JP4336828B2 - Substructure - Google Patents

Substructure Download PDF

Info

Publication number
JP4336828B2
JP4336828B2 JP2004108187A JP2004108187A JP4336828B2 JP 4336828 B2 JP4336828 B2 JP 4336828B2 JP 2004108187 A JP2004108187 A JP 2004108187A JP 2004108187 A JP2004108187 A JP 2004108187A JP 4336828 B2 JP4336828 B2 JP 4336828B2
Authority
JP
Japan
Prior art keywords
layer
new
steel sheet
sheet pile
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004108187A
Other languages
Japanese (ja)
Other versions
JP2005290871A (en
Inventor
幸武 塩井
光夫 野津
清隆 山岸
弘幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Fudo Tetra Corp
Original Assignee
Nittoc Constructions Co Ltd
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd, Fudo Tetra Corp filed Critical Nittoc Constructions Co Ltd
Priority to JP2004108187A priority Critical patent/JP4336828B2/en
Publication of JP2005290871A publication Critical patent/JP2005290871A/en
Application granted granted Critical
Publication of JP4336828B2 publication Critical patent/JP4336828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

本発明は、廃棄物地盤(最終処分場内)における耐震補強を兼ねた新設基礎構造物等の基礎構造物に関する。   The present invention relates to a foundation structure such as a new foundation structure that also serves as a seismic reinforcement in a waste ground (in a final disposal site).

この種の新設基礎構造物として、図6及び図11に示すものがある。   As this kind of new foundation structure, there are those shown in FIGS.

図6に示すように、新設基礎構造物としての新設橋脚1の新設フーチング(基礎)2は、先端が最上層の埋土層5から廃棄物層6と不透水層7及び最下層の支持層(透水層)8まで打ち込まれた複数の新設杭3の頭部に支持されている。尚、図6中符号Sは地下水位を示す。   As shown in FIG. 6, the new footing (foundation) 2 of the new pier 1 as a new foundation structure is composed of a buried layer 5 at the tip to a waste layer 6, an impermeable layer 7 and a lowermost support layer. (Water-permeable layer) Supported by the heads of a plurality of new piles 3 driven to 8. In addition, the code | symbol S in FIG. 6 shows a groundwater level.

この新設橋脚1は、上層から順に埋土層5と廃棄物層6と不透水層7及び支持層8から成る廃棄物地盤中に次に示す手順によって造成・構築される。   The new pier 1 is constructed and constructed in the waste ground composed of the buried layer 5, the waste layer 6, the impermeable layer 7, and the support layer 8 in order from the upper layer according to the following procedure.

即ち、図7に示すように、新設フーチング2の周囲の埋土層5及び廃棄物層6の地盤中に埋土層5の地表面より大径で四角筒状の鋼矢板9を埋設して土留めし、次に、図8に示すように、この鋼矢板9内に複数の山留支保工Pを施して該鋼矢板9内の地下水を完全に汲み上げた後で埋土層5及び廃棄物層6の地盤を完全に掘削する。そして、図9に示すように、鋼矢板9内に良質土4を搬入して該鋼矢板9内の廃棄物層6を良質土4で置換し、次に、図10に示すように、良質土4上より支持層8まで複数の新設杭3を打ち込む。次に、図6及び図11に示すように、複数の新設杭3上にフーチング2を造成・構築し、その後で鋼矢板9内の掘削した部分を良質土4等で埋め戻すと共に、鋼矢板9の上端部をカットすることにより、新設橋脚1が構築される。
特開2002−188157号公報 特開2000−273881号公報
That is, as shown in FIG. 7, a square cylindrical steel sheet pile 9 having a diameter larger than the ground surface of the buried layer 5 is buried in the ground of the buried layer 5 and the waste layer 6 around the new footing 2. Next, as shown in FIG. 8, a plurality of pile retaining works P are provided in the steel sheet pile 9 to completely pump the ground water in the steel sheet pile 9, and then the buried layer 5 and the disposal The ground of the layer 6 is completely excavated. And as shown in FIG. 9, the quality soil 4 is carried in in the steel sheet pile 9, and the waste layer 6 in this steel sheet pile 9 is replaced with the quality soil 4, Next, as shown in FIG. A plurality of new piles 3 are driven from the soil 4 to the support layer 8. Next, as shown in FIGS. 6 and 11, the footing 2 is created and constructed on a plurality of new piles 3, and then the excavated portion in the steel sheet pile 9 is backfilled with high quality soil 4 and the steel sheet pile. The new pier 1 is constructed by cutting the upper end of 9.
JP 2002-188157 A JP 2000-238881 A

