) 光偏向器
JP2010256136A (ja) 振動子の駆動方法および駆動回路ならびにその駆動回路を備える慣性力検出装置
JP2008275325A (ja) センサ装置
US10908361B2 (en) Capacitive position sensing for capacitive drive MEMS devices
JP2018078769A (ja) 振動型アクチュエータの制御方法、振動型駆動装置及び電子機器
JP2012242201A (ja) 容量式物理量検出装置
CN110031963A (zh) 用于运行可调的光学谐振器的方法和设备以及光学谐振器
CN113132875A (zh) 一种自校准的微机械扬声器
JP4292746B2 (ja) 角速度センサ
JP4466283B2 (ja) ジャイロセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110527

R151 Written notification of patent or utility model registration

Ref document number: 4756642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees