JP2021046766A - Liquefaction countermeasure structure of underground structure - Google Patents

Liquefaction countermeasure structure of underground structure Download PDF

Info

Publication number
JP2021046766A
JP2021046766A JP2019171694A JP2019171694A JP2021046766A JP 2021046766 A JP2021046766 A JP 2021046766A JP 2019171694 A JP2019171694 A JP 2019171694A JP 2019171694 A JP2019171694 A JP 2019171694A JP 2021046766 A JP2021046766 A JP 2021046766A
Authority
JP
Japan
Prior art keywords
ground improvement
underground structure
liquefaction
constructed
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019171694A
Other languages
Japanese (ja)
Other versions
JP7359515B2 (en
Inventor
守正 森
Morimasa Mori
守正 森
延寿 ▲くわ▼野
延寿 ▲くわ▼野
Nobuhisa Kuwano
芳一 松本
Yoshiichi Matsumoto
芳一 松本
裕司 田屋
Yuji Taya
裕司 田屋
剛 本多
Takeshi Honda
剛 本多
龍 山中
Ryu Yamanaka
龍 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2019171694A priority Critical patent/JP7359515B2/en
Publication of JP2021046766A publication Critical patent/JP2021046766A/en
Application granted granted Critical
Publication of JP7359515B2 publication Critical patent/JP7359515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

To provide a liquefaction countermeasure structure of an underground structure which can suppress a dynamic water pressure in earthquake even when rigidity of a ground improvement wall is reduced by introducing a technical concept for achieving such a configuration as to intentionally lower a degree of fixation of the ground improvement wall to the underground structure and permit lift, and is excellent in economical efficiency and workability.SOLUTION: Ground improvement bodies 2 having small improvement diameters S are constructed along both sides in an extension direction of an underground structure (existing utility tunnel) 1 until the ground improvement bodies reach a non-liquefaction layer 5 in the shape of the columns, and rod-like reinforcing members (reinforcements) 3 are built in the ground improvement bodies 2 until the reinforcing members do not reach the non-liquefaction layer 5, and thereby a ground improvement wall 4 is constructed; and embedding of the lower end of the ground improvement wall 4 to the non-liquefaction layer 5 is small, on the other hand, the upper end thereof is not constructed to be higher than the middle of the underground structure 1.SELECTED DRAWING: Figure 1

Description

この発明は、地中に埋設される共同溝や地下道路等の線状の地中埋設構造物(以下、地中構造物と略す。)の液状化対策構造の技術分野に属し、更にいえば、液状化による地盤被害が懸念される地盤(軟弱地盤)内に構築された既設共同溝に対し、柱列式の地盤改良壁によって液状化を防止する技術に関する。 The present invention belongs to the technical field of liquefaction countermeasure structures for linear underground structures (hereinafter abbreviated as underground structures) such as utility tunnels and underground roads buried in the ground. Regarding the technology to prevent liquefaction by using a column-type ground improvement wall for the existing utility tunnel constructed in the ground (soft ground) where there is concern about ground damage due to liquefaction.

前記地中構造物のうち、例えば既設の共同溝を対象とした液状化対策としては、格子状地盤改良や連続地中壁によるせん断変形の抑制を対象とした工法がある。また、ディープウェルによる地下水位低下工法や排水機能付き鋼材による間隙水圧消散工法など、浮力による浮き上がり防止を目的とした工法もある。 Among the underground structures, for example, as a liquefaction countermeasure for an existing utility tunnel, there is a construction method for improving the grid-like ground and suppressing shear deformation due to a continuous underground wall. In addition, there are also construction methods aimed at preventing lifting due to buoyancy, such as a groundwater level lowering method using a deep well and a pore water pressure dissipation method using a steel material with a drainage function.

具体的に、図9は、深層混合処理工法により既設共同溝Aの浮き上がりを防止する技術を示している。この技術は、前記周辺地盤からの回り込みに起因した浮き上がりを抑止するべく、既設共同溝Aの延長方向両側に沿って深層混合処理工法による改良壁a、aを造成するものである。
この図9に係る深層混合処理工法を採用した技術によれば、造成した改良体aの地震時の外的安定性を満たすには底面摩擦力が必要なため、既設共同溝Aの両側に構築する改良体aの改良幅をそれぞれ5.7mに設定する等、非常に広範囲にわたる改良が必要になる。そのため、工期が長引き、コスト高になるほか、狭隘な場所では実施に難渋する課題がある。
Specifically, FIG. 9 shows a technique for preventing the existing utility tunnel A from rising by a deep mixing treatment method. In this technique, in order to suppress the floating caused by the wraparound from the surrounding ground, the improved walls a and a are created by the deep mixing treatment method along both sides in the extension direction of the existing utility tunnel A.
According to the technique adopting the deep mixing treatment method according to FIG. 9, since the bottom friction force is required to satisfy the external stability of the created improved body a at the time of an earthquake, it is constructed on both sides of the existing utility tunnel A. A very wide range of improvements are required, such as setting the improvement width of the improved body a to 5.7 m. Therefore, the construction period is prolonged, the cost is high, and there is a problem that it is difficult to implement in a narrow place.

図10は、鋼矢板を用いて既設共同溝Aの浮き上がりを防止する技術を示している。この技術は、既設共同溝Aの前記周辺地盤からの回り込みに起因した浮き上がりを抑止するべく、既設共同溝Aの両側に排水ドレーン付きの鋼矢板b、bを打設するものである。
この図10に係る鋼矢板bを採用した技術によれば、鋼矢板bを連続させて施工するので、共同溝A以外の地中埋設物が干渉する場合は実施できない(又は施工に難渋する)課題がある。また、浮力による浮き上がりに対しては、鋼矢板bに突起等を設置して対応するが、手間がかかりコスト高となる課題もある。
FIG. 10 shows a technique for preventing the existing utility tunnel A from rising by using a steel sheet pile. In this technique, steel sheet piles b and b with drainage drains are placed on both sides of the existing utility tunnel A in order to prevent the existing utility tunnel A from rising due to wraparound from the surrounding ground.
According to the technique using the steel sheet pile b according to FIG. 10, since the steel sheet pile b is continuously constructed, it cannot be carried out (or it is difficult to construct) when underground buried objects other than the utility tunnel A interfere with each other. There are challenges. Further, the lifting due to the buoyancy is dealt with by installing a protrusion or the like on the steel sheet pile b, but there is also a problem that it is troublesome and costly.