前記従来の新設橋脚1では、鋼矢板9内の廃棄物層6の地盤を掘削し、良質土4で完全に置換しているが、該良質土4の強度では新設フーチング2の耐震補強を十分に得ることが難しかった。また、新設フーチング2の周囲の地盤中に埋設された鋼矢板9は止水性が完全でなく、特に、鋼矢板9の図示しない継手部から漏れがあった場合には、良質土4には止水性がないため、汚水Xが鋼矢板9内の基礎部全体に浸透する。その結果、図11に矢印で示すように、不透水層7を貫入している複数の新設杭3の水道を伝わって、汚水Xが支持層8まで浸透し、地下水を汚染するおそれがあった。   In the conventional new pier 1, the ground of the waste layer 6 in the steel sheet pile 9 is excavated and completely replaced with the high quality soil 4, but the strength of the high quality soil 4 is sufficient for the seismic reinforcement of the new footing 2. It was difficult to get to. Further, the steel sheet pile 9 embedded in the ground around the new footing 2 is not completely water-stopping, and particularly when there is a leak from a joint portion (not shown) of the steel sheet pile 9, Since there is no water, sewage X permeates the entire foundation in the steel sheet pile 9. As a result, as shown by the arrows in FIG. 11, the sewage X penetrates to the support layer 8 through the water supply of the plurality of newly installed piles 3 penetrating the water-impermeable layer 7 and may contaminate the groundwater. .

さらに、鋼矢板9内の埋土層5及び廃棄物層6の地盤の掘削はドライ施工となるため、図8に示すように、鋼矢板9内に複数の山留支保工Pが大掛かりとなり、その分コスト高になった。   Furthermore, since the excavation of the ground of the buried layer 5 and the waste layer 6 in the steel sheet pile 9 is a dry construction, as shown in FIG. The cost was increased accordingly.

そこで、本発明は、前記した課題を解決すべくなされたものであり、支持槽への汚水浸透を確実に防止することができると共に、全体の耐震性能を向上させることができる安価な基礎構造物を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and can reliably prevent sewage from penetrating into the supporting tank and can improve the overall seismic performance. The purpose is to provide.

請求項1の発明は、先端が最上層の埋土層から廃棄物層及び最下層の支持層まで順に打ち込まれた複数の杭の頭部にフーチングを支持して成る基礎構造物において、前記フーチングの周囲の前記埋土層から少なくとも前記廃棄物層の下方の地盤中に環状の地中壁を設け、この環状の地中壁内の少なくとも前記廃棄物層の廃棄物を完全に掘削した空間に固化充填材を充填したことを特徴とする。   According to a first aspect of the present invention, there is provided a foundation structure comprising a plurality of pile heads, the tips of which are driven in order from the uppermost buried layer to the waste layer and the lowermost support layer. An annular underground wall is provided at least in the ground below the waste layer from the buried soil layer around the ground, and at least a waste of the waste layer in the annular underground wall is completely excavated into a space. It is characterized by being filled with a solidified filler.

請求項2の発明は、請求項1記載の基礎構造物において、前記フーチングの下面から前記環状の地中壁内の前記複数の杭の水平抵抗に有効な範囲の深度までの間に前記固化充填材を充填したことを特徴とする。   According to a second aspect of the present invention, there is provided the foundation structure according to the first aspect, wherein the solidification filling is performed from a lower surface of the footing to a depth within a range effective for horizontal resistance of the plurality of piles in the annular underground wall. It is characterized by filling the material.

