JP2007247339A - Newly constructed foundation structure - Google Patents

Newly constructed foundation structure Download PDF

Info

Publication number
JP2007247339A
JP2007247339A JP2006074956A JP2006074956A JP2007247339A JP 2007247339 A JP2007247339 A JP 2007247339A JP 2006074956 A JP2006074956 A JP 2006074956A JP 2006074956 A JP2006074956 A JP 2006074956A JP 2007247339 A JP2007247339 A JP 2007247339A
Authority
JP
Japan
Prior art keywords
ground
piles
wall
footing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074956A
Other languages
Japanese (ja)
Other versions
JP3895363B1 (en
Inventor
Yukitake Shioi
幸武 塩井
Yasushi Kato
康司 加藤
Toyoichiro Yoshida
豊一郎 吉田
Mamoru Aoyanagi
守 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Fudo Tetra Corp
Shiraishi Co Ltd
Original Assignee
Nittoc Constructions Co Ltd
Fudo Tetra Corp
Shiraishi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd, Fudo Tetra Corp, Shiraishi Co Ltd filed Critical Nittoc Constructions Co Ltd
Priority to JP2006074956A priority Critical patent/JP3895363B1/en
Application granted granted Critical
Publication of JP3895363B1 publication Critical patent/JP3895363B1/en
Publication of JP2007247339A publication Critical patent/JP2007247339A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive newly constructed foundation structure by which the rigidity of the ground around footing construction is enhanced to improve a supporting force of a footing. <P>SOLUTION: An annular underground wall 13 is buried in the ground 11 around a place where the footing is constructed. The footing 15 is constructed on heads 14b of a plurality of piles 14 driven into the annular underground wall 13 so that front ends 14a may reach a predetermined position 12. In the newly constructed foundation structure 10 which is thus constructed, the underground wall 13 is buried to a depth in a range effective for the horizontal resistance of the plurality of piles 14, and the ground 11 in the underground wall 13 is solidified and improved to the depth in the range effective for the horizontal resistance of the plurality of piles 14. The solidified and improved part is shown by a symbol A. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の新設杭上に新設フーチングを構築した新設基礎構造に関する。   The present invention relates to a new foundation structure in which a new footing is constructed on a plurality of new piles.

この種の新設基礎構造として、図17に示すものがある(例えば、特許文献1参照)。   As this kind of new foundation structure, there is one shown in FIG. 17 (see, for example, Patent Document 1).

図17に示すように、新設基礎構造としての杭基礎1は、地盤2のフーチング構築予定位置の周囲に四角筒状の鉄筋コンクリート製矢板3を埋設し、この四角筒状の鉄筋コンクリート製矢板3内に打ち込まれた複数の杭4の頭部4aにフーチング5を構築して成る。このフーチング5を構築した後、地盤2内には鉄筋コンクリート製矢板3が残置されるようになっている。
特開2000−129696号公報 特開2000−80663号公報
As shown in FIG. 17, the pile foundation 1 as a new foundation structure has a rectangular tubular reinforced concrete sheet pile 3 embedded around a footing construction planned position of the ground 2, and the rectangular tubular reinforced concrete sheet pile 3 is embedded in the square foundation. A footing 5 is constructed on the heads 4a of the piles 4 that have been driven. After the footing 5 is constructed, a reinforced concrete sheet pile 3 is left in the ground 2.
JP 2000-129696 A JP 2000-80663 A

しかしながら、前記従来の杭基礎1は、四角筒状の鉄筋コンクリート製矢板3内の地盤2中に複数の杭4を単に打設しただけの構造であるため、大径や本数の多い杭4を用いないと杭4の水平抵抗(水平方向の受働抵抗)の低下を招き、杭基礎の支持力が十分に得られなかった。また、鉄筋コンクリート製矢板3を地盤2の地中深くまで埋設しなければならないため、その分コスト高であった。   However, since the conventional pile foundation 1 has a structure in which a plurality of piles 4 are simply placed in the ground 2 in the rectangular tubular reinforced concrete sheet pile 3, a pile 4 having a large diameter or a large number is used. Otherwise, the horizontal resistance of the pile 4 (horizontal passive resistance) was lowered, and the support capacity of the pile foundation was not sufficiently obtained. Further, since the reinforced concrete sheet pile 3 has to be buried deep into the ground 2, the cost is increased accordingly.

そこで、本発明は、前記した課題を解決すべくなされたものであり、フーチング構築周辺及び杭の周辺の地盤の剛性を高めて基礎構造全体の耐力を高めることができる安価な新設基礎構造を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and provides an inexpensive new foundation structure capable of increasing the strength of the foundation structure by increasing the rigidity of the ground around the footing construction and the pile. The purpose is to do.

請求項1の発明は、地盤のフーチング構築予定位置の周囲に環状の地中壁を埋設し、この環状の地中壁内に先端が所定位置まで打ち込まれた複数の杭の頭部にフーチングを構築して成る新設基礎構造において、前記環状の地中壁を前記複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁内の地盤を前記複数の杭の水平抵抗に有効な範囲の深度まで固化改良したことを特徴とする。   In the first aspect of the present invention, an annular underground wall is embedded around the planned footing construction position of the ground, and footings are applied to the heads of a plurality of piles whose tips are driven into a predetermined position in the annular underground wall. In the newly constructed foundation structure constructed, the annular underground wall is buried to a depth within a range effective for the horizontal resistance of the plurality of piles, and the ground in the annular underground wall is horizontally embedded in the plurality of piles. It is characterized by solidifying and improving to a depth within the range effective for resistance.

請求項2の発明は、地盤のフーチング構築予定位置の周囲に環状の地中壁を埋設し、この環状の地中壁内に先端が所定位置まで打ち込まれた複数の杭の頭部にフーチングを構築して成る新設基礎構造において、前記環状の地中壁を前記複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁内の地盤を前記複数の杭の水平抵抗に有効な範囲の深度まで固化改良し、かつ前記環状の地中壁の内面と前記固化改良部分との間の間詰め部分を更に固化改良したことを特徴とする。   The invention of claim 2 embeds an annular underground wall around the planned footing construction position of the ground, and applies footings to the heads of a plurality of piles whose tips are driven to a predetermined position in the annular underground wall. In the newly constructed foundation structure constructed, the annular underground wall is buried to a depth within a range effective for the horizontal resistance of the plurality of piles, and the ground in the annular underground wall is horizontally embedded in the plurality of piles. It is characterized by solidifying and improving to a depth effective for resistance, and further solidifying and improving a filling portion between the inner surface of the annular underground wall and the solidifying improved portion.

請求項3の発明は、地盤のフーチング構築予定位置の周囲に環状の地中壁を埋設し、この環状の地中壁内に先端が所定位置まで打ち込まれた複数の杭の頭部にフーチングを構築して成る新設基礎構造において、前記環状の地中壁を前記複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁の内側と外側の地盤を前記複数の杭の水平抵抗に有効な範囲の深度まで固化改良したことを特徴とする。   In the invention of claim 3, an annular underground wall is embedded around the planned footing construction position of the ground, and footings are applied to the heads of a plurality of piles whose tips are driven into a predetermined position in the annular underground wall. In the new foundation structure constructed, the annular underground wall is buried to a depth that is effective for the horizontal resistance of the plurality of piles, and the inner and outer grounds of the annular underground wall are embedded in the plurality of grounds. It is characterized by solidification and improvement to a depth that is effective for the horizontal resistance of piles.

