JP2007247017A - Galvannealed steel sheet having excellent appearance grade and method for manufacturing the same - Google Patents

Galvannealed steel sheet having excellent appearance grade and method for manufacturing the same Download PDF

Info

Publication number
JP2007247017A
JP2007247017A JP2006074330A JP2006074330A JP2007247017A JP 2007247017 A JP2007247017 A JP 2007247017A JP 2006074330 A JP2006074330 A JP 2006074330A JP 2006074330 A JP2006074330 A JP 2006074330A JP 2007247017 A JP2007247017 A JP 2007247017A
Authority
JP
Japan
Prior art keywords
steel
less
hot
dip galvanized
alloyed hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074330A
Other languages
Japanese (ja)
Other versions
JP4598700B2 (en
Inventor
Shintaro Yamanaka
晋太郎 山中
Kenichiro Matsumura
賢一郎 松村
Shinichi Suzuki
眞一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006074330A priority Critical patent/JP4598700B2/en
Publication of JP2007247017A publication Critical patent/JP2007247017A/en
Application granted granted Critical
Publication of JP4598700B2 publication Critical patent/JP4598700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet having an excellent appearance grade. <P>SOLUTION: The galvannealed steel having the excellent appearance grade is the galvannealed steel sheet having an iron-zinc alloy coating containing ≤85% Zn on the surface of a steel consisting, by mass%, of ≤0.01 C, ≤0.2% Si, ≤2% Mn, 0.02 to 0.2% P, ≤0.03% S, 0.005 to 0.1% Al and the balance Fe with inevitable impurities, in which the matrix surface layer part within a depth direction 40 μm from the matrix surface is ≤10% in area rate of ferrite grains of a grain size ≥40 μm in an observation visual field of 500 μm × 400 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外観品位に優れる合金化溶融亜鉛めっき鋼およびその製造方法に関するものである。より詳しくは、主として、高強度鋼板を基材とした合金化溶融亜鉛めっき鋼において、そのめっき後の外観が従来の合金化溶融亜鉛めっき鋼板よりも均一美麗で、また、塗装後の外観にも優れ、自動車用等に用いることができる、外観品位に優れる合金化溶融亜鉛めっき鋼とその製造方法に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel excellent in appearance quality and a method for producing the same. More specifically, mainly in alloyed hot-dip galvanized steel based on high-strength steel sheets, the appearance after plating is more uniform and beautiful than conventional alloyed hot-dip galvanized steel sheets. The present invention relates to an alloyed hot-dip galvanized steel excellent in appearance quality that can be used for automobiles and the like, and a method for producing the same.

合金化溶融亜鉛めっき鋼は、溶接性や塗装性、塗装後耐食性などに優れることから、自動車、家電製品、建材等に多用されている。この合金化溶融亜鉛めっき鋼は、鋼を溶融亜鉛めっきした後、加熱処理し、鋼中のFeとめっき中のZnを拡散させ、合金化反応を生じさせることで鋼材表面に鉄−亜鉛合金層を形成させたものである。この合金化反応は、鋼の結晶粒界から優先的に生じると言われるが、粒界に偏析しやすい元素が多く含まれる場合、局所的にFe、Znの拡散が阻害されるため合金化反応が不均一となり、外観にむらが発生する。このむらは、機械的性質や溶接性などに影響を与えるものではないが、外観不良として拒絶する消費者が多い。特に、近年、鋼の高強度化が進みPを多く含む鋼においてはむらが発生し易く、問題となっている。この原因は、Pが鋼加熱時に鋼材表面、粒界に不均一に濃化して、めっき合金化時におけるFeとZnの拡散を阻害し、局所的なFeとZnの合金化反応の速度差をもたらすことで、めっき厚み差が生じさせるからと考えられる。   Alloyed hot dip galvanized steel is widely used in automobiles, home appliances, building materials and the like because of its excellent weldability, paintability, and post-paint corrosion resistance. This alloyed hot-dip galvanized steel is heat-treated after hot-dip galvanizing of the steel, diffuses Fe in the steel and Zn in the plating, and causes an alloying reaction to produce an iron-zinc alloy layer on the steel surface. Is formed. This alloying reaction is said to occur preferentially from the grain boundaries of the steel, but if the grain boundaries contain many elements that are easily segregated, the diffusion of Fe and Zn is locally inhibited, so the alloying reaction Becomes non-uniform and the appearance is uneven. Although this unevenness does not affect the mechanical properties or weldability, many consumers reject it as a poor appearance. In particular, in recent years, the strength of steel has increased and steel containing a large amount of P tends to cause unevenness, which is a problem. This is because P is unevenly concentrated on the steel surface and grain boundaries when the steel is heated, thereby inhibiting the diffusion of Fe and Zn during plating alloying, and the difference in local Fe and Zn alloying reaction rate. This is considered to cause a plating thickness difference.

