WO2005082813A1 - Silicious concrete modifier - Google Patents

Silicious concrete modifier Download PDF

Info

Publication number
WO2005082813A1
WO2005082813A1 PCT/JP2005/003122 JP2005003122W WO2005082813A1 WO 2005082813 A1 WO2005082813 A1 WO 2005082813A1 JP 2005003122 W JP2005003122 W JP 2005003122W WO 2005082813 A1 WO2005082813 A1 WO 2005082813A1
Authority
WO
WIPO (PCT)
Prior art keywords
modifier
concrete
alkali metal
test
water
Prior art date
Application number
PCT/JP2005/003122
Other languages
French (fr)
Japanese (ja)
Inventor
Toyoharu Nawa
Yoshiro Yamakita
Miki Suzuki
Hiroshi Naganuma
Original Assignee
B-Brain Corporation
Hokkaido Technology Licensing Office Co., Ltd.
Minamigumi Co., Ltd.
Urakawa Namaconcrete Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B-Brain Corporation, Hokkaido Technology Licensing Office Co., Ltd., Minamigumi Co., Ltd., Urakawa Namaconcrete Corporation filed Critical B-Brain Corporation
Priority to JP2006510461A priority Critical patent/JP4484872B2/en
Publication of WO2005082813A1 publication Critical patent/WO2005082813A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates

Definitions

  • the present invention relates to a silicate-based concrete reforming system that prevents or suppresses deterioration due to freezing and thawing or salt damage of concrete, and prevents or suppresses deterioration due to a combination thereof, thereby contributing to a reduction in life cycle cost.
  • Agent surface modifier
  • composition of cement that constitutes new concrete is changed and the unit water volume is reduced, aggregate components are specified.
  • existing concrete a method of coating the deteriorated surface with polymer cement, and mortar containing a siliceous waterproofing agent is used.
  • a coating method using an organic resin, cement, or water glass based material is used.
  • Patent document 1 JP-A-2000-44317
  • water-glass based materials harden at the surface layer of the cracks (1-2 mm from the surface layer) and cannot penetrate into concrete, so the effect is limited.
  • cement-based materials use ultra-fine cement. Even 0.2mm Only the above cracks can be filled, the surface strength of concrete is improved, and the aqueous solution of lithium silicate, which is known as an alkali imparting agent, has a high viscosity and is difficult to penetrate.
  • the conventional method has a number of problems, such as the fact that it is only about 1-2 mm, and it is inferior in durability and needs to be rebuilt in several years.
  • the present invention prevents or suppresses deterioration due to freezing and thawing or salt damage, or a composite deterioration due to them by a relatively simple construction method of simply applying the composition to the surface of a new or existing concrete structure, and also provides a surface design. It is an object of the present invention to provide a concrete modifier which penetrates deep into the concrete (maintains the condition of the concrete surface immediately after casting) without changing the concrete, and has high durability and high durability.
  • the present invention (1) is a concrete modifier characterized by blending an alkali metal ion source with a lithium silicate aqueous solution.
  • the present invention (2) is the modifier of the above-mentioned invention (1), wherein the alkali metal ion source is a water-soluble alkali metal-containing substance.
  • the present invention (3) is the modifier according to the above (1) or (2), which is an alkali metal ion force sodium ion and potassium ion from an alkali metal ion source.
  • the molar specific force of all alkali metal ions including lithium ions derived from an aqueous solution of lithium silicate to SiO is 0.4.2-1. 1 (preferably, 0.6.1.4. )
  • the present invention (6) relates to the specific power molar ratio of potassium ion to sodium ion of 0.02 to 2
  • the present invention (7) when added to a saturated aqueous calcium hydroxide solution according to the measuring method 1 in the specification, a two-phase structure of a cloudy gel phase and a transparent solution phase is formed, more preferably
  • the turbid gel is one of the modifiers according to the invention (1)-(6), which is separated into a force layer (a floating layer and a sedimentation layer).
  • the present invention (8) is the modifier according to any one of the aforementioned inventions (1)-(7), which is a concrete surface application type.
  • the “concrete surface application type” includes not only a mode of applying to a concrete surface but also a mode of injecting a concrete surface force (for example, from a crack).
  • the present invention (9) is a stock solution of the modifier according to any one of the inventions (1) and (8), which is obtained by mixing an alkali metal ion source with a lithium silicate aqueous solution.
  • SiO and Li 2 O (equivalent oxide equivalent) in the lithium silicate aqueous solution are the total amount of them.
  • the present invention provides the above-mentioned invention (1)-(6), wherein the modifying agent obtained by diluting the undiluted solution of the invention (9) with water is:
  • This is a method for preventing or suppressing deterioration of concrete, including a step of applying (for example, applying) one or more times to a concrete surface.
  • the dilution ratio of the stock solution with water varies depending on the surface condition of the concrete, and is, for example, 115 times.
  • the present invention (11) is to apply an aqueous solution of calcium hydroxide to the concrete surface before or during the one or more times of applying the modifying agent (for example, applying the modifying agent) (for example, The method according to the invention (10), further comprising the step of:
  • the present invention (12) is a concrete in which deterioration is prevented or suppressed by the method of the invention (10) or (11).
  • the concrete modifier according to the present invention imparts a property of reducing concrete to moisture permeability and salt permeability.
  • the alkali metal-containing lithium silicate in the agent reacts with water present on the interface of the aggregate or in the internal voids or calcium hydroxide, which is a pore solution component of concrete, to form a gel.
  • the pores are densified.
  • the intrusion of water which is a factor promoting various kinds of deterioration, is hindered.
  • diffusion on the surface of the gel is suppressed by making the charge on the gel surface negative and electrically repelling.
  • the concrete modifier according to the present invention has a property that, when compared with a conventional alkali imparting agent, penetrates deeper into the concrete (for example, to a depth of about 40 mm). Then! It is understood that the reason for this is that the reaction rate is much slower than that of conventional ones (such as a water glass-based modifier) (it can penetrate deep into the concrete). In various conventional research reports, there are many reports that lithium compounds are effective in preventing various types of concrete deterioration. However, since this component can penetrate only about 1-2 mm from the surface, it could only be used as a concrete admixture / surface coating material.
  • the present invention is epoch-making in that it provides a penetrating surface coating agent based on this second property of deep penetration.
  • FIG. 1 (a) is a schematic diagram of a concrete section, in which a mortar matrix 1 containing fine aggregate, coarse aggregate 2, pores and cracks 3 are shown.
  • Figure 1 (b)-(d) is an enlarged pictorial diagram of the square box in Fig. 1 (a).
  • 3 also shows the fragile tissue portion at the aggregate interface
  • 4 is fine aggregate
  • 5 is cement paste.
  • a pore solution containing ions such as calcium Inside 3 is a pore solution containing ions such as calcium.
  • FIG. 1 (c) shows a state in which the present modifier 6 has penetrated into voids and the like.
  • the modifier that has penetrated into the voids reacts with the hydroxide and water in the pore solution to form a gel.
  • FIG. 1 (d) shows the appearance of gel 7 produced from the present modifier.
  • Fig. 1 (e) shows the actual state of the square box in Fig. 1 (d).
  • the chemical power containing the alkali metal-containing lithium silicate as a main component will penetrate deep into the concrete through the interface between the crack and the aggregate. In addition, it penetrates into fine voids in the rough portion of the composition in contact with the interface. In addition, when gelling in response to water and calcium hydroxide present on the interface or in the void, the reaction rate is much slower than in the past, so that it can penetrate deep into the concrete.
  • the present invention provides a table of new and existing concrete structures. With a relatively simple construction method that only applies to the surface, it is possible to prevent or suppress deterioration due to freezing and thawing and salt damage, and composite deterioration due to them, without changing the surface design.
  • the modifier according to the present invention is a completely inorganic material containing substantially no organic components, it also has the effect of having durability against ultraviolet deterioration.
  • the modifier according to the present invention has an effect that the conventional one is effective and can be applied to a structure in which deterioration is progressing.
  • an aqueous solution of calcium hydroxide is applied to the concrete in advance, or the calcium hydroxide is added between the steps of applying the modifier. It is more effective to apply an aqueous solution.
  • the concrete modifier according to the present invention is characterized in that a lithium silicate aqueous solution is mixed with an alkali metal ion source.
  • a lithium silicate aqueous solution is mixed with an alkali metal ion source.
  • Lithium silicate aqueous solution refers to a type of colloidal silica in which the alkali portion is lithium.
  • aqueous solution does not mean that these raw material components are completely dissolved, but refers to a state in which at least a part of the raw material is dissolved in some form. Therefore, even if one of the raw materials (especially SiO 2) exists in colloidal form,
  • the aqueous solution of lithium silicate according to the present invention can be produced by boiling silica in an aqueous solution of sodium hydroxide or potassium hydroxide, and replacing Na and K in the obtained colloidal silica with Li.
  • Examples of commercially available products include, for example, Nitrogen Lithium Silicate 45 (manufactured by Nissan Chemical Industries, Ltd.) SiO 20.0-21.0 parts by weight, LiO 2.1-2.4 parts by weight per 100 parts by weight of aqueous solution.
  • SiO / Li O molar ratio 4.5 ⁇ , lithium silicate 75 ⁇ aqueous solution 100 parts Si
  • Lithium silicate 35 (100 parts by weight of aqueous solution, SiO 20.0—21.0 parts by weight, Li O
  • the “alkali metal ion source” according to the present invention is not particularly limited as long as the alkali metal ion is present in the aqueous solution of lithium silicate when added to water.
  • Substances that dissociate into alkali metal ions for example, water-soluble alkali metal-containing substances such as alkali metal hydroxides, alkali metal oxides or alkali metal salts (for example, alkali metal carbonates), alkali metals themselves and alkali metal ions Aqueous solutions can be mentioned.
  • the “alkali metal ion” is not particularly limited, and may be any of lithium, sodium, potassium, rubidium, and cesium.
  • the alkali metal ion source to be added to the aqueous solution of lithium silicate is not limited to one type but may be a plurality of types (for example, a combination of sodium hydroxide and sodium carbonate) in which the same alkali metal ion is present in the aqueous solution of lithium silicate.
  • a plurality of different alkali metal ions may be present in the aqueous lithium silicate solution (for example, a combination of sodium hydroxide and potassium hydroxide).
  • Suitable alkali metal ions are those obtained by combining sodium ions and potassium ions.
  • the specific molar ratio of potassium ion to sodium ion is preferably 0.02 to 2.7, and more preferably 0.04 to 1.8.
  • a suitable alkali metal ion source is a combination of sodium hydroxide and potassium hydroxide.
  • the preferred compounding ratio of sodium hydroxide and potassium hydroxide is 1.3-2.5 (by weight ratio). More preferably, it is 1.7-2.2.2).
  • the added amount of alkali metal ion source in the alkali metal ion source is preferably 0.08-1.8 with respect to SiO 2 in terms of molar ratio (in terms of alkali metal ion), and more preferably. It is 0.12-1.2.
  • the modifier according to the present invention forms a two-phase structure of a cloudy gel phase and a transparent solution phase when added to a saturated aqueous sodium hydroxide solution according to the following measurement method 1. It is preferred that there be.
  • the stock solution of the modifier according to the present invention is produced by mixing an alkali metal ion source with an aqueous solution of lithium silicate. It should be noted that, if the order is changed and an alkali metal ion source is added to water and then an aqueous solution of lithium silicate is added, gelling may occur.
  • a preferable aqueous solution of lithium silicate is SiO and Li 2 O 3 based on the total weight of the aqueous solution.
  • An alkali metal ion source is added to the aqueous solution of lithium silicate, and the mixture is stirred well, and then a necessary amount of water is removed to obtain a stock solution of the modifier according to the present invention.
  • the addition of water is performed for the purpose of lowering the viscosity.
  • the water used is preferably pure water or ion-exchanged water.
  • the aqueous solution of lithium silicate as a raw material is stored at +5 to 125 ° C., and a material that has been gelled in a subzero environment is not used as much as possible. Further, it is preferable to perform temperature control of +5 to 25 ° C. even in the production.
  • Hydroxide (granular or aqueous) was added in the order of (i) sodium and potassium, (ii) potassium and sodium, and (iii) sodium and potassium were injected at the same time. Any solution
  • the amount of the hydroxide (particulate or aqueous solution) to be charged is either (i) the solution that is added little by little, or (ii) the solution that is added all at once.
  • (i) When adding ion-exchanged water, (i) first adjust the concentration of each raw material to be a stock solution, and then dilute the stock solution to a predetermined dilution ratio (for example, 2 times); A solution prepared from the beginning to a concentration at a specified dilution ratio (for example, 2 times)
  • the stock solution thus obtained preferably contains water in an amount of 65 to 85% by weight (more preferably 70 to 80% by weight) based on the total weight of the stock solution.
  • the preferred viscosity of the stock solution is 1.0 to 15 mPa's (more preferably 1.5 to 10 lOmPa's).
  • the pH of the stock solution thus obtained is preferably in the range of 12.0 to 13.5, and more preferably in the range of 12.4 to 12.9. Further, it is preferable that the pH of the diluent is also generally within the above range.
  • step 1 the stock solution of the modifier according to the present invention is stirred as necessary (step 1), where necessary (hereinafter, a two-fold dilution will be described as an example). Then, before applying this modifier to the concrete, water is sprayed to keep the concrete on the application surface wet (step 2). After that, check the wet condition of the concrete and apply the modifier diluted twice with water using a low-pressure sprayer, brush, roller, etc. (select according to the construction site conditions) (Step 3).
  • the amount of the modifier per concrete lm 2 is, for example, 200cc / m 2 (2 times those diluted), the undiluted base is lOOccZm 2.
  • water is sprayed at a low pressure after application and before drying (step 4). At this time, if drying is quick with wet curing (basic 90 minutes), watering should be performed (Step 5).
  • Step 7 Check if the modifying agent remains on the surface (Step 7). Watering is performed at a low pressure as the final step, and if residual is confirmed in step 6, it is washed by brushing or the like so that it does not remain on the concrete surface (step 8). Then, air dry (Step 9).
  • the outside air temperature is + 5 ° C or higher, and when it is lower than + 5 ° C, it is preferable to control the temperature by heating and curing. If the coating is coated with a coating material that inhibits permeation, such as paint or polymer cement, apply this modifier after removing the coating material.
  • the type of concrete in which the modifier according to the present invention can be used is not particularly limited, and is effective for all types of concrete in which the type and composition of cement are changed.
  • examples of the cement include ordinary Portland cement, early-strength Portland cement, belite cement, eco cement, blast furnace cement, fly ash cement, and low heat cement.
  • Concrete includes, for example, ordinary concrete, high-strength concrete, low-heating concrete, underwater non-separable concrete, underwater concrete, factory concrete, marine concrete, shotcrete, fiber reinforced concrete, pre-knocked concrete, Examples include fluidized concrete, light (aggregate) concrete, steel-concrete composite structures, prestressed concrete, and recycled aggregate concrete.
  • admixtures such as fly ash, blast furnace slag fine powder, and silica fume may be mixed.
  • Lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd.
  • Lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd.
  • Lithium silicate 35 (Nissan Chemical Industries, Ltd.
  • Lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd., SiO 20.0-21.0 parts by weight, Li O 1.2-1.4 parts by weight, SiO 2 / Li O molar ratio 7.5 per 100 parts by weight of aqueous solution) 88.84 g was weighed into a beaker, and sodium hydroxide (Kanto Chemical Co., Ltd., purity: 97%) was added.4.12 g was mixed well with a glass rod. . After the sodium hydroxide was completely dissolved, 0.39 g of potassium hydroxide (Kanto Chemical Co., Ltd., purity: 86%) was added little by little, and 6.65 g of ion-exchanged water was gently added to the place where it was completely dissolved. In addition, the mixture was stirred well with a glass rod to obtain a stock solution of the concrete modifier according to this production example. Table 4 shows the composition of each component.
  • Lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd.
  • Lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd., SiO 20.0-21.0 parts by weight, Li O 2.1-2.4 parts by weight, SiO / Li O molar ratio 4.5 with respect to 100 parts by weight of aqueous solution) 80.15g is weighed into a beaker and sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., purity: 97%) 8. While mixing well with 25g with a glass rod, the input amount is dissolved little by little and added.
  • Lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd., SiO 20.0-21.0 parts by weight, Li O 1.2-1.4 parts by weight, SiO 2 / Li O molar ratio 7. 5) Weigh 81.72g into a beaker, mix sodium hydroxide (manufactured by Kanto Idani Kagaku Co., Ltd., purity 97%). Carapara was added sequentially. After sodium hydroxide is completely dissolved, potassium hydroxide (Kanto Chemical Co., Ltd., purity 8
  • Table 8 shows the molar ratio of each component in each of the modifier stock solutions according to Production Examples 1 to 7. “Two-layer separation” in the table means whether the cloudy gel is separated into two layers (floating layer and sedimentary layer).
  • the mortar specimen coated with the modifier was cut out in the direction perpendicular to the casting surface, and observed by SEM at each depth from the casting surface.
  • the product obtained by mixing the modifier with a saturated calcium hydroxide aqueous solution simulating a pore solution was also observed by SEM.
  • OPC mortar with an ice cement ratio of 60% fine aggregate / mortar volume ratio of 55% was cast into a mold with a diameter of 5 cm and a height of 10 cm. The mold was removed after 24 hours, and then cured in water. Four days after casting, it was molded to a height of 5 cm.
  • FIG. 2 (a) to (g) show the specimens of the mortar coated with the modifier ⁇ depth from the casting surface (a) lmm, (b) 20mm, (c) 30mm, (d) 40mm ⁇ .
  • Figs. 2 (e) and (f) are SEM images of the uncoated mortar specimen ⁇ depth of the casting surface force (e) 5mm, (i) 20mm ⁇ . ) Is an SEM image of the product obtained from the modifier and saturated Ca (OH) solution. As can be seen from these electrophotographs, a rod-like substance with a thickness of about 0.3 micron was formed inside the specimen coated with the modifier ⁇ Fig. 2 (a) to (d) ⁇ .
  • ⁇ LN gel J '' the gel obtained by dropping the modifier into a saturated calcium hydroxide aqueous solution
  • XRF fluorescent dilute analyzer
  • the gel produced by mixing the filtered saturated calcium hydroxide aqueous solution and the modifier at a volume ratio of 9: 1 was first separated from the liquid phase by a centrifuge. Then, the sample was washed with ion-exchanged water and force dried to remove unreacted calcium ions.
  • Fig. 3 shows the measured spectrum
  • Table 9 shows the analytical results converted to oxides
  • Table 10 shows the values of Ca / Si and Ca / Al of the main components of the hardened cement.
  • Test Example 3 (Test for confirming immersion by alkali component analysis)
  • a powder sample obtained by polishing the same specimen as in Test Example 1 from the coated surface for every lmm thickness was mixed and filtered with 2 md / L hydrochloric acid, and the filtrate was analyzed by ion chromatography.
  • Fig. 4 shows the content of each ion species per lg of calcium. Mg reached almost the same value, whereas values of Li, Na and K decreased as the content became larger and closer to the coated surface. Since Li, Na and K are components contained in the modifier, it is presumed that the modifier gradually penetrates into the specimen. Since Mg is a component derived from cement and fine aggregate, it is considered that the values are almost uniform.
  • Kw permeability coefficient (cm)
  • P applied pressure (kgf / cm 2 )
  • A cross-sectional area of specimen (cm 2 )
  • h thickness of specimen (Cm)
  • Unit volume mass of water (kg m 3 )
  • Q Water permeability (cmVs).
  • Mortar made of ordinary Portland cement with a water cement ratio of 60% (hereinafter referred to as ⁇ M60J) was used as the test piece.
  • the composition is shown in Table 11.
  • the mortar was prepared using a mold with a diameter of 10 cm and a height of 1.4 cm.After removal from the mold, the casting surface and the bottom surface were polished to a height of lcm, and a siliceous modifier (Linack and RC) was applied. .
  • a siliceous modifier Licoack and RC
  • Each specimens was by Ri wet watering 0. 15L / m 2 was coated, subjected to water spray curing after 90 minutes, and further coated again watering cured after 90 minutes 0. lL / m 2, 24 Watering was continued after hours. After that, it was wet-cured for 10 days and dried in an oven at 80 ° C. until the mass no longer changed (24 hours). After that, the test was performed after 1 hour in indoor air.
  • M60 mortar was used to confirm the change in permeability in the depth direction due to the penetration of the modifier.
  • Figure 6 shows the change in permeability in the depth direction.
  • the permeability increased at a distance of 5 mm from the surface layer where the permeability was greatest at the surface layer of 5 mm. This is considered to be due to the change in permeability due to the increase in WZC near the surface due to the breathing and sedimentation of cement particles and aggregates.
  • the permeability of the surface is rather low, and there is no significant change due to the depth that can be seen without coating.
  • the permeability of this modifier is less than that of no application at about 40 mm, which is consistent with the depth at which permeability was confirmed in Test Example 1.
  • the hydration force generated inside the mortar by the application of this modifier had a significant effect of improving the water barrier properties, especially at the surface layer.
  • the value was lower than that of this modifier only at the depth of 5 mm, and at a depth of 20 mm or less showing the hydraulic conductivity, the value was larger than that of the non-coated.
  • Test Example 6 chloride ion electrophoresis 3 ⁇ 4: scattering test
  • Specimens include water-cement ratio (W / C) 50% ordinary concrete (OPC50), W / C50% blast furnace type B concrete (BB50), W / C30% low heat concrete (LH30) and W / C30% / C60% ordinary mortar (hereinafter M60) was used.
  • Table 12 shows the formulations.
  • the present modifier obtained by diluting the stock solution obtained in Production Example 1 twice with water, and a commercially available concrete modifier (RC) as a comparative example
  • Concrete is 5cm from a 10cm diameter, 20cm high formwork.
  • the mortar was prepared using a mold having a diameter of 10 cm and a height of 10 cm, cut out to a thickness of 2 cm, and applied with a siliceous concrete modifier or the like. Regardless of the application conditions, no application (NO), and as a comparative example, 0.15 L each of a commercially available siliceous concrete modifier (trade name: RC Guard (RC)) and this modifier (Linack) 90 minutes after the application of / m 2 , watering and curing were performed. Further, 0.1 l / m 2 was applied, and after 90 minutes, watering and curing were performed again. Watering was performed 24 hours later.
  • NO no application
  • RC Guard RC Guard
  • Table 13 shows the effective diffusion coefficients.
  • Fig. 7 (b) (Concrete blend) and Fig. 7 (c) Rutar blend) show the ratio to no coating.
  • Table 3 shows that the effective diffusion coefficient differs greatly depending on the type of cement and the difference in water cement ratio.
  • the application of this modifier (Linack) confirmed the effect of suppressing salt penetration regardless of the type of cement and the ratio of water cement.
  • the ratio of the specimen coated with the RC guard (comparative example) to the uncoated effective diffusion coefficient in OPC50 is 80%, which is much lower than that of the specimen coated with the modifier (Linack). It was a very low figure of 20%.
  • the lower the W / C ratio of concrete the higher the salt-shielding property.
  • the diffusion coefficient of W / C is 40%, The ratio of C50% is 43%, and that of WZC60% is 22%.
  • the value of 20% for the non-application of OPC50 by applying this modifier (Linack) is 40% of W / C, which is thought to prevent salt penetration, compared to 60% of W / C, which is considered to be easy for salt penetration. It can be said that the salt permeation suppression effect is very high. Since BB50 mixed with blast furnace slag has a high effect of suppressing salt penetration, this experiment also showed a low diffusion coefficient of less than lPC of OPC50.
  • the chloride ion concentration on the surface of the structure was set at three levels depending on the distance of the coastal force. Taking the harshest spray zone as an example of the salt environment, a replacement sheet until chloride ions reach the reinforcing bar position (Rule 26)
  • the number of years is only 3 years without general OPC50 application. However, when this modifier is applied, it will be 17 years, and the durability will be about 6 times. With LH30 and BB50, the same spray zone is applied for 30 years and 50 years without application, respectively.
  • the application of this modifier can greatly extend the useful life of concrete with such a high salt-shielding property.
  • LH30 is 1.6 times 50 years and BB50 is 1.9 times 151 Year. Note that there is no significant change in RC guard application. In this case, the concentration of the salt ion on the concrete surface was not considered, and it is estimated that the number of years in the actual environment will be longer.
  • Test example 7 (Surface potential measurement test)
  • This test simply measures the penetration depth of all chloride ions diffused into the hardened cement body.
  • a 1171 Polymer cement mortar was tested in accordance with the test method.
  • the specimen is immersed in salt water (artificial seawater) for 14 days, and the reagent (silver nitrate solution and peranine aqueous solution) is sprayed on the section of the cracked specimen, and the discolored part is measured as the penetration depth.
  • the measurement points were 3 points per cross section, for a total of 6 points.
  • a 4 X 4 X 16 cm OPC mortar (WZC 50%) specimen aged in water up to the specified age is cut into 4 X 4 X 4 cm, completely covered with a sealing agent except one side, and coated with a modifier. After the moist curing for a predetermined number of days, the test was performed.
  • test piece The dimensions of the test piece were 100 x 100 x 400 mm for concrete and 40 x 40 x 160 mm for mortar.
  • the modifier was applied to the concrete only on the casting surface and to the mortar on all surfaces except the bottom.
  • the RDM started to decrease at a force of 300 cycles, which showed a high value.
  • Deterioration due to freezing and thawing means that the moisture that has entered from the outside freezes on the surface of the concrete as the temperature decreases, and the expansion pressure causes the structure to break down inside the concrete.
  • Concrete coated with this modifier (Linack) is densified by the gel generated from the surface layer to the inside, and prevents moisture from entering from the outside.
  • the internal water is consumed when the gel is formed, voids that are not filled with water are maintained in the concrete, and the expansion pressure due to freezing can be reduced. From these, it is considered that the application of this modifier (Linack) brings high frost resistance to concrete.
  • BB forms a denser structure than OPC due to the pozzolanic reaction of the mixed blast furnace slag and also consumes water, so it has high frost resistance.
  • the RDM maintained a value of 100% or more for this modifier (Linack) coated specimen up to 300 cycles.
  • the RC guard application showed a value of 100% or less from the start of the test, and decreased slightly at 300 cycles.
  • LN733 maintained a high dynamic elasticity of 92%.
  • the mass rapidly decreased after 100 cycles, and decreased by 10% at 200 cycles, and the tissue was greatly damaged.
  • the present modifier when the present modifier was applied, no mass reduction was observed up to 150 cycles in any of the formulations.
  • LN422 has no loss of mass up to 200 cycles.As shown in Fig. 13, the force completely loses the surface layer without application.With the application of this modifier (LN422), it remains almost the same as at the start of the test. And showed high scaling resistance. In the case of the RC guard coating of the comparative example, the middle of the surface layer was lost, and the improvement in scaling resistance was lower than that of the present modifier.
  • the modifier for example, Linack
  • Linack produces a gel with a rod-shaped or massive solid structure in the voids in concrete, and improves the water-blocking performance by densifying the voids.
  • the RC guard which is a comparative example, also exhibits the same properties. Due to the difference in force penetration depth, the effect of the comparative product is several millimeters on the surface.
  • this modifier for example, Linack
  • the RC guard of the comparative example has a lower effect of improving the salt-shielding property than the present modifier.
  • This modifier for example, Linack
  • Linack improved the frost resistance regardless of the cement type and water-cement ratio.
  • it exhibited high durability against combined deterioration with salt damage, and also exhibited high scaling resistance.
  • RC guard in the comparative example showed an improvement in frost damage resistance, the performance was lower than that of this modifier (Linack), and the same applies to scaling resistance.
  • this modifier for example, Linack
  • this modifier penetrates deep into the concrete and improves the water-blocking performance, salt-blocking performance, and frost-resistance performance by the generated gel. Therefore, it is considered to be effective as a preventive or preventive measure against the deterioration of concrete due to salt damage and frost damage and their combined deterioration.
  • FIG. 1 (a) is a schematic cross-sectional view of concrete.
  • FIGS. 1 (b)-(e) are enlarged views of a portion surrounded by a square in FIG. 1 (a).
  • FIG. 1 (c) is a diagram showing a state in which the present modifier has penetrated into the microvoids or the fragile tissue portion at the interface of the aggregate shown as 5 in FIG. 1 (b).
  • FIG. 1 (d) is a view showing that the present modifier that has permeated into the voids has reacted with calcium hydroxide and water in the pore solution to form a gel.
  • Fig. 1 (e) is an electrophotograph showing the actual state of the portion enclosed by the square in Fig. 1 (d).
  • 2 coarse aggregate
  • 3 pores and cracks
  • 4 fine aggregate
  • 5 cement paste
  • 6 this modifier
  • 7 gel generated from this modifier Are shown respectively.
  • FIG. 2 is an SEM image (electrophotograph) of Test Example 1 (the test for confirming the permeability of the modifier).
  • Fig. 2 (a)-(d) shows the specimen of the mortar coated with the modifier ⁇ depth of the casting surface (a) lmm, (b) 20mm, (c) 30mm, (d) 40mm ⁇ .
  • Fig. 2 (e) and (f) are SEM images of the uncoated mortar specimen (depth from the casting surface (e) 5mm, (f) 20mm), and Fig. 2 (g) Is a SEM image of the product for which the modifier and saturated Ca (OH) solution power were also obtained.
  • FIG. 3 is a measurement spectrum of an LN gel in Test Example 2 (XRF elemental analysis).
  • FIG. 4 is a diagram showing the relationship between the content of various alkali metals and the depth of the coated surface in Test Example 3 (permeability confirmation test by alkali component analysis).
  • FIG. 5 is a diagram showing an apparatus and results in Test Example 4 ⁇ water permeability test (1) ⁇ .
  • FIG. 5 (a) is a diagram showing an outline of the test apparatus
  • FIG. 5 (b) is a diagram showing the effect of coating conditions on the hydraulic conductivity.
  • FIG. 6 is a diagram showing a change in water permeability in the depth direction due to the application of a modifier in Test Example 5 ⁇ water permeability test (2) ⁇ .
  • FIG. 7 is a diagram showing an apparatus and results in Test Example 6 (chloride diffusion test by electrophoresis).
  • Fig. 7 (a) is a diagram showing an outline of the apparatus according to this test
  • Fig. 7 (b) shows the effective diffusion coefficient (ratio to no application) of various types of concrete by applying the modifier.
  • FIG. 7 (c) is a diagram showing the effective diffusion coefficient (ratio to no application) of various mortars by applying a modifier.
  • FIG. 8 is a diagram showing an apparatus and a result in Test Example 7 (surface potential measurement test).
  • FIG. 8 (a) is a diagram showing an outline of an apparatus according to the present test
  • FIG. 8 (b) is a diagram showing a surface potential of various cements by applying a modifier.
  • FIG. 9 is a diagram showing the relationship between various modifiers and the total salt penetration depth in Test Example 8 (salinity immersion ion penetration test by immersion in seawater). Application, 7 days after immersion in seawater, (b) 14 days of age, 14 days after immersion in seawater ⁇ .
  • Figure 10 shows the relative kinetic elasticity change of OPC50 when various modifiers were applied in the normal cycle test of Test Example 9 (freeze-thaw test) ⁇ Figure 10 (a) ⁇ and the relative dynamics of BB60.
  • FIG. 11 is a diagram showing a coefficient of change ⁇ FIG. 10 (b) ⁇ .
  • FIG. 11 is a diagram showing a change in relative kinetic elastic modulus when the present modifier was applied in an initial frost damage cycle test of Test Example 9 (freeze-thaw test).
  • Figure 12 shows the change in the relative kinematic elastic modulus of nonAE when various modifiers were applied in the seawater cycle test in Test Example 9 (freeze-thaw test) ⁇ Figure 12 (a) ⁇ and the mass loss rate ⁇ Fig. 12 (b) ⁇ , the change in the relative kinematic elasticity of AE ⁇ Fig. 12 (c) ⁇ , and the mass loss rate ⁇ Fig. 12 (d) ⁇ .
  • FIG. 13 is a diagram showing a scaling state at the end of a test on a test piece casting surface in a freeze-thaw test in artificial seawater of Test Example 9 (c).
  • Figure 14 shows the change in relative kinetic elasticity of the modified agent after degradation to RMD 70% in the cycle test after frost damage deterioration in Test Example 9 (freeze-thaw test) ⁇ Figure 14 (a) ⁇ And the mass loss rate ⁇ Fig. 14 (b) ⁇ and the change in the relative kinematic modulus of AE when this modifier is applied after degradation to RDM 50% ⁇ Fig. 14 (c) ⁇ and the mass loss rate ⁇ Fig. FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A concrete modifier, characterized in that it comprises an aqueous lithium silicate solution and an alkali metal ion source. The concrete modifier allows the prevention or inhibition of the deterioration by the freezing and thawing action, the salt attack or a combination thereof by the use of a relatively simple process wherein it is only applied on the surface of a newly constructed or existing concrete structure, and it permeates into a deep inside part of a concrete structure without changing the surface design thereof (with the retention of the state of the surface immediately after placing) and exhibits high durability.