また、特許文献1は、図11に示したように、既成の鋼矢板c、cにより山留めを行い、構造物(共同溝)Aの底版まで掘削したのち、前記鋼矢板c、cの背面にドレーン材f、fを設置するとともに、前記構造物Aと鋼矢板cとの間に流動化処理土gを埋め戻すことを特徴とする線状構造物の液状化対策工法が開示されている(請求項1の記載参照)。
この特許文献1に係る工法によれば、鋼矢板cを利用しているため、やはり構造物(共同溝)A以外の地中埋設物が干渉する場合は実施できない(又は施工に難渋する)課題がある。
Further, in Patent Document 1, as shown in FIG. 11, after retaining the piles with the ready-made steel sheet piles c and c and excavating to the bottom slab of the structure (utility tunnel) A, the back surface of the steel sheet piles c and c is formed. A liquefaction countermeasure construction method for a linear structure is disclosed, which comprises installing drain materials f and f and backfilling the fluidized soil g between the structure A and the steel sheet pile c (a method for preventing liquefaction of a linear structure). (Refer to the description of claim 1).
According to the construction method according to Patent Document 1, since the steel sheet pile c is used, it cannot be carried out (or it is difficult to construct) when underground buried objects other than the structure (utility tunnel) A interfere with each other. There is.

そこで、本出願人は、上記した各課題を踏まえ、特許文献2の発明を開発した。
この特許文献2は、同文献2の図1〜図3に示したように、地中構造物1の延長方向両側に沿って、高圧噴射撹拌工法で改良径の小さい改良体2を柱列状に非液状化層6へ到達するまで構築し、前記改良体2の内部に芯材3を建て込む工程を繰り返し行うことにより、前記改良体2と芯材3とからなる合成杭を連続させた地盤改良合成壁4を造成すると共に、隣接する前記合成杭の前記地中構造物1寄りの接円部分Pをボーリングした跡にドレーン材5を設置することを特徴とする地中構造物の液状化対策工法が開示されている(請求項1の記載等参照)。
Therefore, the applicant has developed the invention of Patent Document 2 based on the above-mentioned problems.
In this patent document 2, as shown in FIGS. 1 to 3 of the same document 2, the improved body 2 having a small improved diameter is arranged in a column shape along both sides in the extension direction of the underground structure 1 by a high-pressure jet stirring method. By repeating the process of constructing the non-liquefied layer 6 until it reaches the non-liquefied layer 6 and repeatedly building the core material 3 inside the improved body 2, the synthetic pile composed of the improved body 2 and the core material 3 is made continuous. A liquid underground structure characterized in that the ground improvement composite wall 4 is created and the drain material 5 is installed at the trace of boring the tangent portion P near the underground structure 1 of the adjacent synthetic pile. The liquefaction countermeasure construction method is disclosed (see the description of claim 1 etc.).

前記特許文献2の発明によれば、改良径の小さい(例えば2m程度の)改良体2を柱列状に構築して実施するので、狭隘な場所でも十分に実施できる。よって、前記図9に係る深層混合処理工法を採用した技術に生じる課題を解消できる。また、鋼矢板を用いることなく高圧噴射撹拌工法で改良体2を構築するので、構造物(共同溝)A以外の地中埋設物が干渉する場合でも制約を受けない柔軟な施工ができる。よって、前記図10、図11に係る鋼矢板を採用した技術に生じる課題も解消できる。 According to the invention of Patent Document 2, since the improved body 2 having a small improved diameter (for example, about 2 m) is constructed in a columnar shape and carried out, it can be sufficiently carried out even in a narrow place. Therefore, it is possible to solve the problem that arises in the technique that employs the deep mixing treatment method according to FIG. Further, since the improved body 2 is constructed by the high-pressure injection stirring method without using a steel sheet pile, flexible construction without restrictions is possible even when underground buried objects other than the structure (utility tunnel) A interfere with each other. Therefore, it is possible to solve the problem that arises in the technique of adopting the steel sheet pile according to FIGS. 10 and 11.

特開平7−127045号公報Japanese Unexamined Patent Publication No. 7-127045 特開2017−96045号公報JP-A-2017-96045

前記特許文献2の発明は、上記段落[0007]で説明した効果のほか、「地中構造物の延長方向両側に沿って、改良体と芯材とからなる強度・剛性に優れた合成杭を連続させた地盤改良合成壁を造成するので、既設共同溝等の地中構造物に対する付着力(拘束力)を十分に発揮でき、液状化時の地中構造物に対する浮力による浮き上がり、および周辺地盤からの回り込みに起因した浮き上がりを未然に防止することができる」効果を奏する(同文献2の段落[0016]の1)参照)。
すなわち、前記特許文献2の発明は、前記地中構造物1を地盤改良合成壁4で強固にホールド(固定)し、かつ、その改良体2は根入れ部分の受動抵抗により地震力に対して抵抗する杭設計とみなすという技術的思想に立脚し、液状化時の地中構造物1に対する浮力による浮き上がりを未然に防止できる効果を発揮する等、実用性が高い。
In addition to the effects described in the above paragraph [0007], the invention of Patent Document 2 states that "a synthetic pile composed of an improved body and a core material and having excellent strength and rigidity is provided along both sides in the extension direction of the underground structure. Since a continuous ground improvement synthetic wall is created, the adhesive force (binding force) to the underground structure such as the existing common groove can be sufficiently exerted, and the buoyancy to the underground structure at the time of liquefaction causes the floating and the surrounding ground. It is possible to prevent buoyancy caused by wraparound from the ground ”(see paragraph [0016] 1) of the same document 2).
That is, in the invention of Patent Document 2, the underground structure 1 is firmly held (fixed) by the ground improvement composite wall 4, and the improved body 2 is subjected to seismic force due to the passive resistance of the rooted portion. Based on the technical idea of considering it as a resisting pile design, it is highly practical, as it exerts the effect of preventing the floating due to the buoyancy of the underground structure 1 during liquefaction.

その他、設計上の問題として、上述した連続地中壁や排水機能付き鋼矢板においては、改良体等を非液状化層まで根入れされた不動体として仮定されるため、設計外力として地震時動水圧を考慮する必要もある。 In addition, as a design problem, in the above-mentioned continuous underground wall and steel sheet pile with drainage function, it is assumed that the improved body is an immovable body that is embedded in the non-liquefaction layer. It is also necessary to consider the water pressure.