以上説明したように、請求項1の発明によれば、フーチング構築周辺の地盤に埋設される環状の地中壁を複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁内の地盤を複数の杭の水平抵抗に有効な範囲の深度まで固化改良したことにより、フーチング構築周辺及び杭の周辺の地盤の剛性をより一段と高めて基礎構造全体の耐力をより一段と高めることができる。   As described above, according to the first aspect of the present invention, the annular underground wall embedded in the ground around the footing construction is embedded to a depth within a range effective for the horizontal resistance of a plurality of piles, and the annular By solidifying and improving the ground in the underground wall to a depth that is effective for the horizontal resistance of multiple piles, the rigidity of the ground around the footing construction and the piles is further increased, and the yield strength of the entire foundation structure is further increased. Can be increased.

請求項2の発明によれば、フーチング構築周辺の地盤に埋設される環状の地中壁を複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁内の地盤を複数の杭の水平抵抗に有効な範囲の深度まで固化改良し、かつ環状の地中壁の内面と固化改良部分との間の間詰め部分を更に固化改良したことにより、フーチング構築周辺及び杭の周辺の地盤の剛性をより一段と高めて基礎構造全体の耐力をより一段と高めることができる。   According to the invention of claim 2, the annular underground wall embedded in the ground around the footing construction is embedded to a depth effective in the horizontal resistance of the plurality of piles, and the ground in the annular underground wall is embedded. And the piles around the footing construction and piles by solidifying and improving to the depth effective for the horizontal resistance of multiple piles, and further solidifying and improving the padding between the inner surface of the annular underground wall and the solidified improvement portion It is possible to further increase the strength of the foundation structure as a whole by further increasing the rigidity of the ground around the foundation.

請求項3の発明によれば、フーチング構築周辺の地盤に埋設される環状の地中壁を複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁の内側と外側の地盤を複数の杭の水平抵抗に有効な範囲の深度まで固化改良したことにより、フーチング構築周辺及び杭の周辺の地盤の剛性をより一段と高めて基礎構造全体の耐力をより一段と高めることができる。   According to the invention of claim 3, the annular underground wall embedded in the ground around the footing construction is embedded to a depth effective for the horizontal resistance of the plurality of piles, and the inside of the annular underground wall is By solidifying and improving the outer ground to a depth that is effective for the horizontal resistance of multiple piles, it is possible to further increase the rigidity of the ground around the footing construction and around the piles, and further increase the yield strength of the entire foundation structure. it can.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1実施形態の新設基礎構造を示す断面図、図2(a)は地盤に地中壁を埋設すると共に同地中壁内の地盤を地盤改良した状態を示す断面図、図2(b)は同地中壁内の地盤及び地盤改良した部分を削孔した状態を示す断面図、図3は同地盤改良の削孔した部分に新設杭を打設した状態を示す断面図、図4は同地中壁内の地盤を掘削した状態を示す断面図、図5は同新設杭の頭部上に新設フーチングを構築した状態を示す断面図である。   FIG. 1 is a cross-sectional view showing a new foundation structure according to a first embodiment of the present invention, and FIG. 2 (a) is a cross-sectional view showing a state in which a ground wall is embedded in the ground and the ground in the ground wall is improved. FIG. 2 (b) is a cross-sectional view showing a state in which the ground and the ground improved portion in the ground wall are drilled, and FIG. 3 shows a state in which a new pile is placed in the ground improved portion. FIG. 4 is a cross-sectional view showing a state where the ground within the ground wall is excavated, and FIG. 5 is a cross-sectional view showing a state where a new footing is constructed on the head of the new pile.

図1,図5に示すように、新設基礎構造10は、地盤11のフーチング構築予定位置の周囲に埋設された四角筒状の鋼矢板壁(環状の地中壁)13と、この四角筒状の鋼矢板壁13内において先端14aが支持層(所定位置)12まで打ち込まれた複数の杭14と、この複数の杭14の頭部14b上に構築されたフーチング(基礎)15とを備えている。   As shown in FIG. 1 and FIG. 5, the new foundation structure 10 includes a square tubular steel sheet pile wall (annular underground wall) 13 embedded around the planned footing construction position of the ground 11, and this rectangular tubular shape. In the steel sheet pile wall 13, a plurality of piles 14 whose tips 14 a are driven to the support layer (predetermined position) 12 and footings (foundations) 15 constructed on the heads 14 b of the plurality of piles 14 are provided. Yes.

このフーチング構築周辺の地盤11には、四角筒状の鋼矢板壁13を複数の杭14の水平抵抗に有効な範囲(例えば、1/β〜π/2β)の深度まで埋設してある。また、四角筒状の鋼矢板壁13内の地盤11の全域(全部)を複数の杭14の水平抵抗に有効な範囲の深度まで機械・噴射攪拌工法により地盤改良(固化改良)してある。この固化改良部分を符号Aで示す。   In the ground 11 around the footing construction, a square tubular steel sheet pile wall 13 is embedded to a depth (for example, 1 / β to π / 2β) effective for the horizontal resistance of the plurality of piles 14. Further, the entire area (all) of the ground 11 in the square cylindrical steel sheet pile wall 13 is ground improved (solidified) by a mechanical / jet stirring method to a depth effective for the horizontal resistance of the plurality of piles 14. This solidification improvement portion is indicated by the symbol A.

尚、複数の杭14の水平抵抗に有効な範囲とは、例えば、半無限長さの杭の場合(Changの方法)の特性値(β)の逆数(1/β)の特性長をいう。   The range effective for the horizontal resistance of the plurality of piles 14 is, for example, the characteristic length of the reciprocal (1 / β) of the characteristic value (β) in the case of a semi-infinite length pile (Chang's method).

また、鉄筋コンクリート製のフーチング15の外周面15aは、四角筒状の鋼矢板壁13の内周面(内面)13aに隙間なく構築されて該四角筒状の鋼矢板壁13に一体化されて固定されている。   Further, the outer peripheral surface 15a of the reinforced concrete footing 15 is constructed on the inner peripheral surface (inner surface) 13a of the square cylindrical steel sheet pile wall 13 without gaps, and is integrated and fixed to the square cylindrical steel sheet pile wall 13. Has been.

次に、上記第1実施形態の新設基礎構造10の施工手順を説明する。   Next, the construction procedure of the new foundation structure 10 of the first embodiment will be described.

まず、図2(a)に示すように、フーチング構築周辺の地盤11に、四角筒状の鋼矢板壁13を複数の杭14の水平抵抗に有効な範囲の深度まで打設する。そして、四角筒状の鋼矢板壁13内の地盤11の全域を複数の杭14の水平抵抗に有効な範囲の深度まで機械・噴射攪拌工法によりセメントミルク等の固化材の注入・攪拌混合により固化改良する。次に、図2(b)に示すように、四角筒状の鋼矢板壁13内の地盤11及び固化改良部分Aの所定位置に複数の杭14を打設するための、複数の孔Bを孔削する。   First, as shown in FIG. 2A, a square cylindrical steel sheet pile wall 13 is placed on the ground 11 around the footing construction to a depth that is effective for the horizontal resistance of the plurality of piles 14. Then, the entire area of the ground 11 in the square cylindrical steel sheet pile wall 13 is solidified by injection and agitation and mixing of a solidified material such as cement milk by a mechanical / jet agitation method to a depth effective for the horizontal resistance of the plurality of piles 14. Improve. Next, as shown in FIG. 2 (b), a plurality of holes B for placing a plurality of piles 14 at predetermined positions of the ground 11 and the solidified portion A in the square cylindrical steel sheet pile wall 13 are formed. Drill holes.