Description

明 細 書  Specification
珪酸質系コンクリート改質剤  Silicic concrete modifier
技術分野  Technical field
[0001] この発明は、コンクリートの凍結融解や塩害などによる劣化や、これらが複合して起 こるより激し 、劣化を防止又は抑止し、ライフサイクルコストの低減に寄与する珪酸質 系コンクリート改質剤 (表面改質剤)に関する。 背景技術  [0001] The present invention relates to a silicate-based concrete reforming system that prevents or suppresses deterioration due to freezing and thawing or salt damage of concrete, and prevents or suppresses deterioration due to a combination thereof, thereby contributing to a reduction in life cycle cost. Agent (surface modifier). Background art
[0002] コンクリートは本来、非常に耐久性が高ぐ耐用年数も 50年一 100年と云われて来 たが、コンクリートの劣化が予想以上に早い事が近年判明した。特に、凍結融解や塩 害等によるコンクリートの劣化及び複合劣化が原因となり、想定耐用年数まで持たな い構造物の出現や構造物からのコンクリート片剥離による二次災害の発生が懸念さ れる事態となり、劣化要因の原因究明と様々な対策が講じられてきた。具体的には、 新設コンクリートを構成するセメントの組成変更や単位水量の低減、骨材の成分指定 、既設コンクリートについては、劣化表面をポリマーセメントで被覆する工法、珪酸質 系防水剤配合モルタルで被覆する工法、有機系榭脂ゃセメント系、水ガラス系材料 による注入 '浸透'被膜塗装工法などが提案されている。  [0002] Although concrete has originally been said to have extremely high durability and a service life of 50 to 100 years, it has recently been found that concrete deteriorates faster than expected. In particular, concrete degradation due to freezing and thawing, salt damage, etc. may cause deterioration of concrete and complex deterioration, which may lead to the emergence of structures that do not have the expected useful life or the occurrence of secondary disasters due to peeling of concrete fragments from the structures. Investigation of causes of deterioration factors and various countermeasures have been taken. Specifically, the composition of cement that constitutes new concrete is changed and the unit water volume is reduced, aggregate components are specified.For existing concrete, a method of coating the deteriorated surface with polymer cement, and mortar containing a siliceous waterproofing agent is used. There is a proposal of a coating method using an organic resin, cement, or water glass based material.
特許文献 1:特開 2000-44317  Patent document 1: JP-A-2000-44317
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、セメントの組成変更や骨材の成分指定による対策では、新設のコンク リートの劣化防止には有効であっても、劣化が進行中の既存構造物には対処できな い、更には、優良な骨材の不足やセメント及び混和剤使用量の増加によるコストの増 大等の問題もある。補修工法についても、有機系材料を使用する場合には有機化合 物による環境汚染問題、被覆工法ではその材料自体の劣化により再施工が必要とな る事や施工によりコンクリート表面の意匠を変えてしまう事、水ガラス系の材料ではク ラックの表層部分 (表層より 1一 2mm)で硬化してしまいコンクリート内部には浸透出来 ない為効果が限定される事、セメント系材料は超微粒子セメントを使用しても 0. 2mm 以上のクラックまでしか埋めきれない事、コンクリートの表面強度を改善させ、またァ ルカリ付与剤として知られる珪酸リチウム水溶液も高粘度で浸透が難しく浸透深さが[0003] However, while measures such as changing the composition of cement and specifying the components of aggregates are effective in preventing the deterioration of newly installed concrete, they cannot cope with existing structures that are undergoing deterioration. In addition, there are problems such as shortage of excellent aggregates and increase in cost due to increase in the amount of cement and admixture used. Regarding the repair method, when organic materials are used, there is a problem of environmental pollution due to organic compounds, and in the case of the coating method, the rebuilding is required due to deterioration of the material itself, and the design of the concrete surface is changed due to the construction. In addition, water-glass based materials harden at the surface layer of the cracks (1-2 mm from the surface layer) and cannot penetrate into concrete, so the effect is limited.For cement-based materials, use ultra-fine cement. Even 0.2mm Only the above cracks can be filled, the surface strength of concrete is improved, and the aqueous solution of lithium silicate, which is known as an alkali imparting agent, has a high viscosity and is difficult to penetrate.
1一 2mm程度しかなぐこのため耐久性に劣り数年で再施工が必要となる事など、従 来の手法は多くの問題点を抱えている。 The conventional method has a number of problems, such as the fact that it is only about 1-2 mm, and it is inferior in durability and needs to be rebuilt in several years.
[0004] そこで、この発明は、新設及び既設コンクリート構造物の表面に塗布するだけという 比較的簡単な工法で、凍結融解や塩害による劣化やこれらによる複合劣化を防止又 は抑止し、且つ表面意匠を変化させないで、(打込み直後のコンクリート表面状況を 保持する)コンクリート内部深くまで浸透し、高 、耐久性を持つコンクリ一ト改質剤を 提供することを課題とする。 [0004] Therefore, the present invention prevents or suppresses deterioration due to freezing and thawing or salt damage, or a composite deterioration due to them by a relatively simple construction method of simply applying the composition to the surface of a new or existing concrete structure, and also provides a surface design. It is an object of the present invention to provide a concrete modifier which penetrates deep into the concrete (maintains the condition of the concrete surface immediately after casting) without changing the concrete, and has high durability and high durability.
課題を解決するための手段  Means for solving the problem
[0005] 本発明(1)は、リチウムシリケート水溶液にアルカリ金属イオン源を配合したことを特 徴とするコンクリ一ト改質剤である。 [0005] The present invention (1) is a concrete modifier characterized by blending an alkali metal ion source with a lithium silicate aqueous solution.
[0006] 本発明(2)は、アルカリ金属イオン源が、水溶性アルカリ金属含有物質である、前 記発明(1)の改質剤である。 [0006] The present invention (2) is the modifier of the above-mentioned invention (1), wherein the alkali metal ion source is a water-soluble alkali metal-containing substance.
[0007] 本発明(3)は、アルカリ金属イオン源からのアルカリ金属イオン力 ナトリウムイオン 及びカリウムイオンである、前記(1)又は(2)の改質剤である。 [0007] The present invention (3) is the modifier according to the above (1) or (2), which is an alkali metal ion force sodium ion and potassium ion from an alkali metal ion source.
[0008] 本発明(4)は、添加するアルカリ金属イオン源の SiOに対するモル比(アルカリ金 In the present invention (4), the molar ratio of the added alkali metal ion source to SiO (alkali gold
2  2
属イオン換算)が、 0. 08-1. 8 (好適には、 0. 12-1. 2)である、前記発明(1)一( 3)の!、ずれか一つの改質剤である。  (1) one of (1)-(3), wherein the modifier is 0.08-1.8 (preferably 0.12-1.2). .
[0009] 本発明(5)は、リチウムシリケート水溶液由来のリチウムイオンを含むすべてのアル カリ金属イオンの SiOに対するモル比力 0. 4-2. 1 (好適には、 0. 6-1. 4)であ In the present invention (5), the molar specific force of all alkali metal ions including lithium ions derived from an aqueous solution of lithium silicate to SiO is 0.4.2-1. 1 (preferably, 0.6.1.4. )
2  2
る、前記発明(1)一(4)のいずれか一つの改質剤である。  The modifier according to any one of the inventions (1) to (4).
[0010] 本発明(6)は、ナトリウムイオンに対するカリウムイオンの比力 モル比で 0. 02— 2[0010] The present invention (6) relates to the specific power molar ratio of potassium ion to sodium ion of 0.02 to 2
. 7 (好適には、 0. 04-1. 8)である、前記発明(3)又は (4)の改質剤である。 .7 (preferably 0.04-1.8) according to the invention (3) or (4).
[0011] 本発明(7)は、明細書中の測定方法 1に従って飽和水酸ィ匕カルシウム水溶液に添 カロした場合、白濁ゲル相と透明溶液相の二相構造を形成し、より好適には白濁ゲル 力^層 (浮遊層と沈殿層)に分層する、前記発明(1)一 (6)の 、ずれか一つの改質剤 である。 [0012] 本発明(8)は、コンクリート表面適用型である、前記発明(1)一(7)のいずれか一つ の改質剤である。尚、「コンクリート表面適用型」とは、コンクリート表面に塗布する態 様のみならず、コンクリート表面力 注入する態様 (例えばクラックから)も包含する。 [0011] In the present invention (7), when added to a saturated aqueous calcium hydroxide solution according to the measuring method 1 in the specification, a two-phase structure of a cloudy gel phase and a transparent solution phase is formed, more preferably The turbid gel is one of the modifiers according to the invention (1)-(6), which is separated into a force layer (a floating layer and a sedimentation layer). [0012] The present invention (8) is the modifier according to any one of the aforementioned inventions (1)-(7), which is a concrete surface application type. The “concrete surface application type” includes not only a mode of applying to a concrete surface but also a mode of injecting a concrete surface force (for example, from a crack).
[0013] 本発明(9)は、リチウムシリケート水溶液にアルカリ金属イオン源を配合することによ り得られる、前記発明(1)一 (8)のいずれか一つの改質剤の原液であって、前記リチ ゥムシリケート水溶液における SiO及び Li O (等価酸化物換算)は、それらの合計量  [0013] The present invention (9) is a stock solution of the modifier according to any one of the inventions (1) and (8), which is obtained by mixing an alkali metal ion source with a lithium silicate aqueous solution. , SiO and Li 2 O (equivalent oxide equivalent) in the lithium silicate aqueous solution are the total amount of them.
2 2  twenty two
が前記水溶液の全重量に対して 15 30重量%であり、かつ、それらのモル比(SiO  Is 15 30% by weight based on the total weight of the aqueous solution, and their molar ratio (SiO 2
2 2
/Li O)が 3— 8である改質剤原液である。 / Li O) 3-8.
2  2
[0014] 本発明(10)は、前記発明(1)一 (6)の 、ずれか一つの改質剤又は前記発明(9) の原液を水で希釈して得られた改質剤を、コンクリート表面に一又は複数回適用(例 えば塗布)する工程を含む、コンクリートの劣化防止又は劣化抑止方法である。尚、 水による原液の希釈率は、コンクリートの表面状態等に応じて変動するが、例えば、 1 一 5倍である。  [0014] The present invention (10) provides the above-mentioned invention (1)-(6), wherein the modifying agent obtained by diluting the undiluted solution of the invention (9) with water is: This is a method for preventing or suppressing deterioration of concrete, including a step of applying (for example, applying) one or more times to a concrete surface. The dilution ratio of the stock solution with water varies depending on the surface condition of the concrete, and is, for example, 115 times.
[0015] 本発明(11)は、前記一又は複数回の改質剤適用工程 (例えば改質剤塗布工程) の前又は途中で、前記コンクリート表面に水酸ィ匕カルシウム水溶液を適用(例えば塗 布)する工程を更に含む、前記発明(10)の方法である。  [0015] The present invention (11) is to apply an aqueous solution of calcium hydroxide to the concrete surface before or during the one or more times of applying the modifying agent (for example, applying the modifying agent) (for example, The method according to the invention (10), further comprising the step of:
[0016] 本発明(12)は、前記発明(10)又は(11)の方法により劣化防止又は抑止されたコ ンクリートである。  [0016] The present invention (12) is a concrete in which deterioration is prevented or suppressed by the method of the invention (10) or (11).
発明の効果  The invention's effect
[0017] 本発明に係るコンクリート改質剤は、第一に、コンクリートに水分浸透性や塩分浸透 性を低下させる性質を付与する。具体的には、該剤中のアルカリ金属配合リチウムシ リケートが、骨材界面上や内部空隙に存在する水やコンクリートの細孔溶液成分であ る水酸ィ匕カルシウムと反応してゲルを形成する。このゲルの形成が、空隙の緻密化を もたらす結果、さまざまな劣化を促進する要因である水の侵入を阻害し、塩害の原因 物質となる塩ィ匕物イオンにっ ヽては、緻密ィ匕とともにゲル表面の電荷が負になり電気 的に反発することでも拡散が抑制される。更に、ゲル化の際、凍結融解原因となるコ ンクリート内部の空隙水を取り込む事により、水で満たされない空隙が増加し、水及 びゲルが凍結膨張する際の圧力を逃がす空間が作られる。更に、クラック内部では、 コンクリート表面引張強度を 1. 5— 2倍高める事で、コンクリート劣化に大きな影響を 及ぼすクラックの拡張や進行が防止又は抑止される。 [0017] First, the concrete modifier according to the present invention imparts a property of reducing concrete to moisture permeability and salt permeability. Specifically, the alkali metal-containing lithium silicate in the agent reacts with water present on the interface of the aggregate or in the internal voids or calcium hydroxide, which is a pore solution component of concrete, to form a gel. . As a result of the formation of the gel, the pores are densified. As a result, the intrusion of water, which is a factor promoting various kinds of deterioration, is hindered. At the same time, diffusion on the surface of the gel is suppressed by making the charge on the gel surface negative and electrically repelling. Furthermore, by taking in pore water inside the concrete that causes freeze-thaw during gelation, voids that are not filled with water increase, and a space is created to release pressure when water and gel freeze-expand. Furthermore, inside the crack, By increasing the concrete surface tensile strength by 1.5 to 2 times, the expansion and progression of cracks, which have a significant effect on concrete deterioration, are prevented or suppressed.
[0018] 第二に、本発明に係るコンクリート改質剤は、従来のアルカリ付与剤と比較し、コン クリートのより深部にまで (例えば約 40mmの深さまで)浸透すると!/、う性質を有して!/ヽ る。この理由は、反応速度が従来のもの (水ガラス系改質剤等)と比較して非常に遅 いためである(このためにコンクリート内部深くまで浸透できる)と理解される。従来の 各種研究報告では、リチウム化合物は、コンクリートの各種劣化防止に効果的との報 告が数多くなされている。しかし、この成分は、表面から 1一 2mm程度しか浸透できな いため、コンクリート混和材ゃ表面塗膜材として利用できるに過ぎな力つた。本発明 は、深部浸透性というこの第二の性質に基づき、浸透型の表面塗布剤を提供したと いう点で画期的である。 [0018] Second, the concrete modifier according to the present invention has a property that, when compared with a conventional alkali imparting agent, penetrates deeper into the concrete (for example, to a depth of about 40 mm). Then! It is understood that the reason for this is that the reaction rate is much slower than that of conventional ones (such as a water glass-based modifier) (it can penetrate deep into the concrete). In various conventional research reports, there are many reports that lithium compounds are effective in preventing various types of concrete deterioration. However, since this component can penetrate only about 1-2 mm from the surface, it could only be used as a concrete admixture / surface coating material. The present invention is epoch-making in that it provides a penetrating surface coating agent based on this second property of deep penetration.
[0019] 尚、理解の容易のため、図 1を参照しながら本発明のメカニズムを説明する。図 1 (a) はコンクリート断面の模式図であり、細骨材を含むモルタルマトリックス 1、粗骨材 2、 細孔及びクラック等 3が示されている。そして、図 1 (a)内の四角囲み部分を拡大した 図力 図 1 (b)—(d)である。図 1 (b)中 3は、骨材界面の脆弱組織部も示し、 4は細骨 材、 5はセメントペーストである。 3の内部には、カルシウム等のイオンを含んだ細孔溶 液が存在する。コンクリート表面に本発明に係わる改質剤を塗布すると、クラックや空 隙、骨材界面を通じて内部まで浸透する。図 1 (c)は、本改質剤 6が空隙等に浸透し た様子を示したものである。空隙内に浸透した本改質剤は、細孔溶液中の水酸化力 ルシゥム及び水と反応し、ゲルを生成する。図 1 (d)に、本改質剤より生成されたゲル 7の様子を示す。図 1 (d)内の四角囲み部分の実際の状態を示したものが、図 1 (e) である。  Note that, for easy understanding, the mechanism of the present invention will be described with reference to FIG. FIG. 1 (a) is a schematic diagram of a concrete section, in which a mortar matrix 1 containing fine aggregate, coarse aggregate 2, pores and cracks 3 are shown. Figure 1 (b)-(d) is an enlarged pictorial diagram of the square box in Fig. 1 (a). In FIG. 1 (b), 3 also shows the fragile tissue portion at the aggregate interface, 4 is fine aggregate, and 5 is cement paste. Inside 3 is a pore solution containing ions such as calcium. When the modifier according to the present invention is applied to the concrete surface, it penetrates into the interior through cracks, voids, and aggregate interfaces. FIG. 1 (c) shows a state in which the present modifier 6 has penetrated into voids and the like. The modifier that has penetrated into the voids reacts with the hydroxide and water in the pore solution to form a gel. FIG. 1 (d) shows the appearance of gel 7 produced from the present modifier. Fig. 1 (e) shows the actual state of the square box in Fig. 1 (d).
[0020] 以上を整理すると、本発明に係る改質剤をコンクリート表面に塗布すると、アルカリ 金属配合リチウムシリケートを主要成分とする薬剤力 クラック及び骨材の界面を伝い 、コンクリート内部深く浸透していき、更に界面に接する組成の粗い部分の微細な空 隙にも浸透する。また、界面上や空隙内部に存在する水及び水酸ィ匕カルシウムと反 応しゲル化する際、その反応速度が従来に比して非常に遅ぐこの為、コンクリート内 部深くまで浸透出来る。その結果、本発明は、新設及び既設コンクリート構造物の表 面に塗布するだけという比較的簡単な工法で、凍結融解及び塩害による劣化やこれ らによる複合劣化を、表面意匠を変化させることなく防止又は抑止できるという効果を 奏する。 [0020] Summarizing the above, when the modifier according to the present invention is applied to the concrete surface, the chemical power containing the alkali metal-containing lithium silicate as a main component will penetrate deep into the concrete through the interface between the crack and the aggregate. In addition, it penetrates into fine voids in the rough portion of the composition in contact with the interface. In addition, when gelling in response to water and calcium hydroxide present on the interface or in the void, the reaction rate is much slower than in the past, so that it can penetrate deep into the concrete. As a result, the present invention provides a table of new and existing concrete structures. With a relatively simple construction method that only applies to the surface, it is possible to prevent or suppress deterioration due to freezing and thawing and salt damage, and composite deterioration due to them, without changing the surface design.