本発明の目的は、前記特許文献2に係る前記した技術的思想に対し、地中構造物への地盤改良壁の固定度を意図的に下げて浮き上がりを許容する構成を実現するという逆転の発想に基づく技術的思想を導入することにより、地盤改良壁の剛性を低減するにもかかわらず地震時動水圧を抑えることが可能な、経済性、施工性に優れた地中構造物の液状化対策構造を提供することにある。 An object of the present invention is a reversal idea of realizing a configuration in which the degree of fixation of a ground improvement wall to an underground structure is intentionally lowered to allow liquefaction with respect to the above-mentioned technical idea according to the above-mentioned Patent Document 2. By introducing the technical idea based on the above, it is possible to suppress the hydrodynamic pressure during an earthquake while reducing the rigidity of the ground improvement wall, and it is an economical and workable measure against liquefaction of underground structures. To provide the structure.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る地中構造物の液状化対策構造は、地中構造物の延長方向両側に沿って、改良径の小さい地盤改良体が柱列状に非液状化層に到達するまで構築されると共に前記地盤改良体の内部に棒状の補強部材が非液状化層に到達しないように建て込まれることにより地盤改良壁が造成されること、および、前記地盤改良壁の下端部は非液状化層への根入れが小さい一方、上端部は前記地中構造物の中程よりも高く造成されていないことを特徴とする。 As a means for solving the above-mentioned problems of the background technology, the liquefaction countermeasure structure of the underground structure according to the invention according to claim 1 has a ground having a small improvement diameter along both sides in the extension direction of the underground structure. The ground improvement wall is created by constructing the improved body in a column shape until it reaches the non-liquefaction layer and building a rod-shaped reinforcing member inside the ground improvement body so as not to reach the non-liquefaction layer. It is characterized in that the lower end of the ground improvement wall is less embedded in the non-liquefaction layer, while the upper end is not constructed higher than the middle of the underground structure.

請求項2に記載した発明は、請求項1に記載した地中構造物の液状化対策構造において、前記地盤改良壁は、その上端部が前記地中構造物の全高の1/4〜2/3の高さ分だけ前記地中構造物の下端よりも高くなるように造成されていることを特徴とする。 According to the second aspect of the present invention, in the liquefaction countermeasure structure of the underground structure according to the first aspect, the upper end of the ground improvement wall is 1/4 to 2/2 / of the total height of the underground structure. It is characterized in that it is constructed so as to be higher than the lower end of the underground structure by the height of 3.

請求項3に記載した発明は、請求項1又は2に記載した地中構造物の液状化対策構造において、前記地盤改良壁は、その下端部が前記地盤改良壁の有効幅の1/2〜3/2の有効幅分だけ非液状化層へ根入れするように造成されていることを特徴とする。 According to the third aspect of the present invention, in the liquefaction countermeasure structure of the underground structure according to the first or second aspect, the lower end of the ground improvement wall is 1/2 to 1/2 of the effective width of the ground improvement wall. It is characterized in that it is constructed so as to be rooted in the non-liquefied layer by an effective width of 3/2.

本発明に係る地中構造物の液状化対策構造によれば、以下の効果を奏する。
1)地中構造物の延長方向両側に沿って、改良径が小さい地盤改良体を柱列状に非液状化層に到達するまで構築すると共に前記地盤改良体の内部に棒状の補強部材を非液状化層に到達させないように建て込んで地盤改良壁を造成して実施するので、前記地中構造物に液状化発生時に生じる周辺地盤の回り込みに伴う浮き上がりを抑制することができる。
また、前記地中構造物の直下地盤における液状化を許容することから、前記地中構造物と前記地盤改良壁とを高圧噴射攪拌工法によりラップさせ、また前記地盤改良壁を非液状化層に根入れすることにより、それぞれの部分に発生する付着力を確保し、液状化発生時に前記地中構造物に発生する浮力に伴う浮き上がりを抑制することができる。
2)前記地盤改良壁の下端部は非液状化層への根入れを小さくする一方、上端部は前記地中構造物の中程よりも高く造成しないことにより、地中構造物への固定度を意図的に下げ、地震時に前記地盤改良壁が倒壊(破壊)しない程度の微細なロッキングを生じさせ、その結果、前記地盤改良壁に発生する地震時動水圧を低減することができる。
3)前記2)の効果に伴い、前記地盤改良壁の規模(強度・剛性)を小さくして実施できる等、施工性、経済性に優れている。
4)前記地盤改良体を高圧噴射撹拌工法または高圧噴射撹拌併用機械撹拌工法により構築すると、地中構造物以外の地中埋設物が干渉する場合や、狭隘な場所でもフレキシブルに効率よく施工できる。よって、施工性に優れている。
According to the liquefaction countermeasure structure of the underground structure according to the present invention, the following effects are obtained.
1) Along both sides of the extension direction of the underground structure, a ground improvement body with a small improvement diameter is constructed in a columnar shape until it reaches the non-liquefaction layer, and a rod-shaped reinforcing member is not formed inside the ground improvement body. Since the ground improvement wall is constructed and implemented so as not to reach the liquefaction layer, it is possible to suppress the floating of the ground structure due to the wraparound of the surrounding ground that occurs when liquefaction occurs.
Further, since liquefaction of the underground structure in the direct basement is allowed, the underground structure and the ground improvement wall are wrapped by a high-pressure jet stirring method, and the ground improvement wall is made into a non-liquefaction layer. By embedding, it is possible to secure the adhesive force generated in each portion and suppress the lifting due to the buoyancy generated in the underground structure when liquefaction occurs.
2) The lower end of the ground improvement wall reduces the penetration into the non-liquefaction layer, while the upper end is not constructed higher than the middle of the underground structure, so that the degree of fixation to the underground structure is reduced. Is intentionally lowered to cause fine locking to the extent that the ground improvement wall does not collapse (destroy) during an earthquake, and as a result, the hydrodynamic pressure generated at the ground improvement wall during an earthquake can be reduced.
3) With the effect of 2) above, the scale (strength / rigidity) of the ground improvement wall can be reduced, and the workability and economy are excellent.
4) When the ground improvement body is constructed by the high-pressure injection stirring method or the high-pressure injection stirring combined mechanical stirring method, it can be flexibly and efficiently constructed even when underground buried objects other than the underground structure interfere with each other or in a narrow place. Therefore, it is excellent in workability.

本発明の液状化対策構造を共同溝(既設共同溝)に適用した場合を概略的に示した立断面図である。It is a vertical sectional view schematically showing the case where the liquefaction countermeasure structure of this invention is applied to a common groove (existing common groove). 図1の共同溝の周辺部を拡大して示した立断面図である。It is an enlarged vertical sectional view showing the peripheral part of the common groove of FIG. 図2に対応した平面図である。It is a plan view corresponding to FIG. 図1のバリエーションを示した立断面図である。It is a vertical sectional view which showed the variation of FIG. 図4の要部拡大図である。It is an enlarged view of the main part of FIG. 図5に対応した平面図である。It is a plan view corresponding to FIG. A〜Eは、本発明の効果を確認(対比検討)するために行った遠心模型実施結果を示した表である。A to E are tables showing the results of the centrifugal model implementation performed to confirm (comparatively examine) the effect of the present invention. 水圧差(地震時動水圧)によって生じる曲げモーメントの検討結果を表したグラフである。It is a graph which showed the examination result of the bending moment generated by the water pressure difference (the dynamic water pressure at the time of an earthquake). 従来技術を示した立断面図である。It is a vertical sectional view which showed the prior art. 従来技術を示した立断面図である。It is a vertical sectional view which showed the prior art. 従来技術を示した立断面図である。It is a vertical sectional view which showed the prior art.

