JP2007246353A - Repair method - Google Patents

Repair method Download PDF

Info

Publication number
JP2007246353A
JP2007246353A JP2006073686A JP2006073686A JP2007246353A JP 2007246353 A JP2007246353 A JP 2007246353A JP 2006073686 A JP2006073686 A JP 2006073686A JP 2006073686 A JP2006073686 A JP 2006073686A JP 2007246353 A JP2007246353 A JP 2007246353A
Authority
JP
Japan
Prior art keywords
repair method
aqueous solution
repair
mass
salt aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073686A
Other languages
Japanese (ja)
Other versions
JP5037840B2 (en
Inventor
Akitoshi Araki
昭俊 荒木
Satoshi Takagi
聡史 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006073686A priority Critical patent/JP5037840B2/en
Publication of JP2007246353A publication Critical patent/JP2007246353A/en
Application granted granted Critical
Publication of JP5037840B2 publication Critical patent/JP5037840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4884Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Sealing Material Composition (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repair method by which the restoration of a cross-section or the like can be performed in a simple and easy manner even without special skill by using a specified mixture. <P>SOLUTION: In the repair method, a face from which a deteriorated part of a concrete structure is removed is coated with a mixture comprising: isocyanates; at least one kind selected from polyols and an alkali metal salt aqueous solution; inorganic powder; and a reaction catalyst, and is thereafter foamed and solidified to be restored. Alternatively, in the repair method, the alkali metal salt aqueous solution is a lithium salt aqueous solution. Alternatively, in the repair method, the foamed and solidified surface is coated with a coating material or pasted with a molding. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、劣化したコンクリート構造物の補修工法に関する。   The present invention relates to a method for repairing a deteriorated concrete structure.

近年、コンクリート構造物の維持管理が重要視されるようになり、補修・補強工事が増加している。コンクリート構造物の補修および補強方法はこれまでに各種提案されている。
例えば、コンクリートが中性化や塩害などで劣化した部分を除去し、新たに耐久性に優れたポリマーセメントモルタルなどで除去断面を修復する断面修復工法がある。この断面修復工法では、コテ塗り工法、吹付け工法、およびグラウト工法などが行われており、いずれもポリマーセメントモルタルを練り混ぜて施工するもので、型枠を用いないコテ塗り工法や吹付け工法では、修復深さが深い場合は数層に分けて塗り重ねているのが現状である。
一方、アクリル系あるいはエポキシ系樹脂と骨材を配合した樹脂モルタルによる断面修復も行われている(特許文献1、2)。これらは、早期に強度が得られ緊急時に使用されるケースが多い。また、ウレタン系材料は、発泡性を有するものは特にトンネル工事や法面工事などでの地山の安定化やトンネル背面の空洞充填等で使用されている(特許文献3、4)。
特開2000−063626号公報 特開2000−128958号公報 特開平05−079291号公報 特開2000−282796号公報
In recent years, maintenance and management of concrete structures have become important, and repair and reinforcement works are increasing. Various methods for repairing and reinforcing concrete structures have been proposed so far.
For example, there is a cross-section repair method in which a portion where concrete has deteriorated due to neutralization or salt damage is removed, and the removed cross-section is repaired with a polymer cement mortar having a new durability. In this cross-section repair method, trowel coating method, spraying method, grout method, etc. are carried out, all of which are constructed by kneading polymer cement mortar, trowel coating method and spraying method without using formwork Now, when the repair depth is deep, it is divided into several layers and repainted.
On the other hand, cross-sectional restoration using a resin mortar in which an acrylic or epoxy resin and an aggregate are mixed is also performed (Patent Documents 1 and 2). These are often used in emergencies because they provide strength early. Further, urethane-based materials having foaming properties are used for stabilization of natural ground in tunnel construction and slope construction, and for filling a cavity on the back of the tunnel (Patent Documents 3 and 4).
JP 2000-063626 A JP 2000-128958 A JP 05-079291 JP 2000-282969 A

しかしながら、構造上耐力に影響のない程度の劣化部の修復、外力による小断面の損傷、小断面の修復箇所が点在している場合、修復深さが30mm以上の場合などの補修では、ポリマーセメントモルタルを使用するには、左官技能、吹付け技能、型枠設置技能などを有する作業員でなければ施工をすることが難しく、また、吹付け工法やグラウト工法は、専用の施工システムや型枠を設置する必要があるので簡便な方法ではなかった。また、小さな断面の補修などは施工システムを使用する工法では材料ロスも多いなどの課題があった。さらに、樹脂モルタルは、非常に高価な材料であり作業性も悪いという課題があり、ウレタン系材料は、高価であるとともに、高い発泡倍率を設定するケースが多く強度が低いものが多く、注入工法であるためポンプ圧送できる液状の状態での施工となるため修復深さが大きい断面修復は困難であった。
本発明者は、前記課題を解決するため、特定の混合物を使用することにより、特別な技能がなくても簡便に断面修復などをすることができる補修工法を提供する。
However, when repairing degraded parts that do not affect the structural strength, damage of small cross sections due to external forces, repair of small cross sections, or repairs where the repair depth is 30 mm or more, the polymer In order to use cement mortar, it is difficult to perform construction unless it is a worker who has plastering skills, spraying skills, formwork setting skills, etc. Also, the spraying method and grout method have a dedicated construction system and mold. Since it is necessary to install a frame, it was not a simple method. In addition, small cross-section repairs have problems such as a lot of material loss in the construction method using the construction system. Furthermore, resin mortar is a very expensive material and has a problem of poor workability. Urethane-based materials are expensive and often have a high foaming ratio and often have low strength. Therefore, since the construction is in a liquid state that can be pumped, it is difficult to repair the cross section with a large repair depth.
In order to solve the above-mentioned problems, the present inventor provides a repair method that can easily repair a cross section without using special skills by using a specific mixture.