[0021] 更に、本発明に係る改質剤は、実質的に有機成分を含まない完全無機系材料な ので、紫外線劣化に対して耐久性を有するという効果も奏する。  Further, since the modifier according to the present invention is a completely inorganic material containing substantially no organic components, it also has the effect of having durability against ultraviolet deterioration.
[0022] 更に、本発明に係る改質剤は、従来のものでは実効性がな力つた、劣化が進行し ている構造物への適用も可能であるという効果も奏する。特に、劣化コンクリートに本 改質剤を適用する際、当該コンクリートに事前に水酸化カルシウム水溶液を塗布して おくか、改質剤塗布工程と改質剤塗布工程の間に、水酸ィ匕カルシウム水溶液を塗布 すると、更に有効である。  [0022] Further, the modifier according to the present invention has an effect that the conventional one is effective and can be applied to a structure in which deterioration is progressing. In particular, when applying the present modifier to degraded concrete, an aqueous solution of calcium hydroxide is applied to the concrete in advance, or the calcium hydroxide is added between the steps of applying the modifier. It is more effective to apply an aqueous solution.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明に係るコンクリート改質剤は、リチウムシリケート水溶液にアルカリ金属イオン 源を配合したことを特徴とする。以下、本発明の構成要件について説明する。尚、本 明細書において、「Li O」、 & 0」及び¾ 0」は、等価酸ィ匕物换算表示でぁる。 [0023] The concrete modifier according to the present invention is characterized in that a lithium silicate aqueous solution is mixed with an alkali metal ion source. Hereinafter, the components of the present invention will be described. In this specification, “Li O, & 0” and “0” are expressed in terms of equivalent oxidation products.
2 2 2  2 2 2
[0024] 「リチウムシリケート水溶液」とは、コロイダルシリカの一種でアルカリ部分がリチウム であるものをいう。ここで、「水溶液」とは、これら原料成分が完全に溶解していること を意味するのではなぐ原料の少なくとも一部が何らかの形態で溶解している状態を 指す。したがって、原料の一方 (特に SiO )がコロイド状で存在していても、原料の一  “Lithium silicate aqueous solution” refers to a type of colloidal silica in which the alkali portion is lithium. Here, “aqueous solution” does not mean that these raw material components are completely dissolved, but refers to a state in which at least a part of the raw material is dissolved in some form. Therefore, even if one of the raw materials (especially SiO 2) exists in colloidal form,
2  2
部が溶解、一部がコロイド状になっていても、これらの状態をすベて包含する。また、 液中でこれら原料は、どのような形態で存在して 、てもよ!/、。  Even if a part is dissolved and a part is colloidal, all of these states are included. In addition, these raw materials may exist in any form in the liquid!
[0025] 本発明に係るリチウムシリケート水溶液は、珪石を水酸化ナトリウム又は水酸化カリ ゥム水溶液中で煮沸し、得られるコロイダルシリカ中の Na、 Kを Liに置換して製造可 能である。また、市販品としては、例えば、日産化学工業株式会社製のリチウムシリケ 一卜 45{水溶液 100量部に対して SiO 20. 0— 21. 0重量部、 Li O 2. 1—2. 4重 [0025] The aqueous solution of lithium silicate according to the present invention can be produced by boiling silica in an aqueous solution of sodium hydroxide or potassium hydroxide, and replacing Na and K in the obtained colloidal silica with Li. Examples of commercially available products include, for example, Nitrogen Lithium Silicate 45 (manufactured by Nissan Chemical Industries, Ltd.) SiO 20.0-21.0 parts by weight, LiO 2.1-2.4 parts by weight per 100 parts by weight of aqueous solution.
2 2  twenty two
量部、 SiO /Li Oモル比 4. 5}、リチウムシリケート 75{水溶液 100量部に対して Si  Parts, SiO / Li O molar ratio 4.5}, lithium silicate 75 {aqueous solution 100 parts Si
2 2  twenty two
O 20. 0— 21. 0重量部、 Li O 1. 2—1. 4重量部、 SiO /Li Oモル比 7. 5} O 20.0—21.0 parts by weight, Li O 1.2—1.4 parts by weight, SiO / Li O molar ratio 7.5}
2 2 2 2 、 リチウムシリケ一卜 35 {水溶液 100量部に対して SiO 20. 0— 21. 0重量部、 Li O 2 2 2, Lithium silicate 35 (100 parts by weight of aqueous solution, SiO 20.0—21.0 parts by weight, Li O
2 2 twenty two
2. 6-3. 3重量部、 SiO /Li Oモル比 3. 5}が使用可能である。 [0026] 本発明に係る「アルカリ金属イオン源」は、水に添加した際、アルカリ金属イオンをリ チウムシリケート水溶液中に存在させるものである限り特に限定されず、例えば、水に 添加した際、アルカリ金属イオンに解離する物質、例えば、アルカリ金属水酸化物、 アルカリ金属酸化物又はアルカリ金属塩 (例えばアルカリ金属の炭酸塩)等の水溶性 のアルカリ金属含有物質や、アルカリ金属自体やアルカリ金属イオン水溶液を挙げる ことができる。また、「アルカリ金属イオン」も特に限定されず、リチウム、ナトリウム、カリ ゥム、ルビジウム、セシウムのいずれでもよい。更に、リチウムシリケート水溶液に配合 するアルカリ金属イオン源は、一種でなくともよぐ同一のアルカリ金属イオンをリチウ ムシリケート水溶液中に存在させる複数種 (例えば、水酸ィ匕ナトリウムと炭酸ナトリウム との組み合わせ)であっても、異なるアルカリ金属イオンをリチウムシリケート水溶液中 に存在させる複数種 (例えば、水酸ィ匕ナトリウムと水酸ィ匕カリウムとの組み合わせ)で あってもよい。 2. 6-3. 3 parts by weight, SiO / Li O molar ratio 3.5} can be used. The “alkali metal ion source” according to the present invention is not particularly limited as long as the alkali metal ion is present in the aqueous solution of lithium silicate when added to water. Substances that dissociate into alkali metal ions, for example, water-soluble alkali metal-containing substances such as alkali metal hydroxides, alkali metal oxides or alkali metal salts (for example, alkali metal carbonates), alkali metals themselves and alkali metal ions Aqueous solutions can be mentioned. The “alkali metal ion” is not particularly limited, and may be any of lithium, sodium, potassium, rubidium, and cesium. Furthermore, the alkali metal ion source to be added to the aqueous solution of lithium silicate is not limited to one type but may be a plurality of types (for example, a combination of sodium hydroxide and sodium carbonate) in which the same alkali metal ion is present in the aqueous solution of lithium silicate. Alternatively, a plurality of different alkali metal ions may be present in the aqueous lithium silicate solution (for example, a combination of sodium hydroxide and potassium hydroxide).
[0027] 好適なアルカリ金属イオンは、ナトリウムイオンとカリウムイオンとを組み合わせたも のである。特に、ナトリウムイオンに対するカリウムイオンの比力 モル比で 0. 02— 2 . 7であることが好適であり、より好適には 0. 04-1. 8である。尚、この場合、好適な アルカリ金属イオン源は、水酸ィ匕ナトリウムと水酸ィ匕カリウムとの組み合わせである。こ れらの組み合わせに関し、水酸ィ匕ナトリウムと水酸ィ匕カリウムの好適な配合比は、重 量比(水酸ィ匕ナトリウム Z水酸ィ匕カリウム)で 1. 3-2. 5 (より好適には 1. 7-2. 2)で ある。  [0027] Suitable alkali metal ions are those obtained by combining sodium ions and potassium ions. In particular, the specific molar ratio of potassium ion to sodium ion is preferably 0.02 to 2.7, and more preferably 0.04 to 1.8. In this case, a suitable alkali metal ion source is a combination of sodium hydroxide and potassium hydroxide. With respect to these combinations, the preferred compounding ratio of sodium hydroxide and potassium hydroxide is 1.3-2.5 (by weight ratio). More preferably, it is 1.7-2.2.2).
[0028] 更に、アルカリ金属イオン源の添カ卩量は、モル比(アルカリ金属イオン換算)で、 Si Oに対して 0. 08-1. 8であることが好適であり、より好適には 0. 12-1. 2である。  [0028] Further, the added amount of alkali metal ion source in the alkali metal ion source is preferably 0.08-1.8 with respect to SiO 2 in terms of molar ratio (in terms of alkali metal ion), and more preferably. It is 0.12-1.2.
2  2
[0029] 更には、本発明に係る改質剤は、以下の測定方法 1に従って飽和水酸ィ匕カルシゥ ム水溶液に添加した場合、白濁ゲル相と透明溶液相の二相構造を形成するものであ ることが好適である。  Furthermore, the modifier according to the present invention forms a two-phase structure of a cloudy gel phase and a transparent solution phase when added to a saturated aqueous sodium hydroxide solution according to the following measurement method 1. It is preferred that there be.
[0030] 測定方法 1:分光光度計用キュベット(ポリスチレン製。内寸= 1 X 1 X 4. 5cm,容量 4 . 5mL)に濾過した飽和水酸化カルシウム水溶液を 2. 7mL入れ、改質剤 0. 3mLをゆ つくりと滴下する。混合後、容器をパラフィルムで密封してそのまま静置し、滴下直後 力ら 7日目まで観察する。 [0031] 次に、本発明に係るコンクリート改質剤の原液の製造方法について説明する。本発 明に係る改質剤の原液は、リチウムシリケート水溶液にアルカリ金属イオン源を配合 すること〖こより製造される。尚、順番を変え、アルカリ金属イオン源を水に添加し、その 後にリチウムシリケート水溶液を添加した場合には、ゲルィ匕する可能性があることに 留意すべきである。 Measurement method 1: 2.7 mL of a saturated aqueous calcium hydroxide solution was put into a cuvette for spectrophotometer (made of polystyrene; inner size = 1 × 1 × 4.5 cm, capacity 4.5 mL), and modifier 0 Add 3 mL slowly and drop. After mixing, seal the container with parafilm and leave it as it is. Immediately after dripping, observe until the 7th day. Next, a method for producing a stock solution of the concrete modifier according to the present invention will be described. The stock solution of the modifier according to the present invention is produced by mixing an alkali metal ion source with an aqueous solution of lithium silicate. It should be noted that, if the order is changed and an alkali metal ion source is added to water and then an aqueous solution of lithium silicate is added, gelling may occur.
[0032] ここで、好適なリチウムシリケート水溶液は、該水溶液の全重量に対し SiOと Li O  Here, a preferable aqueous solution of lithium silicate is SiO and Li 2 O 3 based on the total weight of the aqueous solution.
2 2 の合計重量が 15— 30重量% (より好適には 20— 25重量%)となるように、これら成 分をモル比(SiO /Li O) 3— 8 (より好適には 4  These components are combined in a molar ratio (SiO 2 / Li O) 3-8 (more preferably 4
2 2 一 5)の割合で水に添カ卩して得られ たものである。  It is obtained by adding kanji to water at a ratio of 2 2 5).
[0033] 尚、アルカリ金属イオン源としてアルカリ金属の水酸ィ匕物を用いる場合には、発熱 反応があるため、アルカリ金属の水酸ィ匕物を少量ずつ、リチウムシリケート水溶液に 加える。  [0033] When an alkali metal hydroxide is used as the alkali metal ion source, since an exothermic reaction occurs, the alkali metal hydroxide is added little by little to the aqueous lithium silicate solution.
[0034] リチウムシリケート水溶液にアルカリ金属イオン源を添加しよく攪拌した後、必要量 の水をカ卩えることにより、本発明に係る改質剤の原液を得ることができる。尚、この水 の添加は、粘度を低下させることを目的としてなされる。また、使用する水は、好適に は、純水又はイオン交換水である。  [0034] An alkali metal ion source is added to the aqueous solution of lithium silicate, and the mixture is stirred well, and then a necessary amount of water is removed to obtain a stock solution of the modifier according to the present invention. The addition of water is performed for the purpose of lowering the viscosity. The water used is preferably pure water or ion-exchanged water.
[0035] 尚、製造に際して留意すべき点は、原材料であるリチウムシリケート水溶液は、 + 5 一 25°Cで保管し、氷点下環境でゲルイ匕した材料はできる限り使用しないことが好適 である。また、製造に当たっても、 + 5— 25°Cの温度管理を行うことが好ましい。  It should be noted that, when manufacturing, it is preferable that the aqueous solution of lithium silicate as a raw material is stored at +5 to 125 ° C., and a material that has been gelled in a subzero environment is not used as much as possible. Further, it is preferable to perform temperature control of +5 to 25 ° C. even in the production.
[0036] また、製造に際し、混合方法や材料の投入する順序は基本的に問わない。具体的 な調製手段の例を以下に示す。  [0036] Further, in the production, basically, the mixing method and the order of supplying the materials are not limited. Examples of specific preparation means are shown below.
(1)予め、イオン交換水の一部あるいは全てに水酸ィ匕ナトリウム、水酸ィ匕カリウムもし くはリチウムシリケートを溶解させたものを用いて調製した溶液  (1) A solution prepared beforehand by dissolving sodium hydroxide, potassium hydroxide or lithium silicate in part or all of ion-exchanged water
(2)水酸化物 (粒状もしくは水溶液)の投入する順序を、 (i)ナトリウム カリウムの順と したもの、(ii)カリウム ナトリウムの順としたもの、(iii)ナトリウムとカリウムを同時に投 入したもの、のいずれの溶液  (2) Hydroxide (granular or aqueous) was added in the order of (i) sodium and potassium, (ii) potassium and sodium, and (iii) sodium and potassium were injected at the same time. Any solution
(3)水酸化物 (粒状もしくは水溶液)を投入する量を、(i)少量ずつ投入したもの、 (ii) 一度に全量投入したもの、のいずれの溶液 (4)イオン交換水を添加する際、(i)各原材料をまず原液となる濃度に調製した後、 その原液を所定の希釈率 (例えば 2倍)に希釈した溶液、(ii)各原材料を最初から所 定の希釈率 (例えば 2倍)の希釈の濃度になるように調製した溶液 (3) The amount of the hydroxide (particulate or aqueous solution) to be charged is either (i) the solution that is added little by little, or (ii) the solution that is added all at once. (4) When adding ion-exchanged water, (i) first adjust the concentration of each raw material to be a stock solution, and then dilute the stock solution to a predetermined dilution ratio (for example, 2 times); A solution prepared from the beginning to a concentration at a specified dilution ratio (for example, 2 times)
[0037] このようにして得られた原液は、好適には、当該原液の全重量に対して、水を 65— 85重量% (より好適には 70— 80重量%)含有する。また、当該原液の好適な粘度( キャノン フェンスケ型粘度計で測定、 20°C)は、 1. 0— 15mPa' s (より好適には 1. 5 一 lOmPa' s)である。 [0037] The stock solution thus obtained preferably contains water in an amount of 65 to 85% by weight (more preferably 70 to 80% by weight) based on the total weight of the stock solution. The preferred viscosity of the stock solution (measured with a Cannon-Fenske viscometer, 20 ° C.) is 1.0 to 15 mPa's (more preferably 1.5 to 10 lOmPa's).
[0038] 更に、このようにして得られた原液の pHは、 12. 0— 13. 5の範囲であることが好適 であり、より好適には 12. 4— 12. 9の範囲である。また、希釈液の pHも、概ね上記範 囲内であることが好適である。  [0038] Further, the pH of the stock solution thus obtained is preferably in the range of 12.0 to 13.5, and more preferably in the range of 12.4 to 12.9. Further, it is preferable that the pH of the diluent is also generally within the above range.
[0039] 次に、本発明に係る改質剤の使用方法 (コンクリートの劣化防止又は劣化抑止方 法)について説明する。まず、本発明に係る改質剤の原液を、必要に応じて希釈 (以 下では、 2倍希釈を例にとり説明する)しょく攪拌する(工程 1)。そして、本改質剤をコ ンクリートに塗布する前に、塗布面のコンクリートを湿潤状態にするために水を散布 する(工程 2)。その後、コンクリートの湿潤状態を確認し、水で 2倍希釈した本改質剤 を、低圧の噴霧器、刷毛、ローラー等 (施工場所状況により選択)にて塗布する(工程 3)。ここで、コンクリート lm2当たりの本改質剤の使用量は、例えば、 200cc/m2 (2倍 希釈したもの)であり、原液ベースでは lOOccZm2である。次いで、塗布後、乾燥する 前に水を低圧にて散布する(工程 4)。この際、湿潤養生 (基本 90分)乾燥が速いよう ならば散水することとする(工程 5)。工程 2—工程 4を繰り返す(工程 6)。表面に本改 質剤が残存しているかを確認する(工程 7)。最終工程として低圧で散水し、工程 6で 残存が確認された場合は、ブラッシング等で洗浄し、コンクリート表面に残存させない ようにする(工程 8)。その後自然乾燥させる(工程 9)。尚、工程 8終了後は、すぐに供 用可能である (道路白舗装など床面の場合は、重量車両の走行や重量物の移動も 可)。また、施工時には、外気温が + 5°C以上であることが好適であり、 + 5°C未満の 場合は採暖養生等により温度管理をすることが好適である。尚、塗装やポリマーセメ ントのように、浸透を阻害する被覆材で被覆されている場合には、当該被覆材を剥離 した後に、本改質剤を塗布する。 [0040] また、本発明に係る改質剤が使用可能なコンクリートの種類も特に限定されず、セメ ント種類や配合を変えたあらゆるコンクリートに有効である。例えば、セメントとしては、 普通ポルトランドセメント、早強ポルトランドセメント、ビーライトセメント、ェコセメント、 高炉セメント、フライアッシュセメント、低熱セメントを挙げることができる。また、コンクリ ートとしては、例えば、普通コンクリート、高強度コンクリート、低発熱コンクリート、水中 不分離コンクリート、水中コンクリート、工場製品コンクリート、海洋コンクリート、吹付 けコンクリート、繊維補強コンクリート、プレノックドコンクリート、高流動コンクリート、軽 量 (骨材)コンクリート、鋼コンクリート合成構造、プレストレストコンクリート、再生骨材 コンクリート等を挙げることができる。尚、例えば、フライアッシュ、高炉スラグ微粉末、 シリカフューム等の混和材が混合されて 、てもよ 、。 Next, a method for using the modifier according to the present invention (a method for preventing or suppressing deterioration of concrete) will be described. First, the stock solution of the modifier according to the present invention is stirred as necessary (step 1), where necessary (hereinafter, a two-fold dilution will be described as an example). Then, before applying this modifier to the concrete, water is sprayed to keep the concrete on the application surface wet (step 2). After that, check the wet condition of the concrete and apply the modifier diluted twice with water using a low-pressure sprayer, brush, roller, etc. (select according to the construction site conditions) (Step 3). Here, the amount of the modifier per concrete lm 2 is, for example, 200cc / m 2 (2 times those diluted), the undiluted base is lOOccZm 2. Next, water is sprayed at a low pressure after application and before drying (step 4). At this time, if drying is quick with wet curing (basic 90 minutes), watering should be performed (Step 5). Step 2—Step 4 is repeated (Step 6). Check if the modifying agent remains on the surface (Step 7). Watering is performed at a low pressure as the final step, and if residual is confirmed in step 6, it is washed by brushing or the like so that it does not remain on the concrete surface (step 8). Then, air dry (Step 9). It can be used immediately after the completion of Process 8 (if the floor is on white pavement, heavy vehicles can be moved or heavy objects can be moved). At the time of construction, it is preferable that the outside air temperature is + 5 ° C or higher, and when it is lower than + 5 ° C, it is preferable to control the temperature by heating and curing. If the coating is coated with a coating material that inhibits permeation, such as paint or polymer cement, apply this modifier after removing the coating material. [0040] The type of concrete in which the modifier according to the present invention can be used is not particularly limited, and is effective for all types of concrete in which the type and composition of cement are changed. For example, examples of the cement include ordinary Portland cement, early-strength Portland cement, belite cement, eco cement, blast furnace cement, fly ash cement, and low heat cement. Concrete includes, for example, ordinary concrete, high-strength concrete, low-heating concrete, underwater non-separable concrete, underwater concrete, factory concrete, marine concrete, shotcrete, fiber reinforced concrete, pre-knocked concrete, Examples include fluidized concrete, light (aggregate) concrete, steel-concrete composite structures, prestressed concrete, and recycled aggregate concrete. Incidentally, for example, admixtures such as fly ash, blast furnace slag fine powder, and silica fume may be mixed.