次に、図3に示すように、固化改良部分Aの各孔B内に場所打ちコンクリート杭14をその先端14aが支持層12に達するまで打ち込む。杭14がコンクリート杭、鋼管杭等の既製の杭の場合は、その先端14aが支持層12に達するまで打ち込む。この際に、各杭14と固化改良部分Aの各孔Bとの隙間にセメントミルク等の間詰め固化材Cを充填する。次に、図4に示すように、四角筒状の鋼矢板壁13内の上部の地盤11を掘削する。   Next, as shown in FIG. 3, the cast-in-place concrete pile 14 is driven into each hole B of the solidification improved portion A until the tip 14 a reaches the support layer 12. When the pile 14 is a ready-made pile such as a concrete pile or a steel pipe pile, the pile 14 is driven until its tip 14a reaches the support layer 12. At this time, the solidified material C, such as cement milk, is filled in the gaps between the respective piles 14 and the respective holes B of the solidification improving portion A. Next, as shown in FIG. 4, the upper ground 11 in the square cylindrical steel sheet pile wall 13 is excavated.

次に、図5に示すように、各杭14の頭部14bの頂面及び固化改良部分Aの上面に鉄筋コンクリート製のフーチング15を構築する。この際に、四角筒状の鋼矢板壁13の内周面13aを型枠として用いて、鉄筋コンクリート製のフーチング15の外周面15aを四角筒状の鋼矢板壁13の内周面13aに隙間なく構築して該四角筒状の鋼矢板壁13と一体化する。そして、鉄筋コンクリート製のフーチング15の上面15bより上方に突出した四角筒状の鋼矢板壁13の上部を切断・撤去すると共に、該鉄筋コンクリート製のフーチング15の上面15b上に前記掘削した地盤11を埋め戻すことにより、図1に示す新設基礎構造10が完成する。   Next, as shown in FIG. 5, a reinforced concrete footing 15 is constructed on the top surface of the head 14 b of each pile 14 and the upper surface of the solidified portion A. At this time, the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 is used as a mold, and the outer peripheral surface 15a of the reinforced concrete footing 15 is formed on the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 without a gap. It is constructed and integrated with the square cylindrical steel sheet pile wall 13. Then, the upper portion of the square cylindrical steel sheet pile wall 13 protruding upward from the upper surface 15b of the reinforced concrete footing 15 is cut and removed, and the excavated ground 11 is buried on the upper surface 15b of the reinforced concrete footing 15. By returning, the new foundation structure 10 shown in FIG. 1 is completed.

このように、フーチング構築周辺の地盤11中に複数の杭14の水平抵抗に有効な範囲の深度まで埋設された四角筒状の鋼矢板壁13の内周面13aにフーチング15の外周面15aを密接して当該フーチング15と鋼矢板壁13とを一体化して固定すると共に、該四角筒状の鋼矢板壁13内の地盤11を複数の杭14の水平抵抗に有効な範囲の深度まで地盤改良して固化したので、図17に示す従来の杭基礎1に比べて杭14の本数を減らしたり、小径のものを用いても従来のものよりも新設基礎構造10の全体の剛性(強度)を向上させることができると共に、その分低コスト化を図ることができる。   In this manner, the outer peripheral surface 15a of the footing 15 is attached to the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 embedded in the ground 11 around the footing construction to a depth within a range effective for the horizontal resistance of the plurality of piles 14. The footing 15 and the steel sheet pile wall 13 are integrated and fixed closely, and the ground 11 in the square cylindrical steel sheet pile wall 13 is improved to a depth effective for the horizontal resistance of the plurality of piles 14. Therefore, even if the number of piles 14 is reduced compared to the conventional pile foundation 1 shown in FIG. 17 or a small-diameter one is used, the overall rigidity (strength) of the new foundation structure 10 is more than that of the conventional one. It can be improved and the cost can be reduced accordingly.

また、四角筒状の鋼矢板壁13と鉄筋コンクリート製のフーチング15を一体化して固定すると共に、四角筒状の鋼矢板壁13内の鉄筋コンクリート製のフーチング15の真下の地盤11の全域を複数の杭12の水平抵抗に有効な範囲の深度まで固化改良したので、鉄筋コンクリート製のフーチング15及び固化改良部分Aの強度と四角筒状の鋼矢板壁13による拘束効果により複数の杭12の水平抵抗(横抵抗)を増大させることができる。さらに、四角筒状の鋼矢板壁13内の複数の杭14の頭部14bの周辺地盤の固化改良によりその付着抵抗が増大し、鉛直支持力を増大させることができる。   The square cylindrical steel sheet pile wall 13 and the reinforced concrete footing 15 are integrated and fixed, and the entire region of the ground 11 directly below the reinforced concrete footing 15 in the square cylindrical steel sheet pile wall 13 is provided with a plurality of piles. Since the solidification is improved to a depth effective for the horizontal resistance of 12, the strength of the reinforced concrete footing 15 and the solidification improvement portion A and the restraining effect of the square cylindrical steel sheet pile wall 13 cause the horizontal resistance (lateral Resistance) can be increased. Furthermore, the adhesion resistance increases by the solidification improvement of the surrounding ground of the heads 14b of the plurality of piles 14 in the square cylindrical steel sheet pile wall 13, and the vertical supporting force can be increased.

また、四角筒状の鋼矢板壁13内の全域の地盤改良に伴う内圧の増加により新設の鉄筋コンクリート製のフーチング15の周りの剛性がより一段と増加する。さらに、四角筒状の鋼矢板壁13の剛性によりフーチング15の周りの変形を抑制する効果があると共に、四角筒状の鋼矢板壁13自体が変形抵抗(リング効果)があるため、レベル2クラスの地震荷重作用時のフーチング15の水平変位及び回転を抑制し、耐震性を向上させることができる。これらにより、新設基礎構造10の耐力を向上させることができる。   In addition, the rigidity around the newly reinforced concrete footing 15 is further increased by the increase in internal pressure accompanying the ground improvement in the entire area of the steel sheet pile wall 13 in the shape of the rectangular tube. Furthermore, the rigidity of the square cylindrical steel sheet pile wall 13 has the effect of suppressing deformation around the footing 15 and the square cylindrical steel sheet pile wall 13 itself has deformation resistance (ring effect), so that it is level 2 class. The horizontal displacement and rotation of the footing 15 when the seismic load is applied can be suppressed, and the earthquake resistance can be improved. By these, the proof stress of the new foundation structure 10 can be improved.

尚、四角筒状の鋼矢板壁13を粘土層等の非液状化層まで根入れすることにより、中間層の液状化を抑制することができる。   In addition, liquefaction of an intermediate | middle layer can be suppressed by putting the square cylindrical steel sheet pile wall 13 into non-liquefied layers, such as a clay layer.

図6は本発明の第2実施形態の新設基礎構造を示す断面図、図7(a)は地盤に地中壁を埋設すると共に同地中壁内の地盤を地盤改良した状態を示す断面図、図7(b)は同地中壁と地盤改良した部分の間を間詰め改良すると共に地中壁内の地盤及び地盤改良した部分を削孔した状態を示す断面図、図8は同地盤改良の削孔した部分に新設杭を打設した状態を示す断面図、図9は同地中壁内の地盤の掘削した状態を示す断面図、図10は同新設杭の頭部上に新設フーチングを構築した状態を示す断面図である。   FIG. 6 is a cross-sectional view showing a new foundation structure according to a second embodiment of the present invention, and FIG. 7A is a cross-sectional view showing a state in which the ground wall is embedded in the ground and the ground in the ground wall is improved. 7 (b) is a sectional view showing a state in which the space between the ground wall and the ground improved portion is improved and the ground in the ground wall and the ground improved portion are drilled, and FIG. 8 is the ground surface. 9 is a cross-sectional view showing a state where a new pile has been placed in the drilled portion of the improvement, FIG. 9 is a cross-sectional view showing a state where the ground in the ground wall has been excavated, and FIG. 10 is newly installed on the head of the new pile It is sectional drawing which shows the state which constructed | assembled the footing.