以上説明したように、請求項1の発明によれば、フーチングの周囲の埋土層から少なくとも廃棄物層の下方の地盤中に環状の地中壁を設け、この環状の地中壁内の少なくとも廃棄物を完全に掘削した空間に固化充填材を充填したので、地中壁の継手部等から汚染水の漏水があっても固化充填材の固化部分で確実に止水することができ、複数の杭を伝わって支持槽へ流れようとする汚染水の拡散を防止することがことができる。これにより、支持槽への汚水浸透を確実に防止することができる。   As described above, according to the first aspect of the present invention, an annular underground wall is provided in the ground below the waste layer from the buried soil layer around the footing, and at least in the annular underground wall. Since the solidified filler is filled in the space where the waste is completely excavated, even if there is leakage of contaminated water from the joint part of the underground wall, the solidified part of the solidified filler can be surely stopped. It is possible to prevent the diffusion of contaminated water that is about to flow through the piles to the support tank. Thereby, sewage penetration into the support tank can be reliably prevented.

請求項2の発明によれば、フーチングの下面から環状の地中壁内の複数の杭の水平抵抗に有効な範囲の深度までの間に固化充填材を充填したので、環状の地中壁とフーチングとを固化充填材を介して一体化することができる。これにより、基礎構造物全体の耐震性能を増強することができ、地震による基礎構造物の破損を確実に防止することができる。   According to the invention of claim 2, since the solidified filler is filled from the lower surface of the footing to the depth in a range effective for the horizontal resistance of the plurality of piles in the annular underground wall, The footing can be integrated with the solidified filler. Thereby, the seismic performance of the whole foundation structure can be enhanced, and damage to the foundation structure due to the earthquake can be reliably prevented.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態の廃棄物地盤に造成・構築された新設基礎構造物を示す断面図、図2は地中壁埋設状態を示す断面図、図3は地盤の掘削状態を示す断面図、図4は固化充填材の充填状態を示す断面図、図5は新杭打設状態を示す断面図である。   FIG. 1 is a cross-sectional view showing a new foundation structure constructed and constructed on a waste ground according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an underground wall embedded state, and FIG. 3 shows an excavation state of the ground FIG. 4 is a cross-sectional view showing a state in which the solidified filler is filled, and FIG. 5 is a cross-sectional view showing a new pile driving state.

図1に示すように、基礎構造物としての道路用の新設橋脚(新設基礎構造物)10の新設フーチング(基礎)11は、先端12aが最上層の埋土層5から廃棄物層6と不透水層7及び最下層の支持層(透水層)8まで打ち込まれた複数の新設杭(杭)12の頭部12bに支持されている。この新設フーチング11の周囲の埋土層5と廃棄物層6及び不透水層7の上部の地盤中には、小径で四角筒状の鋼矢板壁(環状の地中壁)13を不透水層7の上部、或いは複数の新設杭12の水平抵抗に有効な範囲(例えば、1/β〜π/2β)以上の深度のいずれか大きい方まで埋設してある。   As shown in FIG. 1, a new footing (foundation) 11 of a new road pier (new foundation structure) 10 for a road as a foundation structure is connected to a waste layer 6 from a buried soil layer 5 having a top end 12a. The permeable layer 7 and the lowermost support layer (permeable layer) 8 are supported by the heads 12b of a plurality of new piles (stakes) 12 driven into the bottom layer. In the ground above the buried layer 5, the waste layer 6 and the impermeable layer 7 around the new footing 11, a small-diameter, square-tube steel sheet pile wall (annular underground wall) 13 is impermeable. 7 or the depth effective in the horizontal resistance of the plurality of new piles 12 (for example, 1 / β to π / 2β) or more, whichever is greater.