すなわち、本発明は、(1)イソシアネート類と、ポリオール類およびアルカリ金属塩水溶液の中から選ばれた少なくとも1種と、無機粉体と、反応触媒とを含有した混合物をコンクリート構造物の劣化箇所を除去した面に塗布後発泡固化させて修復する補修工法、(2)アルカリ金属塩水溶液がリチウム塩水溶液である(1)の補修工法、(3)発泡固化した表面に被覆材を塗布する(1)または(2)の補修工法、(4)発泡固化した表面に成形物を貼り付ける(1)または(2)の補修工法、である。   That is, the present invention provides (1) a mixture containing at least one selected from isocyanates, polyols and alkali metal salt aqueous solutions, inorganic powder, and a reaction catalyst, as a deteriorated part of a concrete structure. (2) The repair method of (1) in which the alkali metal salt aqueous solution is a lithium salt aqueous solution, and (3) The coating material is applied to the foamed and solidified surface. 1) or (2) repair method, and (4) the repair method of (1) or (2), in which a molded product is attached to the foamed and solidified surface.

本発明の補修工法を用いることにより、特別な技能を有しなくても簡便に劣化したコンクリート構造物の断面修復などの補修を行うことができる。   By using the repair method of the present invention, repair such as cross-sectional repair of a concrete structure that has been easily deteriorated can be performed without special skills.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のイソシアネート類とは、特に限定されるものではないが、(1)4−4´−ジフェニルメタンジイソシアネート(MDI)、2,4−トリレンジイソシアネート(TDI)、1,3−キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HMDI)、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)、および1,5−ナフタレンジイソシアネート(NDI)など、(2)これらイソシアネート類を水や低級1価ないし多価アルコールで変性したもの、(3)これらイソシアネート類と各種ポリオール類とを反応させた末端イソシアネート基含有ウレタンプレポリマー、(4)これら末端イソシアネート基含有ウレタンプレポリマーを水や1価ないし多価アルコールで変性したもの、(5)これら末端イソシアネート基含有ウレタンプレポリマーと各種イソシアネート類の1種または2種以上の混合物の使用が可能である。さらに、(1)から(5)のうちの1種または2種以上の使用が可能である。これらの中で、安全性や経済性の点でポリメリックMDIの使用が好ましい。   The isocyanates of the present invention are not particularly limited, but (1) 4-4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (TDI), 1,3-xylylene diisocyanate ( XDI), hexamethylene diisocyanate (HMDI), polymethylene polyphenyl polyisocyanate (polymeric MDI), 1,5-naphthalene diisocyanate (NDI), etc. (2) These isocyanates are converted into water or lower monohydric or polyhydric alcohols. Modified products, (3) terminal isocyanate group-containing urethane prepolymers obtained by reacting these isocyanates with various polyols, and (4) these terminal isocyanate group-containing urethane prepolymers were modified with water or a monohydric or polyhydric alcohol. Things, (5 Use of one or a mixture of two or more of these terminal isocyanate group-containing urethane prepolymer and various isocyanates are possible. Further, one or more of (1) to (5) can be used. Among these, use of polymeric MDI is preferable from the viewpoint of safety and economy.

本発明のポリオール類とは、イソシアネート類との反応によってポリウレタン発泡硬化体を形成するもので、具体的には、ポリプロピレングリコール、ポリエチレングリコール、トリメチロールエタン、トリメチロールプロパン、ヘキサメチレングリコール、およびヒマシ油などのアルキレングリコール、グリセリン、ソルビトール、さらに、蔗糖にエチレンオキサイドやプロピレンオキサイドを付加した付加物、およびエチレンオキサイド−プロピレンオキサイド共重合物ならびにエチレンジアミン、ジエタノールアミン、トリエタノールアミンおよびトリエチレンジアミンなどのアミン類にエチレンオキサイドやプロピレンオキサイドを付加した付加物などがある。これらの中で、プロピレングリコールまたはエチレンジアミンにプロピレンオキサイドを付加した付加物の使用が好ましい。   The polyols of the present invention form polyurethane foam cured products by reaction with isocyanates, specifically, polypropylene glycol, polyethylene glycol, trimethylol ethane, trimethylol propane, hexamethylene glycol, and castor oil. Ethylene glycol such as alkylene glycol, glycerin, sorbitol, addition products obtained by adding ethylene oxide or propylene oxide to sucrose, and ethylene oxide-propylene oxide copolymer and amines such as ethylenediamine, diethanolamine, triethanolamine and triethylenediamine There are adducts with addition of oxide or propylene oxide. Among these, it is preferable to use an adduct obtained by adding propylene oxide to propylene glycol or ethylenediamine.

ポリオール類の使用量は、イソシアネート類100質量部に対して10〜200質量部が好ましく、50〜150質量部がより好ましい。10質量部未満では発泡硬化体が脆くなる傾向があり、200質量部を超えると軟らかくなりすぎる傾向がある。   10-200 mass parts is preferable with respect to 100 mass parts of isocyanate, and, as for the usage-amount of polyol, 50-150 mass parts is more preferable. If it is less than 10 parts by mass, the foamed cured product tends to be brittle, and if it exceeds 200 parts by mass, it tends to be too soft.