このため、外観品位に優れる合金化溶融亜鉛めっき鋼が種々検討されている。例えば、(特許文献1)では、焼鈍した鋼板をめっきする前にFe、Ni、Co、Cuなどの金属被覆層を形成する方法が開示されている。しかし、この方法では設備の増加を伴うためにコスト増、工程増となり、実用化は容易ではない。(特許文献2)では、めっき浴中のAl濃度を鋼中のPとTiの濃度によって規定する方法が開示されている。しかし、鋼中のPやTiの濃度は鋼種によって異なるため、鋼種に応じて浴中のAl濃度を制御することは困難であり、実現性は極めて低い。(特許文献3)では、冷延焼鈍後の鋼板表面のX線回折からの{200}面と{222}面からの回折X線強度比、I(200)/I(222)を0.17未満とする鋼が開示されているが、結晶方位を制御するのは容易でなく、また、対象としている鋼材のP含有率が0.025%以下であるため、近年のPを多く含む高強度鋼板には適用できない。(特許文献4)では、鋼中にCuを含ませる方法が開示されているが、材質への影響が懸念され、汎用的な方法ではない。(特許文献5)では、熱延鋼板の表層組織を15μm以下のフェライト粒が70面積%以下となるように制御することで、その後、冷間圧延、合金化溶融亜鉛めっきをした際に、外観不良のない均一美麗なめっきを実現できるとある。しかしながら、本手法は熱延鋼板の組織を規定したもので、冷間圧延や焼鈍、合金化溶融亜鉛めっき条件によっては、外観が不均一となる。   For this reason, various galvannealed steels having excellent appearance quality have been studied. For example, (Patent Document 1) discloses a method of forming a metal coating layer of Fe, Ni, Co, Cu or the like before plating an annealed steel sheet. However, this method is accompanied by an increase in equipment, which increases costs and processes, and is not easy to put into practical use. (Patent Document 2) discloses a method of defining the Al concentration in the plating bath by the concentrations of P and Ti in the steel. However, since the concentrations of P and Ti in the steel differ depending on the steel type, it is difficult to control the Al concentration in the bath according to the steel type, and the feasibility is extremely low. In (Patent Document 3), the diffraction X-ray intensity ratio from the {200} plane and {222} plane from the X-ray diffraction of the steel sheet surface after cold rolling annealing, I (200) / I (222) is 0.17. Although steel to be less than is disclosed, it is not easy to control the crystal orientation, and since the P content of the target steel material is 0.025% or less, high strength containing a large amount of P in recent years Not applicable to steel plates. In (Patent Document 4), a method of including Cu in steel is disclosed, but there is a concern about the influence on the material, which is not a general-purpose method. In (Patent Document 5), by controlling the surface layer structure of the hot-rolled steel sheet so that the ferrite grains of 15 μm or less are 70 area% or less, the appearance is reduced when cold rolling or alloying hot dip galvanizing is performed thereafter. It is possible to achieve uniform and beautiful plating without defects. However, this method defines the structure of the hot-rolled steel sheet, and the appearance becomes non-uniform depending on cold rolling, annealing, and galvannealed alloying conditions.

特開平6−88187号公報JP-A-6-88187 特開平5−132784号公報JP-A-5-132784 特開平10−18011号公報JP-A-10-18011 特開平6−17216号公報JP-A-6-17216 特開2001−316763号公報JP 2001-316663 A

以上のように、外観品位に優れる合金化溶融亜鉛めっき鋼として種々提案されているが、設備導入、工程増などの問題があるため実現が困難で、またPを多量に含むような高強度鋼に適用できるものでもない。そこで本発明は、このような設備増や工程増といった問題を解決し、Pを多量に含む鋼であっても、外観品位に優れる合金化溶融亜鉛めっき鋼、およびその製造方法を提供することを目的としている。   As described above, various types of alloyed hot-dip galvanized steels with excellent appearance quality have been proposed, but they are difficult to realize because of problems such as equipment introduction and increased process, and high-strength steels containing a large amount of P It is also not applicable to. Therefore, the present invention provides an alloyed hot-dip galvanized steel having excellent appearance quality even when steel containing a large amount of P is solved, and a method for producing the same, and solves such problems of equipment increase and process increase. It is aimed.

上記課題を解決するために、本発明者らは、Pを0.02%〜0.2%含む鋼を基材とした合金化溶融亜鉛めっき鋼で、外観にむらが発生した鋼、外観にむらが発生しなかった鋼について、基材である地鉄の結晶組織を詳細に調べた。その結果、外観にむらが発生した鋼の地鉄表面は、粗大なフェライト粒が多く存在する一方、外観にむらが発生しなかった鋼の地鉄表面は、約40μm以下のフェライト粒が大部分を占め、均一な組織であることが分かった。つまり、焼鈍後の鋼表面のフェライト粒径を制御することで外観をコンロトールできることを見出した。 In order to solve the above-mentioned problems, the inventors of the present invention are alloyed hot-dip galvanized steel based on steel containing 0.02% to 0.2% P, and steel with an uneven appearance. The steel in which unevenness did not occur was examined in detail for the crystal structure of the base iron as a base material. As a result, the steel ground surface with uneven appearance has many coarse ferrite grains, whereas the steel ground surface with non-uniform appearance has mostly ferrite grains of about 40 μm or less. It was found to be a uniform tissue. That is, it was found that the appearance can be controlled by controlling the ferrite grain size on the steel surface after annealing.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

(1) 質量%で、C;0.01%以下、Si;0.2%以下、Mn;2%以下、P;0.02〜0.2%、S;0.03%以下、Al;0.005〜0.1%、残部がFeおよび不可避的不純物からなる鋼の表面に、Znを85%以上含む鉄−亜鉛合金被覆を有する合金化溶融亜鉛めっき鋼において、その地鉄表面から深さ方向40μm以内の地鉄表層部が、500μm×500μmの観察視野において、粒径40μm以上のフェライト粒が面積率で10%以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼。   (1) By mass%, C; 0.01% or less, Si; 0.2% or less, Mn; 2% or less, P; 0.02 to 0.2%, S; 0.03% or less, Al; In an alloyed hot-dip galvanized steel having an iron-zinc alloy coating containing 85% or more of Zn on the steel surface of 0.005 to 0.1%, the balance being Fe and unavoidable impurities, An alloyed hot-dip galvanized steel excellent in appearance quality, wherein the surface layer portion within 40 μm in the longitudinal direction has an area ratio of 10% or less of ferrite grains having a grain size of 40 μm or more in an observation field of view of 500 μm × 500 μm .