[0041] ここで、カルシウムが溶脱して 、る劣化構造物やカルシウム含有量が低 、高炉スラ グセメントを用いたコンクリートに関しては、改質剤塗布工程に先立ち、又は、複数の 改質剤塗布工程の途中で、前記コンクリートに水酸ィ匕カルシウムを塗布し、カルシゥ ム分をコンクリートに補給することが好適である。例えば、最初にコンクリートに水を塗 布し、その後に改質剤を塗布し、その後に水酸ィ匕カルシウム水溶液を塗布する態様 を挙げることができる。更には、本改質剤を他の材料 (例えばセメント)と混ぜて、当該 混合物をコンクリート表面に塗布する態様も挙げることができる。更には、例えば、ク ラックが発生している場合においては、本改質剤をコンクリート表面に塗布するので はなぐクラックを介してコンクリート内部に注入する態様も挙げることができる。 [0041] Here, with respect to the degraded structure due to the leaching of calcium and the concrete having a low calcium content and using blast furnace slag cement, prior to the modifying agent application step or a plurality of modifying agent application steps, It is preferable to apply calcium hydroxide to the concrete in the middle of the process to supply calcium to the concrete. For example, there may be mentioned an embodiment in which water is first applied to concrete, then a modifier is applied, and then an aqueous solution of calcium hydroxide is applied. Further, there may be mentioned an embodiment in which the present modifier is mixed with another material (for example, cement) and the mixture is applied to the concrete surface. Further, for example, when a crack is generated, the present modifier may be applied to the concrete surface and injected into the concrete through a crack that does not readily occur.
実施例  Example
[0042] 以下、本発明を実施例を参照しながら具体的に説明する。尚、本発明は実施例に よりいかなる限定も受けない。  Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited by the examples.
[0043] 製诰例 1 (LN422) [0043] Production Example 1 (LN422)
リチウムシリケート 45 (日産化学工業株式会社製、水溶液 100重量部に対して SiO  Lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd.
2 2
20. 0 21. 0重量部、 Li O 2. 1—2. 4重量部、 SiO /Li Oモル比 4. 5) 85. 70g 20.0 21.0 parts by weight, Li O 2.1-2.4 parts by weight, SiO / Li O molar ratio 4.5) 85.70 g
2 2 2  2 2 2
をビーカーに計り取り、水酸化ナトリウム(関東化学株式会社製、純度 97%) 4. 12gを ガラス棒でよく混ぜながら少量ずつ、投入した量が溶解しきって力も順次加えた。水 酸ィ匕ナトリウムが全量溶けきつてから、水酸ィ匕カリウム(関東ィ匕学株式会社製、純度 8 6%) 1. 96gを少量ずつ投入し、溶解しきったところへイオン交換水 8. 22gを静かに加 え、ガラス棒でよく攪拌して本製造例に係るコンクリート改質剤の原液を得た (粘度 : 7 . 32mPa- s)„尚、表 1に各成分の組成を示した (ここで、酸化リチウム、酸化ナトリウム 及び酸化カリウムの値は等価酸化物に換算したものである。製造例 2〜7も同様)。 Was measured in a beaker, and sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., purity: 97%) was mixed little by little with a glass rod. After all the sodium hydroxide is completely dissolved, potassium hydroxide (purity 8 (6%) 1. 96 g was added little by little, and 8.22 g of ion-exchanged water was gently added to the place where it was completely dissolved, and the mixture was stirred well with a glass rod to obtain a stock solution of the concrete modifier according to this production example. (Viscosity: 7.32 mPa-s) The composition of each component is shown in Table 1 (where the values of lithium oxide, sodium oxide and potassium oxide are converted to equivalent oxides. Production Example 2) To 7).
[表 1] [table 1]
Figure imgf000012_0001
製造例 20LN723)
Figure imgf000012_0001
(Production example 20LN723)
リチウムシリケート 75 (日産化学工業株式会社製、水溶液 100重量部に対して SiO 2 Lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd.
0. 0—21. 0重量部、 Li〇 1. 2〜1. 4重量部、 SiO /Li Oモル比 0.0-21.0 parts by weight, Li〇 1.2-1.4 parts by weight, SiO / Li O molar ratio
7. 5) 85. 56gをビーカーに計り取り、水酸化ナトリウム(関東化学株式会社製、純度 97%) 4. 12gをガラス棒でよく混ぜながら少量ずつ、投入した量が溶解しきって力 順 次加えた。水酸化ナトリウムが全量溶けきつてから、水酸化カリウム(関東化学株式会 社製、純度 86%) 3. 91gを少量ずつ投入し、溶解しきったところへイオン交換水 6. 41 gを静かに加え、ガラス棒でよく攪拌して本製造例に係るコンクリート改質剤の原液を 得た。尚、表 2に各成分の組成を示した。  7.5) 85. 56g is weighed into a beaker, and sodium hydroxide (Kanto Chemical Co., Ltd., purity: 97%) 4. While mixing well with 12g with a glass rod, the input amount is dissolved little by little, added. After the sodium hydroxide was completely dissolved, 3.91 g of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd., purity: 86%) was added little by little, and 6.41 g of ion-exchanged water was gently added to the place where it was completely dissolved. Then, the mixture was thoroughly stirred with a glass rod to obtain a stock solution of the concrete modifier according to this production example. Table 2 shows the composition of each component.
[表 2]  [Table 2]
Figure imgf000012_0002
Figure imgf000012_0002
差替え用紙 (規則 26) 製造例 3 (LN312) Replacement form (Rule 26) Production Example 3 (LN312)
リチウムシリケート 35 (日産化学工業株式会社製、水溶液 100重量部に対して SiOLithium silicate 35 (Nissan Chemical Industries, Ltd.
20. 0—21. 0重量部、 Li 0 2. 6〜3. 3重量部、 SiO /Li〇モノレ比 3. 5) 90. 89g をビーカ一に計り取り、水酸化ナトリウム (関東化学株式会社製、純度 97%) 0. 83gを ガラス棒でよく混ぜなカ¾少量ずつ、投入した量が溶解しきって力 順次加えた。水 酸化ナトリウムが全量溶けきつてから、水酸化カリウム(関東化学株式会社製、純度 8 6%) 1. 96gを少量ずつ投入し、溶解しきったところへイオン交換水 6. 32gを静かに加 20.0 to 21.0 parts by weight, Li 2.6 to 3.3 parts by weight, SiO / Li monolate ratio 3.5) 90.89 g is weighed into a beaker, and sodium hydroxide (Kanto Chemical Co., Ltd.) 0.83 g was mixed well with a glass rod. After the sodium hydroxide has completely dissolved, add 1.96 g of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd., purity: 86%) little by little, and gently add 6.32 g of ion-exchanged water to the place where it is completely dissolved.
差替え用紙 (規則 26) え、ガラス棒でよく攪拌して本製造例に係るコンクリート改質剤の原液を得た。尚、表 3に'各成分の組成を示した。 Replacement form (Rule 26) Then, the mixture was thoroughly stirred with a glass rod to obtain a stock solution of the concrete modifier according to the present production example. Table 3 shows the composition of each component.
[表 3]  [Table 3]
Figure imgf000014_0001
製造例 40LN721)
Figure imgf000014_0001
(Production example 40LN721)
リチウムシリケート 75 (日産化学工業株式会社製、水溶液 100重量部に対して SiO 20. 0〜21. 0重量部、 Li O 1. 2-1. 4重量部、 SiO /Li Oモル比 7. 5) 88. 84g をビーカーに計り取り、水酸化ナトリウム (関東化学株式会社製、純度 97%) 4. 12gを ガラス棒でよく混ぜなカ¾少量ずつ、投入した量が溶解しきってから順次加えた。水 酸化ナトリウムが全量溶けきつてから、水酸ィ匕カリウム(関東化学株式会社製、純度 8 6%) 0. 39gを少量ずつ投入し、溶解しきったところへイオン交換水 6. 65gを静かに加 え、ガラス棒でよく撩拌して本製造例に係るコンクリート改質剤の原液を得た。尚、表 4に各成分の組成を示した。 Lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd., SiO 20.0-21.0 parts by weight, Li O 1.2-1.4 parts by weight, SiO 2 / Li O molar ratio 7.5 per 100 parts by weight of aqueous solution) 88.84 g was weighed into a beaker, and sodium hydroxide (Kanto Chemical Co., Ltd., purity: 97%) was added.4.12 g was mixed well with a glass rod. . After the sodium hydroxide was completely dissolved, 0.39 g of potassium hydroxide (Kanto Chemical Co., Ltd., purity: 86%) was added little by little, and 6.65 g of ion-exchanged water was gently added to the place where it was completely dissolved. In addition, the mixture was stirred well with a glass rod to obtain a stock solution of the concrete modifier according to this production example. Table 4 shows the composition of each component.
[表 4] [Table 4]
Figure imgf000014_0002
Figure imgf000014_0002
差替え用紙 (規則 26) 靱诰例 5 N411) Replacement form (Rule 26) (Example 5 N411)
リチウムシリケ一ト 45 (日産化学工業株式会社製、水溶液 100重量部に対して Si〇Lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd.
20. 0〜21. 0重量部、 Li〇 2. 1-2. 4重量部、 SiO /Li〇モル比 4. 5) 90. 14g をビーカーに計り取り、水酸化ナトリウム (関東化学株式会社製、純度 97%) 0. 82gを ガラス棒でよぐ混ぜながら少量ずつ、投入した量が溶解しきってカゝら順次加えた。水 酸ィ匕ナトリウムが全量溶けきつてから、水酸ィヒカリウム(関東ィ匕学株式会社製、純度 8 6%) 0. 39gを少量ずつ投入し、溶解しきったところへイオン交換水 8. 65gを静かに加 え、ガラス棒でよく攪拌して本製造例に係るコンクリート改質剤の原液を得た。尚、表 5に各成分の組成を示した。 20.0 to 21.0 parts by weight, Li〇 2.1-2.4 parts by weight, SiO / Li〇 molar ratio 4.5) 90.14 g is weighed into a beaker, and sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.) (Purity: 97%) 0.82 g was mixed with a glass rod little by little, and the added amount was completely dissolved and added sequentially. After the entire amount of sodium hydroxide was completely dissolved, 0.39 g of potassium hydroxide (manufactured by Kanto Corporation, purity: 86%) was added little by little, and 8.65 g of ion-exchanged water was added to the place where it was completely dissolved. The mixture was added gently and stirred well with a glass rod to obtain a stock solution of the concrete modifier according to this production example. Table 5 shows the composition of each component.
差替え用紙 (規則 26) [表 5]
Figure imgf000016_0001
製诰例 6 (LN433)
Replacement form (Rule 26) [Table 5]
Figure imgf000016_0001
Production example 6 (LN433)
リチウムシリケート 45 (日産化学工業株式会社製、水溶液 100重量部に対して SiO 20. 0-21. 0重量部、 Li O 2. 1〜2. 4重量部、 SiO /Li Oモル比 4. 5) 80. 15g をビーカーに計り取り、水酸ィ匕ナトリウム (関東化学株式会社製、純度 97%) 8. 25gを ガラス棒でよく混ぜながら少量ずつ、投入した量が溶解しきってカゝら順次加えた。水 酸ィ匕ナトリウムが全量溶けきつてから、水酸ィヒカリウム (関東化学株式会社製、純度 8 6%) 3. 91gを少量ずつ投入し、溶解しきったところへイオン交換水 7. 69gを静かに加 え、ガラス棒でよく撩拌して本製造例に係るコンクリート改質剤の原液を得た。尚、表 6に各成分の組成を示した。  Lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd., SiO 20.0-21.0 parts by weight, Li O 2.1-2.4 parts by weight, SiO / Li O molar ratio 4.5 with respect to 100 parts by weight of aqueous solution) 80.15g is weighed into a beaker and sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., purity: 97%) 8. While mixing well with 25g with a glass rod, the input amount is dissolved little by little and added. After sodium hydroxide was completely dissolved, 3.91 g of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd., purity: 86%) was added little by little, and 7.69 g of ion-exchanged water was gently added to the place where it was completely dissolved. In addition, the mixture was stirred well with a glass rod to obtain a stock solution of the concrete modifier according to this production example. Table 6 shows the composition of each component.
[表 6]  [Table 6]
Figure imgf000016_0002
製造例 7 (LN733)
Figure imgf000016_0002
Production Example 7 (LN733)
リチウムシリケ一ト75 (日産化学工業株式会社製、水溶液 100重量部に対して SiO 20. 0-21. 0重量部、 Li O 1. 2-1. 4重量部、 SiO /Li Oモル比 7. 5) 81. 72g をビーカーに計り取り、水酸ィ匕ナトリウム(関東ィ匕学株式会社製、純度 97%) 8. 25gを ガラス棒でよぐ混ぜながら少量ずつ、投入した量が溶解しきってカゝら順次加えた。水 酸化ナトリウムが全量溶けきつてから、水酸化カリウム (関東化学株式会社製、純度 8 Lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd., SiO 20.0-21.0 parts by weight, Li O 1.2-1.4 parts by weight, SiO 2 / Li O molar ratio 7. 5) Weigh 81.72g into a beaker, mix sodium hydroxide (manufactured by Kanto Idani Kagaku Co., Ltd., purity 97%). Carapara was added sequentially. After sodium hydroxide is completely dissolved, potassium hydroxide (Kanto Chemical Co., Ltd., purity 8
差替え用紙 (規則 26) 6%) 3. 91gを少量ずつ投入し、溶解しきったところへイオン交換水 6· 12gを静かに加 え、ガラス棒でよく攪拌して本製造例に係るコンクリート改質剤の原液を得た。尚、表 7に各成分の組成を示した。 Replacement form (Rule 26) 3.91 g was added little by little, 6-11.2 g of ion-exchanged water was gently added to the place where it was completely dissolved, and the mixture was stirred well with a glass rod to obtain a stock solution of the concrete modifier according to this production example. . Table 7 shows the composition of each component.
[表 7] [Table 7]
差替え用紙 (規則 26) 成分 化学式 重量% Replacement form (Rule 26) Ingredients Chemical Formula Weight%
水 H20 72.33 Water H 2 0 72.33
酸化リチウム Li20 1.14 Lithium oxide Li 2 0 1.14
酸化ナトリウム Na20 6.40 Sodium oxide Na 2 0 6.40
二酸化珪素 SiOz 17.21 Silicon dioxide SiO z 17.21
酸化カリウム κ2ο 2.92 ここで、表 8に、製造例 1〜7に係る各改質剤原液についての各成分のモル比を示 す。尚、表中の「2層分離」とは、白濁ゲルが 2層(浮遊層と沈殿層)に分層しているか 否かを意味するものである。 Potassium oxide κ 2 ο 2.92 Here, Table 8 shows the molar ratio of each component in each of the modifier stock solutions according to Production Examples 1 to 7. “Two-layer separation” in the table means whether the cloudy gel is separated into two layers (floating layer and sedimentary layer).
[表 8] 実施例で用いた各改質剤試料のモル比 (アルカリ金属イオン換算)  [Table 8] Molar ratio of each modifier sample used in Examples (in terms of alkali metal ions)
Figure imgf000018_0001
Figure imgf000018_0001
[0051] 試験例 1 (SEMによる浸诱件.確認試験) Test Example 1 (SEM immersion. Confirmation test)
<実験概要〉  <Experiment outline>
改質剤を塗布したモルタル供試体を打設面に対し垂直方向に切り出し、打設面から の深さごとに SEMで観察した。また、改質剤と細孔溶液を模した飽和水酸化カルシ ゥム水溶液とを混合して得られた生成物についても SEMで観察した。  The mortar specimen coated with the modifier was cut out in the direction perpendicular to the casting surface, and observed by SEM at each depth from the casting surface. The product obtained by mixing the modifier with a saturated calcium hydroxide aqueous solution simulating a pore solution was also observed by SEM.
<モルタル供試体 >  <Mortar specimen>
氷セメント比 60%細骨材/モルタル体積比 55%の OPCモルタルを直径 5cm高さ 10 cmの型枠に打設、 24時間後脱型し、その後は水中養生した。打設後 4日で高さ 5cm に成型した。  OPC mortar with an ice cement ratio of 60% fine aggregate / mortar volume ratio of 55% was cast into a mold with a diameter of 5 cm and a height of 10 cm. The mold was removed after 24 hours, and then cured in water. Four days after casting, it was molded to a height of 5 cm.
<改質剤>  <Modifier>
製造 1で得られた原液を水で 2倍希釈することにより得られた改質剤 ぐ塗布方法 >  Modifier obtained by diluting the stock solution obtained in Production 1 two-fold with water
湿潤状態の供試体の打設面に前記改質剤を 1. 07  The above modifier was placed on the casting surface of the wet specimen 1.07
差替え用紙 (規則 26) L/m2塗布し 90分後に散水した。その後、前記改質剤を 0. 31 L/m2塗布し 90分後に 散水、 7日間は湿 ' 状態で、それ以降は気中で養生した。塗布後 68日で厚さ 5nmi、 打設面に対して垂直方向に切り出し、アセトンに 24時間浸潰した。観察面を平滑に 研磨し炭素蒸着を施して SEMに供した。尚、比較のため、他方は未処理のままその 後 68日間気中で養生した。 Replacement form (Rule 26) L / m 2 was applied and water was sprayed 90 minutes later. Thereafter, the above-mentioned modifier was applied at 0.31 L / m 2, and water was sprayed 90 minutes later. The body was kept wet for 7 days, and then air-cured. 68 days after application, the product was cut out in a direction perpendicular to the casting surface with a thickness of 5 nm and immersed in acetone for 24 hours. The observation surface was polished smoothly, carbon deposited, and subjected to SEM. For comparison, the other was left untreated and aged for 68 days.
差替え用紙 (規則 26) <結果 > Replacement form (Rule 26) <Result>
観察した SEM画像を図 2 (a)〜 (g)に示す。尚、図 2 (a)〜(d)は、改質剤塗布モル タル供試体 {打設面からの深さ(a) lmm, (b) 20mm, (c) 30mm, (d) 40mm}の SEM 画像であり、図 2 (e)及ぴ (f)は、無塗布モルタル供試体 {打設面力 の深さ(e) 5mm , (i) 20mm}の SEM画像であり、図 2 (g)は、改質剤と飽和 Ca (OH)溶液から得られ た生成物の SEM画像である。これらの電子写真から分かるように、改質剤を塗布し た供試体 {図 2 (a)〜(d) }の内部では太さ 0. 3ミクロン程の棒状の物質が生成してお り、 40mm深さまで存在を確認した。このような生成物は、無塗布供試体 {図 2(e)- (f) }では確認されな力 た。またこの生成物は、図 2 (g)にみられる試験溶液を混合して 得られた反応生成物に形状が近似しており、同様のものが生成したものと推測される 試験例 2 (XRF元泰分析) The observed SEM images are shown in Fig. 2 (a) to (g). Figures 2 (a) to 2 (d) show the specimens of the mortar coated with the modifier {depth from the casting surface (a) lmm, (b) 20mm, (c) 30mm, (d) 40mm}. Figs. 2 (e) and (f) are SEM images of the uncoated mortar specimen {depth of the casting surface force (e) 5mm, (i) 20mm}. ) Is an SEM image of the product obtained from the modifier and saturated Ca (OH) solution. As can be seen from these electrophotographs, a rod-like substance with a thickness of about 0.3 micron was formed inside the specimen coated with the modifier {Fig. 2 (a) to (d)}. The existence was confirmed to a depth of 40 mm. Such a product was not confirmed in the uncoated specimen {Fig. 2 (e)-(f)}. This product is similar in shape to the reaction product obtained by mixing the test solution shown in Fig. 2 (g), and it is presumed that a similar product was formed.Test Example 2 (XRF Motoyasu analysis)