以下に、本発明に係る地中構造物の液状化対策構造の実施例を図面に基づいて説明する。ちなみに本実施例では、地中構造物として、電気、電話、ガス、水道等のライフラインを地下に埋設するために構築された既設の共同溝に適用した場合を示している。 Hereinafter, examples of the liquefaction countermeasure structure of the underground structure according to the present invention will be described with reference to the drawings. Incidentally, in this embodiment, as an underground structure, a case where lifelines such as electricity, telephone, gas, and water are applied to an existing utility tunnel constructed for burying underground is shown.

図1〜図3は、柱列式の地盤改良壁による液状化対策が施された共同溝(地中構造物)1を示している。
前記共同溝(地中構造物)1の液状化対策構造は、地盤6の中に埋設された共同溝1の延長方向両側に沿って、改良径Sの小さい円柱状の地盤改良体2が柱列状に非液状化層5に到達するまで構築されると共に前記地盤改良体2の内部に棒状の補強部材(例えば、鉄筋)3が非液状化層5に到達しないように建て込まれることにより地盤改良壁4が造成される。
ちなみに、本実施例に係る共同溝1の横幅は、480cm程度を想定しているが勿論これに限定されず、種々の形態の地中構造物に適用できる。
FIGS. 1 to 3 show a utility tunnel (underground structure) 1 to which measures against liquefaction have been taken by a column-type ground improvement wall.
In the liquefaction countermeasure structure of the utility tunnel (underground structure) 1, a columnar ground improvement body 2 having a small improvement diameter S is a pillar along both sides of the extension direction of the utility tunnel 1 buried in the ground 6. It is constructed in a row until it reaches the non-liquefaction layer 5, and a rod-shaped reinforcing member (for example, a reinforcing bar) 3 is built inside the ground improvement body 2 so as not to reach the non-liquefaction layer 5. The ground improvement wall 4 is constructed.
Incidentally, the width of the utility tunnel 1 according to the present embodiment is assumed to be about 480 cm, but of course, the width is not limited to this, and can be applied to various forms of underground structures.

前記地盤改良体2は、本実施例では高圧噴射撹拌工法で構築している。この高圧噴射撹拌工法は、小型(効率性重視)又は超小型(設置性重視)の噴射式地盤改良機により、固化材を高圧で噴射し地盤6を掘削(削孔)しながら混合撹拌する工法である。
本実施例では、平面方向からみて、前記共同溝1を避けた位置にガイド管を設置し、ロッドを鉛直方向に貫入し(図示略)、隣接する共同溝1の延長方向側面と一部分がラップするように地盤改良体2(地盤改良壁4)の下端部は非液状化層5への根入れを小さくして(0.5〜3m程度)造成している。その一方、地盤改良体2(地盤改良壁4)の上端部は、前記共同溝1の中程よりも高く造成しない(共同溝1の下端よりも1〜2m高くなるように造成する)程度とし、前記共同溝1との一体化を図り、液状化発生時に前記地中構造物に発生する浮き上がりを抑制することに寄与する。
The ground improvement body 2 is constructed by the high pressure injection stirring method in this embodiment. This high-pressure injection agitation method is a method of mixing and stirring while excavating (drilling) the ground 6 by injecting a solidifying material at high pressure using a small (efficiency-oriented) or ultra-small (installability-oriented) injection-type ground improvement machine. Is.
In this embodiment, the guide pipe is installed at a position avoiding the utility tunnel 1 when viewed from the plane direction, the rod is penetrated in the vertical direction (not shown), and the extension direction side surface and a part of the adjacent utility tunnel 1 are wrapped. The lower end of the ground improvement body 2 (ground improvement wall 4) is constructed so that the rooting in the non-liquefaction layer 5 is reduced (about 0.5 to 3 m). On the other hand, the upper end of the ground improvement body 2 (ground improvement wall 4) is not constructed higher than the middle of the common groove 1 (created so as to be 1 to 2 m higher than the lower end of the common groove 1). Integrates with the utility tunnel 1 and contributes to suppressing the floating of the underground structure when liquefaction occurs.

なお、前記高圧噴射撹拌工法の代わりに高圧噴射撹拌併用機械撹拌工法を採用しても同様に実施でき、同様の作用効果を奏する。
このように、前記地盤改良体2を高噴射撹拌工法(又は高圧噴射撹拌併用機械撹拌工法)で構築すると、共同溝(地中構造物)1以外の地中埋設物が存在する場合であっても、鋼矢板で実施する場合とは異なり、当該地中埋設物を避けて地盤改良体2を連続的に構築できる等、柔軟に施工できる。
It should be noted that the same can be carried out by adopting the high-pressure injection stirring combined mechanical stirring method instead of the high-pressure injection stirring method, and the same effect can be obtained.
In this way, when the ground improvement body 2 is constructed by the high injection stirring method (or the mechanical stirring method combined with high pressure injection stirring), there is a case where an underground buried object other than the utility tunnel (underground structure) 1 exists. However, unlike the case where the steel sheet pile is used, the ground improvement body 2 can be continuously constructed while avoiding the underground buried object, and the construction can be flexibly performed.

前記地盤改良体2は、その改良径S(外径φ)が1.0〜2.5m程度に形成されている。これは、従来の深層混合処理工法における改良幅(例えば、5.7m)よりもはるかに小さい。よって、狭隘な場所でも十分に施工可能である。
また、前記地盤改良体2の形態は、図示例に限定されず、施工する地盤改良機等に応じ、外径、外形、又は本数等、適宜変更可能である。前記地盤改良体2の打設順序は、1本又は複数本おきに打設して適時にその間を間詰めする手法で施工してもよいし、片押しで施工してもよい。ただし、各地盤改良体2が所定の強度を発現するまでの間に速やかに前記棒状の補強部材3を建て込む。
The improved ground body 2 has an improved diameter S (outer diameter φ) of about 1.0 to 2.5 m. This is much smaller than the improved width (for example, 5.7 m) in the conventional deep mixing treatment method. Therefore, it can be sufficiently constructed even in a narrow place.
Further, the form of the ground improvement body 2 is not limited to the illustrated example, and the outer diameter, outer shape, number, and the like can be appropriately changed according to the ground improvement machine to be constructed and the like. The ground improvement body 2 may be placed in the order of placing one or a plurality of the ground improving bodies 2 by placing one or a plurality of the ground improving bodies 2 in a timely manner, or by pushing one side. However, the rod-shaped reinforcing member 3 is quickly built in until the improved body 2 in each area develops a predetermined strength.