(2) 前記の鋼が、さらに質量%で、Ti;0.001〜0.05%、Nb;0.001〜0.05%の1種または2種を含むことを特徴とする(1)に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。   (2) The steel is further characterized by containing one or two of Ti; 0.001 to 0.05%, Nb; 0.001 to 0.05% in mass% (1). Alloyed hot-dip galvanized steel with excellent appearance quality as described in 1.

(3) 前記、鉄−亜鉛合金被覆の付着量の偏差が±7g/m2以下であることを特徴とする、(1)または(2)に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。 (3) The alloyed hot-dip galvanized steel having excellent appearance quality according to (1) or (2), wherein the deviation of the adhesion amount of the iron-zinc alloy coating is ± 7 g / m 2 or less. .

(4) (1)または(2)に記載の成分からなる低炭素鋼スラブを熱間圧延した後、酸洗し、さらに冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施して、合金化溶融亜鉛めっき鋼とする合金化溶融亜鉛めっき鋼の製造方法において、熱間圧延後のコイルの巻取温度を790℃超とし、さらにその後、巻き取ったコイルの最外層部の表面温度が300℃以下となるまで0.8℃/分以下の速度で冷却することを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼の製造方法。   (4) After hot-rolling the low carbon steel slab comprising the components described in (1) or (2), pickling, and further performing cold rolling, annealing, hot dip galvanizing, and heat alloying treatment, In the manufacturing method of alloyed hot-dip galvanized steel to be alloyed hot-dip galvanized steel, the coiling temperature of the coil after hot rolling is over 790 ° C, and then the surface temperature of the outermost layer portion of the coil that has been wound is A method for producing an alloyed hot-dip galvanized steel excellent in appearance quality, characterized by cooling at a rate of 0.8 ° C./min or less until reaching 300 ° C. or less.

本発明の合金化溶融亜鉛めっき鋼、また本発明の製造法を経た合金化溶融亜鉛めっき鋼は、外観品位に優れ、また、摺動性、密着性にも優れる。このため、自動車や家電製品、建材等に用いることができ、産業上の価値は極めて大きい。   The alloyed hot-dip galvanized steel of the present invention and the alloyed hot-dip galvanized steel subjected to the production method of the present invention are excellent in appearance quality, and are excellent in slidability and adhesion. For this reason, it can be used for automobiles, home appliances, building materials and the like, and its industrial value is extremely large.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の合金化溶融亜鉛めっき鋼の鋼成分の限定理由について説明する。   First, the reasons for limiting the steel components of the galvannealed steel of the present invention will be described.

P;0.02%以上0.2%以下
Pは鋼の強度増加を目的に鋼中に添加される。Pは鋼加熱時に結晶粒界に濃化し易いため、その濃化度にむらがあると、めっきの合金化速度差を生じ、外観不良となる。Pが0.02%以下であれば、通常の合金化溶融亜鉛めっき鋼の製造方法においては、その濃化度のむらは小さく、合金化速度差も生じにくいため、そもそも外観不良と成り難い。一方、Pを過剰に添加すると脆化し易くなる。このため、本発明におけるPは、質量%で、を0.02%以上0.2%以下とする。
P: 0.02% or more and 0.2% or less P is added to the steel for the purpose of increasing the strength of the steel. Since P tends to be concentrated at the grain boundaries when the steel is heated, if the concentration is uneven, a difference in the alloying rate of plating occurs, resulting in poor appearance. If P is 0.02% or less, in the ordinary method for producing galvannealed steel, the unevenness of the concentration is small and the difference in alloying speed does not easily occur. On the other hand, when P is added excessively, it becomes easy to become brittle. For this reason, P in this invention is mass%, and is 0.02% or more and 0.2% or less.

C;0.01%以下
Cは鋼の強化に必要な元素である。しかし、C量が0.01%を超えると脆化しやすくなるため、C量は0.01%以下とする。
C: 0.01% or less C is an element necessary for strengthening steel. However, if the C content exceeds 0.01%, embrittlement tends to occur, so the C content is set to 0.01% or less.

Si;0.2%以下
Siは鋼の強化、脱酸の効果を有する元素である。しかし、過剰に添加すると脆化しやすくなる。また、溶融亜鉛めっき時にめっきの濡れ性を阻害し、まためっき密着性も劣化させる。このため、Siは0.2%以下とする。
Si: 0.2% or less Si is an element having the effect of strengthening and deoxidizing steel. However, if it is added excessively, it tends to become brittle. In addition, the wettability of the plating is hindered during hot dip galvanizing, and the plating adhesion is deteriorated. For this reason, Si is made 0.2% or less.

Mn;2%以下
Mnも鋼の強化、脱酸の効果を有する元素である。しかし、過剰に添加すると脆化しやすくなる。また、溶融亜鉛めっき時にめっきの濡れ性を阻害し、まためっき密着性も劣化させる。このため、Mnは2%以下とする。
Mn: 2% or less Mn is an element having the effect of strengthening and deoxidizing steel. However, if it is added excessively, it tends to become brittle. In addition, the wettability of the plating is hindered during hot dip galvanization, and the plating adhesion is deteriorated. For this reason, Mn is made 2% or less.