<実験方法 > <Experiment method>
図 2 (g)の SEM画像にみられるような、飽和水酸化カルシウム水溶液に改質剤を滴 下して得られたゲル (以下、「LNゲル Jという)を、蛍光 棣分析装置 (XRF)を用いて 元素分析を行った。尚、測定条件は、管電圧 30kV、管電流 0. 813mAとした。 <改質剤〉 As shown in the SEM image of Fig. 2 (g), the gel obtained by dropping the modifier into a saturated calcium hydroxide aqueous solution (hereinafter referred to as `` LN gel J '') was analyzed by a fluorescent dilute analyzer (XRF). Elemental analysis was performed using a tube voltage of 30 kV and a tube current of 0.813 mA.
製造例 1で得られた原液を水で 2倍希釈することにより得られた改質剤 Modifier obtained by diluting the stock solution obtained in Production Example 1 twice with water
く測定試料〉 Measurement sample>
濾過した飽和水酸化カルシウム水溶液と改質剤を体積比 9: 1で混合し生成させたゲ ルを、まず遠心分離機で液相から分離した。その後、イオン交換水で洗浄し未反応 カルシウムイオンを除いて力 乾燥させたものを試料とした。 The gel produced by mixing the filtered saturated calcium hydroxide aqueous solution and the modifier at a volume ratio of 9: 1 was first separated from the liquid phase by a centrifuge. Then, the sample was washed with ion-exchanged water and force dried to remove unreacted calcium ions.
<結果 >  <Result>
測定したスペクトルを図 3に、酸化物に換算した分析結果値を表 9に、またセメント硬 化体の主な成分の Ca/Si及び Ca/Alの値を表 10に示した。 Fig. 3 shows the measured spectrum, Table 9 shows the analytical results converted to oxides, and Table 10 shows the values of Ca / Si and Ca / Al of the main components of the hardened cement.
差替え用紙 (規則 26) [表 9] Replacement form (Rule 26) [Table 9]
Figure imgf000021_0001
Figure imgf000021_0001
差替え用紙 (規則 26) [表 10] Replacement form (Rule 26) [Table 10]
Figure imgf000022_0001
Figure imgf000022_0001
[0053] 表 10より明らかなように、 Ca/Siと Ca/AIのモル比は、それぞれ 0· 788及び 54. 6で あり、セメント硬化体で生成する既知成分の値と比較しても明らかに組成が異なる。こ れらの結果より、図 2 (a) ~ (d)にみられる棒状物質は、供試体内部に浸透した本改 質剤が、細孔内溶液中の Caイオンと反応して形成されたものと考えられる。また、 Ca < Siであるので、 LNゲルは負に帯電して 、るものと推察される。 [0053] As is clear from Table 10, the molar ratios of Ca / Si and Ca / AI are 0.788 and 54.6, respectively, and are clear even when compared with the values of the known components generated in the hardened cement. Have different compositions. Based on these results, the rod-like substance shown in Figs. 2 (a) to 2 (d) was formed by the reforming agent that penetrated inside the specimen reacting with Ca ions in the pore solution. It is considered. Since Ca <Si, the LN gel is presumed to be negatively charged.
[0054] 試験例 3 (アルカリ成分令析による浸诱性確認試験)  Test Example 3 (Test for confirming immersion by alkali component analysis)
<実験方法 >  <Experiment method>
試験例 1と同様の供試体を塗布面から lmm厚さごとに研磨し得られた粉末試料を、 2 md/L塩酸と混合-濾過し、その濾液をイオンクロマトグラフで分析した。  A powder sample obtained by polishing the same specimen as in Test Example 1 from the coated surface for every lmm thickness was mixed and filtered with 2 md / L hydrochloric acid, and the filtrate was analyzed by ion chromatography.
く改質剤 >  K Modifier>
製造例 1で得られた原液を水で 2倍希釈することにより得られた改質剤  Modifier obtained by diluting the stock solution obtained in Production Example 1 twice with water
<結果 >  <Result>
図 4にカルシウム lgあたりの各イオン種の含有量を示した。 Mgがほぼ同じ値になつ たのに対し、 Li、 Na及び Kは塗布面に近いほど含有量が大きぐ深くなるにつれ値 が減少している。 Li、 Na及び Kは改質剤に含まれる成分であることから、改質剤が徐 々に供試体内部に浸透しているものと推測される。また Mgは、セメント及ぴ細骨材由 来の成分なので、ほぼ均一な値になったものと考えられる。  Fig. 4 shows the content of each ion species per lg of calcium. Mg reached almost the same value, whereas values of Li, Na and K decreased as the content became larger and closer to the coated surface. Since Li, Na and K are components contained in the modifier, it is presumed that the modifier gradually penetrates into the specimen. Since Mg is a component derived from cement and fine aggregate, it is considered that the values are almost uniform.
[0055] 試験例 4{诱水試験(1) } Test example 4 {诱 Water test (1)}
く試験概要 >  Test Overview>
透水性能は、 JIS A 1404建築用セメント防水剤の試験方法に準じて、直径 10cm 厚さ lcmのモルタル (M60)供試体を質量が変わらなくなるまで乾燥し、 10kgf/cm2Water permeability, in accordance with the test method of JIS A 1404 building cement waterproofing agents, drying the mortar (M60) specimen having a diameter of 10cm thickness lcm until mass no longer changes, the 10 kgf / cm 2
差替え用紙 (規則 26) 水圧をかけた状態で 20時間後までの透水量を測定し、透水係数を下記式 (1)により 算出した。試験装置の概要を図 5 (a)に示す。 Replacement form (Rule 26) The water permeability was measured up to 20 hours after the application of water pressure, and the water permeability was calculated by the following equation (1). Figure 5 (a) shows the outline of the test equipment.
Shaving
差替え用紙 (規則 26) Kw Replacement form (Rule 26) Kw
PA  PA
[0057] ここに、上記式(1)中、 Kw :透水係数 (cm )、 P :加圧力(kgf/cm 2)、 A :供試体の 断面積 (cm2)、 h:供試体の厚さ (cm)、 ω:水の単位容積質量 (kgん m3)、 Q:透水量 ( cmVs)である。 Here, in the above equation (1), Kw: permeability coefficient (cm), P: applied pressure (kgf / cm 2 ), A: cross-sectional area of specimen (cm 2 ), h: thickness of specimen (Cm), ω: Unit volume mass of water (kg m 3 ), Q: Water permeability (cmVs).
[0058] く供試体の配合 >  [0058] Formulation of specimens>
供試体には、水セメント比 60%の普通ポルトランドセメントによるモルタル (以下、 Γ M60Jという)を用いた。配合を表 11に示す。  Mortar made of ordinary Portland cement with a water cement ratio of 60% (hereinafter referred to as ΓM60J) was used as the test piece. The composition is shown in Table 11.
[0059] [表 11]  [Table 11]
Figure imgf000024_0001
Figure imgf000024_0001
[0060] <改質剤〉 [0060] <Modifier>
製造例 1で得られた原液を水で 2倍希釈することにより得られた本改質剤 (Linack) 及ぴ比較例として市販のコンクリート改質剤 {登録商標: RCガード (以下、「RC」と ヽ う。)}  This modifier (Linack) obtained by diluting the stock solution obtained in Production Example 1 twice with water and a commercially available concrete modifier as a comparative example {Registered trademark: RC Guard (hereinafter, “RC”) And ヽ.)}
ぐ供試体条件 >  Specimen conditions>
モルタルは直径 10cm高さ 1. 4cmの型枠により作成し、脱型後打設面及ぴ底面を 研磨し高さ lcmに形成し、珪酸質系改質剤 (Linack及 ΐ RC)を塗布した。散水によ り湿潤状態とした供試体にそれぞれ 0. 15L/m2塗布し、 90分後に散水養生を行い 、更に 0. lL/m2を塗布し 90分後再び散水養生してから、 24時間後にも散水を行つ た。以後 10日間湿潤養生し、 80°Cの乾燥器内で質量が変化しなくなるまで乾燥した (24時間)。その後室内空気に 1時間おいてから試験を行った。 The mortar was prepared using a mold with a diameter of 10 cm and a height of 1.4 cm.After removal from the mold, the casting surface and the bottom surface were polished to a height of lcm, and a siliceous modifier (Linack and RC) was applied. . Each specimens was by Ri wet watering 0. 15L / m 2 was coated, subjected to water spray curing after 90 minutes, and further coated again watering cured after 90 minutes 0. lL / m 2, 24 Watering was continued after hours. After that, it was wet-cured for 10 days and dried in an oven at 80 ° C. until the mass no longer changed (24 hours). After that, the test was performed after 1 hour in indoor air.
[0061] く試験結果及ぴ考察 > [0061] Test results and discussion>
図 5 (b)に示すように、本改質剤 (Linack)を塗布した供試体では無塗布に比べ約 1 /7程度にまで透水係数が低下しており、高い遮水性能を示した。これに対して比較  As shown in Fig. 5 (b), the permeability of the specimen coated with this modifier (Linack) was reduced to about 1/7 compared to the case where it was not coated, indicating high water barrier performance. Compare to this
差替え用紙 (規則 26) 例の RCガード塗布でも無塗布より低い値となった力 s、その割合は 1Z2程度である。 試験例 5 {诱水試験(2) } Replacement form (Rule 26) Even with the RC guard coating in the example, the force s , which is lower than the value without coating, the ratio is about 1Z2. Test example 5 {诱 Water test (2)}
ぐ試験概要 > Test Overview>
改質剤の浸透による透水係数の深さ方向の変化を確認するため、 M60モルタルを  M60 mortar was used to confirm the change in permeability in the depth direction due to the penetration of the modifier.
差替え用紙 (規則 26) 用いてアウトプット法による透水試験を行った。 φ 100 X 200mmの M60モルタルを 材齢 14日まで水中養生し、側面をシーリングしてから、打設面のみに本改質剤 (Lin ack)及び RCガードを塗布した。材齢 28日まで養生した後、打設面より 10mm毎に水 平に切断して得られた供試体を用いて、 0. IMPa加圧下で透過水量を測定した。定 常状態の透過水量力 式(1)により算出した透水係数の深さによる変化について無 塗布の場合と比較し評価を行った。 Replacement form (Rule 26) Permeability test by the output method was carried out. M60 mortar of φ100 × 200mm was cured in water until the age of 14 days, the side was sealed, and then the modifier (Lin ack) and RC guard were applied only to the casting surface. After curing to a material age of 28 days, the amount of permeated water was measured under a pressure of 0. IMPa, using a specimen obtained by cutting horizontally from the casting surface every 10 mm. Permeable water flow rate in steady state The change in water permeability calculated by equation (1) with depth was evaluated in comparison with the case of no application.
<改質剤> <Modifier>
製造例 1で得られた原液を水で 2倍希釈することにより得られた本改質剤 (Linack) 及び比較例として市販のコンクリート改質剤 (RC) This modifier (Linack) obtained by diluting the stock solution obtained in Production Example 1 twice with water and a commercial concrete modifier (RC) as a comparative example
<結果 > <Result>
深さ方向における透水係数変化を図 6に示す。無塗布の供試体では表層 5mm部分 が最も透水係数が大きぐ表層からの距離が大きくなるにつれ透水係数が小さくなる 傾向が見られた。これはブリージング及びセメント粒子や骨材の沈降により、表層に 近いほど WZCが大きくなるため、透水係数の変化が見られたと考えられる。一方、 本改質剤を塗布した供試体では逆に表面部の透水係数がやや低ぐ無塗布に見ら れるような深さによる大きな変化は無い。また本改質剤の透水係数が無塗布を下回る のは 40mm程度であり、試験例 1で浸透性が確認された深さと一致する。したがって、 本改質剤塗布によりモルタル内部に生成した水和物力 特に表層部で大きな遮水性 の改善効果をもたらしたものと考えられる。 RCガード塗布供試体では深さ 5mm部分 のみで本改質剤より低 、透水係数を示した力 20mm以下の深さでは無塗布より大き な値となった。 Figure 6 shows the change in permeability in the depth direction. In the uncoated specimens, the permeability increased at a distance of 5 mm from the surface layer where the permeability was greatest at the surface layer of 5 mm. This is considered to be due to the change in permeability due to the increase in WZC near the surface due to the breathing and sedimentation of cement particles and aggregates. On the other hand, in the specimen coated with this modifier, on the other hand, the permeability of the surface is rather low, and there is no significant change due to the depth that can be seen without coating. In addition, the permeability of this modifier is less than that of no application at about 40 mm, which is consistent with the depth at which permeability was confirmed in Test Example 1. Therefore, it is probable that the hydration force generated inside the mortar by the application of this modifier had a significant effect of improving the water barrier properties, especially at the surface layer. In the RC guard coated specimen, the value was lower than that of this modifier only at the depth of 5 mm, and at a depth of 20 mm or less showing the hydraulic conductivity, the value was larger than that of the non-coated.
試,験例 6 (雷気泳動法による塩化物イオン ¾:散試験) Test, Test Example 6 (chloride ion electrophoresis ¾: scattering test)
<試験概要 > <Test outline>
電位差を利用して塩ィ匕物イオンをコンクリート中で電気泳動させるもので、図 7 (a) に示すように直径 10cm高さ 5cmのコンクリート供試体の両側に 0. 5mol/L'NaCl及 び 0. 3mol/い NaOH水溶液を配し、 15Vの直流定電圧を印加することで、陰極側の 塩ィ匕物イオンがコンクリート細孔中を通って陽極側へ電気泳動する。陽極側の塩ィ匕 物イオン濃度の増加割合から実効拡散係数を算出する。また、コンクリート構造物の 表面仕上げ等に使用される頻度が高く、塩分が浸透しやす!/、モルタルでの試験も行 つ Ίこ。 Electrophoresis of salt-dyeing ions in concrete using a potential difference.As shown in Fig. 7 (a), 0.5mol / L'NaCl and 0.5mol / L'NaCl were added to both sides of a concrete specimen 10cm in diameter and 5cm in height. By distributing a 0.3 mol / NaOH aqueous solution and applying a constant DC voltage of 15 V, chloride ions on the cathode side are electrophoresed through the pores of the concrete to the anode side. The effective diffusion coefficient is calculated from the rate of increase in the concentration of the chloride ions on the anode side. Also, concrete structures Frequently used for surface finishing etc., salt easily penetrates! / Testing with mortar is also performed.
[0064] <供試体め配合 >  <0064> <Specimen composition>
供試体には水セメント比(以下 W/C) 50%の普通コンクリート(以下 OPC50)、 W /C50%の高炉 B種コンクリート(以下 BB50)、 W/C30%の低熱コンクリート(以下 LH30)及び W/C60%の普通モルタル(以下 M60)を用いた。それぞれの配合を 表 12に示す。  Specimens include water-cement ratio (W / C) 50% ordinary concrete (OPC50), W / C50% blast furnace type B concrete (BB50), W / C30% low heat concrete (LH30) and W / C30% / C60% ordinary mortar (hereinafter M60) was used. Table 12 shows the formulations.
[0065] [表 12]  [Table 12]
Figure imgf000027_0001
Figure imgf000027_0001
<改質剤> <Modifier>
製造例 1で得られた原液を水で 2倍希釈することにより得られた本改質剤 (Linack) 及ぴ比較例として市販のコンクリート改質剤 (RC)  The present modifier (Linack) obtained by diluting the stock solution obtained in Production Example 1 twice with water, and a commercially available concrete modifier (RC) as a comparative example
[0066] <供試体条件 > <Specimen conditions>
コンクリートは、直径 10cm高さ 20cmの型枠により作成したものを 5cm  Concrete is 5cm from a 10cm diameter, 20cm high formwork.
厚さに切り出した。また、モルタルは、直径 10cm高さ 10cmの型枠により作成し、 2cm 厚さに切り出し、これらに珪酸質系コンクリート改質剤等を塗布した。塗布条件は配 合に係わらず、無塗布 (NO)、比較例として市販の珪酸質系コンクリート改質剤(商 品名: RCガード (RC) }及び本改質剤(Linack)をそれぞれ 0. 15L/m2塗布し 90分 後に散水養生を行い、更に 0. lL/m2を塗布し 90分後再ぴ散水養生してから、 24 時間後にも散水を行った。 Cut out to thickness. The mortar was prepared using a mold having a diameter of 10 cm and a height of 10 cm, cut out to a thickness of 2 cm, and applied with a siliceous concrete modifier or the like. Regardless of the application conditions, no application (NO), and as a comparative example, 0.15 L each of a commercially available siliceous concrete modifier (trade name: RC Guard (RC)) and this modifier (Linack) 90 minutes after the application of / m 2 , watering and curing were performed. Further, 0.1 l / m 2 was applied, and after 90 minutes, watering and curing were performed again. Watering was performed 24 hours later.
[0067] <試験結果及ぴ考察 > [0067] <Test Results and Discussion>
それぞれの実効拡散係数を表 13に示す。また、無塗布に対する比率を図 7 (b) (コ ンクリート配合)及び図 7 (c) ルタル配合)に示す。  Table 13 shows the effective diffusion coefficients. Fig. 7 (b) (Concrete blend) and Fig. 7 (c) Rutar blend) show the ratio to no coating.
差替え用紙 (規則 26) 13] Replacement form (Rule 26) 13]
実効拡散係数(ΧΐθΛηΛ
Figure imgf000028_0001
Effective diffusion coefficient ({θΛηΛ
Figure imgf000028_0001