なお、本実施例に係る前記地盤改良体2は、改良径Sを約2.0mに形成し、隣接する改良体2、2同士は、芯と芯との間の距離(芯芯間)を約1.7mに設定してラップさせている。棒状の補強部材3として用いる鉄筋(又はこれに準ずる材料)3は、本実施例では、1本の地盤改良体2に対して1本の鉄筋(φ51mm)を、同地盤改良体2の軸芯位置(略中心部)に建て込む構成で実施されている。
かくして、図3の平面図に示した共同溝1の両側において、一列状に構築した隣り合う地盤改良体2、2同士が一部ラップすることはもちろん、付着力(拘束力)の増大を図るべく、前記共同溝1と一部ラップするように構築することにより、地中構造物の延長方向全長にわたり地盤改良体2を連続させた地盤改良壁4を造成する。
ちなみに本実施例に係る地盤改良壁4は、図1に示したように、その上端部から下端部まで略均等な横断面形状に造成している。また、前記地盤改良体2の改良強度は2000〜3000kN/mで実施しているがこれに限定されず、地盤性状等に応じて適宜設計変更可能である。
The ground improvement body 2 according to the present embodiment has an improvement diameter S of about 2.0 m, and the adjacent improvement bodies 2 and 2 have a distance between cores (between cores). It is set to about 1.7 m and wrapped. In this embodiment, the reinforcing bar (or a material equivalent thereto) 3 used as the rod-shaped reinforcing member 3 has one reinforcing bar (φ51 mm) for one ground improving body 2 and the axis of the ground improving body 2. It is implemented in a configuration that is built in the position (approximately the central part).
Thus, on both sides of the utility tunnel 1 shown in the plan view of FIG. 3, the adjacent ground improvement bodies 2 and 2 constructed in a row are not only partially wrapped with each other, but also the adhesive force (binding force) is increased. Therefore, by constructing the joint groove 1 so as to partially wrap it, a ground improvement wall 4 in which the ground improvement body 2 is continuous over the entire length in the extension direction of the underground structure is created.
Incidentally, as shown in FIG. 1, the ground improvement wall 4 according to the present embodiment is formed so as to have a substantially uniform cross-sectional shape from the upper end portion to the lower end portion. Further, the improvement strength of the ground improvement body 2 is 2000 to 3000 kN / m 2 , but the improvement strength is not limited to this, and the design can be appropriately changed according to the ground properties and the like.

このように、前記共同溝(地中構造物)1の液状化対策構造は、上記構成の地盤改良体2に、さらに前記棒状の補強部材3を非液状化層5に到達しない程度の深さ(図示例では非液状化層5よりも1m程度浅い深さ)まで建て込まれている。
これは、改良径Sが小さい地盤改良体2だけでは、地震時に発生する浮力による浮き上がりや回り込み、及び地震時動水圧に対して安定性を十分に確保することができず、倒壊(破壊)する虞があるが、棒状の補強部材(鉄筋)3を1本(図1〜図3参照)建て込んで補強することにより、前記安定性を確保できることに起因している。
なお、前記棒状の補強部材3を中心部に一本建て込んだ場合、地盤改良体2に発生するせん断力に対しては有効に作用するが、曲げモーメントに対しては安定性に寄与することができない。よって、構造設計上、曲げモーメントによる破壊が懸念される場合、例えば図4〜図6に示したように、中心部から等間隔にバランスよく複数本(図示例では細径(φ25mm程度)サイズを2本)配置して前記安定性を確保する等の工夫は適宜行われるところである。
As described above, the liquefaction countermeasure structure of the utility tunnel (underground structure) 1 has a depth such that the rod-shaped reinforcing member 3 does not reach the non-liquefaction layer 5 in the ground improvement body 2 having the above configuration. (In the illustrated example, the depth is about 1 m shallower than that of the non-liquefied layer 5).
This is because the ground improvement body 2 with a small improvement diameter S alone cannot sufficiently secure stability against lifting and wraparound due to buoyancy generated during an earthquake, and dynamic water pressure during an earthquake, and collapses (destroys). There is a risk, but this is due to the fact that the stability can be ensured by building and reinforcing one rod-shaped reinforcing member (reinforcing bar) 3 (see FIGS. 1 to 3).
When one rod-shaped reinforcing member 3 is built in the center, it effectively acts on the shearing force generated in the ground improvement body 2, but contributes to stability against the bending moment. I can't. Therefore, when there is a concern about destruction due to bending moment in the structural design, for example, as shown in FIGS. 4 to 6, a plurality of well-balanced sizes (small diameter (about φ25 mm) in the illustrated example) are used at equal intervals from the center. (2) Arrangement is being made as appropriate to ensure the stability.

ただし、地盤改良体2を単に補強するだけでは地盤改良壁4全体の剛性が高くなり、地震時動水圧等に対して過度に抵抗し、地盤改良壁4を損傷させる虞があることに留意する必要がある。
すなわち、本発明では、補強部材3(芯材)にH形鋼等の剛性が高い部材を採用したり、非液状化層5まで根入れしたりすることなく、前記地盤改良壁4が地震時にロッキングを生じさせ得る程度に補強し、当該地盤改良壁4へ作用する地盤時動水圧を適度に受け流す構造を実現させるべく、前記H形鋼等の鋼材よりも剛性が低い棒状の補強部材(鉄筋)3を採用し、しかも、非液状化層5に到達しない程度に浅く建て込んで実施している。
However, it should be noted that simply reinforcing the ground improvement body 2 increases the rigidity of the entire ground improvement wall 4, excessively resists the hydraulic water pressure during an earthquake, and may damage the ground improvement wall 4. There is a need.
That is, in the present invention, the ground improvement wall 4 does not use a highly rigid member such as H-shaped steel for the reinforcing member 3 (core material) or root into the non-liquefaction layer 5, and the ground improvement wall 4 is subjected to an earthquake. A rod-shaped reinforcing member (reinforcing bar) having a lower rigidity than a steel material such as the H-shaped steel, in order to reinforce it to the extent that it can cause locking and to realize a structure in which the hydrodynamic pressure acting on the ground improvement wall 4 is appropriately received. ) 3 is adopted, and the non-liquefied layer 5 is built so shallowly that it does not reach the non-liquefied layer 5.