S;0.03%以下
Sは不純物であり、加工性や熱間脆性を劣化させるため少ないほうが望ましい。このためSは0.03%以下とする。
S: 0.03% or less S is an impurity, and it is desirable that the content of S be as small as possible because it deteriorates workability and hot brittleness. For this reason, S is made 0.03% or less.

Al;0.005〜0.1%
Alは脱酸の効果がある。また、鋼中のNとの親和力が強く、固溶しているNを析出物として固定し加工性を向上させる効果がある。しかし、多すぎると逆に加工性を劣化させる。このためAlは0.005〜0.1%とする。
Al; 0.005 to 0.1%
Al has a deoxidizing effect. Moreover, the affinity with N in steel is strong, and there exists an effect which fixes the solid solution N as a precipitate and improves workability. However, if the amount is too large, the workability is deteriorated. For this reason, Al is made 0.005 to 0.1%.

Ti;0.001〜0.05%
TiはC、Nを固定し、鋼の加工性を向上させる効果がある。しかし、多すぎると逆に加工性を劣化させる。このため、Tiは0.001〜0.05%とする。
Ti; 0.001 to 0.05%
Ti has the effect of fixing C and N and improving the workability of steel. However, if the amount is too large, the workability is deteriorated. For this reason, Ti is made 0.001 to 0.05%.

Nb;0.001〜0.05%
NbはCを固定し、鋼の加工性を向上させる効果がある。しかし、多すぎると逆に加工性を劣化させる。このため、Nbは0.001〜0.05%とする。
Nb; 0.001 to 0.05%
Nb has the effect of fixing C and improving the workability of steel. However, if the amount is too large, the workability is deteriorated. For this reason, Nb is made 0.001 to 0.05%.

次に鉄−亜鉛合金被覆について説明する。鉄−亜鉛合金被覆中のZn含有率は85%以上とする。85%未満であれば、塗装性と溶接性に劣る。また、鉄−亜鉛合金被覆の付着量の偏差は±7g/m2以下であることが望ましい。標準偏差が±7g/m2を超える場合、外観上のむら(濃淡)が助長されて、外観不良となりやすい。付着量の偏差は、めっき後に、めっき付着量を制御するワイピングの吹きつけガスが板幅、および板の長手方向に均一に当たるようにすればよい。 Next, the iron-zinc alloy coating will be described. The Zn content in the iron-zinc alloy coating is 85% or more. If it is less than 85%, it is inferior to paintability and weldability. Further, the deviation of the adhesion amount of the iron-zinc alloy coating is desirably ± 7 g / m 2 or less. When the standard deviation exceeds ± 7 g / m 2 , unevenness in appearance (shading) is promoted and the appearance tends to be poor. The deviation of the adhesion amount may be such that, after plating, a wiping gas for controlling the adhesion amount of the plating uniformly hits the plate width and the longitudinal direction of the plate.

この鉄−亜鉛合金被覆の付着量は特に規定するものではないが、耐食性および加工性の観点から、20〜100g/m2であることが望ましい。 The adhesion amount of the iron-zinc alloy coating is not particularly specified, but is preferably 20 to 100 g / m 2 from the viewpoint of corrosion resistance and workability.

次に、地鉄組織について説明する。本発明の合金化溶融亜鉛めっき鋼の地鉄表層の組織は、500μm×500μmの観察視野において、粒径40μm以上のフェライト粒が10%以下とする。40μm以上のフェライト粒が10%を超えて存在する場合、めっき後の合金化加熱時に合金化速度に局所的な遅れを生じ、外観不良をもたらす。また、極めて微細なフェライト粒が存在する場合は、その周囲の結晶との粒界面積の差異によって合金化速度差が大きくなり、外観不良を生じ易くなる。このため、10μm以下の結晶粒を10%以下とすることが好ましい。なお、ここで言う地鉄表層とは、地鉄表面から深さ40μm以内の場所と定義する。   Next, the steel structure will be described. The structure of the surface layer of the alloyed hot-dip galvanized steel of the present invention is 10% or less of ferrite grains having a grain size of 40 μm or more in an observation field of 500 μm × 500 μm. When ferrite grains of 40 μm or more are present in excess of 10%, a local delay occurs in the alloying speed during alloying heating after plating, resulting in poor appearance. In addition, when extremely fine ferrite grains are present, the difference in the alloying speed is increased due to the difference in the grain interface area with the surrounding crystals, which tends to cause a poor appearance. For this reason, it is preferable to make a crystal grain of 10 micrometers or less into 10% or less. In addition, the surface iron surface layer said here is defined as a place within a depth of 40 μm from the surface of the surface iron.

