JP2008231447A - Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor - Google Patents

Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor Download PDF

Info

Publication number
JP2008231447A
JP2008231447A JP2007068155A JP2007068155A JP2008231447A JP 2008231447 A JP2008231447 A JP 2008231447A JP 2007068155 A JP2007068155 A JP 2007068155A JP 2007068155 A JP2007068155 A JP 2007068155A JP 2008231447 A JP2008231447 A JP 2008231447A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
less
hot
appearance quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007068155A
Other languages
Japanese (ja)
Inventor
Shintaro Yamanaka
晋太郎 山中
Tsutomu Okamoto
力 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007068155A priority Critical patent/JP2008231447A/en
Publication of JP2008231447A publication Critical patent/JP2008231447A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet superior in appearance quality, which shows a more improved effect of the appearance quality than a conventionally proposed method for improving the appearance quality, and to provide a manufacturing method therefor which can be applied even to a high-strength steel sheet including P or Mn that tends to cause a poor appearance without lowering the productivity. <P>SOLUTION: The galvannealed steel sheet superior in the appearance quality has a coating film of an iron-zinc-based alloy containing Zn of 85% or more on the surface of a steel sheet. The base steel sheet has a structure in the surface, in which ferrite grains having a ratio of a length of a major axis in a rolling direction of the steel sheet to a length of a minor axis in a width direction of the steel sheet in an amount of 5 or more occupy 90% or more of the whole area, and a structure between the surface and a 100 μm or more deep position from the surface, in which the ferrite grains having the ratio of the length of the major axis in the rolling direction of the steel sheet to the length of the minor axis in the width direction of the steel sheet in an amount of 5 or more occupy 10% or less of the whole area. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、外観品位に優れる合金化溶融亜鉛めっき鋼板およびその製造方法に関するものである。より詳しくは、主として、高強度鋼板を基材とした合金化溶融亜鉛めっき鋼板において、そのめっき後の外観が従来の合金化溶融亜鉛めっき鋼板よりも均一美麗で、また、塗装後の外観にも優れ、自動車用等に用いることができる、外観品位に優れる合金化溶融亜鉛めっき鋼板とその製造方法に関するものである。   The present invention relates to an galvannealed steel sheet excellent in appearance quality and a method for producing the same. More specifically, mainly in an alloyed hot-dip galvanized steel sheet based on a high-strength steel sheet, the appearance after plating is more uniform and beautiful than the conventional alloyed hot-dip galvanized steel sheet. The present invention relates to an alloyed hot-dip galvanized steel sheet excellent in appearance quality that can be used for automobiles and the like, and a method for producing the same.

合金化溶融亜鉛めっき鋼板は、溶接性や塗装性、塗装後耐食性などに優れることから、自動車、家電製品、建材等に多用されている。この合金化溶融亜鉛めっき鋼板は、鋼板を溶融亜鉛めっきした後、加熱処理し、鋼中のFeとめっき中のZnを拡散させ、合金化反応を生じさせることで鋼材表面に鉄−亜鉛合金層を形成させたものである。   Alloyed hot dip galvanized steel sheets are widely used in automobiles, home appliances, building materials and the like because of their excellent weldability, paintability, and post-paint corrosion resistance. This alloyed hot-dip galvanized steel sheet is a hot-dip galvanized steel sheet, and then heat-treated to diffuse Fe in the steel and Zn in the plating to cause an alloying reaction, thereby causing an iron-zinc alloy layer on the steel surface. Is formed.

この合金化反応は、鋼の結晶粒界から優先的に生じると言われるが、鋼板の表面結晶粒径が粗大である場合は、粒径が微細である場合に比べて結晶の総粒界長さが短いため、鋼板全体としての合金化反応速度に差異を生じる。すなわち、結晶が粗大である鋼板の合金化は、結晶が微細である鋼板よりも合金化が遅くなり、めっきが薄くなる。従って、粗大粒と微細粒が混ざっている鋼板では、局所的な合金化速度差を生じることでめっきの凹凸を生み、外観不良となる。   This alloying reaction is said to occur preferentially from the grain boundaries of the steel, but when the surface crystal grain size of the steel sheet is coarse, the total grain boundary length of the crystal is larger than when the grain size is fine. Therefore, there is a difference in the alloying reaction rate of the steel sheet as a whole. That is, the alloying of the steel plate having coarse crystals is slower in alloying and the plating becomes thinner than the steel plate having fine crystals. Therefore, in a steel plate in which coarse grains and fine grains are mixed, unevenness of plating is generated due to a local alloying speed difference, resulting in poor appearance.

また、Pなどの粒界に偏析しやすい元素が多く含まれる場合は、さらにその合金化反応速度差を助長させる働きがあり、めっきの外観不良は一層悪化する。   Moreover, when many elements which are easy to segregate are contained in grain boundaries, such as P, it has the function which further promotes the alloying reaction rate difference, and the external appearance defect of plating worsens further.

このため、鋼板の表層の結晶粒径を均一化させることによるめっきの外観向上策が種々、提案されている。例えば、特許文献1では、鋼板上のある一点における最表面の平均フェライト粒径d1と、その点から10mm以上離れた点における最表面の平均フェライト粒径d2の比R=d1/d2が、0.9以上1.1以下とすることで、外観品位が向上するとしている。しかしながら、Rが0.9以上1.1以下であっても、近年の、加工性を重視した極低炭素鋼においては、FeとZnの合金化反応が遅い地鉄結晶方位を有しているため、鋼板表面に局所的なP濃度差があった場合には、合金化速度差が助長され、外観品位は十分には向上しない。また、P添加鋼においては、一層合金化速度が遅くなるため、生産性を低下させるため、良策とは言いがたい。   For this reason, various measures for improving the appearance of plating by making the crystal grain size of the surface layer of the steel sheet uniform have been proposed. For example, in Patent Document 1, the ratio R = d1 / d2 between the average ferrite grain diameter d1 on the outermost surface at a certain point on the steel sheet and the average ferrite grain diameter d2 on the outermost surface at a point 10 mm or more away from that point is 0. It is said that the appearance quality is improved by setting the ratio to 0.9 or more and 1.1 or less. However, even if R is 0.9 or more and 1.1 or less, in recent ultra-low carbon steels with an emphasis on workability, the alloying reaction of Fe and Zn has a slow base metal crystal orientation. Therefore, when there is a local P concentration difference on the steel sheet surface, the difference in alloying speed is promoted and the appearance quality is not sufficiently improved. In addition, in the P-added steel, the alloying speed is further reduced, and the productivity is lowered.

特許文献2では、めっき原板となる熱延板の表層組織を、15μm以下のフェライト結晶が400μmの視野において面積率で70%以下とすることで、めっき外観が向上するとしている。しかしながら、15μm以下のフェライト結晶粒が70%以下の面積率を占めていても、その分布に偏りがある場合には、めっきの外観が劣る。   In Patent Document 2, the surface appearance of the hot-rolled sheet serving as a plating original sheet is made 70% or less in terms of area ratio in a field of view of 400 μm of ferrite crystals of 15 μm or less, thereby improving the plating appearance. However, even if ferrite crystal grains of 15 μm or less occupy an area ratio of 70% or less, if the distribution is uneven, the appearance of plating is inferior.

また、特許文献3では、熱間圧延の仕上げ圧延終了温度を1000℃ないし、(Ar3変態点+20℃)の範囲にし、次いで700〜820℃の範囲で捲取、その後冷間圧延、焼鈍、溶融亜鉛めっきをすることで、外観品位の優れた溶融亜鉛めっき鋼板が製造できるとしている。しかしながら、仕上げ圧延温度を上記の範囲にすると、未再結晶部の存在に起因するめっき外観不良は抑制できるものの、組織の不均一性(粗大粒と微細粒の混粒組織)に起因するめっき外観不良を解消することは困難である。また、近年の、加工性を重視した極低炭素鋼においては、FeとZnの合金化反応が遅い地鉄結晶方位を有しているため、鋼板表面に局所的なP濃度差があった場合には、合金化速度差が助長され、外観品位は十分には向上しない。P添加鋼においては、一層合金化速度が遅くなるため、生産性を低下させるため、良策とは言いがたい。   In Patent Document 3, the finish rolling finish temperature of hot rolling is set to 1000 ° C. or (Ar3 transformation point + 20 ° C.), and then taken in a range of 700 to 820 ° C., and then cold rolled, annealed, and melted. It is said that a hot-dip galvanized steel sheet with excellent appearance quality can be manufactured by galvanizing. However, if the finish rolling temperature is in the above range, the appearance of plating due to the presence of non-recrystallized parts can be suppressed, but the appearance of plating due to non-uniform structure (mixed grain structure of coarse and fine grains) can be suppressed. It is difficult to eliminate defects. Further, in recent ultra-low carbon steels with emphasis on workability, there is a local iron crystal orientation in which the alloying reaction of Fe and Zn is slow, so there is a local P concentration difference on the steel sheet surface. However, the difference in alloying speed is promoted, and the appearance quality is not sufficiently improved. In P-added steel, the alloying speed is further reduced, which lowers productivity and is not a good measure.