差替え用紙 (規則 26) [0069] セメントの種類や水セメント比め差によって実行拡散係数は大きく異なることが、表ュ 3に示されている。しかし、図 7 (b)に示すように、本改質剤(Linack)塗布では、セメ ントの種類や水セメント比に係わらず塩分浸透抑制効果が確認された。 OPC50にお レヽて無塗布の実効拡散係数に対する RCガード (比較例)を塗布した供試体の比率 は 80%とィ靈かに下回る程度だ力 本改質剤 (Linack)を塗布した供試体では 20%と 大幅に低い数値を示した。通常、コンクリートでは W/Cが低いほど塩分遮蔽性が高 く、 2002年制定のコンクリート標準示方書〔施工編〕の回帰式によれば、 W/C40% の拡散係数と、一般的な W/C50%の比は 43%、また WZC60%との比は 22%で ある。本改質剤(Linack)塗布による OPC50の無塗布に対する 20%という値は、塩 分が浸透しやすいとされている W/C60%に対する、塩分浸透が防止されると考え られる W/C40%との比に相当し、塩分浸透抑制効果として非常に高いといえる。高 炉スラグを混合した BB50は塩分浸透を抑制する効果が高いため、当実験でも OPC 50の lZlO以下と低い拡散係数を示した。しかし、本改質剤 (Linack)を塗布した供 試体では更に実効拡散係数は低く、塩分遮蔽性能が向上した。一方、 W/Cをより 低くした LH30についても、塩分の拡散に必要な水分量が非常に少なレ、ことから、無 塗布でも OPC50に比べ 1Z8程度の低い拡散係数を示した力 本改質剤(Linack) の塗布により拡散係数力 S小さくなつた。またこの効果については、 OPC、 BBモノレタル でも同様の結果であった。実験力 求めた実効拡散係数を用いて、かぶり厚さ 5cmの コンクリート構造物の鋼材位置での塩ィヒ物イオン濃度が腐食限界 (ここでは 1. 2kg/m 3とした)に達するまでの年数を拡散方程式より解析し、得られた結果を表 14に示す。 Replacement form (Rule 26) [0069] Table 3 shows that the effective diffusion coefficient differs greatly depending on the type of cement and the difference in water cement ratio. However, as shown in Fig. 7 (b), the application of this modifier (Linack) confirmed the effect of suppressing salt penetration regardless of the type of cement and the ratio of water cement. The ratio of the specimen coated with the RC guard (comparative example) to the uncoated effective diffusion coefficient in OPC50 is 80%, which is much lower than that of the specimen coated with the modifier (Linack). It was a very low figure of 20%. In general, the lower the W / C ratio of concrete, the higher the salt-shielding property. According to the regression formula in the 2002 Concrete Standard Specification (Construction), the diffusion coefficient of W / C is 40%, The ratio of C50% is 43%, and that of WZC60% is 22%. The value of 20% for the non-application of OPC50 by applying this modifier (Linack) is 40% of W / C, which is thought to prevent salt penetration, compared to 60% of W / C, which is considered to be easy for salt penetration. It can be said that the salt permeation suppression effect is very high. Since BB50 mixed with blast furnace slag has a high effect of suppressing salt penetration, this experiment also showed a low diffusion coefficient of less than lPC of OPC50. However, in the specimen coated with this modifier (Linack), the effective diffusion coefficient was even lower, and the salt shielding performance was improved. On the other hand, with LH30, which has a lower W / C, the amount of water required for salt diffusion is very small. (Linack) application reduced the diffusion coefficient force S. The same results were obtained for OPC and BB monoletal. Experimental force Using the obtained effective diffusion coefficient, the number of years until the chloride ion concentration at the steel position of a concrete structure with a cover thickness of 5 cm reaches the corrosion limit (here, 1.2 kg / m3) Was analyzed from the diffusion equation, and the results obtained are shown in Table 14.
[0070] [表 14]  [Table 14]
Figure imgf000029_0001
Figure imgf000029_0001
差替え用紙 (規則 26) 構造物表面の塩化物イオン濃度は海岸力 の距離による 3水準とした。塩分環境と して最も過酷な飛沫帯を例に挙げると、鉄筋位置に塩化物イオンが到達するまでの 差替え用紙 (規則 26) 年数は、一般的な OPC50の無塗布ではわず力 3年である。しかし、本改質剤を塗布 した場合では 17年となり、約 6倍の耐久性となる。 LH30及び BB50では同じ飛沫帯 であっても無塗布でそれぞれ 30年、 50年となる。このように高い塩分遮蔽性を持つ コンクリートに対しても、本改質剤を塗布することで大きく耐用年数が延長でき、 LH3 0で 1. 6倍の 50年、 BB50では 1. 9倍の 151年となる。なお、 RCガード塗布では大 きな変化がない。なお、今回コンクリート表面での塩ィ匕物イオンの濃縮は考慮してお らず、実環境での年数はより長いものとなると推定される。 Replacement form (Rule 26) The chloride ion concentration on the surface of the structure was set at three levels depending on the distance of the coastal force. Taking the harshest spray zone as an example of the salt environment, a replacement sheet until chloride ions reach the reinforcing bar position (Rule 26) The number of years is only 3 years without general OPC50 application. However, when this modifier is applied, it will be 17 years, and the durability will be about 6 times. With LH30 and BB50, the same spray zone is applied for 30 years and 50 years without application, respectively. The application of this modifier can greatly extend the useful life of concrete with such a high salt-shielding property. LH30 is 1.6 times 50 years and BB50 is 1.9 times 151 Year. Note that there is no significant change in RC guard application. In this case, the concentration of the salt ion on the concrete surface was not considered, and it is estimated that the number of years in the actual environment will be longer.
試験例 7 (表面電位測定試験) Test example 7 (Surface potential measurement test)
<試験概要 > <Test outline>
試験例 6に見られる本改質剤塗布による遮塩効果の理由として、試験例 1に見られ るような水和物による組織の緻密化のほかに、静電的な影響の 2つが考えられる。こ こでは、後者の影響をセメントペーストによる表面電位測定により検討した。 φ 100 X 5mmのセメントペースト供試体 (WZC50%)を用い、供試体の改質剤を塗布した面 に接した NaCl水溶液を加圧し、 Naイオンまたは C1イオンが細孔中を通過する際に 細孔表面の荷電との間に発生する起電力を測定することで、間接的に表面電位を測 定した。図 8 (a)に試験装置の概要を示す。  There are two possible reasons for the salt barrier effect of this modifier application in Test Example 6, in addition to the densification of the structure by hydrates as seen in Test Example 1, and two other electrostatic effects. . Here, the latter effect was examined by measuring the surface potential using cement paste. Using a φ100 X 5 mm cement paste specimen (WZC50%), pressurize the NaCl aqueous solution in contact with the surface of the specimen coated with the modifier, and finely distribute the Na ions or C1 ions when passing through the pores. The surface potential was measured indirectly by measuring the electromotive force generated between the charge on the pore surface and the charge. Figure 8 (a) shows the outline of the test equipment.
<改質剤> <Modifier>
製造例 1で得られた原液を水で 2倍希釈することにより得られた本改質剤 (Linack) 及び比較例として市販のコンクリート改質剤 (RC) This modifier (Linack) obtained by diluting the stock solution obtained in Production Example 1 twice with water and a commercial concrete modifier (RC) as a comparative example
<供試体> <Specimen>
硬化後の電気的な性質の異なる OPC及び BBセメントを用い、 WZC50%のセメント ペーストを φ 100 X 8mmの型枠に打設し、脱型後に打設面及び底面を研磨して 5 mm厚さに形成した。材齢 14日で改質剤 (Linack及び RC)を一面に塗布し、以後 14 日間湿潤養生して力 試験に供した。 Using OPC and BB cement with different electrical properties after curing, cast a 50% cement paste of WZC into a φ100 X 8mm formwork, grind the casting surface and bottom surface after demolding, and obtain a thickness of 5mm. Formed. At 14 days of age, modifiers (Linack and RC) were applied over the entire surface, and then wet-cured for 14 days and subjected to a force test.
<試験結果 > <Test results>
試験結果を図 8 (b)に示す。 OPCでは無塗布の場合正の電位を示した力 本改質剤 塗布により大きく負に変化した。 BBでは無塗布でも負の電位を示し、本改質剤塗布 ではさらに大きく負に変化した。セメントペーストの表面電位は、 Caイオンの存在形 態によって影響を受けることが報告されている。 OPCでは水和により生成される Ca ( OH) により正電荷を示す力 この Ca (OH)力 ¾Bでは高炉スラグの水和反応に消費The test results are shown in Fig. 8 (b). In the case of OPC, a force that showed a positive potential in the case of no application changed significantly to negative by application of this modifier. BB showed a negative potential even when the coating was not applied, and changed to a much more negative value when the modifier was applied. The surface potential of cement paste depends on the presence of Ca ions. Has been reported to be affected. In OPC, the force indicating a positive charge due to Ca (OH) generated by hydration. This Ca (OH) force ¾B is consumed for the hydration reaction of blast furnace slag.
2 2 twenty two
されることから OPCよりも負の電荷を示すと考えられる。これらに対して本改質剤を塗 布すると、新たに水和物を生成し Caイオンを消費するために電荷が大きく負へ変化 するものと考えられる。セメント硬化体表面の電荷が負の大きな値を示すならば、 C1ィ オンは反発により浸透を強く阻害されることとなり、試験例 7で得られた本改質剤塗布 による高い塩分遮蔽効果の要因と考えられる。一方、 RCガード (比較例)塗布供試 体では OPCでわずかに負に変化したものの BBでは正に大きく変化し、 C1イオンに 対する影響を関連付けることは難しぐ表層部のみの緻密化による影響と考えられる 試験例 8 (海水浸漬による塩化物イオン浸透試験) Therefore, it is thought that it shows a more negative charge than OPC. On the other hand, when this modifier is applied, it is considered that the charge changes greatly to negative because a new hydrate is generated and Ca ions are consumed. If the charge on the surface of the hardened cement shows a large negative value, C1 ions will be strongly inhibited from penetrating by repulsion, and this will be a factor in the high salt shielding effect obtained by applying this modifier obtained in Test Example 7. it is conceivable that. On the other hand, in the RC guard (comparative example) coated specimen, the OPC slightly changed negatively, but the BB changed greatly positively, and it was difficult to relate the effect on C1 ions. Possible Test Example 8 (Chloride ion penetration test by seawater immersion)
<試験概要 > <Test outline>
本試験は、セメント硬化体内に拡散する全塩ィ匕物イオンの浸透深さを簡易的に測定 するもので、 JIS This test simply measures the penetration depth of all chloride ions diffused into the hardened cement body.
A 1171ポリマーセメントモルタルの試験方法に準拠した。供試体を塩水(人工海水) 中に 14日間内浸潰し、割裂した供試体断面に試薬 (硝酸銀溶液及びゥラニン水溶 液)を噴霧して変色部分を浸透深さとして測定するものである。測定点は 1断面につ き 3点の合計 6点とした。  A 1171 Polymer cement mortar was tested in accordance with the test method. The specimen is immersed in salt water (artificial seawater) for 14 days, and the reagent (silver nitrate solution and peranine aqueous solution) is sprayed on the section of the cracked specimen, and the discolored part is measured as the penetration depth. The measurement points were 3 points per cross section, for a total of 6 points.
<改質剤> <Modifier>
(a)製造例 1、製造例 2、製造例 3で得られた原液を水で 2倍希釈することにより得ら れた改質剤  (a) Modifier obtained by diluting the stock solutions obtained in Production Example 1, Production Example 2, and Production Example 3 two-fold with water
(b)製造例 1、製造例 4、製造例 5で得られた原液を水で 2倍希釈することにより得ら れた改質剤  (b) Modifier obtained by diluting the stock solution obtained in Production Examples 1, 4 and 5 with water two-fold
<供試体>  <Specimen>
所定材齢まで水中養生した 4 X 4 X 16cmの OPCモルタル (WZC50%)供試体を 4 X 4 X 4cmにカットし、 1側面を残してシーリング剤で完全に被覆し、改質剤を塗布し 所定日数湿潤養生の後試験に供した。塩水 ίお IS A 4 X 4 X 16 cm OPC mortar (WZC 50%) specimen aged in water up to the specified age is cut into 4 X 4 X 4 cm, completely covered with a sealing agent except one side, and coated with a modifier. After the moist curing for a predetermined number of days, the test was performed. Saltwater Pio IS
A 6205付属書 1 (鉄筋の塩水浸漬試験方法)の 3. 2. 1 (塩分溶液)に規定される人 工海水を用いた。 A 6205 Persons specified in 3.2.1 (Salt solution) Engineering seawater was used.
(a)材齢 7日まで水中養生、塗布後 7日間湿潤養生  (a) Underwater curing up to 7 days of age, wet curing for 7 days after application
(b)材齢 14日まで水中養生、塗布後 14日間湿潤養生  (b) Curing in water up to 14 days of age, moist curing for 14 days after application
<試験結果 >  <Test results>
結果を図 9に示す。  The results are shown in FIG.
[0074] 試,験例 9 (凍結融解試,験) [0074] Trial, experiment 9 (freezing and thawing trial, experiment)
<試験概要 >  <Test outline>
JIS-A-1148 A法及び JIS— A— 1171に準拠してコンクリート及びモルタルによる水 中凍結水中融解試験を行なった。通常の試験を (A: OPC50、 BB60コンクリート)、 試験開始材齢を 7日とし塗布前に初期凍害を施したものを (B : OPC50コンクリート) 、人工海水を用い塩分環境下の凍害における影響を検討するものを (C: OPC50モ ルタル)とした。また凍害劣化後の改質剤塗布による効果を検討するため、凍害耐久 性限界とされる相対動弾性係数 (RDM)が 60%前後となるまで劣化させた供試体に 改質剤を塗布し、さらに凍結融解試験を行ったものを (D : OPC50モルタル)とする。 測定はコンクリートでは 30サイクル毎、モルタルでは劣化進行状態に併せて、 10— 3 0サイクル毎に行った。  Based on the JIS-A-1148 A method and JIS-A-1171, a freeze-in-water thawing test in concrete and mortar was performed. The normal test (A: OPC50, BB60 concrete), the test start age was 7 days, and the initial frost damage before application (B: OPC50 concrete) was used to evaluate the effect of artificial seawater on frost damage in a salt environment. The object to be considered was (C: 50 OPC mortar). In addition, in order to examine the effect of applying the modifier after frost damage deterioration, the modifier was applied to the deteriorated specimen until the relative dynamic elastic modulus (RDM), which is considered to be the frost damage durability limit, was about 60%. Further, the sample subjected to the freeze-thaw test is designated as (D: OPC50 mortar). The measurement was performed every 30 cycles for concrete and every 10 to 30 cycles for mortar in accordance with the progress of deterioration.
[0075] <改質剤> [0075] <Modifier>
(A)及び (B) 製造例 1で得られた原液を水で 2倍希釈することにより得られた本改 質剤 (Linack)及び比較例として市販のコンクリート改質剤 (RC)  (A) and (B) The modifier (Linack) obtained by diluting the stock solution obtained in Production Example 1 two-fold with water and a commercially available concrete modifier (RC) as a comparative example
(C) 製造例 1、製造例 4、製造例 6、製造例 7で得られた原液を水で 2倍希釈するこ とにより得られた本改質剤及び比較例として市販のコンクリート改質剤 (RC)  (C) This modifier obtained by diluting the stock solution obtained in Production Examples 1, 4, 6, and 7 with water two-fold and a concrete modifier commercially available as a comparative example (RC)
(D)製造例 1で得られた原液を水で 2倍希釈することにより得られた本改質剤 (Linac k)  (D) The present modifier (Linac k) obtained by diluting the stock solution obtained in Production Example 1 two-fold with water
[0076] 〈供試体〉  <Specimen>
供試体寸法はコンクリートを 100 X 100 X 400mm、モルタルを 40 X 40 X 160mmと し、改質剤の塗布はコンクリートには打設面のみ、モルタルへは底面以外の全ての面 に施した。  The dimensions of the test piece were 100 x 100 x 400 mm for concrete and 40 x 40 x 160 mm for mortar. The modifier was applied to the concrete only on the casting surface and to the mortar on all surfaces except the bottom.
[0077] <試験結果及び考察 (A) > 図 10 (a)に示す OPC50では、無塗布供試体の RDMは試験直後力 低下し始め、 2 50サイクル力も急激に低下割合が大きくなり、 300サイクルには 60%以下となった。 耐凍害性の指標として RDM60%は限界値であり、 OPC50無塗布の耐凍害性は低 いといえる。これに対し、本改質剤塗布の供試体では、試験開始初期には RDMが 1 00%を超える数値となり、その後試験終了時まで、ほぼ 100%付近の数値を保ち、 高い耐凍害性を示した。また比較例の改質剤 (RC)塗布供試体でも、 RDMは高い 数値を示した力 300サイクル時に低下し始めた。凍結融解による劣化は、外部の温 度低下に伴いコンクリートの表面部において、外部から侵入した水分が凍結し、その 膨張圧によってコンクリート内部へ組織破壊が進んでゆくものである。本改質剤 (Lin ack)を塗布したコンクリートでは、表層部から内部にかけて生成されるゲルによって 緻密化され外部からの水分侵入を阻止する。またゲル生成時に内部の水分を消費 することから、コンクリート内部に水で満たされない空隙を保持することなり、凍結によ る膨張圧を緩和することが出来る。これらにより、本改質剤 (Linack)の塗布がコンクリ ートに高い耐凍害性能をもたらすものと考えられる。また質量変化においても同様で 、無塗布が試験開始直後力 質量減少しつづけるのに対し、本改質剤 (Linack)塗 布では試験終了時でも試験開始時の質量を下回らな力つた。図 10 (b)に示す BB60 では、無塗布供試体の RDMは 150サイクル力も急激に低下し始め、 300サイクルで は 80%以下となった。 <Test Results and Discussion (A)> In the case of OPC50 shown in Fig. 10 (a), the RDM of the uncoated specimen started to decrease immediately after the test, and the rate of decrease in the 250-cycle force sharply increased, and became less than 60% in 300 cycles. RDM60% is a limit value as an indicator of frost damage resistance, and it can be said that frost damage resistance without application of OPC50 is low. On the other hand, in the test specimen coated with this modifier, the RDM exceeded 100% at the beginning of the test, and remained almost at 100% until the end of the test, showing high frost damage resistance. Was. Also, in the test specimen coated with the modifier (RC) of the comparative example, the RDM started to decrease at a force of 300 cycles, which showed a high value. Deterioration due to freezing and thawing means that the moisture that has entered from the outside freezes on the surface of the concrete as the temperature decreases, and the expansion pressure causes the structure to break down inside the concrete. Concrete coated with this modifier (Linack) is densified by the gel generated from the surface layer to the inside, and prevents moisture from entering from the outside. In addition, since the internal water is consumed when the gel is formed, voids that are not filled with water are maintained in the concrete, and the expansion pressure due to freezing can be reduced. From these, it is considered that the application of this modifier (Linack) brings high frost resistance to concrete. Similarly, in the case of mass change, the non-application continued to decrease in force immediately after the start of the test, while the modifier (Linack) applied exerted a force less than the mass at the start of the test even at the end of the test. In the case of BB60 shown in Fig. 10 (b), the RDM of the uncoated specimen started to drop sharply by 150 cycles, and became less than 80% at 300 cycles.
BBは混入された高炉スラグのポゾラン反応により OPCよりも緻密な組織を形成し、ま た水分も消費されている為、耐凍害性が高い。この BB60に対してでも、本改質剤 (L inack)塗布供試体では 300サイクルまで RDMが 100%以上の数値を維持した。こ れに対し、 RCガード塗布では、試験開始から 100%以下の数値を示し、 300サイク ル時にやや低下した。  BB forms a denser structure than OPC due to the pozzolanic reaction of the mixed blast furnace slag and also consumes water, so it has high frost resistance. Even with this BB60, the RDM maintained a value of 100% or more for this modifier (Linack) coated specimen up to 300 cycles. On the other hand, the RC guard application showed a value of 100% or less from the start of the test, and decreased slightly at 300 cycles.
[0078] <試験結果及び考察 (B) >  <Test Results and Discussion (B)>