したがって、上述した地中構造物1の液状化対策構造は、地中構造物1の延長方向両側に沿って、改良径が小さい地盤改良体2を柱列状に非液状化層5に到達するまで構築すると共に、前記地盤改良体2の内部に棒状の補強部材3を非液状化層5に到達させないように建て込んで地盤改良壁4を造成して実施するので、前記地中構造物1に液状化発生時に生じる周辺地盤の回り込みに伴う浮き上がりを抑制することができる。
また、前記地盤改良壁4の下端部は非液状化層5への根入れを小さくする一方、上端部は前記地中構造物1の中程よりも高く造成しないことにより、地中構造物1への固定度を意図的に下げ、地震時に前記地盤改良壁4が倒壊(破壊)しない程度の微細なロッキングを生じさせ、その結果、前記地盤改良壁4に発生する地震時動水圧を低減することができる。これに伴い、前記地盤改良壁4の規模(強度・剛性)を小さくして実施できる等、施工性、経済性に優れている。
Therefore, in the above-mentioned liquefaction countermeasure structure of the underground structure 1, the ground improvement body 2 having a small improvement diameter reaches the non-liquefaction layer 5 in a columnar shape along both sides in the extension direction of the underground structure 1. In addition to constructing up to, the ground improvement wall 4 is constructed and implemented by building a rod-shaped reinforcing member 3 inside the ground improvement body 2 so as not to reach the non-liquefaction layer 5. Therefore, the underground structure 1 is constructed. It is possible to suppress the floating caused by the wraparound of the surrounding ground that occurs when liquefaction occurs.
Further, the lower end portion of the ground improvement wall 4 reduces the penetration into the non-liquefaction layer 5, while the upper end portion is not constructed higher than the middle of the underground structure 1, so that the underground structure 1 is not constructed. The degree of fixation to the ground is intentionally lowered to cause fine locking to the extent that the ground improvement wall 4 does not collapse (destroy) during an earthquake, and as a result, the hydraulic water pressure generated at the ground improvement wall 4 during an earthquake is reduced. be able to. Along with this, the scale (strength / rigidity) of the ground improvement wall 4 can be reduced, and the workability and economy are excellent.

次に、上述した地中構造物1の液状化対策構造について、本出願人が行った遠心模型実験(効果確認試験)について説明する。 Next, regarding the above-mentioned liquefaction countermeasure structure of the underground structure 1, the centrifugal model experiment (effect confirmation test) conducted by the applicant will be described.

図7Aは、本発明に係る液状化対策構造のモデルケースを示している。このモデルケースでは、地盤改良壁体2の下端部は非液状化層5への根入れを小さくしている(0.9m程度)。一方、地盤改良体2の上端部は、地中構造物1の下端よりも1.0m高くなる高さとしている(改良強度3000kN/m 、改良長12.2m、改良体天端GL−3.8m)。地盤改良体2に内蔵する鉄筋3(芯材)は、10mの長さを採用し、その上端を前記地盤改良体2の上端に揃え、下端部は、非液状化層5よりも1m程度浅いところで止めている。
このモデルケースでの遠心模型実験によれば、浮き上がり量は55mmで、地盤改良体2は一切破断(倒壊)しておらず、健全性を確認できた。
これは、前記背景技術の項で説明した本出願人が先に出願した特許文献2と比し、非液状化層5への根入れを小さくし、地中構造物1への固定度を意図的に下げることにより、地震時に前記地盤改良体2が倒壊(破壊)しない程度の微細なロッキングを生じさせ、その結果、前記地盤改良体2に発生する地震時動水圧を低減できたことが良好な結果が得られた要因と推定される。根拠として、図8に示すように、遠心模型実験より得られた計算測定(実測)では、地盤改良体2に理論値(地震時動水圧)ほどに断面力(曲げモーメント)が確認されなかったことが挙げられる。
また、根入れを小さくした結果、地盤改良体2のうち非液状化層5との境界部において固定度が下がったことで発生する断面力が低下し、その結果、鉄筋3の下端部を非液状化層5よりも浅いところで止めても地盤改良体2に破断(倒壊)が発生しなかったものと推定される。
FIG. 7A shows a model case of the liquefaction countermeasure structure according to the present invention. In this model case, the lower end of the ground improvement wall 2 has a small rooting in the non-liquefaction layer 5 (about 0.9 m). On the other hand, the upper end of the ground improvement body 2 has a height 1.0 m higher than the lower end of the underground structure 1 (improved strength 3000 kN / m 2 , improved length 12.2 m, improved top end GL-3). .8m). The reinforcing bar 3 (core material) built in the ground improvement body 2 adopts a length of 10 m, the upper end thereof is aligned with the upper end of the ground improvement body 2, and the lower end portion is about 1 m shallower than the non-liquefied layer 5. By the way, I'm stopping.
According to the centrifugal model experiment in this model case, the amount of lifting was 55 mm, and the ground improvement body 2 was not broken (collapsed) at all, and the soundness could be confirmed.
This is intended to reduce the rooting in the non-liquefied layer 5 and the degree of fixation to the underground structure 1 as compared with Patent Document 2 previously filed by the applicant described in the above background technology section. It is good that the ground improvement body 2 was able to generate fine locking to the extent that the ground improvement body 2 did not collapse (destroy) during an earthquake, and as a result, the hydraulic water pressure generated in the ground improvement body 2 during an earthquake could be reduced. It is presumed that this is the reason why the results were obtained. As a basis, as shown in FIG. 8, in the calculation measurement (actual measurement) obtained from the centrifugal model experiment, the cross-sectional force (bending moment) was not confirmed in the ground improvement body 2 as much as the theoretical value (hydraulic pressure during an earthquake). Can be mentioned.
Further, as a result of reducing the embedding, the cross-sectional force generated by the decrease in the degree of fixation at the boundary portion between the ground improvement body 2 and the non-liquefaction layer 5 is reduced, and as a result, the lower end portion of the reinforcing bar 3 is not formed. It is highly probable that the ground improvement body 2 did not break (collapse) even if it was stopped at a place shallower than the liquefaction layer 5.

図7Bのモデルケースは、図7Aと比し、地盤改良体2と鉄筋3(芯材)の長さを地中構造物1の天端まで高く形成している点が相違する(改良長14.2m、芯材長12m)。
このモデルケースでの遠心模型実験によれば、浮き上がり量は37mmであったが、地盤改良体2は破断(倒壊)が認められた。これは、地中構造物1と地盤改良体2との固定度が高くなったため、地中構造物1に発生する地震時慣性力が水平荷重として地盤改良体2に集中的に作用した結果、破断(倒壊)が生じたと推定される。
すなわち、前記地盤改良体2は、非液状化層5および地中構造物1への固定度を単に高めただけでは地盤改良体2の健全性を確保できないことが確認された。
The model case of FIG. 7B is different from that of FIG. 7A in that the lengths of the ground improvement body 2 and the reinforcing bar 3 (core material) are formed higher to the top of the underground structure 1 (improvement length 14). .2m, core material length 12m).
According to the centrifugal model experiment in this model case, the amount of lifting was 37 mm, but the ground improvement body 2 was found to be broken (collapsed). This is because the degree of fixation between the underground structure 1 and the ground improvement body 2 has increased, and as a result, the inertial force generated in the underground structure 1 during an earthquake acts intensively on the ground improvement body 2 as a horizontal load. It is presumed that a break (collapse) occurred.
That is, it was confirmed that the ground improvement body 2 cannot ensure the soundness of the ground improvement body 2 simply by increasing the degree of fixation to the non-liquefied layer 5 and the underground structure 1.