さらに、特許文献4では、Ti含有鋼における鋼表面のフェライト粒径を8μm以上とすることで、微細組織起因のめっき外観不良を抑制できるとしている。しかしながら、表層フェライト粒径を8μm以上にしても、局所的に著しく粗大な結晶がある場合など、粒径にばらつきがある場合には、めっき外観は向上しない。   Furthermore, in patent document 4, it is supposed that the plating external appearance defect resulting from a fine structure can be suppressed by making the ferrite particle diameter of the steel surface in Ti containing steel into 8 micrometers or more. However, even if the surface ferrite grain size is 8 μm or more, the plating appearance does not improve if the grain size varies, such as when there are locally coarse crystals.

特開平7−228944号公報JP-A-7-228944 特開2001−316763号公報JP 2001-316663 A 特開2001−342522号公報JP 2001-342522 A 特開2−38550号公報JP-A-2-38550

以上のように、外観品位に優れる合金化溶融亜鉛めっき鋼板、また、その製造方法が種々提案されているが、いずれも、近年の需要家からの厳しい外観品位の要求に対しては、十分に応えられるものではない。また、PやMn等を含む高強度鋼板を下地とした場合には一層外観が劣化しやすいが、これらの鋼板に対しても従来提案されている方法では改善の効果が小さく、また、生産性を低下させるものもあり、工業的に良策とは言えない。   As described above, various types of alloyed hot-dip galvanized steel sheets with excellent appearance quality and their manufacturing methods have been proposed, but all of them are sufficient to meet the demands for severe appearance quality from recent customers. It cannot be answered. In addition, when a high-strength steel sheet containing P, Mn, or the like is used as a base, the appearance is more likely to deteriorate. However, the effect of improvement is small with the conventionally proposed methods for these steel sheets, and the productivity is low. There is also a thing which lowers, and it cannot be said that it is an industrial good measure.

そこで本発明は、このような、従来提案されている方法よりも改善効果が大きく、また、外観不良となりやすい、PやMn等を含む高強度鋼板においても生産性を落とすことなく適用できる、外観品位に優れる合金化溶融亜鉛めっき鋼板、およびその製造方法を提供することを目的としている。   Therefore, the present invention has a greater improvement effect than the conventionally proposed methods, and is likely to be defective in appearance, and can be applied to high-strength steel plates containing P, Mn, etc. without reducing productivity. An object of the present invention is to provide an alloyed hot-dip galvanized steel sheet excellent in quality and a method for producing the same.

上記課題を解決するために、本発明者らは、Pを0.005%〜0.2%含む鋼板を基材とした合金化溶融亜鉛めっき鋼板で、地鉄表層の組織のみを粗大とすることで、外観品位が極めて美麗で、かつ、同等成分の鋼よりもFeとZnの合金化速度を速くする、すなわち、生産性を向上できることを見出した。すなわち、本発明の要旨は以下のとおりである。   In order to solve the above-mentioned problems, the present inventors made an alloyed hot-dip galvanized steel sheet based on a steel sheet containing 0.005% to 0.2% P and made only the structure of the surface layer of the base metal coarse. Thus, the present inventors have found that the appearance quality is very beautiful and that the alloying rate of Fe and Zn can be increased, that is, the productivity can be improved as compared with steel of the same component. That is, the gist of the present invention is as follows.

(1)質量%で、
C;0.001%以上0.01%以下、
Si;0.001%以上0.2%以下、
Mn;0.01%以上3%以下、
P;0.005%以上0.2%以下、
S;0.001%以上0.03%以下、
Al;0.005%以上0.1%以下、
さらに質量%で、
Ti;0.001%以上0.05%以下、
Nb;0.001%以上0.05%以下、
B;0.0001%以上0.005%以下、
N;0.0001%以上0.05%以下
の1種または2種以上を含み、
残部がFeおよび不可避的不純物からなる鋼板の表面に、Znを85%以上含む鉄−亜鉛合金被覆を有する合金化溶融亜鉛めっき鋼板で、その地鉄表面の組織が、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が面積率で90%以上からなり、地鉄表面から深さ100μm以上の範囲における組織は鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が面積率で10%以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板。
(1) In mass%,
C: 0.001% to 0.01%,
Si: 0.001% or more and 0.2% or less,
Mn: 0.01% or more and 3% or less,
P: 0.005% or more and 0.2% or less,
S; 0.001% or more and 0.03% or less,
Al; 0.005% or more and 0.1% or less,
In addition,
Ti: 0.001% or more and 0.05% or less,
Nb: 0.001% or more and 0.05% or less,
B; 0.0001% to 0.005%,
N; including 0.0001% or more and 0.05% or less of one or more,
An alloyed hot-dip galvanized steel sheet having an iron-zinc alloy coating containing 85% or more of Zn on the surface of the steel sheet, the balance of which is made of Fe and inevitable impurities. The ferrite grain having a length of the minor axis in the width direction of the steel sheet of 5 or more is composed of 90% or more in area ratio, and the structure in the range of 100 μm or more in depth from the surface of the base iron is the length of the major axis in the steel sheet rolling direction. An alloyed hot-dip galvanized steel sheet excellent in appearance quality, characterized in that ferrite grains having a widthwise minor axis length of 5 or more are 10% or less in area ratio.

(2)(1)に記載の成分からなる低炭素鋼スラブを熱間圧延した後、酸洗、冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施す合金化溶融亜鉛めっき鋼板の製造方法において、熱間仕上圧延時に、下記(A)式で定義した異周速率が1.05以上1.50以下の異周速圧延を1パス以上施し、かつ、Ar3温度を下記(C)式で定義するとき、熱間仕上圧延終了温度が鋼板幅方向、鋼板圧延方向のいずれの方向においても、(Ar3点−30℃)以上、Ar3点以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板の製造方法。
異周速率=高速側ロール周速/低速側ロール周速 ・・・(A)
Ar3=900−500×(C%)−50×(Mn%)+200×(P%)・・・(C)
C%:熱間圧延される鋼板のC質量%、Mn%:熱間圧延される鋼板のMn質量%、
P%:熱間圧延される鋼板のP質量%
(2) Manufacture of alloyed hot-dip galvanized steel sheet that is subjected to pickling, cold rolling, annealing, hot-dip galvanizing, and heat alloying after hot rolling the low-carbon steel slab comprising the components described in (1) In the method, at the time of hot finish rolling, different circumferential speed rolling defined by the following formula (A) is performed at least one pass, and the Ar3 temperature is represented by the following formula (C). The finish temperature of hot finish rolling is (Ar3 point-30 ° C.) or higher and Ar3 point or lower in any of the steel plate width direction and the steel plate rolling direction. Method for producing a galvannealed steel sheet.
Different peripheral speed ratio = High speed side roll peripheral speed / Low speed side roll peripheral speed (A)
Ar3 = 900−500 × (C%) − 50 × (Mn%) + 200 × (P%) (C)
C%: C mass% of the steel sheet to be hot rolled, Mn%: Mn mass% of the steel sheet to be hot rolled,
P%: P mass% of the steel sheet to be hot rolled

(3)(1)に記載の成分からなる低炭素鋼スラブを熱間圧延した後、酸洗、冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施す合金化溶融亜鉛めっき鋼板の製造方法において、熱間仕上圧延時に、下記(B)式で定義した上下圧延ロールの径の比が1.2以上1.5以下である異径ロール圧延を1パス以上施し、かつ、Ar3温度を下記(C)式で定義するとき、熱間仕上圧延終了温度が鋼板幅方向、鋼板圧延方向のいずれの方向においても、(Ar3点−30℃)以上、Ar3点以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板の製造方法。
各スタンドにおける上下圧延ロールの径の比=上下のうち大径側ロール径/上下のうち小径側ロール径 ・・・(B)
Ar3=900−500×(C%)−50×(Mn%)+200×(P%) ・・・(C)
(3) Manufacture of an alloyed hot-dip galvanized steel sheet that is hot-rolled with a low-carbon steel slab comprising the components described in (1) and then subjected to pickling, cold rolling, annealing, hot-dip galvanizing, and heat alloying treatment. In the method, at the time of hot finish rolling, at least one pass of different diameter roll rolling in which the ratio of the diameters of the upper and lower rolling rolls defined by the following formula (B) is 1.2 or more and 1.5 or less is applied, and the Ar3 temperature is set. When defined by the following formula (C), the hot finish rolling end temperature is (Ar3 point −30 ° C.) or more and Ar3 point or less in both the steel plate width direction and the steel plate rolling direction. A method for producing a galvannealed steel sheet having excellent appearance quality.
Ratio of diameter of upper and lower rolling rolls in each stand = larger diameter side roll diameter in upper and lower directions / smaller diameter side roll diameter in upper and lower sides (B)
Ar3 = 900−500 × (C%) − 50 × (Mn%) + 200 × (P%) (C)

(4)(2)または(3)に記載の合金化溶融亜鉛めっき鋼板の製造方法において、冷間圧延時の圧延油吹付け量を冷間圧延後の鋼板上の圧延油付着量で0.1mg/m以上5mg/m以下とすることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板の製造方法。 (4) In the method for producing an alloyed hot-dip galvanized steel sheet according to (2) or (3), the amount of rolling oil sprayed during cold rolling is 0. method for manufacturing a galvannealed steel sheet excellent in appearance quality, characterized in that a 1 mg / m 2 or more 5 mg / m 2 or less.