この実施形態では、小径で四角筒状の鋼矢板壁13を不透水層7の上部まで埋設した場合を示している。また、図中符号Sは地下水位を示している。そして、この四角筒状の鋼矢板壁13内の廃棄物層6の廃棄物6′は完全に掘削されており、該四角筒状の鋼矢板壁13の内周面13a内の新設フーチング11の下面11aから複数の新設杭12の水平抵抗に有効な範囲の深度までの間にセメント混合土(固化充填材)14を充填してある。この実施形態では、四角筒状の鋼矢板壁13の内周面13a内の新設フーチング11の下面11aと掘削底との間に形成される空間にセメント混合土14を充填して、該新設フーチング11と四角筒状の鋼矢板壁13及びセメント混合土14とを一体化して固定してある。   In this embodiment, a case where the steel sheet pile wall 13 having a small diameter and a rectangular tube shape is embedded up to the upper part of the impermeable layer 7 is shown. Moreover, the code | symbol S in the figure has shown the groundwater level. The waste 6 'of the waste layer 6 in the square cylindrical steel sheet pile wall 13 is completely excavated, and the new footing 11 in the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 is removed. Cement mixed soil (solidified filler) 14 is filled from the lower surface 11a to a depth in a range effective for the horizontal resistance of the plurality of new piles 12. In this embodiment, a cement mixed soil 14 is filled in a space formed between the lower surface 11a of the newly installed footing 11 in the inner peripheral surface 13a of the square cylindrical steel sheet pile wall 13 and the excavation bottom, and the newly installed footing. 11 and a square cylindrical steel sheet pile wall 13 and cement mixed soil 14 are integrated and fixed.

尚、複数の新設杭12の水平抵抗に有効な範囲とは、例えば、半無限長さの杭の場合(Changの方法)の特性値(β)の逆数(1/β)の特性長をいう。   The range effective for the horizontal resistance of the plurality of new piles 12 is, for example, the characteristic length of the reciprocal (1 / β) of the characteristic value (β) in the case of a semi-infinite pile (Chang's method). .

次に、上記構成の新設橋脚10の造成・構築の手順を説明すると、まず、図2に示すように、新設するフーチング11の周囲に相当する部分の埋土層5と廃棄物層6及び少なくとも不透水層7の上部の地盤中に、埋土層5の地表面より小径で四角筒状の鋼矢板壁13を不透水層7の上部、或いは、複数の新設する杭12の水平抵抗に有効な範囲の深度に掘削時の根入れ長を足したもののいずれか大きい方まで埋設する。この場合は、不透水層7の上部まで四角筒状の鋼矢板壁13を埋設した状態を示す。   Next, the procedure for creating and constructing the newly constructed pier 10 will be described. First, as shown in FIG. 2, the buried layer 5 and the waste layer 6 corresponding to the periphery of the newly installed footing 11 and at least In the ground above the impermeable layer 7, a steel sheet pile wall 13 having a diameter smaller than the ground surface of the buried layer 5 is effective for the horizontal resistance of the pile 12 newly formed above the impermeable layer 7. It is buried up to the larger one of the depths of the appropriate range plus the length of digging. In this case, a state in which the square cylindrical steel sheet pile wall 13 is embedded up to the upper part of the impermeable layer 7 is shown.