結果を図 11に示す。図 11より分力るように、無塗布でも劣化進行は遅いものであつ たが、本改質剤塗布で更に耐久性は向上した。  The results are shown in FIG. As can be seen from FIG. 11, the deterioration progressed slowly even without application, but the durability was further improved by applying this modifier.
[0079] <試験結果及び考察 (C) >  [0079] <Test Results and Discussion (C)>
結果を図 12 (a)—(d)に示す。塩分環境下での凍結融解では、純水中の場合に比 ベ劣化が激しく進行するとされており、本試験でも、特に凍結融解抵抗性に劣る non AEでは劣化が早期に進行した。無塗布の場合、 15サイクルですでに相対動弾性係 数が 60%となった。これに対して本改質剤(2配合種類)の塗布では、 RDM限界値 到達が 28サイクル程度と耐久性が向上した。また、凍害耐久性を高めた AEモルタ ルでも、無塗布では 50サイクル程度で相対動弾性係数が 60%となった。これに対し て、本改質剤(3配合種類)の塗布ではいずれも 200サイクル時まで 60%以上となつ た。特に、 LN733では 92%と高い動弾性を保った。また質量変化でも、無塗布では 100サイクル以降急激に質量が減少し、 200サイクルでは 10%の低下となり大きく組 織が損壊した。これに対して本改質剤を塗布した場合は、何れの配合でも 150サイク ルまで質量減少が見られなかった。特に LN422では 200サイクルまで質量減少が 無ぐ図 13に示すように無塗布では表層を完全に損失している力 本改質剤 (LN42 2)塗布では試験開始時とほとんど変わらないままに残存しており、高いスケーリング 抵抗性を示した。また、比較例の RCガード塗布では表層の半ばが損失しており、ス ケーリング抵抗性の向上は本改質剤に比べて低いものである。 The results are shown in Fig. 12 (a)-(d). Freezing and thawing in a salinity environment compared to pure water It is said that the deterioration progressed violently, and in this test, the deterioration progressed early, especially in non-AE with poor freeze-thaw resistance. In the case of no application, the relative kinematic elasticity coefficient was already 60% in 15 cycles. On the other hand, application of this modifier (two compound types) improved the durability by reaching the RDM limit value of about 28 cycles. Even with AE mortar with improved durability against freezing damage, the relative kinetic elasticity coefficient was 60% in about 50 cycles without application. On the other hand, the application of this modifier (3 types) increased to 60% or more until 200 cycles. In particular, LN733 maintained a high dynamic elasticity of 92%. Regarding the change in mass, without application, the mass rapidly decreased after 100 cycles, and decreased by 10% at 200 cycles, and the tissue was greatly damaged. On the other hand, when the present modifier was applied, no mass reduction was observed up to 150 cycles in any of the formulations. In particular, LN422 has no loss of mass up to 200 cycles.As shown in Fig. 13, the force completely loses the surface layer without application.With the application of this modifier (LN422), it remains almost the same as at the start of the test. And showed high scaling resistance. In the case of the RC guard coating of the comparative example, the middle of the surface layer was lost, and the improvement in scaling resistance was lower than that of the present modifier.
<試験結果及び考察 (D) > <Test results and discussion (D)>
劣化後の改質剤塗布による改質効果の確認には、材齢 28日まで水中養生した OM 50モルタルを用い、 RDMが 70%及び 50%に達するまで凍結融解サイクルを経た段 階で中断し、本改質剤を塗布した。無塗布供試体とともに 7日間湿潤養生を行った後 人工海水中で凍結融解サイクルを再開した。なお、本改質剤を塗布する際には、表 層部の Ca (OH)が劣化により溶脱していることが考えられたため、事前に Ca (OH) In order to confirm the modification effect by applying the modifier after deterioration, use OM 50 mortar aged in water until the age of 28 days, and suspend at the stage after the freeze-thaw cycle until the RDM reaches 70% and 50%. The present modifier was applied. After 7 days of moist curing together with the uncoated specimen, the freeze-thaw cycle was restarted in artificial seawater. When applying this modifier, it was thought that Ca (OH) in the surface layer had leached out due to deterioration.
2 2 飽和水溶液を塗布した。 RDM70%まで劣化後に塗布した試験を D70、同じく 50%の 場合を D50とし、それぞれの RDM及び質量変化を図 14 (a)—(d)に示す。 D70で は、無塗布供試体の RDM及び質量が再開後急激に低下した。これは中断前の表 層部が比較的残存しており、再開後に人工海水中の影響により剥離、損壊が促進さ れたものと考えられる。一方、本改質剤を塗布した供試体では、再開後 RDMの値が 100%まで上昇し、終了時でも 60%以上となった。質量についても再開後 80サイク ル程度までほとんど減少が見られな力つた。凍害耐久性限界以下の劣化状態力も再 開した D50でも、無塗布は RDM、質量共に低下し続けた。これに対し本改質剤塗布 では、再開後緩やかに RDMが上昇し、再開後 50サイクルで 60%以上となった。ま た質量も若干の増加を示し、再開後 80サイクルまで減少が認められなカゝつた。 A 22 saturated aqueous solution was applied. The test applied after degradation to RDM 70% was D70, and the case of 50% was D50. The RDM and mass change of each test are shown in Fig. 14 (a)-(d). At D70, the RDM and mass of the uncoated specimen dropped sharply after resumption. This is considered to be due to the fact that the surface part before the interruption was relatively remaining, and the separation and damage were promoted by the effect of artificial seawater after the resumption. On the other hand, in the specimens coated with this modifier, the RDM value increased to 100% after resumption, and was over 60% at the end. The mass also showed little decrease until about 80 cycles after the restart. Even in the case of D50, where the deterioration condition below the frost damage durability limit was resumed, the RDM and mass continued to decrease when no coating was performed. On the other hand, this modifier application In RMS, the RDM gradually increased after the restart, and reached 60% or more in 50 cycles after the restart. The mass also showed a slight increase, and no decrease was observed up to 80 cycles after restart.
[0081] これらの結果より、本改質剤の塗布による耐凍害性向上は、新設コンクリートのみなら ず既設のかつ凍害劣化を受けたコンクリートの場合にも有効であり、またスケーリング に対しても高 、抵抗性を示すことが認められた。 [0081] From these results, the improvement of the frost damage resistance by applying the present modifier is effective not only for newly-constructed concrete but also for existing and frost-damage-degraded concrete, and is also highly effective for scaling. , Was found to exhibit resistance.
[0082] 以上の試験結果を以下に整理する。 [0082] The above test results are summarized below.
(1)本改質剤(例えば Linack)は、深さ 40mmまで浸透していることが確認され、従来 の浸透性改質剤に比べ浸透性能が非常に高 、と 、える。  (1) It has been confirmed that the present modifier (for example, Linack) has penetrated to a depth of 40 mm, indicating that the permeability is much higher than that of a conventional permeability modifier.
(2)本改質剤(例えば Linack)は、コンクリートの空隙内で棒状または塊状の立体構 造を持ったゲルを生成し、空隙を緻密化することで、遮水性能の向上をもたらす。比 較例である RCガードも同様の性質を示す力 浸透深さの違いから、比較品の効果は 表面部数ミリのものである。  (2) The modifier (for example, Linack) produces a gel with a rod-shaped or massive solid structure in the voids in concrete, and improves the water-blocking performance by densifying the voids. The RC guard, which is a comparative example, also exhibits the same properties. Due to the difference in force penetration depth, the effect of the comparative product is several millimeters on the surface.
(3)本改質剤(例えば Linack)は、(2)で述べた緻密化のほかに、ゲル表面の電荷 が負となることから塩ィ匕物イオンを反発し高い塩分遮蔽性を示す。比較例の RCガー ドでは、本改質剤に比べて塩分遮蔽性に対する向上効果は低 ヽ。  (3) In addition to the densification described in (2), this modifier (for example, Linack) repels chloride ions due to the negative charge on the gel surface and exhibits high salt shielding properties. The RC guard of the comparative example has a lower effect of improving the salt-shielding property than the present modifier.
(4)本改質剤(例えば Linack)は、セメント種類および水セメント比にかかわらず耐凍 害性を向上した。また塩害との複合劣化に対しても高い耐久性を示し、同時に高いス ケーリング抵抗性も示した。比較例の RCガード塗布では耐凍害性の向上は認められ たが本改質剤 (Linack)に比べると低い性能であり、スケーリング抵抗性についても 同様である。  (4) This modifier (for example, Linack) improved the frost resistance regardless of the cement type and water-cement ratio. In addition, it exhibited high durability against combined deterioration with salt damage, and also exhibited high scaling resistance. Although the application of RC guard in the comparative example showed an improvement in frost damage resistance, the performance was lower than that of this modifier (Linack), and the same applies to scaling resistance.
(5)凍害による劣化後に本改質剤(例えば Linack)を塗布した場合でも、塗布後に 相対動弾性係数の回復が見られ、耐久性を向上した。また本改質剤 (例えば Linack )のゲル生成を補助し、耐久性をより向上させる効果を水酸ィ匕カルシウム飽和水溶液 により得られることが認められた。  (5) Even when this modifier (for example, Linack) was applied after deterioration due to frost damage, the relative kinetic elasticity was recovered after application and the durability was improved. It was also found that a saturated aqueous solution of calcium hydroxide was used to assist the gel formation of the present modifier (for example, Linack) and further improve the durability.
(6)以上より、コンクリートの表面に塗布した本改質剤(例えば Linack)は、コンクリー トの内部深くまで浸透し、生成されるゲルにより遮水性能、遮塩性能、耐凍害性能を 向上させることで、コンクリートの塩害および凍害による劣化、またこれらの複合劣化 に対する予防または防止対策として有効であると考えられる。 図面の簡単な説明 (6) Based on the above, this modifier (for example, Linack) applied to the concrete surface penetrates deep into the concrete and improves the water-blocking performance, salt-blocking performance, and frost-resistance performance by the generated gel. Therefore, it is considered to be effective as a preventive or preventive measure against the deterioration of concrete due to salt damage and frost damage and their combined deterioration. Brief Description of Drawings
[図 1]図 1 (a)は、コンクリートの断面図を模式ィ匕したものである。図 1 (b)—(e)は、図 1 (a)内の四角囲み部分を拡大した図である。図 1 (c)は、図 1 (b)に 5として示す微細 空隙または骨材界面の脆弱組織部に本改質剤が浸透した様子を示した図である。 図 1 (d)は、空隙内に浸透した本改質剤が細孔溶液中の水酸ィ匕カルシウム及び水と 反応し、ゲルを生成した様子を示した図である。図 1 (e)は、図 1 (d)内の四角囲み部 分の実際の状態を示した電子写真である。図中、 1 :モルタルマトリックス、 2 :粗骨材 、 3 :細孔及びクラック、 4 :細骨材、 5 :セメントペースト、 6 :本改質剤、 7 :本改質剤より 生成されたゲルを夫々示す。 FIG. 1 (a) is a schematic cross-sectional view of concrete. FIGS. 1 (b)-(e) are enlarged views of a portion surrounded by a square in FIG. 1 (a). FIG. 1 (c) is a diagram showing a state in which the present modifier has penetrated into the microvoids or the fragile tissue portion at the interface of the aggregate shown as 5 in FIG. 1 (b). FIG. 1 (d) is a view showing that the present modifier that has permeated into the voids has reacted with calcium hydroxide and water in the pore solution to form a gel. Fig. 1 (e) is an electrophotograph showing the actual state of the portion enclosed by the square in Fig. 1 (d). In the figure, 1: mortar matrix, 2: coarse aggregate, 3: pores and cracks, 4: fine aggregate, 5: cement paste, 6: this modifier, 7: gel generated from this modifier Are shown respectively.
[図 2]図 2は、試験例 1 (本改質剤浸透性確認試験)における SEM画像 (電子写真) である。ここで、図 2 (a)— (d)は、改質剤塗布モルタル供試体 {打設面カもの深さ (a) lmm, (b) 20mm, (c) 30mm, (d) 40mm}の SEM画像であり、図 2 (e)及び(f)は、無 塗布モルタル供試体 (打設面からの深さ(e) 5mm, (f) 20mm)の SEM画像であり、図 2 (g)は、改質剤と飽和 Ca (OH)溶液力も得られた生成物の SEM画像である。  [FIG. 2] FIG. 2 is an SEM image (electrophotograph) of Test Example 1 (the test for confirming the permeability of the modifier). Here, Fig. 2 (a)-(d) shows the specimen of the mortar coated with the modifier {depth of the casting surface (a) lmm, (b) 20mm, (c) 30mm, (d) 40mm}. Fig. 2 (e) and (f) are SEM images of the uncoated mortar specimen (depth from the casting surface (e) 5mm, (f) 20mm), and Fig. 2 (g) Is a SEM image of the product for which the modifier and saturated Ca (OH) solution power were also obtained.
2  2
[図 3]図 3は、試験例 2 (XRF元素分析)における LNゲルの測定スペクトルである。  FIG. 3 is a measurement spectrum of an LN gel in Test Example 2 (XRF elemental analysis).
[図 4]図 4は、試験例 3 (アルカリ成分分析による浸透性確認試験)における、各種ァ ルカリ金属の含有量と塗布面の深さとの関係を示した図である。 FIG. 4 is a diagram showing the relationship between the content of various alkali metals and the depth of the coated surface in Test Example 3 (permeability confirmation test by alkali component analysis).
[図 5]図 5は、試験例 4 {透水試験(1) }における装置及び結果を示した図である。ここ で、図 5 (a)は、試験装置の概要を示した図であり、図 5 (b)は、透水係数における塗 布条件の影響を示した図である。 [FIG. 5] FIG. 5 is a diagram showing an apparatus and results in Test Example 4 {water permeability test (1)}. Here, FIG. 5 (a) is a diagram showing an outline of the test apparatus, and FIG. 5 (b) is a diagram showing the effect of coating conditions on the hydraulic conductivity.
[図 6]図 6は、試験例 5{透水試験(2) }における、改質剤塗布による深さ方向における 透水係数変化を示した図である。  [FIG. 6] FIG. 6 is a diagram showing a change in water permeability in the depth direction due to the application of a modifier in Test Example 5 {water permeability test (2)}.
[図 7]図 7は、試験例 6 (電気泳動法による塩化物拡散試験)における装置と結果を示 した図である。ここで、図 7 (a)は、本試験に係る装置の概要を示した図であり、図 7 (b )は、改質剤塗布による各種コンクリートの実効拡散係数 (対無塗布比率)を示した図 であり、図 7 (c)は、改質剤塗布による各種モルタルの実効拡散係数 (対無塗布比率 )を示した図である。  [FIG. 7] FIG. 7 is a diagram showing an apparatus and results in Test Example 6 (chloride diffusion test by electrophoresis). Here, Fig. 7 (a) is a diagram showing an outline of the apparatus according to this test, and Fig. 7 (b) shows the effective diffusion coefficient (ratio to no application) of various types of concrete by applying the modifier. FIG. 7 (c) is a diagram showing the effective diffusion coefficient (ratio to no application) of various mortars by applying a modifier.
[図 8]図 8は、試験例 7 (表面電位測定試験)における装置と結果を示した図である。 ここで、図 8 (a)は、本試験に係る装置の概要を示した図であり、図 8 (b)は、改質剤 塗布による各種セメントの表面電位を示した図である。 FIG. 8 is a diagram showing an apparatus and a result in Test Example 7 (surface potential measurement test). Here, FIG. 8 (a) is a diagram showing an outline of an apparatus according to the present test, and FIG. 8 (b) is a diagram showing a surface potential of various cements by applying a modifier.
[図 9]図 9は、試験例 8 (海水浸漬による塩ィ匕物イオン浸透試験)における、各種改質 剤と全塩分浸透深さとの関係を示した図である { (a)材齢 7日塗布、 7日養生後海水 浸漬、(b)材齢 14日塗布、 14日養生後海水浸漬}。  [FIG. 9] FIG. 9 is a diagram showing the relationship between various modifiers and the total salt penetration depth in Test Example 8 (salinity immersion ion penetration test by immersion in seawater). Application, 7 days after immersion in seawater, (b) 14 days of age, 14 days after immersion in seawater}.
[図 10]図 10は、試験例 9 (凍結融解試験)の通常サイクル試験における、各種改質剤 を適用したときの OPC50の相対動弾性係数変化 {図 10 (a) }及び BB60の相対動弹 性係数変化 {図 10 (b) }を示した図である。  [Figure 10] Figure 10 shows the relative kinetic elasticity change of OPC50 when various modifiers were applied in the normal cycle test of Test Example 9 (freeze-thaw test) {Figure 10 (a)} and the relative dynamics of BB60. FIG. 11 is a diagram showing a coefficient of change {FIG. 10 (b)}.
[図 11]図 11は、試験例 9 (凍結融解試験)の初期凍害サイクル試験における、本改質 剤を適用したときの相対動弾性係数変化を示した図である。  [Fig. 11] Fig. 11 is a diagram showing a change in relative kinetic elastic modulus when the present modifier was applied in an initial frost damage cycle test of Test Example 9 (freeze-thaw test).
[図 12]図 12は、試験例 9 (凍結融解試験)の海水中サイクル試験における、各種改質 剤を適用したときの nonAEの相対動弾性係数変化 {図 12 (a) }と質量減少率 {図 12 (b) }及び AEの相対動弾性係数変化 {図 12 (c) }と質量減少率 {図 12 (d) }を示した 図である。  [Figure 12] Figure 12 shows the change in the relative kinematic elastic modulus of nonAE when various modifiers were applied in the seawater cycle test in Test Example 9 (freeze-thaw test) {Figure 12 (a)} and the mass loss rate {Fig. 12 (b)}, the change in the relative kinematic elasticity of AE {Fig. 12 (c)}, and the mass loss rate {Fig. 12 (d)}.
[図 13]図 13は、試験例 9 (c)の人工海水中での凍結融解試験において供試体打設 面の試験終了時のスケーリング状態を示した図である。  [FIG. 13] FIG. 13 is a diagram showing a scaling state at the end of a test on a test piece casting surface in a freeze-thaw test in artificial seawater of Test Example 9 (c).
[図 14]図 14は、試験例 9 (凍結融解試験)の凍害劣化後サイクル試験における、 RD M70%まで劣化後に本改質剤を適用したときの相対動弾性係数変化 {図 14 (a) }と 質量減少率 {図 14 (b) }及び RDM50%まで劣化後に本改質剤を適用したときの AE の相対動弾性係数変化 {図 14 (c) }と質量減少率 {図 14 (d) }を示した図である。  [Figure 14] Figure 14 shows the change in relative kinetic elasticity of the modified agent after degradation to RMD 70% in the cycle test after frost damage deterioration in Test Example 9 (freeze-thaw test) {Figure 14 (a) } And the mass loss rate {Fig. 14 (b)} and the change in the relative kinematic modulus of AE when this modifier is applied after degradation to RDM 50% {Fig. 14 (c)} and the mass loss rate {Fig. FIG.