本発明の合金化溶融亜鉛めっき鋼板、また本発明の製造法を経た合金化溶融亜鉛めっき鋼板は、外観品位に優れ、また、摺動性、密着性、生産性にも優れる。このため、自動車や家電製品、建材等に用いることができ、産業上の価値は極めて大きい。   The alloyed hot-dip galvanized steel sheet of the present invention and the alloyed hot-dip galvanized steel sheet that has undergone the production method of the present invention are excellent in appearance quality, and excellent in slidability, adhesion, and productivity. For this reason, it can be used for automobiles, home appliances, building materials and the like, and its industrial value is extremely large.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の合金化溶融亜鉛めっき鋼板の鋼成分の限定理由について説明する。   First, the reasons for limiting the steel components of the galvannealed steel sheet of the present invention will be described.

C;0.001%以上0.01%以下
Cは鋼の強化に必要な元素である。C量が0.001%未満では強度が不足し、0.01%を超えると脆化、およびr値の低下を招く。このため、C量は0.001%以上0.01%以下とする。
C: 0.001% to 0.01% C is an element necessary for strengthening steel. If the C content is less than 0.001%, the strength is insufficient, and if it exceeds 0.01%, embrittlement and r value decrease are caused. For this reason, the amount of C is made 0.001% or more and 0.01% or less.

Si;0.001%以上0.2%以下
Siは鋼の強化、脱酸の効果を有する元素である。Siが0.001%未満ではその効果が不十分で、一方、過剰に添加すると脆化しやすくなるだけでなく、溶融亜鉛めっき時にめっきの濡れ性を阻害し、めっき密着性も劣化させる。このため、Siは0.001%以上0.2%以下とする。
Si: 0.001% or more and 0.2% or less Si is an element having the effect of strengthening and deoxidizing steel. If Si is less than 0.001%, the effect is insufficient. On the other hand, if it is added excessively, it not only becomes brittle, but also impairs the wettability of plating at the time of hot dip galvanizing and deteriorates the plating adhesion. For this reason, Si is made 0.001% or more and 0.2% or less.

Mn;0.01%以上3%以下
Mnは鋼の強化、脱酸の効果を有する元素である。Mnが0.01%未満であればその効果が不十分で、一方、過剰に添加すると脆化、および、r値の低下を招く。このため、Mnは0.01%以上3%以下とする。
Mn: 0.01% or more and 3% or less Mn is an element having an effect of strengthening and deoxidizing steel. If Mn is less than 0.01%, the effect is insufficient. On the other hand, excessive addition causes embrittlement and a decrease in r value. For this reason, Mn is made 0.01% or more and 3% or less.

P;0.005%以上0.2%以下
Pは鋼の強加に必要な元素である。Pが0.005%未満ではその効果が不十分で、一方、過剰に添加すると脆化し易くなる。このため、Pは0.005%以上0.2%以下とする。
P: 0.005% or more and 0.2% or less P is an element necessary for strengthening steel. When P is less than 0.005%, the effect is insufficient. On the other hand, when P is added excessively, it becomes brittle. For this reason, P is made 0.005% or more and 0.2% or less.

S;0.001%以上0.03%以下
Sは不純物であり、加工性や熱間脆性を劣化させるため少ないほうが望ましい。但し、過度に低減することは製造コストの増大を招く。このためSは0.001%以上0.03%以下とする。
S: 0.001% or more and 0.03% or less S is an impurity, and it is preferable to reduce the S content because it degrades workability and hot brittleness. However, excessive reduction causes an increase in manufacturing cost. For this reason, S is made 0.001% or more and 0.03% or less.

Al;0.005%以上0.1%以下
Alは脱酸の効果がある。また、鋼中のNとの親和力が強く、固溶しているNを析出物として固定し加工性を向上させる効果がある。しかし、過剰に添加すると逆に加工性を劣化させる。このためAlは0.005%以上0.1%以下とする。
さらに選択元素としてTi,Nb,B,Nのうち1種または2種以上を任意に添加でき、その範囲を以下に規定する。
Al: 0.005% or more and 0.1% or less Al has a deoxidizing effect. Moreover, the affinity with N in steel is strong, and there exists an effect which fixes the solid solution N as a precipitate and improves workability. However, if added excessively, the workability is deteriorated. For this reason, Al is made 0.005% or more and 0.1% or less.
Further, one or more of Ti, Nb, B, and N can be arbitrarily added as selective elements, and the range is defined below.

Ti;0.001%以上0.05%以下
Tiは鋼中のC、Nを析出物として固定し、加工性を向上させる効果がある。Tiが0.001%未満であればその効果に乏しく、0.05%超添加してももはやその効果は飽和し、徒にコストを増大させるだけである。このためTiは0.001%以上0.05%以下とすることが好ましい。
Ti: 0.001% or more and 0.05% or less Ti has an effect of fixing C and N in the steel as precipitates and improving workability. If Ti is less than 0.001%, the effect is poor, and even if added over 0.05%, the effect is no longer saturated and the cost is simply increased. For this reason, Ti is preferably 0.001% or more and 0.05% or less.

Nb;0.001%以上0.05%以下
Nbは鋼中のCを析出物として固定し、加工性を向上させる効果がある。Nbが0.001%未満であればその効果に乏しく、0.05%超添加してももはやその効果は飽和し、徒にコストを増大させるたけである。このためNbは0.001%以上0.05%以下とすることが好ましい。
Nb: 0.001% or more and 0.05% or less Nb has an effect of fixing C in the steel as a precipitate and improving workability. If Nb is less than 0.001%, the effect is poor, and even if added over 0.05%, the effect is no longer saturated and the cost is simply increased. Therefore, Nb is preferably 0.001% or more and 0.05% or less.

B;0.0001%以上0.005%以下
Bは結晶粒界に優先濃化し、粒界エネルギーを低下させ脆化を抑制させる効果がある。Bが0.0001%未満であればその効果が不十分で、一方、0.005%超添加すると加工性が低下する。このためBは0.0001%以上0.005%以下とすることが好ましい。
B: 0.0001% or more and 0.005% or less B has the effect of preferentially concentrating on the crystal grain boundaries, lowering the grain boundary energy, and suppressing embrittlement. If B is less than 0.0001%, the effect is insufficient. On the other hand, if it exceeds 0.005%, the workability decreases. For this reason, B is preferably 0.0001% or more and 0.005% or less.

N;0.0001%以上0.05%以下
Nは0.05%超では加工性を低下させるため、極力少ない方が好ましい。しかしながら、過度の低減は徒にコストを増大させるだけであるため0.0001%を下限とする。このためNは0.0001%以上0.05%以下とすることが好ましい。
N: 0.0001% or more and 0.05% or less N is more preferably as little as possible because N deteriorates workability when it exceeds 0.05%. However, excessive reduction only increases the cost, so 0.0001% is set as the lower limit. Therefore, N is preferably 0.0001% or more and 0.05% or less.

本発明の鋼においては、上記これらの成分以外にも、Cu、Cr、Co、Ni、Mo、W、Mg、V、Ce、La、Nd、Pr、Smなど、必要に応じて添加することができる。   In the steel of the present invention, besides these components, Cu, Cr, Co, Ni, Mo, W, Mg, V, Ce, La, Nd, Pr, Sm, etc. may be added as necessary. it can.

次に鉄−亜鉛合金被覆について説明する。鉄−亜鉛合金被覆中のZn含有率は85%以上とする。85%未満であれば、塗装性と溶接性、また塗装後耐食性に劣る。この鉄−亜鉛合金被覆の付着量は特に規定するものではないが、耐食性および加工性の観点から、20〜100g/mであることが望ましい。 Next, the iron-zinc alloy coating will be described. The Zn content in the iron-zinc alloy coating is 85% or more. If it is less than 85%, it is inferior to coating property and weldability, and corrosion resistance after coating. The adhesion amount of the iron-zinc alloy coating is not particularly specified, but is preferably 20 to 100 g / m 2 from the viewpoint of corrosion resistance and workability.

次に、地鉄組織について説明する。図1は合金化溶融亜鉛めっき鋼板の地鉄の組織を示す図であり、図2は鋼板圧延方向長軸の長さおよび鋼板圧延幅方向短軸の長さを説明するための図である。本発明の合金化溶融亜鉛めっき鋼板の地鉄表面の組織は、図1および図2に示すように鋼板圧延方向長軸1の長さ/鋼板幅方向短軸2の長さが5以上であるフェライト粒が面積率で90%以上からなる。このようなサイズを有する延伸フェライト粒は、結晶粒内に歪を過剰に有しているため、めっき合金化の速度は地鉄結晶方位の影響をあまり受けずにFeとZnの合金化反応が急激に起こるために均一にめっきが成長し、外観が美麗となる。さらに、合金化反応が速いが故に、合金化加熱温度を低減させることや、通板速度を上昇させることが可能となり、生産性が上がる利点もある。一方、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5未満であれば、結晶内の歪量が不十分であり、めっき合金化の速度は地鉄結晶方位の影響などを大きく受けるため、種々の結晶方位を有する結晶粒3からなる地鉄4上で成長しためっき合金層5は激しい凹凸を有し、外観の劣る合金化溶融亜鉛めっきとなり、また生産性も劣る。その模式図を図3に示す。また、図4は、合金化溶融亜鉛めっき鋼板の任意の200倍に拡大した500μmの×500μmの視野における任意の箇所のめっき厚みと、それぞれの箇所に対応するめっき下地組織の関係を示した図である。鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5未満である、地鉄結晶上に生成するめっき厚みは約1〜9μmとばらつきが大きく、これはそれぞれの地鉄結晶方位が異なるためにめっき合金化速度に差が生じた結果であると考えられる。一方、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上である地鉄結晶上に生成するめっき厚みは約5〜8μmと前者に比べばらつきが小さい。これはそれぞれの結晶上でほぼ等しい速度でめっきの合金化が進んだ結果であると考えられる。このように地鉄表面の組織は、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒からなることが重要である。   Next, the steel structure will be described. FIG. 1 is a view showing the structure of the ground iron of the galvannealed steel sheet, and FIG. 2 is a view for explaining the length of the long axis in the steel sheet rolling direction and the length of the short axis in the steel sheet rolling width direction. As shown in FIGS. 1 and 2, the structure of the ground surface of the galvannealed steel sheet of the present invention is such that the length of the long axis 1 in the steel sheet rolling direction / the length of the short axis 2 in the steel sheet width direction is 5 or more. Ferrite grains are 90% or more in area ratio. Since the stretched ferrite grains having such a size have excessive strain in the crystal grains, the alloying reaction of Fe and Zn is not affected by the influence of the crystal orientation of the iron alloy, because the plating alloying speed is not significantly affected. Since it occurs suddenly, the plating grows uniformly and the appearance is beautiful. Furthermore, since the alloying reaction is fast, it is possible to reduce the alloying heating temperature and increase the sheet passing speed, and there is an advantage that productivity is increased. On the other hand, if the length of the major axis in the rolling direction of the steel sheet / the length of the minor axis in the width direction of the steel sheet is less than 5, the amount of strain in the crystal is insufficient, and the rate of plating alloying depends on the influence of the crystal orientation of the steel Therefore, the plated alloy layer 5 grown on the base iron 4 made of the crystal grains 3 having various crystal orientations has severe irregularities, becomes an alloyed hot dip galvanized with a poor appearance, and is inferior in productivity. The schematic diagram is shown in FIG. Moreover, FIG. 4 is a diagram showing the relationship between the plating thickness at an arbitrary position in a 500 μm × 500 μm visual field enlarged to an arbitrary 200 times that of the alloyed hot-dip galvanized steel sheet and the plating base structure corresponding to each position. It is. The length of the major axis in the rolling direction of the steel sheet / the length of the minor axis in the width direction of the steel sheet is less than 5, and the plating thickness generated on the ground crystal has a large variation of about 1 to 9 μm. This is considered to be a result of the difference in the plating alloying speed due to the difference in the thickness. On the other hand, the plating thickness produced on the base iron crystal whose length in the steel plate rolling direction major axis / steel plate width direction minor axis is 5 or more is about 5 to 8 μm, and the variation is smaller than the former. This is considered to be a result of the alloying of the plating progressing at an approximately equal speed on each crystal. Thus, it is important that the structure of the surface of the ground iron is composed of ferrite grains in which the length of the long axis in the steel plate rolling direction / the length of the short axis in the steel plate width direction is 5 or more.

しかしながら、地鉄表面組織が、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒で完全に覆われる必要はなく、地鉄表面を90%以上占めればよい。目視観察で外観むらの程度に応じて×、○、◎の3段階で評価すると、図5に占めるように90%以上を占めれば目視上ほぼ均一な外観となり概ね良好で、好ましい範囲は、98%以上である。なお、ここで定義する地鉄表面の組織とは、合金化溶融亜鉛めっき鋼板の任意の箇所を発煙硝酸に浸漬して、結晶粒界をエッチングした地鉄表面の任意の箇所を500μm×500μmの視野にて光学顕微鏡、または走査型電子顕微鏡で観察した際に認められる地鉄の組織である。   However, it is not necessary that the surface structure of the ground iron is completely covered with ferrite grains in which the length of the major axis in the rolling direction of the steel sheet / the length of the minor axis in the width direction of the steel plate is 5 or more. That's fine. When evaluated in three stages of ×, ○, ◎ according to the degree of appearance irregularity by visual observation, if it occupies 90% or more as shown in FIG. 98% or more. It should be noted that the structure of the surface of the base iron as defined herein means that an arbitrary part of the alloyed hot-dip galvanized steel sheet is immersed in fuming nitric acid and an arbitrary part of the surface of the base iron where the grain boundaries are etched is 500 μm × 500 μm It is a structure of a ground iron observed when observed with an optical microscope or a scanning electron microscope in a visual field.

また、このような延伸組織は、外観上は、地鉄内部に存在していてもなんら問題はない。しかしながら、板厚中心部まで延伸組織であれば加工性を損ない実用に適さない。そのため、地鉄表面から深さ100μm以上の範囲における組織は鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が面積率で10%以下である必要がある。加工性をJIS13B引っ張り試験片で引っ張り試験を実施した場合、伸びが20%未満の場合を×、20%以上40%未満の場合を○、40%以上の場合を◎で評価すると、フェライト粒が面積率で10%超である場合、図6に示すように加工性に劣り実用に適さない。なお、ここで定義する地鉄表面から深さ100μm以上の範囲における組織とは、鋼板断面の、表面(表裏面)から深さ100μm以上の任意の200倍に拡大した500×500μmの視野を、光学顕微鏡や走査型電子顕微鏡で観察した際に認められる地鉄の組織である。   Moreover, there is no problem even if such a stretched structure is present inside the base iron in appearance. However, a stretched structure up to the center of the plate thickness impairs workability and is not suitable for practical use. Therefore, the structure in the range of depth of 100 μm or more from the surface of the ground iron needs to have an area ratio of 10% or less of ferrite grains in which the length of the major axis in the steel sheet rolling direction / the length of the minor axis in the steel sheet width direction is 5 or more. is there. When a tensile test was carried out with a JIS13B tensile test piece, when the elongation was less than 20%, x was evaluated when the elongation was less than 20% and less than 40%, and ◎ when the elongation was 40% or more. When the area ratio is more than 10%, the processability is inferior as shown in FIG. In addition, the structure in the range of depth of 100 μm or more from the surface of the steel defined here is a 500 × 500 μm field of view of the steel plate cross section, which is enlarged 200 times from the surface (front and back) to a depth of 100 μm or more. It is a structure of the iron base observed when observed with an optical microscope or a scanning electron microscope.

本発明の合金化溶融亜鉛めっき鋼板は、低炭素鋼スラブを熱間圧延した後、酸洗し、さらに冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施して、製造する。スラブ加熱条件は、特に規定するものでなく、一般的な鋼板を製造する条件であればなんら問題ないが、熱間仕上圧延時に、異周速率が1%以上20%以下の異周速圧延を1パス以上、および/または、上下圧延ロールの径の比が1.2以上1.5以下である異径ロール圧延を1パス以上施し、かつ、仕上げ圧延終了温度が板幅、圧延方向の熱間圧延時の仕上げ圧延温度は、板幅および圧延方向のいずれの方向においても、(Ar3点−30℃)以上、Ar3点以下とする必要がある。   The alloyed hot-dip galvanized steel sheet of the present invention is manufactured by hot rolling a low carbon steel slab, pickling, and further performing cold rolling, annealing, hot-dip galvanizing, and heat alloying treatment. The slab heating condition is not particularly specified, and there is no problem as long as it is a condition for producing a general steel plate. However, during the hot finish rolling, the different peripheral speed rate is 1% to 20%. 1 pass or more and / or rolling of different diameter rolls in which the ratio of the diameters of the upper and lower rolling rolls is 1.2 or more and 1.5 or less, and the finish rolling finish temperature is the sheet width and heat in the rolling direction. The finish rolling temperature at the time of hot rolling needs to be (Ar3 point−30 ° C.) or more and Ar3 point or less in any of the sheet width and the rolling direction.

異周速率を1.05以上1.50以下とした理由は、1.05未満であれば、合金化溶融亜鉛めっき鋼板の地鉄表面組織を本発明で規定する延伸フェライト組織とできず、1.50を超える場合は、もはやこれ以上組織に及ぼされる影響は小さく、操業が困難になるだけだからである。好ましい範囲は1.20以上1.40以下である。ここで、本発明の異周速率とは、各スタンドの上下ロールにおける周速の比、すなわち、
異周速率=高速側ロール周速/低速側ロール周速 ・・・(A)
で表されるものである。その圧延パス数は1パスで十分であるが、それ以上のパス数を施してもなんら問題はない。また、異周速圧延をするスタンドも特に規定するものではないが、最終スタンドで実施すると最大の効果を得ることができ、望ましい。
The reason for setting the different peripheral speed ratio to 1.05 or more and 1.50 or less is that if it is less than 1.05, the ground surface structure of the galvannealed steel sheet cannot be the stretched ferrite structure defined in the present invention. If it exceeds .50, it will no longer have any impact on the organization and will only make it difficult to operate. A preferred range is from 1.20 to 1.40. Here, the different peripheral speed ratio of the present invention is the ratio of the peripheral speeds of the upper and lower rolls of each stand, that is,
Different peripheral speed ratio = High speed side roll peripheral speed / Low speed side roll peripheral speed (A)
It is represented by The number of rolling passes is one, but there is no problem even if more passes are applied. Further, the stand for carrying out the different peripheral speed rolling is not particularly specified, but it is preferable that the stand is used at the final stand because the maximum effect can be obtained.