次に、図3に示すように、四角筒状の鋼矢板壁13内の埋土層5及び廃棄物層6の地盤を該廃棄物層6の下端、或いは、複数の新設杭12の水平抵抗に有効な範囲(例えば、1/β)の深度まで掘削し、廃棄物層6の廃棄物6′を適正に処理する。次に、図4に示すように、四角筒状の鋼矢板壁13内に複数の新設杭12の水平抵抗に有効な範囲の深度までセメント混合土(固化充填材)14をトレミー管20を用いて掘削底より水中施工で充填する。その際、セメント混合土14の充填と同時に、四角筒状の鋼矢板壁13内の水(汚染水)Wをポンプ21で汲み上げ、適正に処理する。   Next, as shown in FIG. 3, the ground resistance of the buried layer 5 and the waste layer 6 in the square cylindrical steel sheet pile wall 13 is the lower end of the waste layer 6 or the horizontal resistance of the plurality of new piles 12. And excavating to a depth within the effective range (for example, 1 / β), and appropriately treating the waste 6 ′ of the waste layer 6. Next, as shown in FIG. 4, cement mixed soil (solidified filler) 14 is used in a square cylindrical steel sheet pile wall 13 to a depth effective for the horizontal resistance of a plurality of new piles 12 using a tremy pipe 20. Then, fill underwater from the bottom of the drilling. At that time, simultaneously with the filling of the cement-mixed soil 14, water (contaminated water) W in the steel sheet pile wall 13 in the shape of a square cylinder is pumped up by the pump 21 and appropriately processed.

次に、図5に示すように、セメント混合土14上より先端12aが支持層8まで達するように複数の新設杭12を打ち込む。そして、図1に示すように、四角筒状の鋼矢板壁13の内周面13aから複数の新設杭12の頭部12b上に新設フーチング11を構築し、その後で、鋼矢板壁13内の掘削した部分を良質土4等で埋め戻すと共に、該新設フーチング11の上面11b上より突出した鋼矢板壁13の上端部をカットすることにより、新設橋脚10が完成する。   Next, as shown in FIG. 5, a plurality of new piles 12 are driven so that the tip 12 a reaches the support layer 8 from the cement mixed soil 14. And as shown in FIG. 1, the new footing 11 is constructed | assembled on the head 12b of the some new pile 12 from the internal peripheral surface 13a of the square steel sheet pile wall 13, and after that, in the steel sheet pile wall 13 The excavated portion is backfilled with high quality soil 4 and the like, and the upper end portion of the steel sheet pile wall 13 protruding from the upper surface 11b of the new footing 11 is cut, whereby the new pier 10 is completed.

このように、新設フーチング11の周囲の埋土層5から不透水層7の上部の地盤中まで四角筒状の鋼矢板壁13を埋設し、新設フーチング11の下面11aから四角筒状の鋼矢板壁13内の複数の新設杭12の水平抵抗に有効な範囲の深度までの間(本実施形態では鋼矢板壁13内の廃棄物6′を完全に掘削してできた空間内)にセメント混合土14を充填して、新設フーチング11と四角筒状の鋼矢板壁13及びセメント混合土14とを一体化して固定したことにより、複数の新設杭12を伝わって不透水層7や支持槽(透水層)8へ流れようとする鋼矢板壁13の外側の廃棄物層6からの汚染水をセメント混合土14の固化部分等により確実に遮断することができる。これにより、不透水層7や支持層8への汚水浸透を確実に防止することができる。   In this manner, a square cylindrical steel sheet pile wall 13 is embedded from the buried soil layer 5 around the new footing 11 to the ground above the impermeable layer 7, and the square cylindrical steel sheet pile is formed from the lower surface 11 a of the new footing 11. Mixing cement into the depth of the effective range for the horizontal resistance of the plurality of new piles 12 in the wall 13 (in this embodiment, in the space formed by completely excavating the waste 6 'in the steel sheet pile wall 13) The soil 14 is filled and the new footing 11, the square cylindrical steel sheet pile wall 13 and the cement-mixed soil 14 are integrated and fixed, so that the impermeable layer 7 and the supporting tank ( The contaminated water from the waste layer 6 outside the steel sheet pile wall 13 that is about to flow to the water-permeable layer 8 can be reliably blocked by the solidified portion of the cement-mixed soil 14 or the like. Thereby, sewage penetration into the impermeable layer 7 and the support layer 8 can be reliably prevented.