本発明の合金化溶融亜鉛めっき鋼は、低炭素鋼スラブを熱間圧延した後、酸洗し、さらに冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施して、製造する。スラブ加熱条件や熱間圧延条件は、特に規定するものでなく、一般的な鋼を製造する条件であればなんら問題ないが、熱間圧延後の鋼板のコイル状への巻取に際しては、巻取温度を790℃超とし、さらに、コイル中心部かつ板幅中央部の板温が300℃以下となるまで0.8℃/分以下の速度で冷却する必要がある。この条件で巻き取ることで、その後の冷間圧延、焼鈍条件との組み合わせで、本発明の外観美麗な合金化溶融亜鉛めっき鋼を実現できる。巻取温度が790℃に満たない場合、焼鈍後のフェライト粒径が不均一で40μm以上の粗大粒となり、溶融亜鉛めっき、加熱合金化処理後の外観品位に劣る。一方、巻取温度が高すぎるとスケールが厚く成長しその後の酸洗工程に負荷がかかる。このため巻取温度の上限は820℃とすることが望ましい。   The alloyed hot-dip galvanized steel of the present invention is manufactured by hot rolling a low carbon steel slab, pickling, and further performing cold rolling, annealing, hot-dip galvanizing, and heat alloying treatment. The slab heating conditions and hot rolling conditions are not particularly specified, and there is no problem as long as they are conditions for producing general steel. However, when winding the steel sheet after hot rolling into a coil, It is necessary to set the temperature to be higher than 790 ° C. and further to cool at a rate of 0.8 ° C./min or less until the plate temperature at the center of the coil and at the center of the plate width is 300 ° C. By winding up under these conditions, it is possible to realize an alloyed hot-dip galvanized steel of the present invention with a combination of subsequent cold rolling and annealing conditions. When the coiling temperature is less than 790 ° C., the ferrite grain size after annealing is non-uniform and coarse grains of 40 μm or more, and the appearance quality after hot dip galvanizing and heat alloying treatment is inferior. On the other hand, if the coiling temperature is too high, the scale grows thick and a load is applied to the subsequent pickling process. For this reason, the upper limit of the coiling temperature is desirably 820 ° C.

また、巻取温度が790℃超であっても、その後、コイル中心部かつ板幅中央部の板温が300℃以下となるまで0.8℃/分以下で冷却する条件を満たさない場合、焼鈍後のフェライト粒径が不均一で40μm以上の粗大粒となり、溶融亜鉛めっき、加熱合金化処理後の外観品位が不良となる。但し、冷却速度が極めて小さい場合、生産性を低下させる要因となる。好ましい冷却速度は0.5℃/分以上0.8℃/分以下である。   In addition, even if the coiling temperature is over 790 ° C, after that, if the condition of cooling at 0.8 ° C / min or less is not satisfied until the plate temperature at the coil center portion and the plate width center portion is 300 ° C or less, The ferrite grain size after annealing is non-uniform and coarse grains of 40 μm or more, resulting in poor appearance quality after hot dip galvanizing and heat alloying treatment. However, when the cooling rate is extremely low, it becomes a factor of reducing productivity. A preferable cooling rate is 0.5 ° C./min or more and 0.8 ° C./min or less.

熱間圧延後は酸洗し、熱間圧延時に生成したスケールを除去する。酸洗条件は、従来から行われている方法で実施すればよく、例えば、50℃以上の塩酸中に鋼を浸漬する。酸洗後は冷間圧延するが、その圧下率は80%以上とすることが好ましい。80%未満では焼鈍後のフェライト粒径が40μm以上になり易い。冷間圧延後には800℃以上で120秒以上焼鈍することが好ましい。800℃以上、かつ、120秒以上を満たさない場合、再結晶が不完全で粒径が不均一となる場合がある。焼鈍後は、溶融亜鉛めっき、加熱合金化処理を行う。亜鉛めっき浴の温度は445℃〜500℃、加熱合金化温度は480〜540℃とすることが望ましい。   After hot rolling, pickling is performed, and the scale generated during hot rolling is removed. What is necessary is just to implement the pickling conditions by the method currently performed conventionally, for example, steel is immersed in 50 degreeC or more hydrochloric acid. Although it cold-rolls after pickling, it is preferable that the rolling reduction shall be 80% or more. If it is less than 80%, the ferrite grain size after annealing tends to be 40 μm or more. After cold rolling, annealing is preferably performed at 800 ° C. or more for 120 seconds or more. When the temperature is not lower than 800 ° C. and not longer than 120 seconds, recrystallization may be incomplete and the particle size may be nonuniform. After annealing, hot dip galvanization and heat alloying treatment are performed. The temperature of the galvanizing bath is desirably 445 ° C. to 500 ° C., and the heating alloying temperature is desirably 480 to 540 ° C.

表1に示す組成の鋼を転炉で溶製し、連続鋳造してスラブとした。そのスラブを1200℃で1時間加熱後、熱間圧延して板厚5mmの熱延鋼板とした。熱延時の仕上げ温度は900℃以上、巻取温度は700℃、または800℃とし、0.4℃/分、または0.8℃/分、または1.2℃/分の速度で300℃まで冷却した後、水冷した。得られた熱延鋼板を10%塩酸中で酸洗した後、冷間圧延して板厚1mmの冷延鋼板とした。その冷延鋼板を、連続溶融めっき設備を用い、均熱温度820℃、均熱時間120秒で焼鈍し、冷却速度20℃/秒で465℃まで冷却した後、浴温460℃のZn−0.13%Alめっき浴に3秒間浸漬し、ワイピングで付着量が45g/m2となるように調整し、その後、鋼種に応じて温度520℃で加熱合金化処理し、合金化溶融亜鉛めっき鋼を製造した。
作製した合金化溶融亜鉛めっき鋼は下記の評価をした。
Steel having the composition shown in Table 1 was melted in a converter and continuously cast into a slab. The slab was heated at 1200 ° C. for 1 hour and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 5 mm. Finishing temperature during hot rolling is 900 ° C or higher, winding temperature is 700 ° C or 800 ° C, up to 300 ° C at a rate of 0.4 ° C / min, 0.8 ° C / min, or 1.2 ° C / min After cooling, it was cooled with water. The obtained hot-rolled steel sheet was pickled in 10% hydrochloric acid and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1 mm. The cold-rolled steel sheet was annealed at a soaking temperature of 820 ° C. and a soaking time of 120 seconds using a continuous hot dipping equipment, cooled to 465 ° C. at a cooling rate of 20 ° C./sec, and then Zn-0 having a bath temperature of 460 ° C. .Immerse in a 13% Al plating bath for 3 seconds, adjust by wiping so that the adhesion amount is 45 g / m 2, and then heat alloying at a temperature of 520 ° C. according to the steel type, alloyed hot dip galvanized steel Manufactured.
The produced galvannealed steel was evaluated as follows.

(1)外観
目視観察し、外観むらの程度に応じてグレード1から6まで、0.5刻みで11段階に分類した。3.5以上が合格である。
(1) Appearance Visual observation was performed, and grades 1 to 6 were classified into 11 levels in 0.5 increments according to the degree of appearance irregularity. 3.5 or more pass.

(2)地鉄フェライト粒径観察
10%塩酸でめっきを溶解し、SEMで地鉄表層を観察し、500×500μm視野における粒径40μm以上、および粒径10μm以下のフェライト粒の数とその粒径を測定した。用いたSEMは、日立製S−2460Nである。
(2) Observation of grain size of ferrite particles Dissolve the plating with 10% hydrochloric acid, observe the surface layer of the iron matrix with SEM, and the number of ferrite grains having a grain size of 40 μm or more and a grain size of 10 μm or less in a 500 × 500 μm field and their grains. The diameter was measured. The SEM used is S-2460N manufactured by Hitachi.

(3)鉄−亜鉛合金被覆層の付着量
鉄−亜鉛合金被覆の付着量を求め、その偏差および組成を測定した。測定は、板幅方向、長手方向の任意の位置から数箇所選び、10%塩酸で鉄−亜鉛合金被覆を溶解し、ICPで分析した。
(3) Adhesion amount of iron-zinc alloy coating layer The adhesion amount of iron-zinc alloy coating was determined, and its deviation and composition were measured. For the measurement, several places were selected from arbitrary positions in the plate width direction and the longitudinal direction, and the iron-zinc alloy coating was dissolved with 10% hydrochloric acid and analyzed by ICP.

Figure 2007247017
Figure 2007247017

各評価結果を表2に示す。   Each evaluation result is shown in Table 2.

Figure 2007247017
Figure 2007247017

No.1から3は鋼Aの巻取り温度と巻取り後の冷却速度を変えた場合である。巻取り温度と巻取り後の冷却速度が本発明の範囲外の場合(No.1)、地鉄表層における粒径40μm以上のフェライト粒が10%以上存在し、めっき、合金化後の外観品位に劣る。一方、巻取り温度と巻取り後の冷却速度が本発明の範囲内の場合(No.2および3)、地鉄表層における粒径40μm以上のフェライト粒が10%以下であり、めっき、合金化後の外観が良好である。   No. 1 to 3 are cases where the winding temperature of steel A and the cooling rate after winding are changed. When the coiling temperature and the cooling rate after coiling are outside the scope of the present invention (No. 1), there are 10% or more ferrite grains having a grain size of 40 μm or more on the surface layer of the steel, and the appearance quality after plating and alloying Inferior to On the other hand, when the coiling temperature and the cooling rate after coiling are within the scope of the present invention (No. 2 and 3), the ferrite grains having a grain size of 40 μm or more in the surface iron surface layer are 10% or less, plating, alloying Later appearance is good.

No.4から6は鋼Aの巻取り温度と巻取り後の冷却速度を変えた場合である。巻取り温度と巻取り後の冷却速度が本発明の範囲外の場合(No.4)、地鉄表層における粒径40μm以上のフェライト粒が10%以上存在し、めっき、合金化後の外観品位に劣る。一方、巻取り温度と巻取り後の冷却速度が本発明の範囲内の場合(No.5および6)、地鉄表層における粒径40μm以上のフェライト粒が10%以下であり、めっき、合金化後の外観が良好である。   No. 4 to 6 are cases where the winding temperature of steel A and the cooling rate after winding were changed. When the coiling temperature and the cooling rate after coiling are out of the scope of the present invention (No. 4), 10% or more of ferrite grains having a grain size of 40 μm or more exist on the surface layer of the ground iron, and the appearance quality after plating and alloying Inferior to On the other hand, when the coiling temperature and the cooling rate after coiling are within the scope of the present invention (Nos. 5 and 6), the ferrite grains having a grain size of 40 μm or more in the surface iron surface layer are 10% or less, plating, alloying Later appearance is good.

No.7から9は鋼Aの巻取り温度と巻取り後の冷却速度を変えた場合である。巻取り温度と巻取り後の冷却速度が本発明の範囲外の場合(No.7)、地鉄表層における粒径40μm以上のフェライト粒が10%以上存在し、めっき、合金化後の外観品位に劣る。一方、巻取り温度と巻取り後の冷却速度が本発明の範囲内の場合(No.8および9)、地鉄表層における粒径40μm以上のフェライト粒が10%以下であり、めっき、合金化後の外観が良好である。   No. 7 to 9 are cases in which the winding temperature of steel A and the cooling rate after winding are changed. When the coiling temperature and the cooling rate after coiling are out of the scope of the present invention (No. 7), 10% or more of ferrite grains having a grain size of 40 μm or more exist on the surface layer of the ground iron, and the appearance quality after plating and alloying Inferior to On the other hand, when the coiling temperature and the cooling rate after coiling are within the scope of the present invention (No. 8 and 9), the ferrite grains having a grain size of 40 μm or more on the surface layer of the ground iron are 10% or less, and plating and alloying are performed. Later appearance is good.

No.10から12は鋼Dを700℃で巻き取った場合である。いずれも、地鉄表層における粒径40μm以上のフェライト粒が10%以上存在し、めっき、合金化後の外観品位に劣る。No.13〜15は鋼Dを800℃で巻き取った場合である。巻取後の冷却速度が0.8℃/分以下では(No.13および14)、地鉄表層における粒径40μm以上のフェライト粒が10%以下であり、めっき、合金化後の外観が良好であるが、0.8℃/分を超える場合(No.15)、地鉄表層における粒径40μm以上のフェライト粒が10%を超え、めっき、合金化後の外観品位に劣る。   No. 10 to 12 are cases where the steel D was wound at 700 ° C. In either case, 10% or more of ferrite grains having a particle size of 40 μm or more in the surface layer of the ground iron are present, and the appearance quality after plating and alloying is inferior. No. 13-15 is the case where steel D is wound up at 800 degreeC. When the cooling rate after winding is 0.8 ° C./min or less (Nos. 13 and 14), the ferrite grains having a grain size of 40 μm or more on the surface layer of the ground iron are 10% or less, and the appearance after plating and alloying is good However, when it exceeds 0.8 ° C./min (No. 15), the ferrite grains having a particle size of 40 μm or more in the surface layer of the base iron exceed 10%, and the appearance quality after plating and alloying is inferior.

No.16〜18は鋼Eを700℃で巻き取った場合である。いずれも、地鉄表層における粒径40μm以上のフェライト粒が10%以上存在し、めっき、合金化後の外観品位に劣る。No.19〜21は鋼Eを800℃で巻き取った場合である。巻取後の冷却速度が0.8℃/分以下では(No.19および20)、地鉄表層における粒径40μm以上のフェライト粒が10%以下であり、めっき、合金化後の外観が良好であるが、0.8℃/分を超える場合(No.21)、地鉄表層における粒径40μm以上のフェライト粒が10%を超え、めっき、合金化後の外観品位に劣る。   No. 16-18 are the cases where the steel E is wound up at 700 degreeC. In either case, 10% or more of ferrite grains having a particle size of 40 μm or more in the surface layer of the ground iron are present, and the appearance quality after plating and alloying is inferior. No. 19-21 are the cases where the steel E is wound up at 800 degreeC. When the cooling rate after winding is 0.8 ° C./min or less (Nos. 19 and 20), the ferrite grains having a grain size of 40 μm or more on the surface layer of the base iron are 10% or less, and the appearance after plating and alloying is good However, when it exceeds 0.8 ° C./min (No. 21), ferrite grains having a particle size of 40 μm or more on the surface layer of the base iron exceed 10%, and the appearance quality after plating and alloying is inferior.

No.22〜24は鋼Fを700℃で巻き取った場合である。いずれも、地鉄表層における粒径40μm以上のフェライト粒が10%以上存在し、めっき、合金化後の外観品位に劣る。No.25〜27は鋼Fを800℃で巻き取った場合である。巻取後の冷却速度が0.8℃/分以下では(No.25および26)、地鉄表層における粒径40μm以上のフェライト粒が10%以下であり、めっき、合金化後の外観が良好であるが、0.8℃/分を超える場合(No.27)、地鉄表層における粒径40μm以上のフェライト粒が10%を超え、めっき、合金化後の外観品位に劣る。   No. 22-24 is the case where the steel F is wound up at 700 degreeC. In either case, 10% or more of ferrite grains having a particle size of 40 μm or more in the surface layer of the ground iron are present, and the appearance quality after plating and alloying is inferior. No. 25-27 is the case where the steel F is wound up at 800 ° C. When the cooling rate after winding is 0.8 ° C./min or less (Nos. 25 and 26), the ferrite grains having a grain size of 40 μm or more on the surface layer of the base iron are 10% or less, and the appearance after plating and alloying is good However, when it exceeds 0.8 ° C./min (No. 27), the ferrite grains having a particle diameter of 40 μm or more in the surface layer of the base iron exceed 10%, and the appearance quality after plating and alloying is inferior.

Claims (4)

質量%で、
C;0.01%以下、
Si;0.2%以下、
Mn;2%以下、
P;0.02〜0.2%、
S;0.03%以下、
Al;0.005〜0.1%、
残部がFeおよび不可避的不純物からなる鋼の表面に、Znを85%以上含む鉄−亜鉛合金被覆を有する合金化溶融亜鉛めっき鋼において、その地鉄表面から深さ方向40μm以内の地鉄表層部が、500μm×500μmの観察視野において、粒径40μm以上のフェライト粒が面積率で10%以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼。
% By mass
C: 0.01% or less,
Si: 0.2% or less,
Mn: 2% or less,
P: 0.02 to 0.2%,
S; 0.03% or less,
Al; 0.005 to 0.1%,
In an alloyed hot-dip galvanized steel having an iron-zinc alloy coating containing 85% or more of Zn on the steel surface, the balance of which is Fe and inevitable impurities, the surface layer portion of the steel surface within 40 μm in the depth direction from the surface of the ground iron However, in an observation field of view of 500 μm × 500 μm, an alloyed hot-dip galvanized steel excellent in appearance quality characterized in that ferrite grains having a particle size of 40 μm or more are 10% or less in area ratio.
前記の鋼が、さらに質量%で、
Ti;0.001〜0.05%、
Nb;0.001〜0.05%、
の1種または2種を含むことを特徴とする請求項1に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。
Said steel is further mass%,
Ti; 0.001 to 0.05%,
Nb; 0.001 to 0.05%,
The alloyed hot-dip galvanized steel having excellent appearance quality according to claim 1, comprising one or two of the following.
前記、鉄−亜鉛合金被覆の付着量の偏差が±7g/m2以下であることを特徴とする、請求項1または2に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。 The alloyed hot-dip galvanized steel excellent in appearance quality according to claim 1 or 2, wherein the deviation of the adhesion amount of the iron-zinc alloy coating is ± 7 g / m 2 or less. 請求項1または2に記載の成分からなる低炭素鋼スラブを熱間圧延した後、酸洗し、さらに冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施して、合金化溶融亜鉛めっき鋼とする合金化溶融亜鉛めっき鋼の製造方法において、熱間圧延後のコイルの捲取温度を790℃超とし、さらにその後、巻き取ったコイルの最外層部の表面温度が300℃以下となるまで0.8℃/分以下の速度で冷却することを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼の製造方法。   The low carbon steel slab comprising the component according to claim 1 or 2 is hot-rolled, then pickled, and further subjected to cold rolling, annealing, hot dip galvanizing, heat alloying treatment, and alloyed hot dip galvanizing. In the manufacturing method of alloyed hot-dip galvanized steel used as steel, the coiling temperature of the coil after hot rolling is set to exceed 790 ° C., and then the surface temperature of the outermost layer portion of the wound coil becomes 300 ° C. or less. A method for producing a galvannealed steel having excellent appearance quality, characterized by cooling at a rate of 0.8 ° C./min or less.
JP2006074330A 2006-03-17 2006-03-17 Alloyed hot-dip galvanized steel with excellent appearance quality and method for producing the same Active JP4598700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074330A JP4598700B2 (en) 2006-03-17 2006-03-17 Alloyed hot-dip galvanized steel with excellent appearance quality and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074330A JP4598700B2 (en) 2006-03-17 2006-03-17 Alloyed hot-dip galvanized steel with excellent appearance quality and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007247017A true JP2007247017A (en) 2007-09-27
JP4598700B2 JP4598700B2 (en) 2010-12-15

Family

ID=38591634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074330A Active JP4598700B2 (en) 2006-03-17 2006-03-17 Alloyed hot-dip galvanized steel with excellent appearance quality and method for producing the same

Country Status (1)

Country Link
JP (1) JP4598700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052430B2 (en) * 2014-01-28 2016-12-27 新日鐵住金株式会社 Surface-treated steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559489A (en) * 1991-06-07 1993-03-09 Sumitomo Metal Ind Ltd Cold rolled steel sheet for deep drawing as well as galvanized product thereof and there manufacturing method
JP2001279410A (en) * 2000-03-29 2001-10-10 Kawasaki Steel Corp Manufacturing method for galvanized steel sheet and galvanized steel sheet
JP2001294977A (en) * 2001-03-16 2001-10-26 Kawasaki Steel Corp Hot dip galvannealed steel sheet
JP2002146475A (en) * 2000-11-02 2002-05-22 Kawasaki Steel Corp Galvannealed steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559489A (en) * 1991-06-07 1993-03-09 Sumitomo Metal Ind Ltd Cold rolled steel sheet for deep drawing as well as galvanized product thereof and there manufacturing method
JP2001279410A (en) * 2000-03-29 2001-10-10 Kawasaki Steel Corp Manufacturing method for galvanized steel sheet and galvanized steel sheet
JP2002146475A (en) * 2000-11-02 2002-05-22 Kawasaki Steel Corp Galvannealed steel sheet
JP2001294977A (en) * 2001-03-16 2001-10-26 Kawasaki Steel Corp Hot dip galvannealed steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052430B2 (en) * 2014-01-28 2016-12-27 新日鐵住金株式会社 Surface-treated steel sheet
US10189229B2 (en) 2014-01-28 2019-01-29 Nippon Steel & Sumitomo Metal Corporation Surface-treated steel sheet

Also Published As

Publication number Publication date
JP4598700B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5370617B2 (en) High strength hot dip galvanized steel sheet
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
WO2016113789A1 (en) High-strength hot-dip galvanized steel sheet and production method thereof
JP5092507B2 (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP2007211279A (en) Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
JP2007211280A (en) High strength hot dip galvanized steel sheet and high strength hot dip alloyed galvanized steel sheet having excellent formability and hole expandability, method for producing high strength hot dip galvanized steel sheet and method for producing high strength hot dip alloyed galvanized steel sheet
WO2017029814A1 (en) High-strength steel sheet and production method for same
WO2016031166A1 (en) High-strength molten galvanized steel sheet and method for production thereof
WO2014156141A1 (en) High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
JP2008231447A (en) Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor
JP2006283128A (en) High strength steel sheet for hot dip galvanizing, hot dip galvanized high strength steel sheet obtained by applying hot dip galvanizing to the high strength steel sheet, and alloyed hot dip galvanized high strength steel sheet obtained by applying alloying treatment to the hot dip galvanized high strength steel sheet
JP2010242173A (en) High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP6694511B2 (en) High-strength cold-rolled steel sheet excellent in ductility, hole workability, and surface treatment characteristics, hot-dip galvanized steel sheet, and methods for producing them
JP5867435B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP5212056B2 (en) Method for producing galvannealed steel sheet
JP4969954B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same
JP4598700B2 (en) Alloyed hot-dip galvanized steel with excellent appearance quality and method for producing the same
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R151 Written notification of patent or utility model registration

Ref document number: 4598700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350