本発明のアルカリ金属塩水溶液とは、発泡硬化体の強度の向上や難燃性を付与する目的で使用するものであり、リチウム、ナトリウム、カリウムのアルカリ金属炭酸塩の水溶液、リチウム、ナトリウム、カリウムのアルカリ金属ケイ酸塩水溶液、リチウム、ナトリウム、カリウムの亜硝酸塩水溶液などが挙げられる。これらの中で、入手しやすくアルカリ骨材反応抑制効果および防錆効果のあるリチウムのケイ酸塩や亜硝酸塩の使用が好ましい。   The alkali metal salt aqueous solution of the present invention is used for the purpose of improving the strength of the foamed cured product and imparting flame retardancy, and is an aqueous solution of alkali metal carbonates of lithium, sodium and potassium, lithium, sodium and potassium. Alkali metal silicate aqueous solution, lithium, sodium, potassium nitrite aqueous solution and the like. Among these, it is preferable to use lithium silicate or nitrite which is easily available and has an alkali aggregate reaction suppressing effect and an antirust effect.

アルカリ金属塩水溶液の使用量は、イソシアネート類100質量部に対して50〜200質量部が好ましく、80〜150質量部がより好ましい。50質量部未満では、難燃性を付与することが難しく、200質量部を超えると硬化体の強度が低下する傾向がある。   50-200 mass parts is preferable with respect to 100 mass parts of isocyanate, and, as for the usage-amount of alkali metal salt aqueous solution, 80-150 mass parts is more preferable. If it is less than 50 parts by mass, it is difficult to impart flame retardancy, and if it exceeds 200 parts by mass, the strength of the cured product tends to decrease.

本発明では、通常、イソシアネート類とポリオール類は別々の容器に分け、イソシアネート類側をA液とし、ポリオール類側をB液とする2液タイプであり、施工する前に混合し使用するものである。アルカリ金属塩水溶液や反応触媒は、B液側に予め混合しておくことが可能である。   In the present invention, the isocyanates and polyols are usually divided into separate containers, and are a two-component type in which the isocyanate side is A liquid and the polyol side is B liquid. They are mixed and used before construction. is there. The aqueous alkali metal salt solution and the reaction catalyst can be mixed in advance on the B liquid side.

本発明の無機粉体とは、発泡硬化体の強度を向上させる目的で使用するものであり、具体的には、セメント類、カルシウムアルミネート類、フライアッシュ、シリカフューム、スラグ、粘土鉱物、炭酸カルシウム、砂、これらの混合物などが挙げられる。これらの中で、セメントや砂が強度の向上の点で好ましい。   The inorganic powder of the present invention is used for the purpose of improving the strength of the foamed cured product, and specifically, cements, calcium aluminates, fly ash, silica fume, slag, clay minerals, calcium carbonate. , Sand, and mixtures thereof. Among these, cement and sand are preferable in terms of improving strength.

無機粉体の使用量は、薄く刷毛やローラーを使って塗り付ける場合(粘度を低くする場合)と、ヘラなどで塗り付ける場合(粘度を高くする場合)で異なるが、ポリオール類とイソシアネート類の合計、または、ポリオール類とイソシアネート類とアルカリ金属塩水溶液の合計100質量部に対して20〜700質量部が好ましく、80〜500質量部がより好ましい。20質量部未満では,強度を向上させる効果が充分でない場合があり、700質量部を超えると塗り付けができなくなる場合がある。   The amount of inorganic powder used varies depending on whether it is applied thinly with a brush or roller (when the viscosity is reduced) and when applied with a spatula (when the viscosity is increased), but the total of polyols and isocyanates, Or 20-700 mass parts is preferable with respect to a total of 100 mass parts of polyols, isocyanates, and alkali metal salt aqueous solution, and 80-500 mass parts is more preferable. If the amount is less than 20 parts by mass, the effect of improving the strength may not be sufficient. If the amount exceeds 700 parts by mass, the application may not be possible.

無機粉体は、施工現場で配合しても良く、予め、A液側とB液側のいずれか一方あるいは両方に混合して置くことも可能である。貯蔵安定性を考慮すれば現場で混合した方が好ましい。   The inorganic powder may be blended at the construction site, and can be mixed and placed in advance on either or both of the liquid A side and the liquid B side. In view of storage stability, it is preferable to mix on site.

本発明の反応触媒とは、A液とB液を混合してから発泡硬化するまでの時間をコントロールするものであり、アミン系触媒、有機金属系触媒、および無機系触媒などがある。いずれも使用可能であるが、活性が大きい点でアミン系触媒の使用が好ましい。アミン系触媒としては、エチレンジアミン、トリエチレンジアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、およびヘキサメチレンジアミン、ならびにこれらの誘導体または溶剤との混合物が挙げられる。有機金属系触媒としては、ジブチル錫ジラウレート、ジブチル錫ジアセテート、および酢酸カリウムなどが挙げられる。無機系触媒としては、塩化錫などが挙げられる。   The reaction catalyst of the present invention controls the time from mixing the A liquid and the B liquid to foaming and curing, and includes an amine catalyst, an organometallic catalyst, an inorganic catalyst, and the like. Any of them can be used, but use of an amine-based catalyst is preferable because of its high activity. Examples of amine-based catalysts include ethylenediamine, triethylenediamine, triethylamine, ethanolamine, diethanolamine, and hexamethylenediamine, and mixtures thereof with derivatives or solvents thereof. Examples of the organometallic catalyst include dibutyltin dilaurate, dibutyltin diacetate, and potassium acetate. Examples of the inorganic catalyst include tin chloride.