また、新設フーチング11と四角筒状の鋼矢板壁13とをセメント混合土14を介して一体化して固定したことにより、セメント混合土14の強度と四角筒状の鋼矢板壁13による拘束効果により複数の新設杭12の水平抵抗(横抵抗)を増大させることができる。さらに、四角筒状の鋼矢板壁13内の複数の新設杭12の頭部12bの周辺のセメント混合土14の固化により付着抵抗が増大し、鉛直支持力を増大させることができる。   Further, the newly installed footing 11 and the square cylindrical steel sheet pile wall 13 are integrated and fixed via the cement mixed soil 14, so that the strength of the cement mixed soil 14 and the restraining effect by the square cylindrical steel sheet pile wall 13 are obtained. The horizontal resistance (lateral resistance) of the plurality of new piles 12 can be increased. Furthermore, adhesion resistance increases by solidification of the cement-mixed soil 14 around the heads 12b of the plurality of new piles 12 in the square cylindrical steel sheet pile wall 13, and the vertical bearing force can be increased.

さらに、四角筒状の鋼矢板壁13内の地盤改良により新設フーチング11の周りの剛性が増加し、セメント混合土14が基礎として機能する。また、四角筒状の鋼矢板壁13の剛性により新設フーチング11の周りの変形を抑制する効果があるため、レベル2クラスの地震荷重作用時の新設フーチング11の水平変位及び回転を抑制し、耐震性を向上させることができる。これらにより、新設橋脚10の耐力を向上させることができ、大地震による新設橋脚10の破損を確実に防止することができる。   Further, the ground around the square cylindrical steel sheet pile wall 13 improves the rigidity around the new footing 11 and the cement-mixed soil 14 functions as a foundation. Moreover, since the rigidity of the square steel sheet pile wall 13 has the effect of suppressing deformation around the new footing 11, the horizontal displacement and rotation of the new footing 11 during the action of level 2 class seismic load is suppressed, and it is earthquake resistant. Can be improved. By these, the proof stress of the new pier 10 can be improved, and the breakage of the new pier 10 due to a large earthquake can be surely prevented.

また、四角筒状の鋼矢板壁13の内周面13aに新設フーチング11の外周面11cを合わせて新設フーチング11と鋼矢板壁13とを一体化して固定し、新設フーチング11の上面11b上の四角筒状の鋼矢板壁13の上端部をカットするだけで済むため、鋼矢板壁13の抜き取り作業等が不要となり、その分鋼矢板壁13の小型化、低コスト化及び工期の短縮化を図ることができると共に、狭い作業現場でも簡単に施工することができる。   Further, the new footing 11 and the steel sheet pile wall 13 are integrally fixed by aligning the outer peripheral surface 11c of the new footing 11 with the inner peripheral surface 13a of the square steel sheet pile wall 13, and on the upper surface 11b of the new footing 11. Since it is only necessary to cut the upper end portion of the rectangular steel sheet pile wall 13, it is not necessary to remove the steel sheet pile wall 13, thereby reducing the size and cost of the steel sheet pile wall 13 and shortening the construction period. In addition to being able to plan, it can be easily constructed even in a narrow work site.

さらに、セメント混合土14の充填は水中施工が可能であり、従来のような大掛かりの山留支保工Pが不要となり、該山留支保工Pを簡略化することができ、その分、全体の低コスト化を図ることができる。   Further, the filling of the cement-mixed soil 14 can be performed underwater, and the conventional large-scale mountain retaining work P is not necessary, and the mountain retaining structure P can be simplified. Cost reduction can be achieved.