図6,図10に示すように、新設基礎構造10′は、地盤11のフーチング構築予定位置の周囲に埋設された四角筒状の鋼矢板壁(環状の地中壁)13と、この四角筒状の鋼矢板壁13内において先端14aが支持層(所定位置)12まで打ち込まれた複数の杭14と、この複数の杭14の頭部14b上に構築されたフーチング(基礎)15とを備えている。   As shown in FIGS. 6 and 10, the new foundation structure 10 ′ includes a square cylindrical steel sheet pile wall (annular underground wall) 13 embedded around the footing construction planned position of the ground 11, and this square cylinder. A plurality of piles 14 whose leading ends 14a are driven to a support layer (predetermined position) 12 in a steel sheet pile wall 13 and a footing (foundation) 15 constructed on the heads 14b of the plurality of piles 14 are provided. ing.

このフーチング構築周辺の地盤11には、四角筒状の鋼矢板壁13を複数の杭14の水平抵抗に有効な範囲(例えば、1/β〜π/2β)の深度まで埋設してある。また、四角筒状の鋼矢板壁13内の地盤11の略全域を複数の杭14の水平抵抗に有効な範囲の深度まで機械攪拌工法により地盤改良(固化改良)してある。この固化改良部分を符号Aで示す。さらに、四角筒状の地中壁の鋼矢板壁(内面)13aと固化改良部分Aとの間の間詰め部分Dを更に噴射攪拌工法により固化改良してある。   In the ground 11 around the footing construction, a square tubular steel sheet pile wall 13 is embedded to a depth (for example, 1 / β to π / 2β) effective for the horizontal resistance of the plurality of piles 14. Moreover, the ground improvement (solidification improvement) is carried out to the depth of the range effective in the horizontal resistance of the some pile 14 about the substantially whole area of the ground 11 in the square cylindrical steel sheet pile wall 13 by the mechanical stirring method. This solidification improvement portion is indicated by the symbol A. Further, the interstitial portion D between the steel sheet pile wall (inner surface) 13a of the square tubular underground wall and the solidification improving portion A is further solidified and improved by a jet stirring method.

また、鉄筋コンクリート製のフーチング15の外周面15aは、四角筒状の鋼矢板壁13の内周面13aに隙間なく構築されて該四角筒状の鋼矢板壁13に一体化されて固定されている。   Further, the outer peripheral surface 15a of the reinforced concrete footing 15 is constructed on the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 without gaps, and is integrated and fixed to the square cylindrical steel sheet pile wall 13. .

次に、上記第2実施形態の新設基礎構造10′の施工手順を説明する。   Next, the construction procedure of the new foundation structure 10 ′ of the second embodiment will be described.

まず、図7(a)に示すように、フーチング構築周辺の地盤11に、四角筒状の鋼矢板壁13を複数の杭14の水平抵抗に有効な範囲の深度まで打設する。そして、四角筒状の鋼矢板壁13内の地盤11の略全域を複数の杭14の水平抵抗に有効な範囲の深度まで機械式攪拌工法によりセメントミルク等の固化材の注入・攪拌混合により固化改良する。次に、図7(b)に示すように、四角筒状の地中壁の鋼矢板壁13aと固化改良部分Aとの間に噴射攪拌工法により間詰め部分Dを更に固化改良した後で、四角筒状の鋼矢板壁13内の地盤11及び固化改良部分Aの所定位置に複数の杭14を打設するための、複数の孔Bを孔削する。   First, as shown in FIG. 7A, a square cylindrical steel sheet pile wall 13 is driven to a depth effective in the horizontal resistance of the piles 14 on the ground 11 around the footing construction. Then, almost the entire area of the ground 11 in the square cylindrical steel sheet pile wall 13 is solidified by injection and agitation mixing of a solidified material such as cement milk by a mechanical agitation method to a depth effective for the horizontal resistance of the plurality of piles 14. Improve. Next, as shown in FIG. 7 (b), after further solidifying and improving the interstitial portion D by a jet stirring method between the steel sheet pile wall 13a of the square tubular underground wall and the solidification improving portion A, A plurality of holes B for drilling a plurality of piles 14 at predetermined positions of the ground 11 and the solidified portion A in the square cylindrical steel sheet pile wall 13 are drilled.

次に、図8に示すように、固化改良部分Aの各孔B内に場所打ちコンクリート杭14をその先端14aが支持層12に達するまで打ち込む。杭14がコンクリート杭、鋼管杭等の既製の杭の場合は、その先端14aが支持層12に達するまで打ち込む。この際に、この際に、各杭14と固化改良部分Aの各孔Bとの隙間にセメントミルク等の間詰め固化材Cを充填する。次に、図9に示すように、四角筒状の鋼矢板壁13内の上部の地盤11を掘削する。   Next, as shown in FIG. 8, the cast-in-place concrete pile 14 is driven into each hole B of the solidification improved portion A until the tip 14 a reaches the support layer 12. When the pile 14 is a ready-made pile such as a concrete pile or a steel pipe pile, the pile 14 is driven until its tip 14a reaches the support layer 12. At this time, the solidified material C, such as cement milk, is filled in the gaps between the piles 14 and the holes B of the solidified portion A. Next, as shown in FIG. 9, the upper ground 11 in the square cylindrical steel sheet pile wall 13 is excavated.

次に、図10に示すように、各杭14の頭部14bの頂面及び固化改良部分A及び間詰め部分Dの上面に鉄筋コンクリート製のフーチング15を構築する。この際に、四角筒状の鋼矢板壁13の内周面13aを型枠として用いて、鉄筋コンクリート製のフーチング15の外周面15aを四角筒状の鋼矢板壁13の内周面13aに隙間なく構築して該四角筒状の鋼矢板壁13と一体化する。そして、鉄筋コンクリート製のフーチング15の上面15bより上方に突出した四角筒状の鋼矢板壁13の上部を切断・撤去すると共に、該鉄筋コンクリート製のフーチング15の上面15b上に前記掘削した地盤11を埋め戻すことにより、図6に示す新設基礎構造10′が完成する。   Next, as shown in FIG. 10, a reinforced concrete footing 15 is constructed on the top surface of the head 14 b of each pile 14 and the upper surface of the solidified portion A and the padding portion D. At this time, the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 is used as a mold, and the outer peripheral surface 15a of the reinforced concrete footing 15 is formed on the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 without a gap. It is constructed and integrated with the square cylindrical steel sheet pile wall 13. Then, the upper portion of the square cylindrical steel sheet pile wall 13 protruding upward from the upper surface 15b of the reinforced concrete footing 15 is cut and removed, and the excavated ground 11 is buried on the upper surface 15b of the reinforced concrete footing 15. By returning, the new foundation structure 10 'shown in FIG. 6 is completed.