反応触媒の使用量は、特に制限されるものではないが、イソシアネート類100質量部に対して0.05〜10質量部が好ましく、0.2〜5質量部がより好ましい。0.05質量部未満では,反応速度が遅く実用的でなく、10質量部を超えても反応速度の向上効果が見られない傾向にある。   Although the usage-amount of a reaction catalyst is not restrict | limited in particular, 0.05-10 mass parts is preferable with respect to 100 mass parts of isocyanates, and 0.2-5 mass parts is more preferable. If it is less than 0.05 parts by mass, the reaction rate is slow and impractical, and if it exceeds 10 parts by mass, the reaction rate tends not to be improved.

本発明では、発泡体の性能を損なわない範囲で整泡剤、難燃剤、溶剤、界面活性剤、増粘剤、防錆剤などを併用できる。   In the present invention, foam stabilizers, flame retardants, solvents, surfactants, thickeners, rust inhibitors and the like can be used in combination as long as the performance of the foam is not impaired.

本発明の被覆材とは、発泡硬化させた後に、劣化要因となる水、炭酸ガス、塩化物イオンの浸入を抑制することを目的に使用する。例えば、(1)一般的にコンクリート構造物の補修工法で使用される樹脂系表面被覆材が使用でき、例えば、エポキシ系樹脂、アクリル系樹脂、クロロプレン系樹脂など、(2)シリコーン系撥水剤、(3)アクリル系、エチレン−酢酸ビニル系、スチレン−ブタジエン系などの水性エマルジョン、(4)セメントなどの水硬性材料を配合した無機系の表面被覆材が使用でき、ポリマーセメントモルタルなど、(5)コロイダルシリカやケイ酸塩系の表面改質剤などが挙げられる。   The coating material of the present invention is used for the purpose of suppressing the intrusion of water, carbon dioxide gas, and chloride ions that cause deterioration after foaming and curing. For example, (1) Resin-based surface coating materials generally used in repair methods for concrete structures can be used, for example, epoxy resins, acrylic resins, chloroprene resins, etc. (2) silicone-based water repellents (3) Aqueous emulsions such as acrylic, ethylene-vinyl acetate, styrene-butadiene, etc. (4) Inorganic surface coating materials blended with hydraulic materials such as cement, polymer cement mortar, ( 5) Colloidal silica, silicate surface modifiers, and the like.

本発明の成形物とは、発泡硬化させた後に上記劣化要因の侵入の阻止やはく落などを阻止することを目的に使用するもので、金属、樹脂、セメント硬化体などの成形物である。例えば、(1)繊維を網目状またはシート状に成形したビニロンシート、炭素繊維シート、アラミド繊維シート、ケブラー繊維シート、(2)セメントモルタルに短繊維を多量に混入して成形した高靭性ボード、(3)板状のプラスチック成形物、FRPボードなどが挙げられる。   The molded product of the present invention is used for the purpose of preventing entry of the above deterioration factors and peeling off after foaming and curing, and is a molded product of metal, resin, cement cured body or the like. For example, (1) vinylon sheet, carbon fiber sheet, aramid fiber sheet, Kevlar fiber sheet, in which fibers are formed into a mesh or sheet, (2) high toughness board formed by mixing a large amount of short fibers into cement mortar, (3) A plate-shaped plastic molding, an FRP board, and the like can be given.

本発明の施工方法は、欠損した断面を修復できれば特に限定されるものではないが、施工現場でA液、B液、および無機粉体をバケツなどに入れ、棒状のものやハンドミキサーで練り混ぜ、刷毛やヘラを用いて欠損部表面に均一に塗布する。発泡硬化までの時間は反応触媒の量を調整することで可能であるので、修復する面積や気温で適正となるようにコントロールできる。通常、塗り付けて数分後に発泡が始まり硬化する。発泡は、未修復箇所のレベルよりも幾分超える程度までするように調整する。発泡倍率の調整は、無機粉体の使用量やポリオール類の使用量を変化させることで可能である。よりきれいに仕上げる場合は、未修復箇所レベルより超えた部分をノコギリやグラインダーを用いて切り取ればよい。
被覆材を塗布する場合は、発泡硬化後に刷毛やローラーなどを用いて塗布し、成形物を貼り付ける場合は、接着剤やアンカーなどで固定すればよい。
The construction method of the present invention is not particularly limited as long as the missing cross section can be repaired, but the liquid A, liquid B and inorganic powder are put in a bucket etc. at the construction site and kneaded with a rod-shaped object or a hand mixer. Apply evenly to the defect surface using a brush or spatula. Since the time until foam hardening is possible by adjusting the amount of the reaction catalyst, it can be controlled to be appropriate depending on the area to be repaired and the temperature. Usually, foaming starts and hardens several minutes after application. Foaming is adjusted to a level somewhat above the level of the unrepaired area. The expansion ratio can be adjusted by changing the amount of inorganic powder used or the amount of polyol used. For a finer finish, use a saw or grinder to cut off the part beyond the unrepaired part level.
When applying a coating material, it is applied using a brush or a roller after foaming and curing, and when a molded product is attached, it may be fixed with an adhesive or an anchor.

以下、実施例で詳細に説明する。   Examples will be described in detail below.