尚、前記実施形態によれば、環状の地中壁として四角筒状の鋼矢板壁を用いたが、円筒状の鋼矢板壁でも良く、また、四角筒状或いは円筒状のソイルセメント壁を環状の地中壁として用いても良い。鋼矢板壁の代わりにソイルセメント壁で地中壁を形成した場合には、地盤条件や水中新設橋脚の状況により作業現場に最適な耐震補強をより低コストで施工することができる。また、固化充填材としてセメント混合土を用いたが、セメント混合土以外のセメントスラリー等の他の材料でも良い。また、地上の新設の地中橋脚や既設基礎等について説明したが、河川横断部等の水中橋脚(水中新設基礎)に適用できることは勿論である。さらに、鋼矢板壁内の廃棄物層の全部を掘削して削除した場合について説明したが、鋼矢板壁13内の不透水層7の上部の地盤の全域まで掘削し、この掘削により形成された空間に固化充填材を充填するようにしても良いことは勿論である。さらにまた、環状の地中壁の外側の地盤を固化改良しても良い。   In addition, according to the said embodiment, although the square cylindrical steel sheet pile wall was used as an annular underground wall, a cylindrical steel sheet pile wall may be sufficient, and a square cylindrical or cylindrical soil-cement wall is cyclic | annular. It may be used as an underground wall. When the underground wall is formed with a soil cement wall instead of the steel sheet pile wall, the optimum seismic reinforcement for the work site can be performed at a lower cost depending on the ground conditions and the situation of the new underwater pier. Further, although cement mixed soil is used as the solidified filler, other materials such as cement slurry other than cement mixed soil may be used. In addition, the explanation has been made on the newly installed underground piers and existing foundations on the ground, but it is of course applicable to underwater piers (new underwater foundations) such as river crossings. Furthermore, although the case where all the waste layers in the steel sheet pile wall were excavated and deleted was explained, the entire area of the ground above the impermeable layer 7 in the steel sheet pile wall 13 was excavated and formed by this excavation. Of course, the space may be filled with a solidified filler. Furthermore, the ground outside the annular underground wall may be solidified and improved.

本発明の一実施形態の廃棄物地盤に造成・構築された新設基礎構造物を示す断面図である。It is sectional drawing which shows the new foundation structure built and constructed in the waste ground of one Embodiment of this invention. 上記一実施形態の地中壁埋設状態を示す断面図である。It is sectional drawing which shows the underground wall embedding state of the said one Embodiment. 上記一実施形態の地盤掘削状態を示す断面図である。It is sectional drawing which shows the ground excavation state of the said one Embodiment. 上記一実施形態の固化充填材の充填状態を示す断面図である。It is sectional drawing which shows the filling state of the solidification filler of the said one Embodiment. 上記一実施形態の新杭打設状態を示す断面図である。It is sectional drawing which shows the new pile driving state of the said one Embodiment. 従来例の新設基礎構造物の断面図である。It is sectional drawing of the newly installed foundation structure of a prior art example. 上記従来例の地中壁埋設状態を示す断面図である。It is sectional drawing which shows the underground wall embedded state of the said prior art example. 上記従来例の地盤掘削状態を示す断面図である。It is sectional drawing which shows the ground excavation state of the said prior art example. 上記従来例の良質土置換状態を示す断面図である。It is sectional drawing which shows the quality soil substitution state of the said prior art example. 上記従来例の新杭打設状態を示す断面図である。It is sectional drawing which shows the new pile driving state of the said prior art example. 上記従来例の汚染水の浸透状態を示す断面図である。It is sectional drawing which shows the penetration | infiltration state of the contaminated water of the said prior art example.

符号の説明Explanation of symbols

5 埋土層(最上層)
6 廃棄物層
6′ 廃棄物
8 支持層(最下層)
10 新設橋脚(基礎構造物)
11 新設フーチング(フーチング)
12 新設杭(杭)
12a 先端
12b 頭部
13 四角筒状の鋼矢板壁(環状の地中壁)
14 セメント混合土(固化充填材)
5 buried layer (top layer)
6 Waste layer 6 'Waste 8 Support layer (lowermost layer)
10 New piers (foundation structures)
11 New footing (footing)
12 New piles
12a tip 12b head 13 square tubular steel sheet pile wall (annular underground wall)
14 Cement mixed soil (solidified filler)

Claims (2)