Claims

請求の範囲 The scope of the claims
[I] リチウムシリケート水溶液にアルカリ金属イオン源を配合したことを特徴とするコンク リート改質剤。  [I] A concrete modifier characterized by blending an alkali metal ion source with a lithium silicate aqueous solution.
[2] アルカリ金属イオン源が、水溶性アルカリ金属含有物質である、請求項 1記載の改 質剤。  [2] The modifier according to claim 1, wherein the alkali metal ion source is a water-soluble alkali metal-containing substance.
[3] アルカリ金属イオン源力ものアルカリ金属イオン力 ナトリウムイオン及びカリウムィ オンである、請求項 1又は 2記載の改質剤。  3. The modifier according to claim 1, wherein the alkali metal ion source has an alkali metal ion force of sodium ion and potassium ion.
[4] 添加するアルカリ金属イオン源の SiOに対するモル比(アルカリ金属イオン換算) [4] Molar ratio of added alkali metal ion source to SiO (calculated as alkali metal ion)
2  2
力 0. 08-1. 8である、請求項 1一 3のいずれか一項記載の改質剤。  The modifier according to any one of claims 13 to 13, which has a force of 0.08-1.8.
[5] リチウムシリケート水溶液由来のリチウムイオンを含むすべてのアルカリ金属イオン の SiOに対するモル比力 0. 4-2. 1である、請求項 1一 4のいずれか一項記載の[5] The method according to any one of [14] to [14], wherein the molar ratio of all alkali metal ions including lithium ions derived from the aqueous solution of lithium silicate to SiO is from 0.3 to 2.1.
2 2
改質剤。  Modifier.
[6] ナトリウムイオンに対するカリウムイオンの比力 モル比で 0. 02-2. 7である、請求 項 3又は 4記載の改質剤。  [6] The modifier according to claim 3 or 4, wherein the molar ratio of potassium ion to sodium ion is 0.02-2.7.
[7] 明細書中の測定方法 1に従って飽和水酸ィ匕カルシウム水溶液に添加した場合、白 濁ゲル相と透明溶液相の二相構造を形成する、請求項 1一 6の ヽずれか一項記載の 改質剤。 [7] The method according to any one of claims 116, wherein when added to a saturated aqueous calcium hydroxide solution according to the measuring method 1 in the specification, a two-phase structure of a cloudy gel phase and a transparent solution phase is formed. The modifier as described.
[8] コンクリート表面適用型である、請求項 1一 7のいずれか一項記載の改質剤。  [8] The modifier according to any one of Claims 17 to 17, which is a concrete surface application type.
[9] リチウムシリケート水溶液にアルカリ金属イオン源を配合することにより得られる、請 求項 1一 8のいずれか一項記載の改質剤の原液であって、前記リチウムシリケート水 溶液における SiO及び Li O (等価酸化物換算)は、それらの合計量が前記水溶液 [9] An undiluted solution of the modifier according to any one of Claims 18 to 18, which is obtained by mixing an alkali metal ion source with an aqueous lithium silicate solution, wherein SiO and Li in the aqueous lithium silicate solution are used. O (equivalent oxide equivalent) means that their total amount is
2 2  twenty two
の全重量に対して 15 30重量%であり、かつ、それらのモル比(SiO /Li O)が 3  And the molar ratio (SiO 2 / Li 2 O) is 3
2 2 一 8である改質剤原液。  A stock solution of a modifier that is 2 2 1 8.
[10] 請求項 1一 8の ヽずれか一項記載の改質剤又は請求項 9記載の原液を水で希釈し て得られた改質剤を、コンクリート表面に一又は複数回適用する工程を含む、コンクリ ートの劣化防止又は劣化抑止方法。  [10] A step of applying the modifier according to any one of claims 18 to 18 or the modifier obtained by diluting the stock solution according to claim 9 with water to a concrete surface one or more times. A method for preventing or suppressing the deterioration of concrete, including:
[II] 前記一又は複数回の改質剤適用工程の前又は途中で、前記コンクリート表面に水 酸ィ匕カルシウム水溶液を適用する工程を更に含む、請求項 10記載の方法。 [12] 請求項 10又は 11記載の方法により劣化防止又は抑止されたコンクリート。 11. The method according to claim 10, further comprising a step of applying an aqueous solution of calcium hydroxide to the concrete surface before or during the one or more times of applying the modifier. [12] Concrete that has been prevented or deteriorated by the method according to claim 10 or 11.
PCT/JP2005/003122 2004-02-26 2005-02-25 Silicious concrete modifier WO2005082813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510461A JP4484872B2 (en) 2004-02-26 2005-02-25 Silicic concrete modifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-052493 2004-02-26
JP2004052493 2004-02-26

Publications (1)

Publication Number Publication Date
WO2005082813A1 true WO2005082813A1 (en) 2005-09-09

Family

ID=34908707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003122 WO2005082813A1 (en) 2004-02-26 2005-02-25 Silicious concrete modifier

Country Status (2)

Country Link
JP (1) JP4484872B2 (en)
WO (1) WO2005082813A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197308A (en) * 2005-12-26 2007-08-09 Abc Kenzai Kenkyusho:Kk Concrete surface modifier
JP2007246353A (en) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kk Repair method
JP2007256178A (en) * 2006-03-24 2007-10-04 Univ Nihon Test method of concrete waterproof layer, and testing machine using same
JP2010001195A (en) * 2008-06-20 2010-01-07 Asuton:Kk Method for repairing concrete
JP2010070403A (en) * 2008-09-17 2010-04-02 Linack Co Ltd Method for suppressing drying shrinkage crack of fresh concrete and crack reducing agent, and method for plugging crack of existing concrete and crack plugging agent
JP2011256065A (en) * 2010-06-08 2011-12-22 Shimoda Gijutsu Kenkyusho:Kk Method for preventing degradation of concrete structure
CN106007801A (en) * 2016-05-30 2016-10-12 江苏名和集团有限公司 Surface enhanced sealant for concrete and preparation method thereof
JP2019172564A (en) * 2018-03-26 2019-10-10 国立大学法人山口大学 Concrete patching agent
JP7311215B1 (en) * 2023-03-20 2023-07-19 株式会社リナック八千代 Concrete repair material and concrete repair method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139568A (en) * 1996-11-11 1998-05-26 Mitsubishi Chem Corp Water absorption inhibitor composition
JP2001302961A (en) * 2000-04-18 2001-10-31 Touyoko Giken Kk Coloring of surface layer of cement cured product and modifying coating
JP2002187787A (en) * 2000-12-15 2002-07-05 Ashford Kk Surface treatment method for inorganic base material
JP2002211988A (en) * 2001-01-11 2002-07-31 Ashford Kk Coating composition for calcium-based inorganic base material and method of producing colored calcium-based inorganic base material using the same
JP2004323333A (en) * 2003-04-28 2004-11-18 Soma Takafumi Concrete modifier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670206B2 (en) * 1986-07-09 1994-09-07 義和 遊垣 Inorganic building material protective agent and method for preparing the same
JPH075401B2 (en) * 1986-07-15 1995-01-25 日本ユニカー株式会社 Building material protective film formation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139568A (en) * 1996-11-11 1998-05-26 Mitsubishi Chem Corp Water absorption inhibitor composition
JP2001302961A (en) * 2000-04-18 2001-10-31 Touyoko Giken Kk Coloring of surface layer of cement cured product and modifying coating
JP2002187787A (en) * 2000-12-15 2002-07-05 Ashford Kk Surface treatment method for inorganic base material
JP2002211988A (en) * 2001-01-11 2002-07-31 Ashford Kk Coating composition for calcium-based inorganic base material and method of producing colored calcium-based inorganic base material using the same
JP2004323333A (en) * 2003-04-28 2004-11-18 Soma Takafumi Concrete modifier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197308A (en) * 2005-12-26 2007-08-09 Abc Kenzai Kenkyusho:Kk Concrete surface modifier
JP2007246353A (en) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kk Repair method
JP2007256178A (en) * 2006-03-24 2007-10-04 Univ Nihon Test method of concrete waterproof layer, and testing machine using same
JP2010001195A (en) * 2008-06-20 2010-01-07 Asuton:Kk Method for repairing concrete
JP2010070403A (en) * 2008-09-17 2010-04-02 Linack Co Ltd Method for suppressing drying shrinkage crack of fresh concrete and crack reducing agent, and method for plugging crack of existing concrete and crack plugging agent
JP2011256065A (en) * 2010-06-08 2011-12-22 Shimoda Gijutsu Kenkyusho:Kk Method for preventing degradation of concrete structure
CN106007801A (en) * 2016-05-30 2016-10-12 江苏名和集团有限公司 Surface enhanced sealant for concrete and preparation method thereof
JP2019172564A (en) * 2018-03-26 2019-10-10 国立大学法人山口大学 Concrete patching agent
JP7243982B2 (en) 2018-03-26 2023-03-22 国立大学法人山口大学 Concrete repair agent
JP7311215B1 (en) * 2023-03-20 2023-07-19 株式会社リナック八千代 Concrete repair material and concrete repair method

Also Published As

Publication number Publication date
JP4484872B2 (en) 2010-06-16
JPWO2005082813A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
WO2005082813A1 (en) Silicious concrete modifier
Wang et al. A novel treatment method for recycled aggregate and the mechanical properties of recycled aggregate concrete
Yıldırım et al. Self-healing performance of aged cementitious composites
CN110818366B (en) Fair-faced concrete and preparation process thereof
Ichikawa Alkali–silica reaction, pessimum effects and pozzolanic effect
Hay et al. On utilization and mechanisms of waste aluminium in mitigating alkali-silica reaction (ASR) in concrete
JP7243982B2 (en) Concrete repair agent
JP5751499B2 (en) Reaction accelerator and concrete reinforcement method used in silicate surface impregnation method
KR102087707B1 (en) Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment
AU2005211622A1 (en) Process for the protection of reinforcement in reinforced concrete
KR100919493B1 (en) Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure
JP5388519B2 (en) Method for inhibiting drying shrinkage cracking of new concrete and crack inhibitor
Li et al. Leaching resistance of alkali-activated slag and fly ash mortars exposed to organic acid
Shafaatian et al. Performance of recycled soda–lime glass powder in mitigating alkali–silica reaction
Yeganeh et al. Enhancement routes of corrosion resistance in the steel reinforced concrete by using nanomaterials
JP2013253015A (en) Method for plugging crack of existing concrete and crack plugging agent
JP5092134B2 (en) Method for producing calcium ion water, hardened cement body and method for producing the same
KR100696987B1 (en) Recipe of Corrosion prevent repair mortar
JP2013107284A (en) Cured body and method for producing the same
Sadawy Effect of Al2O3 additives on the corrosion and electrochemical behavior of steel embedded in ordinary Portland cement concrete
Edwards et al. Pozzolanic properties of glass fines in lime mortars
WO2020239689A1 (en) Non-invasive repair and retrofitting of hardened cementitious materials
KR0147002B1 (en) Process for preparing concrete
Panchmatia et al. Nanosilica Coated Aggregates: Effects on Strength, Microstructure, and Transport Properties of Hydraulic Cement Mortars
CN116854499B (en) Multifunctional concrete surface reinforcing material and preparation method and application method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510461

Country of ref document: JP

122 Ep: pct application non-entry in european phase