イソシアネート類100質量部に対して、反応触媒を0.3質量部、ポリオール類を表1に示すように加え、無機粉体Aをポリオール類とイソシアネート類の合計100質量部に対して200質量部となるように混合し、発泡倍率と圧縮強度を測定した。結果を表1に示す。   To 100 parts by mass of isocyanates, 0.3 parts by mass of reaction catalyst and polyols are added as shown in Table 1, and inorganic powder A is added to 200 parts by mass with respect to 100 parts by mass in total of polyols and isocyanates. The foaming ratio and compressive strength were measured. The results are shown in Table 1.

(使用材料)
イソシアネート類:ポリメリックMDI、市販品
ポリオール類:エチレンジアミンのポリプロピレンオキサイド付加物、市販品
反応触媒:ヘキサメチレンジアミン、市販品
無機粉体A:石灰砂、最大粒径1.2mm
(Materials used)
Isocyanates: Polymeric MDI, Commercially available polyols: Polypropylene oxide adduct of ethylenediamine, Commercially available reaction catalyst: Hexamethylenediamine, Commercially available inorganic powder A: Lime sand, Maximum particle size 1.2 mm

(試験方法)
発泡倍率:A液(イソシアネート類)とB液(ポリオール類)の合計容積に対する最大発泡時の容積
圧縮強度:材齢24時間後に、縦2cm×横2cm×高さ2cmの立方体に発泡硬化体を成形しオートグラフによって圧縮強度を測定
硬化時間:A液とB液を混合してから最大に発泡するまでの時間
(Test method)
Foaming ratio: Volume compression strength at the time of maximum foaming with respect to the total volume of liquid A (isocyanates) and liquid B (polyols): After 24 hours of material age, the foamed cured body is formed into a cube of 2 cm long x 2 cm wide x 2 cm high Molding and measuring compressive strength with autograph Curing time: Time from foaming of A and B to maximum foaming

Figure 2007246353
Figure 2007246353

表1から、本発明の補修工法により、作業(硬化)時間が充分取れ、発泡倍率が高く、しかも強度が高い修復材を提供することができることが分かる。   From Table 1, it can be seen that the repair method of the present invention can provide a repair material having sufficient work (curing) time, high foaming ratio and high strength.

イソシアネート類100質量部に対して、反応触媒を0.3質量部、アルカリ金属塩水溶液およびポリオール類を表2に示すように加え、無機粉体をポリオール類と、アルカリ金属塩水溶液AまたはBと、イソシアネート類との合計100質量部に対して200質量部となるように混合し、難燃性試験を行ったこと以外は実施例1と同様に行った。結果を表2に示す。   With respect to 100 parts by mass of isocyanates, 0.3 parts by mass of reaction catalyst, alkali metal salt aqueous solution and polyols are added as shown in Table 2, and inorganic powder is added to polyols and alkali metal salt aqueous solution A or B. The mixture was mixed in an amount of 200 parts by mass with respect to a total of 100 parts by mass with isocyanates, and the same procedure as in Example 1 was performed except that the flame retardancy test was performed. The results are shown in Table 2.

(使用材料)
アルカリ金属塩水溶液A:ケイ酸リチウム水溶液、固形分20質量%
アルカリ金属塩水溶液B:亜硝酸リチウム水溶液、固形分40質量%
(Materials used)
Alkali metal salt aqueous solution A: lithium silicate aqueous solution, solid content 20% by mass
Alkali metal salt aqueous solution B: lithium nitrite aqueous solution, solid content 40% by mass

(試験方法)
難燃性:JIS K 7201に準じ、発泡硬化体の3mm厚みのシートを作製し酸素指数を測定した。酸素指数が35以上の場合を○、8以上〜35未満の場合を△、8未満を×とした。
(Test method)
Flame retardancy: According to JIS K 7201, a foamed cured sheet having a thickness of 3 mm was prepared and the oxygen index was measured. The case where the oxygen index was 35 or more was evaluated as ◯, the case where it was 8 or more but less than 35 was evaluated as Δ, and the case where it was less than 8 was evaluated as ×.

Figure 2007246353
Figure 2007246353

表2から、本発明の補修工法により、作業(硬化)時間が充分取れ、発泡倍率が高く、しかも強度が高く、さらに、難燃性高い修復材を提供することができることが分かる。   From Table 2, it can be seen that the repair method of the present invention can provide a repair material having sufficient work (curing) time, high foaming ratio, high strength, and high flame retardancy.

イソシアネート類100質量部に対して、反応触媒を0.3質量部、ポリオール類を100質量部、無機粉体AまたはBをイソシアネートとポリオールの合計100質量部に対して表3に示すように加え、実施例2と同様に難燃性を測定したこと以外は実施例1と同様に行った。結果を表3に示す。   As shown in Table 3, 0.3 parts by mass of reaction catalyst, 100 parts by mass of polyols, and inorganic powder A or B are added to 100 parts by mass of isocyanate and polyol, based on 100 parts by mass of isocyanate and polyol. The same procedure as in Example 1 was conducted except that flame retardancy was measured in the same manner as in Example 2. The results are shown in Table 3.

(使用材料)
無機粉体B:普通ポルトランドセメント

Figure 2007246353
(Materials used)
Inorganic powder B: Ordinary Portland cement
Figure 2007246353

表3から、本発明の補修工法により、作業(硬化)時間が充分取れ、発泡倍率が高く、しかも強度が高く、さらに、難燃性高い修復材を提供することができることが分かる。   From Table 3, it can be seen that the repair method of the present invention can provide a repair material having sufficient work (curing) time, high foaming ratio, high strength, and high flame retardancy.