先端が最上層の埋土層から廃棄物層及び最下層の支持層まで順に打ち込まれた複数の杭の頭部にフーチングを支持して成る基礎構造物において、
前記フーチングの周囲の前記埋土層から少なくとも前記廃棄層の下方の地盤中に環状の地中壁を設け、この環状の地中壁内の少なくとも前記廃棄層の廃棄物を完全に掘削した空間に固化充填材を充填したことを特徴とする基礎構造物。
In the foundation structure in which the tip supports the footings on the heads of a plurality of piles driven in order from the uppermost buried layer to the waste layer and the lowermost support layer,
An annular underground wall is provided in the ground below the waste layer from the buried layer around the footing, and at least the waste of the waste layer in the annular underground wall is completely excavated in the space. A foundation structure that is filled with a solidified filler.
請求項1記載の基礎構造物において、
前記フーチングの下面から前記環状の地中壁内の前記複数の杭の水平抵抗に有効な範囲の深度までの間に前記固化充填材を充填したことを特徴とする基礎構造物。
The foundation structure according to claim 1,
A foundation structure filled with the solidified filler from a lower surface of the footing to a depth in a range effective for horizontal resistance of the plurality of piles in the annular underground wall.
JP2004108187A 2004-03-31 2004-03-31 Substructure Expired - Lifetime JP4336828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108187A JP4336828B2 (en) 2004-03-31 2004-03-31 Substructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108187A JP4336828B2 (en) 2004-03-31 2004-03-31 Substructure

Publications (2)

Publication Number Publication Date
JP2005290871A JP2005290871A (en) 2005-10-20
JP4336828B2 true JP4336828B2 (en) 2009-09-30

Family

ID=35324116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108187A Expired - Lifetime JP4336828B2 (en) 2004-03-31 2004-03-31 Substructure

Country Status (1)

Country Link
JP (1) JP4336828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895363B1 (en) * 2006-03-17 2007-03-22 株式会社不動テトラ New foundation structure
JP5157814B2 (en) * 2008-10-17 2013-03-06 株式会社大林組 Installation method of ready-made piles
CN102251534B (en) * 2011-04-19 2013-05-22 上海海事大学 Ocean engineering foundation adopting pile-barrel foundation structure

Also Published As

Publication number Publication date
JP2005290871A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
US9567720B2 (en) Offshore platform for a marine environment
CN103882881B (en) Go deep into rock construction method under water
EP3118374A1 (en) Hollow cylindrical pier for fixing offshore platform structure to bed and method of installing and constructing same
JP5282541B2 (en) How to prevent lifting of the lining body
KR100975988B1 (en) The Method for Constructing Underwater Structure
CN112627212B (en) Water-faced cofferdam inner tube well dewatering dry excavation construction method
JP2005180079A (en) Aseismatic reinforcement structure of construction
CN213897154U (en) Soft soil foundation pit bottom curing structure
KR102223856B1 (en) Foundation structure of waste landfill site and construction method thereof
CN109267575A (en) The construction method of pattern foundation pit supporting structure is cheated in the hole of Soft Soil Area
JP2005290869A (en) Reinforcing structure of structure on water
JP4336828B2 (en) Substructure
CN108867671B (en) Bottom sealing construction method for steel cofferdam for pouring sealing layer
JP2007247339A (en) Newly constructed foundation structure
CN216865132U (en) Underwater foundation pile slurry leakage prevention construction device
JP2006194031A (en) Pillar construction method
JP5157814B2 (en) Installation method of ready-made piles
KR101257905B1 (en) Method for constructing foundation work
JP4911242B2 (en) Reinforcement structure of existing gravity quay
JP2005290870A (en) Foundation structure
WO2009139510A1 (en) Construction method for continuous cut-off wall using overlap casing
CN112031021A (en) Construction method of cylindrical self-sinking underground space structure
JP3810882B2 (en) Construction method of cast-in-place pile in confined groundwater zone
CN217710808U (en) H-shaped steel concrete combined pile foundation suitable for landfill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090610

R150 Certificate of patent or registration of utility model

Ref document number: 4336828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term