また、上下圧延ロールの径の比を1.2以上1.5以下の範囲とした理由は、1.2未満であれば、合金化溶融亜鉛めっき鋼板の地鉄表面組織を本発明で規定する延伸フェライト組織とできず、1.5を超える場合は、逆に地鉄内部まで異常組織となるからである。好ましい範囲は1.25以上1.35未満である。ここで、上下圧延ロールの径の比とは、
各スタンドにおける上下圧延ロールの径の比=上下のうち大径側ロール径/上下のうち小径側ロール径 ・・・(B)
で表されるものである。その圧延パス数は1パスで十分であるが、それ以上のパス数を施してもなんら問題はない。また、異径ロール圧延をするスタンドも特に規定するものではないが、最終スタンドで実施すると最大の効果を得ることができ、望ましい。
Moreover, if the reason why the ratio of the diameters of the upper and lower rolling rolls is in the range of 1.2 to 1.5 is less than 1.2, the ground surface structure of the galvannealed steel sheet is defined in the present invention. This is because, when the stretched ferrite structure cannot be obtained and exceeds 1.5, the structure becomes an abnormal structure up to the inside of the base iron. A preferable range is 1.25 or more and less than 1.35. Here, the ratio of the diameter of the upper and lower rolling rolls is
Ratio of diameter of upper and lower rolling rolls in each stand = larger diameter side roll diameter in upper and lower directions / smaller diameter side roll diameter in upper and lower sides (B)
It is represented by The number of rolling passes is one, but there is no problem even if more passes are applied. Further, a stand for rolling different diameter rolls is not particularly specified, but it is desirable that the stand can be used at the final stand because the maximum effect can be obtained.

仕上げ圧延温度を(Ar3点−30℃)以上、Ar3点以下とした理由は、Ar3点−30℃未満の温度域では、本発明で規定する延伸フェライト組織が合金化溶融亜鉛めっき鋼板の内部まで生成し、加工性に劣るためである。一方、Ar3点を超える温度では、本発明で規定する延伸フェライト組織が合金化溶融亜鉛めっき鋼板の地鉄表面に生成しない。好ましい範囲は(Ar3点−20℃)以上、(Ar3点−10℃)以下である。   The reason for setting the finish rolling temperature to (Ar3 point −30 ° C.) or more and Ar3 point or less is that, in the temperature range of Ar3 point −30 ° C., the stretched ferrite structure defined in the present invention reaches the inside of the galvannealed steel sheet. It is because it produces | generates and is inferior to workability. On the other hand, at a temperature exceeding the Ar3 point, the stretched ferrite structure defined in the present invention is not generated on the surface of the ground iron of the galvannealed steel sheet. A preferable range is (Ar3 point−20 ° C.) or more and (Ar3 point−10 ° C.) or less.

なお、仕上げ圧延温度のみを、(Ar3点−30℃)以上、Ar3点以下としても、本発明の合金化溶融亜鉛めっき鋼板を得ることはできず、上述の異周速圧延、または、異径ロール圧延と組み合わせることによる相乗効果で、本発明の合金化溶融亜鉛めっき鋼板を実現することができる。異周速圧延と異径ロール圧延の両方を組み合わせて実施してもなんら問題はない。   Even if only the finish rolling temperature is set to (Ar3 point-30 ° C.) or more and Ar3 point or less, the alloyed hot-dip galvanized steel sheet of the present invention cannot be obtained. The alloyed hot-dip galvanized steel sheet of the present invention can be realized by a synergistic effect by combining with roll rolling. There is no problem even if both the different speed rolling and the different diameter roll rolling are combined.

なお、ここで言うAr3点とは、冷却過程におけるγ→α変態温度のことであり、次式から求められるものである。
Ar3=900−500×(C%)−50×(Mn%)+200×(P%) ・・・(C)
ここでC%は熱間圧延される鋼板のC質量%、Mn%は熱間圧延される鋼板のMn質量%、P%は熱間圧延される鋼板のP質量%である。
The Ar3 point referred to here is the γ → α transformation temperature in the cooling process and is obtained from the following equation.
Ar3 = 900−500 × (C%) − 50 × (Mn%) + 200 × (P%) (C)
Here, C% is C mass% of the steel sheet to be hot rolled, Mn% is Mn mass% of the steel sheet to be hot rolled, and P% is P mass% of the steel sheet to be hot rolled.

異周速圧延や異径ロール圧延に用いられる圧延ロールは、その表面粗度をRaで0.5μm以上、1.5μm以下とすることが望ましい。本範囲の粗度の圧延ロールを用いることで、鋼板表面層のみに適度な歪を導入することができ、合金化溶融亜鉛めっき後の地鉄表面に、効果的に延伸組織を形成させることができる。   As for the rolling roll used for different peripheral speed rolling or different diameter roll rolling, it is desirable that the surface roughness Ra is 0.5 μm or more and 1.5 μm or less. By using a rolling roll having a roughness within this range, it is possible to introduce an appropriate strain only to the steel sheet surface layer, and to effectively form a stretched structure on the surface of the ground iron after galvannealing. it can.

熱間圧延後は酸洗し、熱間圧延時に生成したスケールを除去する。酸洗条件は、従来から行われている方法で実施すればよく、例えば、50℃以上の塩酸中に鋼板を浸漬する。
酸洗後は冷間圧延するが、その圧下率は70%以上90%以下とすることが好ましい。70%未満では焼鈍後に板厚中心部まで未再結晶組織が残りやすく加工性に劣り、90%を超えた圧下率では、鋼板表面まで再結晶微細組織と成り易く、本発明の地鉄表面組織が得られ難い。また、冷間圧延後の鋼板上の圧延油付着量は、0.1mg/m以上5mg/m以下とすることが望ましい。冷間圧延中の圧延油吹き付け量を絞ることなどでこの範囲の圧延油付着量となるが、この結果ロールと鋼板の間に適度な摩擦力を生じさせ、本発明の延伸組織を効果的に形成させることができる。なお、圧延油付着量は、冷間圧延後の鋼板表面に付着している油分量のことであり、その測定法としては、例えば、冷延鋼板表面の一定面積部分を布などの拭き取り媒体で拭き取り、その拭き取り媒体をノルマル−ヘキサンや、四塩化炭素、四塩化炭素代替物(S−316)などに浸漬して油分を抽出、採取、また、濾過等の処置をし、その液を市販の油分濃度計(例えば、堀場製作所製OCMA−300)や、赤外分光光度計で測定し、求めることなどを挙げることができる。
After hot rolling, pickling is performed, and the scale generated during hot rolling is removed. What is necessary is just to implement the pickling conditions by the method currently performed conventionally, for example, a steel plate is immersed in 50 degreeC or more hydrochloric acid.
Although it cold-rolls after pickling, it is preferable that the rolling reduction shall be 70% or more and 90% or less. If it is less than 70%, an unrecrystallized structure tends to remain up to the center of the sheet thickness after annealing, and the workability is inferior. If the rolling reduction ratio exceeds 90%, a recrystallized microstructure is easily formed up to the steel sheet surface. Is difficult to obtain. Moreover, it is desirable that the rolling oil adhesion amount on the steel sheet after cold rolling is 0.1 mg / m 2 or more and 5 mg / m 2 or less. By reducing the amount of rolling oil sprayed during cold rolling, the amount of rolling oil attached is within this range, but as a result, an appropriate frictional force is generated between the roll and the steel sheet, effectively extending the stretch structure of the present invention. Can be formed. The rolling oil adhesion amount is the amount of oil adhering to the surface of the steel sheet after cold rolling. For example, the fixed oil surface of the cold rolled steel sheet surface can be measured with a wiping medium such as cloth. Wipe off, immerse the wiping medium in normal-hexane, carbon tetrachloride, carbon tetrachloride substitute (S-316), etc. to extract oil, extract, filter, etc. It can be obtained by measuring with an oil concentration meter (for example, OCMA-300 manufactured by Horiba, Ltd.) or an infrared spectrophotometer.

冷間圧延後は750℃以上850℃以下の均熱温度で30秒以上150秒以内加熱して焼鈍することが好ましい。この範囲を下回る場合、板厚中心部まで未再結晶組織が残りやすく加工性に劣り、上回る場合は、鋼板表面まで再結晶微細組織と成り易く、本発明の地鉄表面組織が得られ難い。焼鈍後は、溶融亜鉛めっき、加熱合金化処理を行う。亜鉛めっき浴の温度は440℃〜500℃、加熱合金化温度は480〜560℃とすることが望ましい。以上のような条件で製造することで、本発明の外観品位に優れた溶融亜鉛合金めっき鋼板を実現できる。   After the cold rolling, it is preferable to heat and anneal at a soaking temperature of 750 ° C. or higher and 850 ° C. or lower for 30 seconds or more and 150 seconds or less. When below this range, the unrecrystallized structure tends to remain up to the center of the plate thickness and is inferior in workability. When exceeding this range, the surface of the steel sheet tends to become a recrystallized microstructure, and it is difficult to obtain the surface structure of the present invention. After annealing, hot dip galvanization and heat alloying treatment are performed. The temperature of the galvanizing bath is preferably 440 ° C to 500 ° C, and the heating alloying temperature is preferably 480 to 560 ° C. By producing under the above conditions, a hot dip galvanized steel sheet excellent in appearance quality of the present invention can be realized.

表1に示す組成の鋼を溶製し、連続鋳造してスラブとした。そのスラブを1200℃で1時間加熱後、熱間圧延して板厚4mmの熱延鋼板とした。その後、冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理をし、合金化溶融亜鉛めっき鋼板を作製した。熱延条件および冷間圧延条件の詳細は、表2、表3に示す。なお、熱間圧延時に用いた上下の圧延ロールの径の比は1.0、すなわち同径ロールである。冷間間圧延後の焼鈍はいずれも800℃で120秒間加熱し、溶融亜鉛めっきは浴温460℃のZn−0.13%Alめっき浴に3秒間浸漬し、ワイピングで付着量が45g/mとなるように調整し、その後、480〜580℃の温度で加熱合金化処理した。作製した合金化溶融亜鉛めっき鋼板は下記の評価をした。 Steels having the compositions shown in Table 1 were melted and continuously cast into slabs. The slab was heated at 1200 ° C. for 1 hour and then hot-rolled to obtain a hot-rolled steel plate having a thickness of 4 mm. Thereafter, cold rolling, annealing, hot dip galvanizing, and heat alloying treatment were performed to produce an alloyed hot dip galvanized steel sheet. Details of the hot rolling conditions and the cold rolling conditions are shown in Tables 2 and 3. In addition, the ratio of the diameter of the upper and lower rolling rolls used at the time of hot rolling is 1.0, that is, the same diameter roll. All of the annealing after the cold rolling was heated at 800 ° C. for 120 seconds, and the hot dip galvanizing was immersed in a Zn-0.13% Al plating bath with a bath temperature of 460 ° C. for 3 seconds, and the adhesion amount was 45 g / m by wiping. It adjusted so that it might be set to 2, and it heat-alloyed at the temperature of 480-580 degreeC after that. The produced galvannealed steel sheet was evaluated as follows.

(1)外観
目視観察し、外観むらの程度に応じて×、○、◎の3段階で評価した。
(1) Appearance Visually observed and evaluated in three stages of x, o, and ◎ according to the degree of unevenness in appearance.

(2)地鉄表面フェライトおよび地鉄表面から100μm以上の深さのフェライト組織観察
10%塩酸でめっきを溶解し、光学顕微鏡で200倍に拡大した500×500μmの視野における地鉄表面を観察し、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒の面積率を求めた。尚、地鉄表面から100μm以上の深さのフェライトとしては板厚中心部で観察した。
(2) Observation of ferrite structure at a depth of 100 μm or more from the surface iron surface ferrite and the surface of the iron surface Dissolve the plating with 10% hydrochloric acid and observe the surface of the iron surface in a 500 × 500 μm field of view magnified 200 times with an optical microscope. The area ratio of ferrite grains in which the length of the major axis in the rolling direction of the steel sheet / the length of the minor axis in the width direction of the steel sheet was 5 or more was determined. The ferrite having a depth of 100 μm or more from the surface of the ground iron was observed at the center of the plate thickness.

(3)加工性
JIS13B引っ張り試験片で、引っ張り試験を実施し、伸びが20%未満の場合を×、20%以上40%未満の場合を○、40%以上の場合を◎で評価した。結果を表2および表3に示す。
(3) Workability A tensile test was carried out with a JIS 13B tensile test piece. The case where the elongation was less than 20% was evaluated as x, the case where it was 20% or more and less than 40% was evaluated as ◯, and the case where it was 40% or more was evaluated as ◎. The results are shown in Table 2 and Table 3.

表2は鋼Aにおける結果である。A1からA3は仕上げ圧延温度を本発明の範囲内で変えた場合である。いずれも外観、加工性ともに良好であるが、(Ar3点−20℃)以上、(Ar3点−10℃)以下の範囲であるA2が特に優れる。A4は異周速率をA2よりも低減させた場合であり、外観品位がやや低下するものの合格レベルである。A5は圧延パス数をA2よりも増やした場合であるが、外観や加工性は特に変わらない。A6は圧延ロールの粗度をA2よりも減少させた場合であり、外観品位がやや低下するものの合格レベルである。A7は圧延ロールの粗度をA2よりも増加させた場合であり、外観は向上するが加工性はやや低下した。A8およびA9は、冷間圧延時の圧下率をA2よりも減少または増加させた場合であり、A2よりも、外観と加工性の総合性能ではやや劣るものの、いずれも合格レベルである。A10は冷間圧延時の圧延油量をA2よりも増加させた場合であり、潤滑性が向上し鋼中の歪量が減少したため、外観品位はやや低下するが、合格レベルである。一方、A11は異周速率が本発明の範囲外の場合であり、地鉄表面に延伸組織は認められず、外観に劣る。A12は仕上げ圧延温度が本発明の範囲を超える場合であり、地鉄全体が再結晶組織となるため、外観に劣る。   Table 2 shows the results for Steel A. A1 to A3 are cases where the finish rolling temperature is changed within the scope of the present invention. Both are good in appearance and workability, but A2 in the range of (Ar3 point−20 ° C.) to (Ar3 point−10 ° C.) is particularly excellent. A4 is a case where the different peripheral speed ratio is reduced from that of A2, and is an acceptable level although the appearance quality is slightly lowered. A5 is a case where the number of rolling passes is increased from A2, but the appearance and workability are not particularly changed. A6 is a case where the roughness of the rolling roll is reduced from that of A2, and is an acceptable level although the appearance quality is slightly lowered. A7 is a case where the roughness of the rolling roll is increased from that of A2, and the appearance is improved but the workability is slightly lowered. A8 and A9 are cases where the rolling reduction during cold rolling is reduced or increased from A2, and the overall performance of the appearance and workability is slightly inferior to A2, but both are acceptable levels. A10 is a case where the amount of rolling oil at the time of cold rolling is increased from that of A2, and the lubricity is improved and the amount of strain in the steel is reduced. On the other hand, A11 is a case where the different peripheral speed ratio is outside the range of the present invention, and no stretched structure is observed on the surface of the ground iron, and the appearance is inferior. A12 is a case where the finish rolling temperature exceeds the range of the present invention, and the entire base iron has a recrystallized structure, so that the appearance is inferior.

表3は鋼Bにおける結果である。B1からB3は仕上げ圧延温度を本発明の範囲内で変えた場合である。いずれも外観、加工性ともに良好であるが、(Ar3点−20℃)以上、(Ar3点−10℃)以下の範囲であるB2が特に優れる。B4は異周速率をB2よりも低減させた場合であり、外観品位がやや低下するものの合格レベルである。B5は圧延パス数をB2よりも増やした場合であるが、外観や加工性は特に変わらない。B6は圧延ロールの粗度をB2よりも減少させた場合であり、外観品位がやや低下するものの合格レベルである。B7は圧延ロールの粗度をB2よりも増加させた場合であり、外観は向上するが加工性はやや低下した。B8およびB9は、冷間圧延時の圧下率をB2よりも減少または増加させた場合であり、B2よりも、外観と加工性の総合性能ではやや劣るものの、いずれも合格レベルである。B10は冷間圧延時の圧延油量をA2よりも増加させた場合であり、潤滑性が向上し鋼中の歪量が減少したため、外観品位はやや低下するが、合格レベルである。一方、B11は異周速率が本発明の範囲外の場合であり、地鉄表面に延伸組織は認められず、外観に劣る。B12は仕上げ圧延温度が本発明の範囲を超える場合であり、地鉄全体が再結晶組織となるため、外観に劣る。   Table 3 shows the results for Steel B. B1 to B3 are cases where the finish rolling temperature is changed within the scope of the present invention. Both are good in appearance and workability, but B2 in the range of (Ar3 point−20 ° C.) or more and (Ar3 point−10 ° C.) or less is particularly excellent. B4 is a case where the different peripheral speed ratio is reduced as compared with B2, and is an acceptable level although the appearance quality is slightly lowered. B5 is a case where the number of rolling passes is increased from B2, but the appearance and workability are not particularly changed. B6 is a case where the roughness of the rolling roll is reduced from B2, and is an acceptable level although the appearance quality is slightly lowered. B7 is the case where the roughness of the rolling roll was increased from B2, and the appearance was improved but the workability was slightly reduced. B8 and B9 are cases where the rolling reduction during cold rolling is reduced or increased as compared with B2, and both are inferior to B2 in overall performance of appearance and workability, but both are acceptable levels. B10 is a case where the amount of rolling oil at the time of cold rolling is increased from A2, and the lubricity is improved and the amount of strain in the steel is reduced, so that the appearance quality is slightly lowered, but it is a pass level. On the other hand, B11 is a case where the different peripheral speed ratio is outside the range of the present invention, and no stretched structure is recognized on the surface of the ground iron, and the appearance is inferior. B12 is a case where the finish rolling temperature exceeds the range of the present invention, and since the entire base iron has a recrystallized structure, the appearance is inferior.

Figure 2008231447
Figure 2008231447

Figure 2008231447
Figure 2008231447

Figure 2008231447
Figure 2008231447

表1のAに示す組成の鋼を溶製し、連続鋳造してスラブとした。そのスラブを1200℃で1時間加熱後、熱間圧延して板厚4mmの熱延鋼板とした。その後、冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理をし、合金化溶融亜鉛めっき鋼板を作製した。熱延条件および冷間圧延条件の詳細は、表4に示す。なお、熱間圧延は全6スタンドで圧延し、後段4〜6スタンドにおいて、異型ロール圧延をした。いずれのスタンドにおいても周速率は1.0である。冷間圧延後の焼鈍はいずれも800℃で120秒間加熱し、溶融亜鉛めっきは浴温460℃のZn−0.13%Alめっき浴に3秒間浸漬し、ワイピングで付着量が45g/mとなるように調整し、その後、480〜580℃の温度で加熱合金化処理した。作製した合金化溶融亜鉛めっき鋼板は、実施例1と同じ評価をした。結果を表4に示す。 A steel having the composition shown in A of Table 1 was melted and continuously cast into a slab. The slab was heated at 1200 ° C. for 1 hour and then hot-rolled to obtain a hot-rolled steel plate having a thickness of 4 mm. Thereafter, cold rolling, annealing, hot dip galvanizing, and heat alloying treatment were performed to produce an alloyed hot dip galvanized steel sheet. Details of the hot rolling conditions and the cold rolling conditions are shown in Table 4. In addition, the hot rolling was rolled in all 6 stands, and the irregular roll rolling was performed in the subsequent 4 to 6 stands. In any stand, the peripheral speed ratio is 1.0. All of the annealing after the cold rolling was heated at 800 ° C. for 120 seconds, and the hot dip galvanizing was immersed in a Zn-0.13% Al plating bath having a bath temperature of 460 ° C. for 3 seconds, and the amount of adhesion was 45 g / m 2 by wiping. After that, a heat alloying treatment was performed at a temperature of 480 to 580 ° C. The produced galvannealed steel sheet was evaluated in the same manner as in Example 1. The results are shown in Table 4.

A13からA15は仕上げ圧延温度を本発明の範囲内で変えた場合である。いずれも外観、加工性ともに良好であるが、(Ar3点−20℃)以上、(Ar3点−10℃)以下の範囲であるA14が特に優れる。A16は4スタンドから6スタンドまでの上下ロールの径の比をA14よりも増加させた場合であり、外観品位がやや低下するものの合格レベルである。A17は圧延ロールの粗度をA14よりも増加させた場合であり、外観は向上するが加工性はやや低下した。A18は、冷間圧延時の圧下率をA14よりも増加させた場合であり、A14よりも、外観と加工性の総合性能ではやや劣るものの、いずれも合格レベルである。A19は冷間圧延時の圧延油量をA14よりも増加させた場合であり、潤滑性が向上し鋼中の歪量が減少したため、外観品位はやや低下するが、合格レベルである。一方、A20は上下ロール径の比が本発明の範囲を下回る場合であり、地鉄表面に延伸組織は認められず、外観に劣る。A21は上下ロール径の比が本発明の範囲を上回る場合であり、地鉄内部まで異常組織となり加工性に劣る。A22は仕上げ圧延温度が本発明の範囲を超える場合であり、地鉄全体が再結晶組織となるため、外観に劣る。   A13 to A15 are cases where the finish rolling temperature is changed within the scope of the present invention. Both are good in appearance and workability, but A14 in the range of (Ar3 point−20 ° C.) or more and (Ar3 point−10 ° C.) or less is particularly excellent. A16 is a case where the ratio of the diameters of the upper and lower rolls from the 4th stand to the 6th stand is increased from that of A14, which is a pass level although the appearance quality is slightly lowered. A17 was the case where the roughness of the rolling roll was increased from that of A14. The appearance was improved, but the workability was slightly lowered. A18 is a case where the rolling reduction at the time of cold rolling is increased from A14, and although it is somewhat inferior in overall performance of appearance and workability than A14, both are acceptable levels. A19 is a case where the amount of rolling oil at the time of cold rolling is increased from that of A14. Since the lubricity is improved and the amount of strain in the steel is reduced, the appearance quality is slightly lowered, but it is an acceptable level. On the other hand, A20 is a case where the ratio of the upper and lower roll diameters is lower than the range of the present invention, and no stretched structure is observed on the surface of the ground iron and the appearance is inferior. A21 is a case where the ratio of the upper and lower roll diameters exceeds the range of the present invention, and becomes an abnormal structure up to the inside of the base iron and is inferior in workability. A22 is a case where the finish rolling temperature exceeds the range of the present invention, and the entire base iron has a recrystallized structure, so that the appearance is inferior.

Figure 2008231447
Figure 2008231447

合金化溶融亜鉛めっき鋼板の地鉄の組織を示す図である。It is a figure which shows the structure | tissue of the base iron of a galvannealed steel plate. 鋼板圧延方向長軸の長さおよび鋼板圧延幅方向短軸の長さを説明するための図である。It is a figure for demonstrating the length of a steel plate rolling direction long axis, and the length of a steel plate rolling width direction short axis. 種々の結晶方位を有する結晶からなる地鉄上で成長した激しい凹凸を有するめっき合金層の模式図である。It is a schematic diagram of the plating alloy layer which has the severe unevenness | corrugation which grew on the base iron which consists of a crystal | crystallization which has a various crystal orientation. 合金化溶融亜鉛めっき鋼板の任意の200倍に拡大した500μmの×500μmの視野における任意の箇所のめっき厚みと、それぞれの箇所に対応するめっき下地組織の関係を示した図である。It is the figure which showed the relationship between the plating thickness of the arbitrary locations in the 500 micrometers x 500 micrometers visual field expanded 200 times as much as the alloyed hot-dip galvanized steel sheet, and the plating foundation structure | tissue corresponding to each location. 鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が地鉄表面に占める割合と、外観品位との関係を示す図である。It is a figure which shows the relationship between the ratio which the ferrite grain which the length of a steel plate rolling direction major axis / steel plate width direction minor axis length is 5 or more occupies on the surface of a ground iron, and the appearance quality. 鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が地鉄表面から100μm以上の領域に占める割合と、加工性との関係を示す図である。It is a figure which shows the relationship between the ratio for which the ferrite grain which the length of a steel plate rolling direction major axis / steel plate width direction minor axis length is 5 or more occupies the area | region of 100 micrometers or more from a surface iron surface, and workability.

符号の説明Explanation of symbols

1 鋼板圧延方向長軸
2 鋼板幅方向短軸
3 結晶粒
4 地鉄
5 めっき合金層
DESCRIPTION OF SYMBOLS 1 Steel plate rolling direction long axis 2 Steel plate width direction short axis 3 Crystal grain 4 Base iron 5 Plating alloy layer

Claims (4)

質量%で、
C;0.001%以上0.01%以下、
Si;0.001%以上0.2%以下、
Mn;0.01%以上3%以下、
P;0.005%以上0.2%以下、
S;0.001%以上0.03%以下、
Al;0.005%以上0.1%以下、
さらに質量%で、
Ti;0.001%以上0.05%以下、
Nb;0.001%以上0.05%以下、
B;0.0001%以上0.005%以下、
N;0.0001%以上0.05%以下
の1種または2種以上を含み、
残部がFeおよび不可避的不純物からなる鋼板の表面に、Znを85%以上含む鉄−亜鉛合金被覆を有する合金化溶融亜鉛めっき鋼板で、その地鉄表面の組織が、鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が面積率で90%以上からなり、地鉄表面から深さ100μm以上の範囲における組織は鋼板圧延方向長軸の長さ/鋼板幅方向短軸の長さが5以上であるフェライト粒が面積率で10%以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板。
% By mass
C: 0.001% to 0.01%,
Si: 0.001% or more and 0.2% or less,
Mn: 0.01% or more and 3% or less,
P: 0.005% or more and 0.2% or less,
S; 0.001% or more and 0.03% or less,
Al; 0.005% or more and 0.1% or less,
In addition,
Ti: 0.001% or more and 0.05% or less,
Nb: 0.001% or more and 0.05% or less,
B; 0.0001% to 0.005%,
N; including 0.0001% or more and 0.05% or less of one or more,
An alloyed hot-dip galvanized steel sheet having an iron-zinc alloy coating containing 85% or more of Zn on the surface of the steel sheet, the balance of which is made of Fe and inevitable impurities. The ferrite grain having a length of the minor axis in the width direction of the steel sheet of 5 or more is composed of 90% or more in area ratio, and the structure in the range of 100 μm or more in depth from the surface of the base iron is the length of the major axis in the steel sheet rolling direction. An alloyed hot-dip galvanized steel sheet excellent in appearance quality, characterized in that ferrite grains having a widthwise minor axis length of 5 or more are 10% or less in area ratio.
請求項1に記載の成分からなる低炭素鋼スラブを熱間圧延した後、酸洗、冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施す合金化溶融亜鉛めっき鋼板の製造方法において、熱間仕上圧延時に、下記(A)式で定義した異周速率が1.05以上1.50以下の異周速圧延を1パス以上施し、かつ、Ar3温度を下記(C)式で定義するとき、熱間仕上圧延終了温度が鋼板幅方向、鋼板圧延方向のいずれの方向においても、(Ar3点−30℃)以上、Ar3点以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板の製造方法。
異周速率=高速側ロール周速/低速側ロール周速 ・・・(A)
Ar3=900−500×(C%)−50×(Mn%)+200×(P%)・・・(C)
C%:熱間圧延される鋼板のC質量%、Mn%:熱間圧延される鋼板のMn質量%、
P%:熱間圧延される鋼板のP質量%
In the method for producing an alloyed hot-dip galvanized steel sheet, which is hot-rolled with a low carbon steel slab comprising the components of claim 1 and then subjected to pickling, cold rolling, annealing, hot dip galvanizing, and heat alloying treatment. At the time of hot finish rolling, different peripheral speed rolling defined by the following formula (A) is performed at least one pass, and the Ar3 temperature is defined by the following formula (C). When the hot finish rolling finish temperature is (Ar3 point-30 ° C.) or higher and Ar3 point or lower in any of the steel plate width direction and the steel plate rolling direction, the alloyed molten zinc excellent in appearance quality Manufacturing method of plated steel sheet.
Different peripheral speed ratio = High speed side roll peripheral speed / Low speed side roll peripheral speed (A)
Ar3 = 900−500 × (C%) − 50 × (Mn%) + 200 × (P%) (C)
C%: C mass% of the steel sheet to be hot rolled, Mn%: Mn mass% of the steel sheet to be hot rolled,
P%: P mass% of the steel sheet to be hot rolled
請求項1に記載の成分からなる低炭素鋼スラブを熱間圧延した後、酸洗、冷間圧延、焼鈍、溶融亜鉛めっき、加熱合金化処理を施す合金化溶融亜鉛めっき鋼板の製造方法において、熱間仕上圧延時に、下記(B)式で定義した上下圧延ロールの径の比が1.2以上1.5以下である異径ロール圧延を1パス以上施し、かつ、Ar3温度を下記(C)式で定義するとき、熱間仕上圧延終了温度が鋼板幅方向、鋼板圧延方向のいずれの方向においても、(Ar3点−30℃)以上、Ar3点以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板の製造方法。
各スタンドにおける上下圧延ロールの径の比=上下のうち大径側ロール径/上下のうち小径側ロール径 ・・・(B)
Ar3=900−500×(C%)−50×(Mn%)+200×(P%)・・・(C)
In the method for producing an alloyed hot-dip galvanized steel sheet, which is hot-rolled with a low carbon steel slab comprising the components of claim 1 and then subjected to pickling, cold rolling, annealing, hot dip galvanizing, and heat alloying treatment. At the time of hot finish rolling, rolling of different diameter rolls in which the ratio of the diameters of the upper and lower rolling rolls defined by the following formula (B) is 1.2 or more and 1.5 or less is performed, and the Ar3 temperature is set to the following (C ) When the hot finish rolling finish temperature is defined by the formula, the appearance quality is characterized by being (Ar3 point-30 ° C.) or more and Ar3 point or less in both the steel plate width direction and the steel plate rolling direction. A method for producing an excellent galvannealed steel sheet.
Ratio of diameter of upper and lower rolling rolls in each stand = larger diameter side roll diameter in upper and lower directions / smaller diameter side roll diameter in upper and lower sides (B)
Ar3 = 900−500 × (C%) − 50 × (Mn%) + 200 × (P%) (C)
請求項2または3に記載の合金化溶融亜鉛めっき鋼板の製造方法において、冷間圧延時の圧延油吹付け量を、冷間圧延後の鋼板上の圧延油付着量で0.1mg/m以上5mg/m以下とすることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼板の製造方法。 In the manufacturing method of the galvannealed steel plate of Claim 2 or 3, the amount of rolling oil spraying at the time of cold rolling is 0.1 mg / m < 2 > in the amount of rolling oil adhesion on the steel plate after cold rolling. The manufacturing method of the galvannealed steel plate excellent in the external appearance quality characterized by being 5 mg / m < 2 > or less above.
JP2007068155A 2007-03-16 2007-03-16 Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor Withdrawn JP2008231447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068155A JP2008231447A (en) 2007-03-16 2007-03-16 Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068155A JP2008231447A (en) 2007-03-16 2007-03-16 Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008231447A true JP2008231447A (en) 2008-10-02

Family

ID=39904617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068155A Withdrawn JP2008231447A (en) 2007-03-16 2007-03-16 Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008231447A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285070B1 (en) 2010-11-02 2013-07-10 현대하이스코 주식회사 Continuous hot-dip galvanized steel sheet for outer panel with excellent press-formability and method of manufacturing the same
KR101329948B1 (en) * 2011-05-19 2013-11-14 주식회사 포스코 Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
KR101329923B1 (en) * 2011-05-19 2013-11-14 주식회사 포스코 Ultra low carbon cold rolled steel sheet having excellent workability and method for amnufacturing the same
KR101360559B1 (en) 2011-12-19 2014-02-11 주식회사 포스코 Ultra low carbon cold rolled steel sheet and method for manufacturing the same
TWI448562B (en) * 2009-03-27 2014-08-11 Kobe Steel Ltd Resin-coated galvanized steel sheet
KR101449135B1 (en) * 2012-10-16 2014-10-08 주식회사 포스코 Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same
CN107620094A (en) * 2017-10-17 2018-01-23 武汉钢铁有限公司 Exempt to spray LCD TV rear shell electro-galvanized fingerprint resistant clad plate and its manufacture method
WO2018142849A1 (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
WO2019054769A1 (en) * 2017-09-13 2019-03-21 주식회사 포스코 Steel sheet having excellent image clarity after coating and method for manufacturing same
KR20190030142A (en) * 2017-09-13 2019-03-21 주식회사 포스코 Steel sheet having excellent image clarity after painting, and method for manufacturing the same
WO2022108219A1 (en) * 2020-11-18 2022-05-27 주식회사 포스코 Plated steel sheet having excellent strength, formability and surface quality, and manufacturing method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448562B (en) * 2009-03-27 2014-08-11 Kobe Steel Ltd Resin-coated galvanized steel sheet
KR101285070B1 (en) 2010-11-02 2013-07-10 현대하이스코 주식회사 Continuous hot-dip galvanized steel sheet for outer panel with excellent press-formability and method of manufacturing the same
KR101329948B1 (en) * 2011-05-19 2013-11-14 주식회사 포스코 Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
KR101329923B1 (en) * 2011-05-19 2013-11-14 주식회사 포스코 Ultra low carbon cold rolled steel sheet having excellent workability and method for amnufacturing the same
KR101360559B1 (en) 2011-12-19 2014-02-11 주식회사 포스코 Ultra low carbon cold rolled steel sheet and method for manufacturing the same
KR101449135B1 (en) * 2012-10-16 2014-10-08 주식회사 포스코 Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same
US10927441B2 (en) 2017-01-31 2021-02-23 Jfe Steel Corporation High-strength galvanized hot-rolled steel sheet and method for manufacturing same
CN110268088A (en) * 2017-01-31 2019-09-20 杰富意钢铁株式会社 High-strength hot-dip zinc-coated hot rolled steel plate and its manufacturing method
JP6376310B1 (en) * 2017-01-31 2018-08-22 Jfeスチール株式会社 High-strength hot-dip galvanized hot-rolled steel sheet and manufacturing method thereof
CN110268088B (en) * 2017-01-31 2021-06-25 杰富意钢铁株式会社 High-strength hot-dip galvanized hot-rolled steel sheet and method for producing same
WO2018142849A1 (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
KR20190030142A (en) * 2017-09-13 2019-03-21 주식회사 포스코 Steel sheet having excellent image clarity after painting, and method for manufacturing the same
KR102010079B1 (en) * 2017-09-13 2019-08-12 주식회사 포스코 Steel sheet having excellent image clarity after painting, and method for manufacturing the same
CN111094615A (en) * 2017-09-13 2020-05-01 Posco公司 Steel sheet having excellent distinctness of image after coating and method for producing same
JP2020532655A (en) * 2017-09-13 2020-11-12 ポスコPosco Steel sheet with excellent imageability after painting and its manufacturing method
WO2019054769A1 (en) * 2017-09-13 2019-03-21 주식회사 포스코 Steel sheet having excellent image clarity after coating and method for manufacturing same
CN111094615B (en) * 2017-09-13 2022-05-27 Posco公司 Steel sheet having excellent distinctness of image after coating and method for producing same
US11584973B2 (en) 2017-09-13 2023-02-21 Posco Co., Ltd Steel sheet having excellent image clarity after painting
CN107620094A (en) * 2017-10-17 2018-01-23 武汉钢铁有限公司 Exempt to spray LCD TV rear shell electro-galvanized fingerprint resistant clad plate and its manufacture method
WO2022108219A1 (en) * 2020-11-18 2022-05-27 주식회사 포스코 Plated steel sheet having excellent strength, formability and surface quality, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2008231447A (en) Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor
JP6844627B2 (en) Steel plate and its manufacturing method
JP5858199B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4449795B2 (en) Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-press formed member
JP5370617B2 (en) High strength hot dip galvanized steel sheet
JP5858032B2 (en) High strength steel plate and manufacturing method thereof
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
KR100415718B1 (en) High strength steel sheet and method for manufacturing the same
WO2016067626A1 (en) High-strength steel sheet and method for manufacturing same
WO2016067625A1 (en) High-strength steel sheet and method for manufacturing same
WO2010103936A1 (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
JP3889767B2 (en) High strength steel plate for hot dip galvanizing
WO2014156141A1 (en) High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
WO2016031166A1 (en) High-strength molten galvanized steel sheet and method for production thereof
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP5655381B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
JP3680262B2 (en) Hot-dip galvanized steel sheet with excellent stretch flangeability and manufacturing method thereof
CN108603265B (en) High-strength steel sheet for warm working and method for producing same
JP2012082499A (en) Hot-dipped steel sheet and method for producing the same
CN105074037A (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP2019504203A (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in ductility, hole workability, and surface treatment characteristics, and methods for producing them
JP2006161064A (en) High tensile-strength hot dip galvanized steel sheet and its production method
JP4969954B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same
JP5011953B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2007070732A (en) High tensile galvannealed steel sheet and producing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601