図7Cのモデルケースは、図7Aと比し、地盤改良体2に内蔵する鉄筋3は、5mの長さを採用し、その上端を前記地盤改良体2の上端に揃え、下端部は、非液状化層5よりも6m程度浅いところで止めている点が相違する。
このモデルケースの遠心模型実験によれば、浮き上がり量は87mmであり、地盤改良体2は破断(倒壊)が認められた。
すなわち、前記地盤改良体2は、作用する地震時動水圧こそ、前記段落[0027]、[0028]に示す理由により低減されているが、発生する断面力に対して鉄筋3(芯材)による適切な範囲を対象とした補強を行わない限り、地盤改良体2の健全性を確保できないことが確認された。ここで、適切な範囲とは、地盤改良体2の天端を始点として、終点は、非液状化層5よりも若干浅いところに存在する。
念のため、図7D、図7Eに示したように、鉄筋(芯材)3なしのモデルで実験してみたが、浮き上がり量はそれぞれ131mm、103mmで、地盤改良体2はともに破断(倒壊)が認められたことからも、地盤改良体2の強度が不十分でも地盤改良体2の健全性を確保できないことが確認された。
Compared to FIG. 7A, the model case of FIG. 7C adopts a length of 5 m for the reinforcing bar 3 built in the ground improvement body 2, the upper end thereof is aligned with the upper end of the ground improvement body 2, and the lower end portion is not. The difference is that it is stopped at a place about 6 m shallower than the liquefied layer 5.
According to the centrifugal model experiment of this model case, the amount of lifting was 87 mm, and the ground improvement body 2 was found to be broken (collapsed).
That is, in the ground improvement body 2, the hydraulic water pressure during an earthquake that acts is reduced for the reasons shown in the paragraphs [0027] and [0028], but the reinforcing bar 3 (core material) is used for the generated cross-sectional force. It was confirmed that the soundness of the ground improvement body 2 could not be ensured unless reinforcement was performed for an appropriate range. Here, the appropriate range is that the top end of the ground improvement body 2 is the starting point and the ending point is slightly shallower than the non-liquefied layer 5.
As a precaution, as shown in FIGS. 7D and 7E, we conducted an experiment with a model without reinforcing bars (core material) 3, but the amount of lifting was 131 mm and 103 mm, respectively, and the ground improvement body 2 both broke (collapsed). It was confirmed that even if the strength of the ground improvement body 2 is insufficient, the soundness of the ground improvement body 2 cannot be ensured.

纏めると、前記地中構造物1に対し、地盤改良壁4が、その地盤改良体2の根入れを程よく浅く、地中構造物1への固定も適度な固定度でホールドされるとともに、鉄筋3の挿入により地盤改良体2の上方を補強する構成とし、しかも鉄筋(芯材)3も根入れしない程度に適切な範囲を対象として補強する構成とすることが、地盤改良壁4自体の健全性を維持する上で非常に重要であることがわかった。
ちなみに、前記地盤改良壁4は、その上端部が前記地中構造物1の全高の1/4〜2/3の高さ分だけ前記地中構造物1の下端よりも高くなるように造成すると良好な結果が得られる。これは、本出願人が実験と、見識に基づき得た数値等を勘案して導き出されている。一方、前記地盤改良壁4は、その下端部が前記地盤改良壁4の有効幅の1/2〜3/2の有効幅分だけ非液状化層5へ根入れするように造成すると良好な結果が得られる。これも、本出願人が実験と、見識に基づき得た数値等を勘案して導き出されている。
In summary, the ground improvement wall 4 has a moderately shallow rooting of the ground improvement body 2 with respect to the underground structure 1, and the fixing to the underground structure 1 is held with an appropriate degree of fixation, and the reinforcing bars are also held. The soundness of the ground improvement wall 4 itself is such that the upper part of the ground improvement body 2 is reinforced by inserting 3 and the reinforcing bar (core material) 3 is also reinforced in an appropriate range so as not to be rooted. It turned out to be very important in maintaining sex.
By the way, when the ground improvement wall 4 is constructed so that the upper end portion thereof is higher than the lower end portion of the underground structure 1 by a height of 1/4 to 2/3 of the total height of the underground structure 1. Good results are obtained. This is derived in consideration of the numerical values obtained by the applicant based on his experiments and his insight. On the other hand, good results are obtained when the ground improvement wall 4 is constructed so that the lower end portion thereof is embedded in the non-liquefaction layer 5 by an effective width of 1/2 to 3/2 of the effective width of the ground improvement wall 4. Is obtained. This is also derived in consideration of experiments and numerical values obtained by the applicant based on his insight.

以上、実施例を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。 Although the examples have been described above based on the drawings, the present invention is not limited to the illustrated examples, and includes a range of design changes and application variations normally performed by those skilled in the art within a range that does not deviate from the technical idea thereof. I will mention it just in case.

例えば、前記地盤改良体2の形態(大きさ、形状、改良強度)、及び、棒状の補強部材3の形態(大きさ、形状、本数)は、上記に限定されず、地震時に前記地盤改良体2が倒壊(破壊)しない程度の微細なロッキングを生じさせて地盤改良壁4の健全性を維持可能な構造設計に応じて適宜設計変更可能である。 For example, the form (size, shape, improvement strength) of the ground improvement body 2 and the form (size, shape, number) of the rod-shaped reinforcing member 3 are not limited to the above, and the ground improvement body 3 is not limited to the above. The design can be appropriately changed according to the structural design that can maintain the soundness of the ground improvement wall 4 by causing fine locking so that the 2 does not collapse (break).

また、本発明に係る地中構造物の液状化対策構造は、共同溝のほか、地下道路、地下鉄道等のいわゆる線状の地中埋設構造物に対しても同様に実施できる。 Further, the liquefaction countermeasure structure of the underground structure according to the present invention can be similarly implemented for so-called linear underground structures such as underground roads and underground railroads, in addition to utility tunnels.