イソシアネート類100質量部に対して、ポリオール類を100質量部、反応触媒を表4に示すように加え、実施例2と同様に難燃性を測定したこと以外は実施例1と同様に行った。結果を表4に示す。   The same procedure as in Example 1 was performed except that 100 parts by mass of isocyanate and 100 parts by mass of polyol and reaction catalyst were added as shown in Table 4 and flame retardancy was measured in the same manner as in Example 2. . The results are shown in Table 4.

Figure 2007246353
Figure 2007246353

表4から、本発明の補修工法により、作業(硬化)時間が充分取れ、発泡倍率が高く、しかも強度が高く、さらに、難燃性高い修復材を提供することができることが分かる。   From Table 4, it can be seen that the repair method of the present invention can provide a repair material having sufficient work (curing) time, high foaming ratio, high strength, and high flame retardancy.

コンクリート構造物において、縦30cm×横30cm×深さ2cmのコンクリートを除去した欠損箇所に、実施例1の実験No.1-6、実施例2の実験No.2-9、2-15の混合物をヘラで厚み10〜15mmとなるように塗り付けた。その結果、数分後に発泡し欠損した断面修復箇所に発泡硬化体が形成された。そのときの硬化時間、発泡倍率、圧縮強度を実施例1と同様に測定し、さらに、発泡硬化体とコンクリートの付着強度を測定した。結果を表5に示す。   In the concrete structure, the mixture of Experiment No. 1-6 in Example 1 and Experiment No. 2-9 and 2-15 in Example 2 is applied to the defect portion where the concrete of 30 cm in length × 30 cm in width × 2 cm in depth is removed. Was applied with a spatula to a thickness of 10 to 15 mm. As a result, a foamed cured product was formed at the cross-sectional repaired site that foamed and was lost after several minutes. The curing time, foaming ratio, and compressive strength at that time were measured in the same manner as in Example 1, and the adhesion strength between the foamed cured product and concrete was further measured. The results are shown in Table 5.

(試験方法)
付着強度:φ50mmのコアドリルでコンクリート部分まで削孔し、建研式付着力試験機で測定した。
(Test method)
Adhesive strength: Drilled to the concrete part with a core drill of φ50 mm, and measured with a Kenken-type adhesion tester.

Figure 2007246353
Figure 2007246353

表5から、本発明の補修工法により、作業(硬化)時間が充分取れ、発泡倍率が高く、しかも強度が高く、さらに、コンクリートとの付着強度の高い修復材を提供することができることが分かる。   From Table 5, it can be seen that the repairing method of the present invention can provide a repair material with sufficient work (curing) time, high foaming ratio, high strength, and high adhesion strength with concrete.

コンクリート構造物において、縦30cm×横30cm×深さ2cmのコンクリートを除去した欠損箇所に漏水を想定し水を噴霧した。その濡れた面に実施例1の実験No.1-6、実施例2の実験No.2-9、2-15の混合物をヘラで厚み10〜15mmとなるように塗り付けた。その結果、数分後に発泡し欠損した断面修復箇所に発泡硬化体が形成された。そのときの硬化時間、発泡倍率、圧縮強度、付着強度を実施例5と同様に測定した。結果を表6に示す。   In the concrete structure, water was sprayed on the defective portion from which the concrete of 30 cm in length × 30 cm in width × 2 cm in depth was removed, assuming water leakage. A mixture of Experiment No. 1-6 of Example 1 and Experiment Nos. 2-9 and 2-15 of Example 2 was applied to the wet surface with a spatula to a thickness of 10 to 15 mm. As a result, a foamed cured product was formed at the cross-sectional repaired site that foamed and was lost after several minutes. The curing time, foaming ratio, compressive strength, and adhesion strength at that time were measured in the same manner as in Example 5. The results are shown in Table 6.

Figure 2007246353
Figure 2007246353

表6から、本発明の補修工法により、作業(硬化)時間が充分取れ、発泡倍率が高く、しかも強度が高く、水で濡れたコンクリート面との付着強度の高い修復材を提供することができることが分かる。   From Table 6, the repair method according to the present invention can provide a repair material having sufficient work (curing) time, high foaming ratio, high strength, and high adhesion strength to the wet concrete surface. I understand.

縦20cm×横20cm厚さ6cmのコンクリート板を縦15cm×横15cm×深さ2cmとなるようにコンクリートを除去し欠損箇所作製し、その底面にD16の鉄筋を1本配置した。そして、実施例1の実験No.1-6、実施例2の実験No.2-9、2-15の混合物をヘラで厚み10〜15mmとなるように塗り付け発泡硬化体を形成させ試験体を作製した。翌日、その試験体を海水中に1ヶ月浸漬後、発泡硬化体を除去し内部の鉄筋状態を観察した。その結果、実験No.1-6の混合物の場合は鉄筋が錆びており、他の混合物の場合は錆びが発生していなかった。
したがって、鉄筋が剥き出しになっている欠損部へリチウムのアルカリ金属塩水溶液を使用した修復材を使用することで、より高い防錆効果を付与できることが分かった。
A concrete plate having a length of 20 cm, a width of 20 cm, and a thickness of 6 cm was removed from the concrete so that the length was 15 cm, a width of 15 cm, and a depth of 2 cm, and a deficient portion was produced. A mixture of Experiment No. 1-6 in Example 1 and Experiment Nos. 2-9 and 2-15 in Example 2 was applied with a spatula to a thickness of 10 to 15 mm to form a foamed cured body, and a test specimen Was made. On the next day, the specimen was immersed in seawater for 1 month, the foamed cured body was removed, and the internal reinforcing bar state was observed. As a result, in the case of the mixture of Experiment No. 1-6, the reinforcing bars were rusted, and in the case of the other mixtures, rust was not generated.
Therefore, it turned out that a higher rust prevention effect can be provided by using the restoration | repair material which used the alkali metal salt aqueous solution of lithium for the defect | deletion part from which the reinforcing bar is exposed.