このように、フーチング構築周辺の地盤11中に複数の杭14の水平抵抗に有効な範囲の深度まで埋設された四角筒状の鋼矢板壁13の内周面13aにフーチング15の外周面15aを密接して当該フーチング15と鋼矢板壁13とを一体化して固定すると共に、該四角筒状の鋼矢板壁13内の地盤11を複数の杭14の水平抵抗に有効な範囲の深度まで地盤改良して固化し、かつ、四角筒状の地中壁の鋼矢板壁13aと固化改良部分Aとの間の間詰め部分Dを更に固化改良したので、図17に示す従来の杭基礎1に比べて杭14の本数を減らしたり、小径のものを用いても従来のものよりも新設基礎構造10′の全体の剛性(強度)を向上させることができると共に、その分低コスト化を図ることができる。   In this manner, the outer peripheral surface 15a of the footing 15 is attached to the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 embedded in the ground 11 around the footing construction to a depth within a range effective for the horizontal resistance of the plurality of piles 14. The footing 15 and the steel sheet pile wall 13 are integrated and fixed closely, and the ground 11 in the square cylindrical steel sheet pile wall 13 is improved to a depth effective for the horizontal resistance of the plurality of piles 14. Since the solidified portion D between the steel sheet pile wall 13a and the solidified improvement portion A of the square cylindrical underground wall is further solidified and improved, compared with the conventional pile foundation 1 shown in FIG. Therefore, the overall rigidity (strength) of the new foundation structure 10 'can be improved as compared with the conventional structure even if the number of the piles 14 is reduced or a small diameter is used, and the cost can be reduced accordingly. it can.

また、四角筒状の鋼矢板壁13と鉄筋コンクリート製のフーチング15を一体化して固定すると共に、四角筒状の鋼矢板壁13内の鉄筋コンクリート製のフーチング15の真下の地盤11の全域を複数の杭12の水平抵抗に有効な範囲の深度まで固化改良し、かつ、四角筒状の地中壁の鋼矢板壁13aと固化改良部分Aとの間の間詰め部分Dを更に固化改良したので、鉄筋コンクリート製のフーチング15と固化改良部分A及び間詰め部分Dの強度と四角筒状の鋼矢板壁13による拘束効果により複数の杭12の水平抵抗(横抵抗)を増大させることができる。さらに、四角筒状の鋼矢板壁13内の複数の杭14の頭部14bの周辺地盤の固化改良によりその付着抵抗が増大し、鉛直支持力を増大させることができる。   In addition, the square cylindrical steel sheet pile wall 13 and the reinforced concrete footing 15 are integrated and fixed, and the entire region of the ground 11 directly below the reinforced concrete footing 15 in the square cylindrical steel sheet pile wall 13 is provided with a plurality of piles. Since the solidified portion of the square sheet-like wall 13a and the solidified portion A between the solidified portion A is further solidified and improved to a depth effective for the horizontal resistance of 12, the reinforced concrete The horizontal resistance (lateral resistance) of the plurality of piles 12 can be increased by the strength of the made footing 15, the solidification improving portion A and the filling portion D, and the restraining effect of the square cylindrical steel sheet pile wall 13. Furthermore, the adhesion resistance increases by the solidification improvement of the surrounding ground of the heads 14b of the plurality of piles 14 in the square cylindrical steel sheet pile wall 13, and the vertical supporting force can be increased.

また、四角筒状の鋼矢板壁13内の全域の地盤改良に伴う内圧の増加により新設の鉄筋コンクリート製のフーチング15の周りの剛性がより一段と増加する。さらに、四角筒状の鋼矢板壁13の剛性によりフーチング15の周りの変形を抑制する効果があると共に、四角筒状の鋼矢板壁13自体が変形抵抗(リング効果)があるため、レベル2クラスの地震荷重作用時のフーチング15の水平変位及び回転を抑制し、耐震性を向上させることができる。これらにより、新設基礎構造10′の耐力を向上させることができる。   In addition, the rigidity around the newly reinforced concrete footing 15 is further increased by the increase in internal pressure accompanying the ground improvement in the entire area of the steel sheet pile wall 13 in the shape of the rectangular tube. Furthermore, the rigidity of the square cylindrical steel sheet pile wall 13 has the effect of suppressing deformation around the footing 15 and the square cylindrical steel sheet pile wall 13 itself has deformation resistance (ring effect), so that it is level 2 class. The horizontal displacement and rotation of the footing 15 when the seismic load is applied can be suppressed, and the earthquake resistance can be improved. By these, the proof stress of newly installed foundation structure 10 'can be improved.

図11は本発明の第3実施形態の新設基礎構造を示す断面図、図12(a)は地盤を地盤改良した状態を示す断面図、図12(b)は同地盤改良した部分に地中壁を埋設した状態を示す断面図、図13は同地中壁内の地盤及び地盤改良した部分を削孔した状態を示す断面図、図14は同地盤改良の削孔した部分に新設杭を打設した状態を示す断面図、図15は同地中壁内の地盤を掘削した状態を示す断面図、図16は同新設杭の頭部上に新設フーチングを構築した状態を示す断面図である。   FIG. 11 is a cross-sectional view showing a newly-founded basic structure according to a third embodiment of the present invention, FIG. 12 (a) is a cross-sectional view showing a ground improved state, and FIG. 12 (b) is an underground view of the ground improved portion. 13 is a cross-sectional view showing a state where the wall is buried, FIG. 13 is a cross-sectional view showing a state where the ground and the ground improved portion in the ground wall are drilled, and FIG. 14 is a diagram showing a new pile in the ground improved portion of the ground improvement FIG. 15 is a cross-sectional view showing a state in which the ground in the ground wall is excavated, and FIG. 16 is a cross-sectional view showing a state in which a new footing is constructed on the head of the new pile. is there.

図11,図16に示すように、新設基礎構造10″は、地盤11のフーチング構築予定位置の周囲に埋設された四角筒状の鋼矢板壁(環状の地中壁)13と、この四角筒状の鋼矢板壁13内において先端14aが支持層(所定位置)12まで打ち込まれた複数の杭14と、この複数の杭14の頭部14b上に構築されたフーチング(基礎)15とを備えている。   As shown in FIGS. 11 and 16, the new foundation structure 10 ″ includes a square cylindrical steel sheet pile wall (annular underground wall) 13 embedded around the planned footing construction position of the ground 11, and this square cylinder. A plurality of piles 14 whose leading ends 14a are driven to a support layer (predetermined position) 12 in a steel sheet pile wall 13 and a footing (foundation) 15 constructed on the heads 14b of the plurality of piles 14 are provided. ing.

このフーチング構築周辺の地盤11には、四角筒状の鋼矢板壁13を複数の杭14の水平抵抗に有効な範囲(例えば、1/β〜π/2β)の深度まで埋設してある。また、四角筒状の鋼矢板壁13の内側と外側の地盤11の全域(全部)を複数の杭14の水平抵抗に有効な範囲の深度まで機械・噴射攪拌工法により地盤改良(固化改良)してある。この固化改良部分を符号Aで示す。   In the ground 11 around the footing construction, a square tubular steel sheet pile wall 13 is embedded to a depth (for example, 1 / β to π / 2β) effective for the horizontal resistance of the plurality of piles 14. In addition, the entire area (all) of the inner and outer ground 11 of the rectangular steel sheet pile wall 13 is ground improved (solidified) to a depth that is effective for the horizontal resistance of the plurality of piles 14 by a mechanical / jet stirring method. It is. This solidification improvement portion is indicated by the symbol A.

また、鉄筋コンクリート製のフーチング15の外周面15aは、四角筒状の鋼矢板壁13の内周面(内面)13aに隙間なく構築されて該四角筒状の鋼矢板壁13に一体化されて固定されている。   Further, the outer peripheral surface 15a of the reinforced concrete footing 15 is constructed on the inner peripheral surface (inner surface) 13a of the square cylindrical steel sheet pile wall 13 without gaps, and is integrated and fixed to the square cylindrical steel sheet pile wall 13. Has been.

次に、上記第3実施形態の新設基礎構造10″の施工手順を説明する。   Next, the construction procedure of the newly installed foundation structure 10 ″ of the third embodiment will be described.