1 地中構造物(共同溝)
2 地盤改良体
3 棒状の補強部材(鉄筋)
4 地盤改良壁
5 非液状化層
6 地盤(液状化層)
S 改良径
1 Underground structure (utility tunnel)
2 Ground improvement body 3 Rod-shaped reinforcing member (reinforcing bar)
4 Ground improvement wall 5 Non-liquefied layer 6 Ground (liquefied layer)
S improved diameter

Claims (3)

地中構造物の延長方向両側に沿って、改良径の小さい地盤改良体が柱列状に非液状化層に到達するまで構築されると共に前記地盤改良体の内部に棒状の補強部材が非液状化層に到達しないように建て込まれることにより地盤改良壁が造成されること、および、前記地盤改良壁の下端部は非液状化層への根入れが小さい一方、上端部は前記地中構造物の中程よりも高く造成されていないことを特徴とする、地中構造物の液状化対策構造。 Along both sides of the extension direction of the underground structure, a ground improvement body having a small improvement diameter is constructed until it reaches the non-liquefaction layer in a columnar shape, and a rod-shaped reinforcing member is non-liquid inside the ground improvement body. The ground improvement wall is created by building so as not to reach the chemical layer, and the lower end of the ground improvement wall has a small rooting in the non-liquefaction layer, while the upper end has the underground structure. A liquefaction countermeasure structure for underground structures, characterized in that it is not constructed higher than the middle of the object. 前記地盤改良壁は、その上端部が前記地中構造物の全高の1/4〜2/3の高さ分だけ前記地中構造物の下端よりも高くなるように造成されていることを特徴とする、請求項1に記載した地中構造物の液状化対策構造。 The ground improvement wall is characterized in that the upper end thereof is constructed so as to be higher than the lower end of the underground structure by a height of 1/4 to 2/3 of the total height of the underground structure. The liquefaction countermeasure structure for the underground structure according to claim 1. 前記地盤改良壁は、その下端部が前記地盤改良壁の有効幅の1/2〜3/2の有効幅分だけ非液状化層へ根入れするように造成されていることを特徴とする、請求項1又は2に記載した地中構造物の液状化対策構造。 The ground improvement wall is characterized in that the lower end portion thereof is formed so as to be rooted in the non-liquefaction layer by an effective width of 1/2 to 3/2 of the effective width of the ground improvement wall. The liquefaction countermeasure structure for the underground structure according to claim 1 or 2.
JP2019171694A 2019-09-20 2019-09-20 Liquefaction countermeasure structure for underground structures Active JP7359515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171694A JP7359515B2 (en) 2019-09-20 2019-09-20 Liquefaction countermeasure structure for underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171694A JP7359515B2 (en) 2019-09-20 2019-09-20 Liquefaction countermeasure structure for underground structures

Publications (2)

Publication Number Publication Date
JP2021046766A true JP2021046766A (en) 2021-03-25
JP7359515B2 JP7359515B2 (en) 2023-10-11

Family

ID=74878067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171694A Active JP7359515B2 (en) 2019-09-20 2019-09-20 Liquefaction countermeasure structure for underground structures

Country Status (1)

Country Link
JP (1) JP7359515B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247339A (en) * 2006-03-17 2007-09-27 Fudo Tetra Corp Newly constructed foundation structure
JP2008303581A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Reinforcing structure of banking support ground
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
JP2014227796A (en) * 2013-05-27 2014-12-08 株式会社竹中土木 Liquefaction prevention structure and liquefaction prevention method
JP2016102380A (en) * 2014-11-28 2016-06-02 株式会社竹中工務店 Foundation improvement structure
JP2017096045A (en) * 2015-11-27 2017-06-01 株式会社竹中土木 Liquefaction countermeasure construction method of underground structure
JP2018062758A (en) * 2016-10-12 2018-04-19 鹿島建設株式会社 Method of preventing floating of underground structure
JP2019065629A (en) * 2017-10-03 2019-04-25 株式会社竹中工務店 Support structure for structural article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569849B1 (en) 2013-07-12 2014-08-13 強化土株式会社 Liquefaction countermeasure construction method and liquefaction countermeasure improvement ground
JP2015105510A (en) 2013-11-29 2015-06-08 清水建設株式会社 Base isolated structure of underground construction and construction method of base isolated structure of underground construction
JP2016205004A (en) 2015-04-23 2016-12-08 公益財団法人鉄道総合技術研究所 Ground improvement method, ground improvement structure and improved ground

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247339A (en) * 2006-03-17 2007-09-27 Fudo Tetra Corp Newly constructed foundation structure
JP2008303581A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Reinforcing structure of banking support ground
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
JP2014227796A (en) * 2013-05-27 2014-12-08 株式会社竹中土木 Liquefaction prevention structure and liquefaction prevention method
JP2016102380A (en) * 2014-11-28 2016-06-02 株式会社竹中工務店 Foundation improvement structure
JP2017096045A (en) * 2015-11-27 2017-06-01 株式会社竹中土木 Liquefaction countermeasure construction method of underground structure
JP2018062758A (en) * 2016-10-12 2018-04-19 鹿島建設株式会社 Method of preventing floating of underground structure
JP2019065629A (en) * 2017-10-03 2019-04-25 株式会社竹中工務店 Support structure for structural article

Also Published As

Publication number Publication date
JP7359515B2 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP4794390B2 (en) Pile foundation reinforcement structure and reinforcement method
JP5584542B2 (en) Ground deformation prevention method and underground structure construction method using the same
JP5495706B2 (en) Reinforcement structure of existing harbor quay
KR20100068597A (en) A shoring method using arch plate pile and h-pile
KR20090120092A (en) Precast concrete wall and construction method using the same
JP5032012B2 (en) Sheet pile combined direct foundation and its construction method
JP2016199861A (en) Pile foundation structure
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
KR100926300B1 (en) Foundation structure reinfoeced by pile and the construction method for the same
JP6060855B2 (en) Embankment
KR20110052321A (en) Steel pipe pile for sheet pile wall and construction method using that
KR101253410B1 (en) Connecting structure of steel pipe sheet pile
JP2008240356A (en) Reinforcing structure and method for pile foundation
JP2014141777A (en) Underground steel bearing wall structure and method for constructing the same
JP2018003523A (en) Pile foundation structure, and reinforcement method for existing pile
JP4565397B2 (en) Seismic reinforcement method for structures
JP2021046766A (en) Liquefaction countermeasure structure of underground structure
JP2013177741A (en) Earthquake strengthening structure of existent structure foundation employing composite ground pile foundation technique
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
CN103266624B (en) Method for supporting oil and gas pipeline penetrating through karst active zone
JP5551943B2 (en) Foundation structure using ground improvement body
JP6679287B2 (en) Liquefaction countermeasure construction method for underground structures
JP3841679B2 (en) Ground improvement method
KR20190123854A (en) Micropile
JP2013194418A (en) Earthquake-proof and soil pressure resistant structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7359515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150