縦20cm×横20cm厚さ6cmのコンクリート板を縦15cm×横15cm×深さ2cmとなるようにコンクリートを除去し欠損箇所作製し、その底面にD16の鉄筋を1本配置した。そして、実施例1の実験No.1-6、実施例2の実験No.2-9、2-15の混合物をヘラで厚み10〜15mmとなるように塗り付け発泡硬化体を形成させた。下記に示す各種(A、B、C)被覆材を塗布したものを試験体とし、7日後にその試験体を海水中に1ヶ月浸漬後、発泡硬化体を除去し内部の鉄筋状態を観察した結果、鉄筋に錆びが発生していなかった。   A concrete plate having a length of 20 cm, a width of 20 cm, and a thickness of 6 cm was removed from the concrete so that the length was 15 cm, a width of 15 cm, and a depth of 2 cm, and a deficient portion was produced. A mixture of Experiment No. 1-6 in Example 1 and Experiment Nos. 2-9 and 2-15 in Example 2 was applied with a spatula to a thickness of 10 to 15 mm to form a foam cured body. What applied the various (A, B, C) coating materials shown below was used as a test body, and after 7 days, the test body was immersed in seawater for one month, and then the foamed cured body was removed and the state of internal reinforcing bars was observed. As a result, rust was not generated in the reinforcing bars.

(使用材料)
被覆材A:アクリル系被覆材、市販品
被覆材B:シラン系撥水剤、市販品
被覆材C:ポリマーセメント系被覆材、市販品
(Materials used)
Coating material A: acrylic coating material, commercial product coating material B: silane-based water repellent, commercial product coating material C: polymer cement-based coating material, commercial product

縦10cm×横40cm×高さ10cmのコンクリート試験体(高さ5cmの部分に金網を設置)横の中心から左右10cm幅の部分を深さ2cmとなるようにコンクリートをはつり取り、実施例1の実験No.1-6の混合物をヘラで厚み10〜15cmとなるように塗り付け発泡硬化体を形成させた。その後、下記に示す各種成形物を貼り付けて、曲げ試験と同様に載荷し破壊したときの状況を観察した結果、成形物を貼り付けない場合は、コンクリートと発泡硬化体の界面で縁切れを起こし一部剥落が発生したのに対し、成形物A〜Cを貼り付けたものは、コンクリートと発泡硬化体の界面で縁切れを起こしても、貼り付けた成形物の曲げせん断強度が強いので全く剥落は生じなかった。   Concrete test body 10 cm long × 40 cm wide × 10 cm high (wire mesh installed at a height of 5 cm) The concrete was suspended so that a portion 10 cm wide from the center of the side was 2 cm deep and 2 cm deep. The mixture of Experiment No. 1-6 was applied with a spatula to a thickness of 10 to 15 cm to form a foamed cured product. After that, after attaching the various molded products shown below and observing the situation when loaded and destroyed in the same way as in the bending test, if the molded product is not pasted, break the edge at the interface between the concrete and the cured foam. Although the part of the raised parts peeled off, the ones with the molded products A to C attached had a strong bending shear strength even if the edges were cut at the interface between the concrete and the cured foam. No peeling occurred.

(使用材料)
成形物A:2軸ビニロンメッシュシート、固定にはアクリル系接着剤を使用
成形物B:FRP板、固定にはアクリル系接着剤とアンカーボルトを使用
成形物C:高靭性ボード、固定にはアンカーボルトを使用
(Materials used)
Molded product A: Biaxial vinylon mesh sheet, acrylic adhesive used for fixing Molded B: FRP plate, acrylic adhesive and anchor bolts used for fixing Molded C: high toughness board, anchor used for fixing Use bolts

本発明の補修工法を用いることにより、特別な技能を有しなくても簡便に劣化したコンクリート構造物の断面修復などの補修を行うことができるので、土木・建築分野で幅広く適用できる。   By using the repairing method according to the present invention, it is possible to easily repair a deteriorated concrete structure such as a cross section without having special skills, and thus can be widely applied in the civil engineering and construction fields.

Claims (4)

イソシアネート類と、ポリオール類およびアルカリ金属塩水溶液の中から選ばれた少なくとも1種と、無機粉体と、反応触媒とを含有した混合物をコンクリート構造物の劣化箇所を除去した面に塗布後発泡固化させて修復する補修工法。 Applying a mixture containing isocyanate, at least one selected from polyols and alkali metal salt aqueous solutions, inorganic powder, and reaction catalyst to the surface of the concrete structure from which the deteriorated portion has been removed, and then solidifying by foaming Repair method to repair by letting. アルカリ金属塩水溶液がリチウム塩水溶液である請求項1記載の補修工法。 2. The repair method according to claim 1, wherein the alkali metal salt aqueous solution is a lithium salt aqueous solution. 発泡固化した表面に被覆材を塗布する請求項1または2記載の補修工法。 The repair method according to claim 1 or 2, wherein a coating material is applied to the foamed and solidified surface. 発泡固化した表面に成形物を貼り付ける請求項1または2記載の補修工法。 The repair method according to claim 1 or 2, wherein a molded product is attached to the foamed and solidified surface.
JP2006073686A 2006-03-17 2006-03-17 Repair method Expired - Fee Related JP5037840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073686A JP5037840B2 (en) 2006-03-17 2006-03-17 Repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073686A JP5037840B2 (en) 2006-03-17 2006-03-17 Repair method