まず、図12(a)に示すように、フーチング構築周辺の地盤11を複数の杭14の水平抵抗に有効な範囲の深度まで遅延剤を使用した機械式攪拌工法によりセメントミルク等の固化材の注入・攪拌混合により固化改良する。次に、図12(b)に示すように、フーチング構築周辺の地盤11の固化改良部分Aが固化する前に、該固化改良部分A内に四角筒状の鋼矢板壁13を複数の杭14の水平抵抗に有効な範囲の深度まで打設する。この際、図12(b)に示すように、四角筒状の鋼矢板壁13の内側と外側に固化改良部分Aが位置する。そして、図13に示すように、四角筒状の鋼矢板壁13内の地盤11及び固化改良部分Aの所定位置に複数の杭14を打設するための、複数の孔Bを孔削する。   First, as shown in FIG. 12 (a), a solidified material such as cement milk is ground by a mechanical stirring method using a retarder to a depth that is effective for the horizontal resistance of the piles 14 around the ground 11 around the footing construction. Improves solidification by pouring and stirring. Next, as shown in FIG. 12 (b), before the solidified improvement portion A of the ground 11 around the footing construction is solidified, a square cylindrical steel sheet pile wall 13 is placed in the solidified improvement portion A in a plurality of piles 14. To the depth of the effective range for horizontal resistance. Under the present circumstances, as shown in FIG.12 (b), the solidification improvement part A is located in the inner side and the outer side of the square cylindrical steel sheet pile wall 13. FIG. Then, as shown in FIG. 13, a plurality of holes B for drilling a plurality of piles 14 at predetermined positions of the ground 11 and the solidified portion A in the square cylindrical steel sheet pile wall 13 are drilled.

次に、図14に示すように、固化改良部分Aの各孔B内に場所打ちコンクリート杭14をその先端14aが支持層12に達するまで打ち込む。杭14がコンクリート杭、鋼管杭等の既製の杭の場合は、その先端14aが支持層12に達するまで打ち込む。この際に、各杭14と固化改良部分Aの各孔Bとの隙間にセメントミルク等の間詰め固化材Cを充填する。次に、図15に示すように、四角筒状の鋼矢板壁13内の上部の地盤11及び固化改良部分Aの上部を掘削する。   Next, as shown in FIG. 14, a cast-in-place concrete pile 14 is driven into each hole B of the solidification improved portion A until its tip 14 a reaches the support layer 12. When the pile 14 is a ready-made pile such as a concrete pile or a steel pipe pile, the pile 14 is driven until its tip 14a reaches the support layer 12. At this time, the solidified material C, such as cement milk, is filled in the gaps between the respective piles 14 and the respective holes B of the solidification improving portion A. Next, as shown in FIG. 15, the upper ground 11 and the upper part of the solidification improving portion A in the square tubular steel sheet pile wall 13 are excavated.

次に、図16に示すように、各杭14の頭部14bの頂面及び固化改良部分Aの上面に鉄筋コンクリート製のフーチング15を構築する。この際に、四角筒状の鋼矢板壁13の内周面13aを型枠として用いて、鉄筋コンクリート製のフーチング15の外周面15aを四角筒状の鋼矢板壁13の内周面13aに隙間なく構築して該四角筒状の鋼矢板壁13と一体化する。そして、鉄筋コンクリート製のフーチング15の上面15bより上方に突出した四角筒状の鋼矢板壁13の上部を切断・撤去すると共に、該鉄筋コンクリート製のフーチング15の上面15b上に前記掘削した地盤11を埋め戻すことにより、図11に示す新設基礎構造10″が完成する。   Next, as shown in FIG. 16, a reinforced concrete footing 15 is constructed on the top surface of the head 14 b of each pile 14 and the upper surface of the solidified portion A. At this time, the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 is used as a mold, and the outer peripheral surface 15a of the reinforced concrete footing 15 is formed on the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 without a gap. It is constructed and integrated with the square cylindrical steel sheet pile wall 13. Then, the upper portion of the square cylindrical steel sheet pile wall 13 protruding upward from the upper surface 15b of the reinforced concrete footing 15 is cut and removed, and the excavated ground 11 is buried on the upper surface 15b of the reinforced concrete footing 15. By returning, the new foundation structure 10 ″ shown in FIG. 11 is completed.

このように、フーチング構築周辺の地盤11中の固化改良部分A内に複数の杭14の水平抵抗に有効な範囲の深度まで埋設された四角筒状の鋼矢板壁13の内周面13aにフーチング15の外周面15aを密接して当該フーチング15と鋼矢板壁13とを一体化して固定すると共に、該四角筒状の鋼矢板壁13の内側と外側の地盤11を複数の杭14の水平抵抗に有効な範囲の深度まで地盤改良して固化したので、図17に示す従来の杭基礎1に比べて杭14の本数を減らしたり、小径のものを用いても従来のものよりも新設基礎構造10″の全体の剛性(強度)を向上させることができると共に、その分低コスト化を図ることができる。   In this way, the footing is performed on the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 embedded in the solidified improvement portion A in the ground 11 around the footing construction to the depth effective for the horizontal resistance of the plurality of piles 14. 15, the footing 15 and the steel sheet pile wall 13 are integrated and fixed, and the ground 11 on the inner side and the outer side of the square cylindrical steel sheet pile wall 13 is connected to the horizontal resistance of the plurality of piles 14. Since the ground has been improved and solidified to an effective depth, the number of piles 14 is reduced compared to the conventional pile foundation 1 shown in FIG. The overall rigidity (strength) of 10 ″ can be improved and the cost can be reduced accordingly.

また、四角筒状の鋼矢板壁13と鉄筋コンクリート製のフーチング15を一体化して固定すると共に、四角筒状の鋼矢板壁13の内側の鉄筋コンクリート製のフーチング15の真下の全域及び四角筒状の鋼矢板壁13の外側の地盤11を複数の杭12の水平抵抗に有効な範囲の深度まで固化改良したので、鉄筋コンクリート製のフーチング15及び固化改良部分Aの強度と四角筒状の鋼矢板壁13による拘束効果により複数の杭12の水平抵抗(横抵抗)を増大させることができる。さらに、四角筒状の鋼矢板壁13内の複数の杭14の頭部14bの周辺地盤の固化改良により付着抵抗が増大し、鉛直支持力を増大させることができる。   In addition, the square cylindrical steel sheet pile wall 13 and the reinforced concrete footing 15 are integrally fixed, and the entire area directly below the reinforced concrete footing 15 inside the square cylindrical steel sheet pile wall 13 and the square cylindrical steel. Since the ground 11 outside the sheet pile wall 13 has been solidified and improved to a depth effective for the horizontal resistance of the plurality of piles 12, the strength of the reinforced concrete footing 15 and the solidification improved portion A and the steel sheet pile wall 13 of the rectangular cylindrical shape The horizontal resistance (lateral resistance) of the plurality of piles 12 can be increased by the restraining effect. Furthermore, adhesion resistance increases by the solidification improvement of the surrounding ground of the heads 14b of the plurality of piles 14 in the square cylindrical steel sheet pile wall 13, and the vertical supporting force can be increased.

また、四角筒状の鋼矢板壁13の内外の地盤改良に伴う内圧の増加により新設の鉄筋コンクリート製のフーチング15の周りの剛性がより一段と増加する。さらに、四角筒状の鋼矢板壁13の剛性によりフーチング15の周りの変形を抑制する効果があると共に、四角筒状の鋼矢板壁13自体が変形抵抗(リング効果)があるため、レベル2クラスの地震荷重作用時のフーチング15の水平変位及び回転を抑制し、耐震性を向上させることができる。これらにより、新設基礎構造10″の耐力を向上させることができる。   In addition, the rigidity around the newly reinforced concrete footing 15 is further increased by the increase in internal pressure accompanying the improvement of the ground inside and outside the square cylindrical steel sheet pile wall 13. Furthermore, the rigidity of the square cylindrical steel sheet pile wall 13 has the effect of suppressing deformation around the footing 15 and the square cylindrical steel sheet pile wall 13 itself has deformation resistance (ring effect), so that it is level 2 class. The horizontal displacement and rotation of the footing 15 when the seismic load is applied can be suppressed, and the earthquake resistance can be improved. As a result, it is possible to improve the yield strength of the newly installed foundation structure 10 ″.

尚、前記各実施形態では、地盤11のフーチング構築予定位置の周囲に四角筒状の鋼矢板壁13を埋設したが、環状の地中壁の形状は円筒状でも良く、また、この鋼矢板壁13の代わりに、四角筒状のソイルセメント壁(環状の地中壁)を複数の杭の水平抵抗に有効な範囲(例えば1/β〜π/2β)の深度まで柱列式地下連続壁造成工法等により形成しても良い。この鋼矢板壁13の代わりにソイルセメント壁で環状の地中壁を形成すると、地盤条件や既設橋脚の状況により作業現場に最適な耐震補強をより一段と低コストで施工することができる。また、柱列式地下連続壁としてソイルセメント壁の代わりに、場所打ち杭壁や既製杭壁等を用いて環状の地中壁を形成しても良い。   In each of the above embodiments, the rectangular steel sheet pile wall 13 is embedded around the footing construction planned position of the ground 11, but the shape of the annular underground wall may be cylindrical, and this steel sheet pile wall Instead of 13, a column-shaped soil cement wall (annular underground wall) is used to create a column-type continuous underground wall to a depth that is effective for the horizontal resistance of multiple piles (for example, 1 / β to π / 2β) You may form by a construction method etc. If an annular underground wall is formed with a soil cement wall instead of the steel sheet pile wall 13, the optimum seismic reinforcement for the work site can be implemented at a lower cost depending on the ground conditions and the state of the existing pier. Moreover, you may form a ring-shaped underground wall using a cast-in-place pile wall, a ready-made pile wall, etc. instead of a soil cement wall as a column-column type underground continuous wall.

さらに、前記各実施形態によれば、新設基礎構造として地上の地中橋脚を新設する場合について説明したが、前記各実施形態を河川横断部等の水中橋脚(水中新設基礎)に適用できることは勿論である。また、前記各実施形態によれば、環状の地中壁内の地盤の全域を固化改良したが、例えば、環状の地中壁内の中央の地盤を無処理にして残す等、環状の地中壁内の地盤の一部のみを固化改良するようにしても良いことは勿論である。   Furthermore, according to each of the embodiments described above, a case where a ground underground pier is newly installed as a new foundation structure has been described, but it is needless to say that each of the embodiments can be applied to an underwater pier (a new underwater foundation) such as a river crossing section. It is. In addition, according to each of the above embodiments, the entire area of the ground in the annular underground wall has been solidified and improved. For example, the central ground in the annular underground wall is left untreated, and the like. Of course, only a part of the ground in the wall may be solidified and improved.

本発明の第1実施形態の新設基礎構造を示す断面図である。It is sectional drawing which shows the new foundation structure of 1st Embodiment of this invention. (a)は上記第1実施形態の地盤に地中壁を埋設すると共に同地中壁内の地盤を地盤改良した状態を示す断面図、(b)は同地中壁内の地盤及び地盤改良した部分を削孔した状態を示す断面図である。(A) is sectional drawing which shows the state which embedded the underground wall in the ground of the said 1st Embodiment, and improved the ground in the underground wall, (b) is the ground and ground improvement in the underground wall. It is sectional drawing which shows the state which drilled the part which carried out. 上記第1実施形態の地盤改良の削孔した部分に新設杭を打設した状態を示す断面図である。It is sectional drawing which shows the state which laid the new pile in the drilled part of the ground improvement of the said 1st Embodiment. は上記第1実施形態の地中壁内の地盤を掘削した状態を示す断面図である。These are sectional drawings which show the state which excavated the ground in the underground wall of the said 1st Embodiment. 上記第1実施形態の新設杭の頭部上に新設フーチングを構築した状態を示す断面図である。It is sectional drawing which shows the state which built the new footing on the head of the new pile of the said 1st Embodiment. 本発明の第2実施形態の新設基礎構造を示す断面図である。It is sectional drawing which shows the new foundation structure of 2nd Embodiment of this invention. (a)は上記第2実施形態の地盤に地中壁を埋設すると共に同地中壁内の地盤を地盤改良した状態を示す断面図、(b)は同地中壁と地盤改良した部分の間を間詰め改良すると共に同地中壁内の地盤及び地盤改良した部分を削孔した状態を示す断面図である。(A) is sectional drawing which shows the state which buried the underground wall in the ground of the said 2nd Embodiment, and improved the ground in the ground inner wall, (b) is the same ground wall and the part which improved the ground It is sectional drawing which shows the state which drilled the ground in the ground wall and the part which improved the ground while improving gaps. 上記第2実施形態の地盤改良の削孔した部分に新設杭を打設した状態を示す断面図である。It is sectional drawing which shows the state which laid the new pile in the drilled part of the ground improvement of the said 2nd Embodiment. は上記第2実施形態の地中壁内の地盤の掘削した状態を示す断面図である。These are sectional drawings which show the state where the ground in the underground wall of the said 2nd Embodiment was excavated. 上記第2実施形態の新設杭の頭部上に新設フーチングを構築した状態を示す断面図である。It is sectional drawing which shows the state which constructed the new footing on the head of the new pile of the said 2nd Embodiment. 本発明の第3実施形態の新設基礎構造を示す断面図である。It is sectional drawing which shows the new foundation structure of 3rd Embodiment of this invention. (a)は上記第3実施形態の地盤を地盤改良した状態を示す断面図、(b)は同地盤改良した部分に地中壁を埋設した状態を示す断面図である。(A) is sectional drawing which shows the state which improved the ground of the said 3rd Embodiment, (b) is sectional drawing which shows the state which buried the underground wall in the part which improved the ground. 上記第3実施形態の地中壁内の地盤及び地盤改良した部分を削孔した状態を示す断面図である。It is sectional drawing which shows the state which drilled the ground in the underground wall of the said 3rd Embodiment, and the part which improved the ground. 上記第3実施形態の地盤改良の削孔した部分に新設杭を打設した状態を示す断面図である。It is sectional drawing which shows the state which laid the new pile in the drilled part of the ground improvement of the said 3rd Embodiment. 上記第3実施形態の地盤改良した部分を削孔した状態を示す断面図である。It is sectional drawing which shows the state which drilled the ground improvement part of the said 3rd Embodiment. 上記第3実施形態の新設杭の頭部上に新設フーチングを構築した状態を示す断面図である。It is sectional drawing which shows the state which constructed | assembled the new footing on the head of the new pile of the said 3rd Embodiment. 従来例の新設基礎構造を示す断面図である。It is sectional drawing which shows the new foundation structure of a prior art example.

符号の説明Explanation of symbols

10,10′,10″ 新設基礎構造節
11 地盤
12 支持層(所定位置)
13 四角筒状の鋼矢板壁(環状の地中壁)
13a 内周面(内面)
14 杭
14a 先端
14b 頭部
15 フーチング
15a 外周面
A 固化改良部分
D 間詰め改良部分
10, 10 ', 10 "New foundation structure section 11 Ground 12 Support layer (predetermined position)
13 Square steel sheet pile wall (annular underground wall)
13a Inner peripheral surface (inner surface)
14 Pile 14a Tip 14b Head 15 Footing 15a Outer surface A Solidification improvement part D Stuffing improvement part

Claims (3)

地盤のフーチング構築予定位置の周囲に環状の地中壁を埋設し、この環状の地中壁内に先端が所定位置まで打ち込まれた複数の杭の頭部にフーチングを構築して成る新設基礎構造において、
前記環状の地中壁を前記複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁内の地盤を前記複数の杭の水平抵抗に有効な範囲の深度まで固化改良したことを特徴とする新設基礎構造。
A new foundation structure in which an annular underground wall is embedded around the planned footing construction position of the ground, and footings are constructed on the heads of multiple piles whose tips are driven into a predetermined position in the annular underground wall. In
The annular underground wall is buried to a depth effective for the horizontal resistance of the plurality of piles, and the ground in the annular underground wall is solidified to a depth effective for the horizontal resistance of the plurality of piles. New foundation structure characterized by improvements.
地盤のフーチング構築予定位置の周囲に環状の地中壁を埋設し、この環状の地中壁内に先端が所定位置まで打ち込まれた複数の杭の頭部にフーチングを構築して成る新設基礎構造において、
前記環状の地中壁を前記複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁内の地盤を前記複数の杭の水平抵抗に有効な範囲の深度まで固化改良し、かつ前記環状の地中壁の内面と前記固化改良部分との間の間詰め部分を更に固化改良したことを特徴とする新設基礎構造。
A new foundation structure in which an annular underground wall is embedded around the planned footing construction position of the ground, and footings are constructed on the heads of multiple piles whose tips are driven into a predetermined position in the annular underground wall. In
The annular underground wall is buried to a depth effective for the horizontal resistance of the plurality of piles, and the ground in the annular underground wall is solidified to a depth effective for the horizontal resistance of the plurality of piles. A new foundation structure improved and further solidified and improved in the space between the inner surface of the annular underground wall and the solidified portion.
地盤のフーチング構築予定位置の周囲に環状の地中壁を埋設し、この環状の地中壁内に先端が所定位置まで打ち込まれた複数の杭の頭部にフーチングを構築して成る新設基礎構造において、
前記環状の地中壁を前記複数の杭の水平抵抗に有効な範囲の深度まで埋設すると共に、該環状の地中壁の内側と外側の地盤を前記複数の杭の水平抵抗に有効な範囲の深度まで固化改良したことを特徴とする新設基礎構造。
A new foundation structure in which an annular underground wall is embedded around the planned footing construction position of the ground, and footings are constructed on the heads of multiple piles whose tips are driven into a predetermined position in the annular underground wall. In
The annular underground wall is buried to a depth that is effective for the horizontal resistance of the plurality of piles, and the inner and outer grounds of the annular underground wall are within an effective range for the horizontal resistance of the plurality of piles. New foundation structure characterized by solidification and improvement to depth.
JP2006074956A 2006-03-17 2006-03-17 New foundation structure Active JP3895363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074956A JP3895363B1 (en) 2006-03-17 2006-03-17 New foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074956A JP3895363B1 (en) 2006-03-17 2006-03-17 New foundation structure

Publications (2)

Publication Number Publication Date
JP3895363B1 JP3895363B1 (en) 2007-03-22
JP2007247339A true JP2007247339A (en) 2007-09-27

Family

ID=37942076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074956A Active JP3895363B1 (en) 2006-03-17 2006-03-17 New foundation structure

Country Status (1)

Country Link
JP (1) JP3895363B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106546A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Method of constructing foundation in structure, and foundation structure
JP2011038379A (en) * 2009-08-18 2011-02-24 Takenaka Komuten Co Ltd Method of installing cast-in-place pile
JP2016044410A (en) * 2014-08-20 2016-04-04 鹿島建設株式会社 Vertical shaft construction method
JP2019073886A (en) * 2017-10-16 2019-05-16 東日本旅客鉄道株式会社 Vibration displacement suppressing structure of structure group
JP2021046766A (en) * 2019-09-20 2021-03-25 株式会社竹中土木 Liquefaction countermeasure structure of underground structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124493A (en) * 2002-10-02 2004-04-22 Yukitake Shioi Aseismatic reinforcement construction of structure
JP2004162426A (en) * 2002-11-14 2004-06-10 Ishikawajima Harima Heavy Ind Co Ltd Foundation cell, cell foundation structure, and construction method for cell foundation structure
JP2005180079A (en) * 2003-12-22 2005-07-07 Yukitake Shioi Aseismatic reinforcement structure of construction
JP2005290871A (en) * 2004-03-31 2005-10-20 Yukitake Shioi Foundation structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124493A (en) * 2002-10-02 2004-04-22 Yukitake Shioi Aseismatic reinforcement construction of structure
JP2004162426A (en) * 2002-11-14 2004-06-10 Ishikawajima Harima Heavy Ind Co Ltd Foundation cell, cell foundation structure, and construction method for cell foundation structure
JP2005180079A (en) * 2003-12-22 2005-07-07 Yukitake Shioi Aseismatic reinforcement structure of construction
JP2005290871A (en) * 2004-03-31 2005-10-20 Yukitake Shioi Foundation structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106546A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Method of constructing foundation in structure, and foundation structure
JP2011038379A (en) * 2009-08-18 2011-02-24 Takenaka Komuten Co Ltd Method of installing cast-in-place pile
JP2016044410A (en) * 2014-08-20 2016-04-04 鹿島建設株式会社 Vertical shaft construction method
JP2019073886A (en) * 2017-10-16 2019-05-16 東日本旅客鉄道株式会社 Vibration displacement suppressing structure of structure group
JP2021046766A (en) * 2019-09-20 2021-03-25 株式会社竹中土木 Liquefaction countermeasure structure of underground structure
JP7359515B2 (en) 2019-09-20 2023-10-11 株式会社竹中土木 Liquefaction countermeasure structure for underground structures

Also Published As

Publication number Publication date
JP3895363B1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP2009167660A (en) Tower crane foundation structure and method of constructing the same
JP2006226064A (en) Pile construction method and pile structure
JP6430147B2 (en) Construction method of foundation pile that reinforces pile head, foundation pile structure that reinforces pile head
JP3895363B1 (en) New foundation structure
JP3639294B1 (en) Seismic reinforcement structure for structures
JP5502538B2 (en) Pile construction method and pile construction device
JP4391292B2 (en) Reinforcement structure for floating structures
JP2009035927A (en) Method of reinforcing existing structure foundation, and reinforcing structure
JP4946695B2 (en) Construction method of double pipe type pile head structure
JP5147361B2 (en) Repair and reinforcement structure for floating structures
JP5075094B2 (en) Construction method and foundation structure of foundation structure in structure
JP2011236705A (en) Foundation structure of structure and method of constructing the same
JP2013177741A (en) Earthquake strengthening structure of existent structure foundation employing composite ground pile foundation technique
JP2004124493A (en) Aseismatic reinforcement construction of structure
JP5176788B2 (en) Construction method of underground structure
JP5075093B2 (en) Construction method and foundation structure of foundation structure in structure
JP4911242B2 (en) Reinforcement structure of existing gravity quay
JP6400315B2 (en) Pre-built pile burying structure, pre-made pile laying method
JP2004316118A (en) Immersion method for caisson
JP2018044337A (en) Structure and method for reinforcing embankment
JP4475116B2 (en) Vertical shaft structure and its construction method
JP4336828B2 (en) Substructure
JP6534026B2 (en) Seismic isolation building and its construction method
JP6462298B2 (en) Foundation pile structure
JP7007691B1 (en) Casting method for spring spacers, reinforcing bar cages and underground piles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Ref document number: 3895363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250