Publications (2)

Publication Number Publication Date
JP2007246353A true JP2007246353A (en) 2007-09-27
JP5037840B2 JP5037840B2 (en) 2012-10-03

Family

ID=38591033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073686A Expired - Fee Related JP5037840B2 (en) 2006-03-17 2006-03-17 Repair method

Country Status (1)

Country Link
JP (1) JP5037840B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084439A (en) * 2009-10-16 2011-04-28 Ashford Japan Kk Composition for surface modification of calcium-based inorganic substrate
JP2012109232A (en) * 2010-10-22 2012-06-07 Central Research Institute Of Electric Power Industry Repair method of silica-containing structure and existing bushing which are formed by bonding silica-containing structure and other component member with cement
JP2016145321A (en) * 2015-02-02 2016-08-12 オート化学工業株式会社 Curable composition
CN112208635A (en) * 2020-09-03 2021-01-12 盐城市步高汽配制造有限公司 Self-repairing type steering pull rod

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145221A (en) * 1983-02-04 1984-08-20 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane foam composition
JPH01103970A (en) * 1987-10-15 1989-04-21 Nissan Chem Ind Ltd Method for preventing deterioration of hardened concrete
JPH0259483A (en) * 1988-08-26 1990-02-28 Kajima Corp Method for protectively coating storage tank made of concrete
JPH03285882A (en) * 1990-04-03 1991-12-17 Meisei Kogyo Kk Preventing method for deterioration of concrete structure
JPH05202620A (en) * 1992-01-24 1993-08-10 Shimizu Corp Repair of crack of concrete structure and the like
JPH0812402A (en) * 1994-06-21 1996-01-16 Sk Kaken Co Ltd Ornamental finishing material giving natural rock-like foamed product
JP2002012463A (en) * 2000-06-23 2002-01-15 Asahi Glass Co Ltd Polyurethane cement composition
WO2005082813A1 (en) * 2004-02-26 2005-09-09 B-Brain Corporation Silicious concrete modifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145221A (en) * 1983-02-04 1984-08-20 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane foam composition
JPH01103970A (en) * 1987-10-15 1989-04-21 Nissan Chem Ind Ltd Method for preventing deterioration of hardened concrete
JPH0259483A (en) * 1988-08-26 1990-02-28 Kajima Corp Method for protectively coating storage tank made of concrete
JPH03285882A (en) * 1990-04-03 1991-12-17 Meisei Kogyo Kk Preventing method for deterioration of concrete structure
JPH05202620A (en) * 1992-01-24 1993-08-10 Shimizu Corp Repair of crack of concrete structure and the like
JPH0812402A (en) * 1994-06-21 1996-01-16 Sk Kaken Co Ltd Ornamental finishing material giving natural rock-like foamed product
JP2002012463A (en) * 2000-06-23 2002-01-15 Asahi Glass Co Ltd Polyurethane cement composition
WO2005082813A1 (en) * 2004-02-26 2005-09-09 B-Brain Corporation Silicious concrete modifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084439A (en) * 2009-10-16 2011-04-28 Ashford Japan Kk Composition for surface modification of calcium-based inorganic substrate
JP2012109232A (en) * 2010-10-22 2012-06-07 Central Research Institute Of Electric Power Industry Repair method of silica-containing structure and existing bushing which are formed by bonding silica-containing structure and other component member with cement
JP2016145321A (en) * 2015-02-02 2016-08-12 オート化学工業株式会社 Curable composition
CN112208635A (en) * 2020-09-03 2021-01-12 盐城市步高汽配制造有限公司 Self-repairing type steering pull rod
CN112208635B (en) * 2020-09-03 2023-01-24 盐城市步高汽配制造有限公司 Self-repairing type steering pull rod

Also Published As

Publication number Publication date
JP5037840B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
KR101133569B1 (en) Composition of polymer mortar for spray apparatus and repair method of concrete structures using the same
KR100948348B1 (en) Waterproof and reinforcement method of concrete structures using inorganic composition of quick-setting type and acrylate liner material
KR101983083B1 (en) Crack waterproofing method of concrete structure
KR101366521B1 (en) Mortar compound and method for repairing cross section of salt-attack and neutralization and using the same
KR102063118B1 (en) A concrete structures seismic reinforcing and repairing composition and the seismic reinforcing and repairing method thereof
KR100216686B1 (en) Injection-type chemical composition for stabilization and reinforcement process using the same
KR102266502B1 (en) Concrete section repair and reinforcement method
JP5037840B2 (en) Repair method
KR101056825B1 (en) Mortar composition using waterbone binder and repairing-reinforcing method for concrete structure
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
KR101039376B1 (en) Inorganic polyurethan waterproofing material and waterproof method thereof
JP6329884B2 (en) Cement concrete curing method
JP4476859B2 (en) Dry mortar spraying method
JP3543277B2 (en) Curable composition
JP2003253782A (en) Heat insulating method, its heat insulating structure, and resin mortar
JP2004324285A (en) Surface protection method for skeleton concrete
JP3636427B2 (en) Body repair method
JP2002348896A (en) Waterproof method
KR102058181B1 (en) Repairing method for cross-section restoration of concrete structures
KR100444949B1 (en) Construction method for anti-cracking
JP2003049445A (en) Waterproofing method
KR100468074B1 (en) Construction method for anti-cracking
JPH0953013A (en) Setting accelerator
JP2004183388A (en) Floor structure body and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees