JP7243982B2 - Concrete repair agent - Google Patents

Concrete repair agent Download PDF

Info

Publication number
JP7243982B2
JP7243982B2 JP2019048887A JP2019048887A JP7243982B2 JP 7243982 B2 JP7243982 B2 JP 7243982B2 JP 2019048887 A JP2019048887 A JP 2019048887A JP 2019048887 A JP2019048887 A JP 2019048887A JP 7243982 B2 JP7243982 B2 JP 7243982B2
Authority
JP
Japan
Prior art keywords
concrete
repair
heating
repair agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019048887A
Other languages
Japanese (ja)
Other versions
JP2019172564A (en
Inventor
柱国 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOKUTO KOWA CORP.
Yamaguchi University NUC
Original Assignee
KYOKUTO KOWA CORP.
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOKUTO KOWA CORP., Yamaguchi University NUC filed Critical KYOKUTO KOWA CORP.
Publication of JP2019172564A publication Critical patent/JP2019172564A/en
Application granted granted Critical
Publication of JP7243982B2 publication Critical patent/JP7243982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、火災などにより高温加熱を受けて劣化したコンクリートの性能回復を促進するため、あるいは高温加熱を受けていない一般コンクリートの改質や補修のための、塗布や含浸や注入用などのコンクリート補修剤に関する。 The present invention is a concrete for application, impregnation, injection, etc., for promoting the performance recovery of concrete that has been subjected to high-temperature heating due to fire or the like, or for modifying or repairing general concrete that has not been subjected to high-temperature heating. It relates to a restorative.

コンクリートは火災などにより高温加熱を受けると、セメント水和反応生成物の分解・変質及びセメントペーストと骨材の間に不均一の膨張や収縮が生じて、コンクリートの内部組織が破壊され、強度及び弾性係数などの力学性能が低下する。また、水酸化カルシウムが高温で分解すると、コンクリートのアルカリ性が失われる。更に、コンクリートの表面にひび割れが多発するため、物質侵入抵抗性が低下し、炭酸ガス、酸素、塩分及び水などがコンクリートの内部に侵入し拡散しやすくなる。これにより、コンクリートの中性化抵抗性が低下し、当該コンクリート中の鉄筋が錆びやすくなる。 When concrete is heated to a high temperature due to a fire, etc., the cement hydration reaction products decompose and degrade, and uneven expansion and contraction occur between the cement paste and aggregates. Mechanical performance such as elastic modulus is degraded. Also, when calcium hydroxide decomposes at high temperatures, concrete loses its alkalinity. Furthermore, since cracks frequently occur on the surface of the concrete, the material penetration resistance is lowered, and carbon dioxide gas, oxygen, salt, water, and the like easily enter and diffuse into the concrete. As a result, the neutralization resistance of the concrete is lowered, and the reinforcing bars in the concrete are likely to rust.

一方、高温加熱を受けたコンクリートの性能は、再養生によって時間とともに回復するが、高温加熱を受ける前の水準までは回復できない。そこで、日本建築学会「建物の火害診断及び補修・補強方法指針・同解説」は、コア強度が設計基準強度以下やひび割れの幅が数mm以上のひどく劣化した部位のコンクリートをはつりとって打ち直し、コア強度が設計基準強度以上であるコンクリートのひび割れを補修すると規定している。
しかし、コンクリートの打ち直しは、手間と時間がかかる。また、0.2mm以上のひび割れであればエポキシ樹脂やポリマーセメントで補修することができるが、0.2mm未満の微細なひび割れ及び微小な損傷の補修は困難であるため、大きなひび割れを補修しても、高温加熱を受ける前に比べ、コンクリートの性能は劣ることになる。
On the other hand, the performance of concrete that has been subjected to high-temperature heating recovers over time through recuring, but it cannot recover to the level before high-temperature heating. Therefore, the Architectural Institute of Japan's "Fire damage diagnosis and repair/reinforcement method guidelines and explanations for buildings" recommends that the core strength is less than the design standard strength and the concrete of the severely deteriorated part where the width of the crack is several millimeters or more is removed and recast. , stipulates to repair cracks in concrete whose core strength is greater than or equal to the design standard strength.
However, recasting concrete takes time and effort. In addition, cracks of 0.2 mm or more can be repaired with epoxy resin or polymer cement, but it is difficult to repair fine cracks of less than 0.2 mm and fine damage, so large cracks should be repaired. Also, the performance of the concrete is inferior to that before it is subjected to high temperature heating.

したがって従前より、高温加熱を受けたコンクリートの補修技術の開発が望まれており、非特許文献1には、ケイ酸系ナトリウムを主成分としたコンクリート改質剤の塗布や含浸による、高温加熱を受けたコンクリートの性能回復方法が提案されている。
しかし、この性能回復剤はコンクリートの内部までの浸透が十分ではないため、更に優れた性能回復促進剤や補修剤が求められている。また、高温加熱を受けていない一般コンクリートについても同様に、優れた改質剤や性能回復剤といった補修剤が求められている。
Therefore, it has long been desired to develop techniques for repairing concrete that has been subjected to high-temperature heating. Methods have been proposed to restore the performance of subjected concrete.
However, since this performance recovery agent does not sufficiently penetrate into the interior of concrete, there is a demand for a more excellent performance recovery promoter and repair agent. In addition, repairing agents such as excellent modifiers and performance recovery agents are also required for ordinary concrete that has not been subjected to high-temperature heating.

李柱国、李慶濤:高温加熱を受けたコンクリートの性能回復に関する研究、日本建築学会構造系論文集、Vol.76、No.666、2011、pp.1375-1382Lee Ju-guk, Lee Kyung-tao: Research on Performance Recovery of Concrete Heated to High Temperature, Structural Transactions of Architectural Institute of Japan, Vol. 76, No. 666, 2011, pp. 1375-1382

本発明が解決しようとする課題は、コンクリートの内部への浸透性に優れ、当該コンクリートの性能を回復ないし向上させる、塗布や含浸や注入用などのコンクリート補修剤を提供することにある。 The problem to be solved by the present invention is to provide a concrete repair agent for application, impregnation, injection, etc., which has excellent permeability into the interior of concrete and restores or improves the performance of the concrete.

この課題を解決するために本発明者らが種々の試験を重ねた結果、珪酸塩類とアルカリ金属の水酸化物との混合水溶液がコンクリート内部へ浸透する能力が高いことを知見し、更にこの混合水溶液により高温加熱を受けて劣化したコンクリートや高温加熱を受けていない一般コンクリートの性能回復を図ることが可能であることを確認した。 In order to solve this problem, the present inventors conducted various tests and found that a mixed aqueous solution of silicates and alkali metal hydroxides has a high ability to penetrate into the interior of concrete. It was confirmed that it is possible to restore the performance of concrete that has been deteriorated by being heated to high temperatures and general concrete that has not been heated to high temperatures.

すなわち、本発明の一観点によれば、珪酸塩類と、アルカリ金属の水酸化物とを含む水溶液よりなる、コンクリート補修剤が提供される。
なお、本発明でいう「補修剤」とは、性能回復促進剤及び改質剤を包含する概念である。
That is, one aspect of the present invention provides a concrete repairing agent comprising an aqueous solution containing a silicate and an alkali metal hydroxide .
In addition, the term "repair agent" as used in the present invention is a concept that includes performance recovery promoters and modifiers.

本発明の補修剤は、コンクリートの内部への浸透性が高く、なおかつ高温下で分解したセメント水和反応生成物を再反応させ、微小な損傷を修復できる。したがって、この補修剤の塗布や含浸や注入などにより、高温加熱を受けたコンクリートの性能回復を図ることができる。また、本発明の補修剤は、コンクリートの内部への浸透性が高いことから、高温加熱を受けていない一般コンクリートの性能向上も図ることができる。 The repairing agent of the present invention has high permeability into the interior of concrete, and can re-react cement hydration reaction products decomposed at high temperatures to repair minute damage. Therefore, the coating, impregnation, or injection of this repair agent can restore the performance of concrete that has been heated to a high temperature. In addition, since the repairing agent of the present invention has high permeability into the interior of concrete, it is possible to improve the performance of general concrete that has not been heated to a high temperature.

補修剤の加圧注入試験の様子を示す写真。The photograph which shows the state of the pressurization injection test of a repair agent. 補修剤別の注入量と注入時間の関係を示すグラフ。Graph showing the relationship between injection amount and injection time for each repair agent. 補修剤と他のアルカリ溶液が450℃で加熱したシリーズNo.1の被補修コンクリートの角柱供試体に浸透した深さを示す写真。Series no. 1 is a photograph showing the penetration depth of the concrete to be repaired in No. 1 to the prism specimen. 異なる温度で加熱されたシリーズNo.1の被補修コンクリート(普通強度)へ補修剤を注入した後の強度回復の結果を示すグラフ。Series no. 1 is a graph showing the results of strength recovery after injecting a repair agent into concrete to be repaired (normal strength) of No. 1; 異なる温度で加熱されたシリーズNo.2の被補修コンクリート(高強度)へ補修剤を注入した後の強度回復の結果を示すグラフ。Series no. 2 is a graph showing the results of strength recovery after injecting a repair agent into the concrete to be repaired (high strength) of No. 2. FIG. 異なる温度で加熱されたシリーズNo.3~No.5の被補修コンクリート(普通強度)を補修剤に浸漬した後の強度回復の結果を示すグラフ。Series no. 3 to No. 5 is a graph showing the results of strength recovery after the concrete to be repaired (normal strength) of No. 5 was immersed in the repair agent. 異なる温度で加熱されたシリーズNo.3の被補修コンクリートを補修剤に浸漬した後の内部構造の変化を示す走査型電子顕微鏡(SEM)写真。Series no. 3 is a scanning electron microscope (SEM) photograph showing changes in the internal structure of the concrete to be repaired in No. 3 after being immersed in the repair agent.

本発明のコンクリート補修剤(以下、単に「補修剤」ともいう。)は、珪酸リチウム(LiO・nSiO,n=3~8)などの珪酸塩類と、アルカリ金属の水酸化物の1種又は2種以上とを含む水溶液よりなるものである。この補修剤は、後述する試験結果に表れているように、コンクリート内部へ浸透する能力が高く、優れた性能回復効果を発揮する。 The concrete repairing agent of the present invention (hereinafter also simply referred to as "repairing agent") contains silicates such as lithium silicate (Li 2 O.nSiO 2 , n=3 to 8) and one of alkali metal hydroxides. It consists of an aqueous solution containing a seed or two or more. As shown in the test results to be described later, this repair agent has a high ability to penetrate into the interior of concrete and exhibits an excellent performance recovery effect.

アルカリ金属の水酸化物としては、典型的には水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)が挙げられる。 Alkali metal hydroxides typically include sodium hydroxide (NaOH) and potassium hydroxide (KOH).

また、本発明の効果(浸透性向上効果及び性能回復効果)をいかんなく発揮する点から、珪酸塩類とアルカリ金属の水酸化物とのモル比は、珪酸塩類:アルカリ金属の水酸化物=0.5~5.0:5.0であることが好ましく、0.5~3.0:5.0であることが更に好ましく、0.5~2.0:5.0であることがより好ましい。
同様に、珪酸塩類とアルカリ金属の水酸化物との合計の質量濃度は、5~80%であることが好ましく、5~20%であることが更に好ましく、7~13%であることがより好ましい。
In addition, from the viewpoint of fully exhibiting the effects of the present invention (permeability improvement effect and performance recovery effect), the molar ratio of silicates and alkali metal hydroxides is silicates:alkali metal hydroxide=0. .5 to 5.0:5.0, more preferably 0.5 to 3.0:5.0, more preferably 0.5 to 2.0:5.0 preferable.
Similarly, the total mass concentration of silicates and alkali metal hydroxides is preferably 5 to 80%, more preferably 5 to 20%, and more preferably 7 to 13%. preferable.

更に、本発明の補修剤には、珪酸塩類及びアルカリ金属の水酸化物以外の他の成分(水溶性物質)、例えば、コンクリート中の補強鉄筋の腐食を防止する防錆剤やコンクリートのアルカリ骨材反応を防止する薬剤を混合してもよい。本発明の補修剤は主にコンクリートを緻密させる効果を発揮するところ、前記のような他の水溶性物質を混合することにより、鉄筋の防錆効果やアルカリ骨材反応の抑制効果も併せて発揮することができる。 Furthermore, the repairing agent of the present invention includes other components (water-soluble substances) other than silicates and hydroxides of alkali metals, such as antirust agents for preventing corrosion of reinforcing reinforcing bars in concrete and alkaline bones of concrete. A chemical that prevents material reaction may be mixed. The repairing agent of the present invention mainly exerts the effect of making concrete denser, but by mixing other water-soluble substances such as those mentioned above, it also exerts the anti-corrosion effect of reinforcing bars and the effect of suppressing alkali-aggregate reaction. can do.

以下の試験により、補修剤を作製し、加圧注入の場合の浸透性と利用効果を評価した。
1.試験概要
1.1 被補修コンクリートの調合と加熱
被補修コンクリートの円柱供試体を表1に示す調合によって作製した。シリーズNo.1とNo.2は、それぞれ普通強度コンクリートと高強度コンクリートに近いものである。使用材料を表2に示す。サイズが直径10cm×高さ20cmの供試体を20±3℃の水中において28日間養生した。その後、加熱まで20±5℃室内に放置した。加熱直前と直後に圧縮試験をそれぞれ行い、圧縮強度を測定した。加熱直前の圧縮強度を表1に示す。
また、加熱前に被補修コンクリート供試体の打ち込み面の中心に深さ60mm、直径10mmの削孔を行った。次に、昇温速度を2~3℃/分とし、加熱温度が目標温度(450℃、550℃、650℃)に達し後に5時間維持して加熱を行った。なお、コンクリートの中心温度は測定しなかったが、昇温速度が小さく、また目標温度に5時間維持したため、コンクリートの中心温度は目標温度に達したと考えられる。
A repair agent was prepared by the following tests, and the permeability and utilization effect in the case of pressurized injection were evaluated.
1. Test Overview 1.1 Preparation and Heating of Concrete to be Repaired A cylindrical specimen of concrete to be repaired was prepared according to the formulation shown in Table 1. Series no. 1 and No. 2 are close to medium-strength concrete and high-strength concrete, respectively. Table 2 shows the materials used. A specimen having a size of 10 cm in diameter and 20 cm in height was cured in water at 20±3° C. for 28 days. After that, it was left in a room at 20±5° C. until heating. A compression test was performed immediately before and after heating to measure the compressive strength. Table 1 shows the compressive strength immediately before heating.
Before heating, a hole of 60 mm in depth and 10 mm in diameter was drilled in the center of the driving surface of the concrete specimen to be repaired. Next, the temperature was raised at a rate of 2 to 3° C./min, and the heating temperature was maintained for 5 hours after reaching the target temperature (450° C., 550° C., 650° C.). Although the core temperature of the concrete was not measured, it is considered that the core temperature of the concrete reached the target temperature because the rate of temperature increase was small and the target temperature was maintained for 5 hours.

Figure 0007243982000001
Figure 0007243982000001

Figure 0007243982000002
Figure 0007243982000002

1.2 使用した補修剤
補修剤を選定するための試験(以下「補修剤の選定試験」という。)、及び補修剤の使用効果を検証するための加圧注入試験(以下「補修剤の注入試験」という。)に使用した補修剤の原材料(原料溶液)を表3に示す。
水ガラス水溶液(WG)は、JIS K 1408の1号水ガラスと水を1:1の体積比で混合したものである。
水酸化ナトリウム水溶液(NH)のモル濃度は10Mである。
液体ガラス(S)は、液体ガラスの原液と水を1:2の体積比で混合したものである。液体ガラスの成分は企業秘密で不明である。
珪酸リチウム(Li)のモル比は7.5で、シリカ(SiO)の含有量は20~22質量%、酸化リチウム(LiO)の含有量は1.3~1.5質量%である。
アルミン酸ナトリウム(AN)は、水酸化アルミニウムと水酸化ナトリウムを原料とする液体品である。
1.2 Repair agent used A test for selecting a repair agent (hereinafter referred to as "selection test of repair agent") and a pressurized injection test to verify the effectiveness of repair agent (hereinafter referred to as "injection of repair agent"). Table 3 shows the raw material (raw material solution) of the repair agent used in the test.
The water glass aqueous solution (WG) is a mixture of JIS K 1408 No. 1 water glass and water at a volume ratio of 1:1.
The molarity of aqueous sodium hydroxide (NH) is 10M.
The liquid glass (S) is obtained by mixing the undiluted solution of the liquid glass and water at a volume ratio of 1:2. The composition of the liquid glass is a trade secret and unknown.
The molar ratio of lithium silicate (Li) is 7.5, the content of silica (SiO 2 ) is 20-22% by mass, and the content of lithium oxide (LiO 2 ) is 1.3-1.5% by mass. .
Sodium aluminate (AN) is a liquid product made from aluminum hydroxide and sodium hydroxide.

これらの原材料(原料溶液)を調合して補修剤の選定試験に使用した。この選定試験に使用した補修剤の構成を表4に示す。 These raw materials (raw material solutions) were prepared and used for selection tests of repair agents. Table 4 shows the composition of the repair agents used in this selection test.

Figure 0007243982000003
Figure 0007243982000003

Figure 0007243982000004
Figure 0007243982000004

1.3 コンクリートへの補修剤の注入試験方法
補修剤の選定試験では、表1中、シリーズNo.1の被補修コンクリート(普通強度)の円柱供試体を使用して、450℃加熱を行った。その後、ASR(アルカリ骨材反応)抑制工法に用いられる注入器具(パッカーとアクリルカプセル、下記参考文献を参照。)を使用し、注入圧力を0.5MPaとして、表4に示す4種類の補修剤を前述の削孔部より注入した。また、比較のため水の注入も行った。
参考文献 江良和徳:亜硝酸リチウムを用いたASR抑制工法,リチウム内部圧入によるアルカリシリカ反応の抑制について,コンクリート工学,vol50,No.2,pp.155~162,2012
1.3 Injection Test Method of Repair Agent into Concrete A cylindrical specimen of concrete to be repaired (normal strength) of No. 1 was heated at 450°C. After that, using the injection equipment (packer and acrylic capsule, see the following reference) used for the ASR (alkali aggregate reaction) suppression method, the injection pressure was set to 0.5 MPa, and the four types of repair agents shown in Table 4 were used. was injected from the above-mentioned drilled part. Water was also injected for comparison.
Reference Kazunori Era: ASR Suppression Method Using Lithium Nitrite, Suppression of Alkali-Silica Reaction by Injection of Lithium Inside, Concrete Engineering, vol. 2, pp. 155-162, 2012

補修剤の注入試験では、前述の選定試験で選定した補修剤(珪酸リチウムと水酸化ナトリウムの混合水溶液)を3つの温度レベル(450、550、650℃)で加熱したシリーズNo.1とNo.2の被補修コンクリートの円柱供試体に0.5MPaの圧力で注入した。その後、各円柱供試体のマトリックスモルタルと同じ調合のモルタルを練り混ぜ、削孔部を充填した。更に、20±3℃、R.H.60%の室内に放置して28日間養生してから、JIS A 1108に準じて圧縮強度を測定した。圧縮強度は3本の供試体の平均値とした。なお、性能回復促進効果を比べるために、各加熱温度の被補修コンクリートの円柱供試体に水を注入した。この補修剤の注入試験の様子を図1に示す。 In the injection test of the repairing agent, the series No. 1 was heated at three temperature levels (450, 550, 650° C.) of the repairing agent (mixed aqueous solution of lithium silicate and sodium hydroxide) selected in the above selection test. 1 and No. 2 was injected at a pressure of 0.5 MPa into the cylindrical test piece of the concrete to be repaired. After that, mortar of the same formulation as the matrix mortar of each cylindrical test piece was kneaded to fill the drilled portion. Furthermore, 20±3° C., R.I. H. After curing for 28 days by leaving it in a 60% room, the compressive strength was measured according to JIS A 1108. Compressive strength was the average value of three specimens. In addition, in order to compare the effect of promoting performance recovery, water was poured into the cylindrical specimen of the concrete to be repaired at each heating temperature. Fig. 1 shows the appearance of the injection test of this repair agent.

2.試験結果
2.1 補修剤の選定試験の結果
図2に、表4に示す4種類の補修剤と水の注入試験の結果を示す。
約140分で250mLの水は注入され、円柱供試体の表面に滲み出始めた。これによって、シリーズNo.1の被補修コンクリートを450℃加熱した場合、1本の円柱供試体に注入できる液の量は250mLであることがわかった。また、図2に示すように、「Li+NH+水」の補修剤の浸透性は他の補修剤に比べ、高いことが認められた。
2. 2. Test Results 2.1 Results of Repair Agent Selection Test FIG.
In about 140 minutes, 250 mL of water was injected and began to seep out onto the surface of the cylindrical specimen. As a result, series no. It was found that when the concrete to be repaired in No. 1 was heated to 450° C., the amount of liquid that could be injected into one cylindrical test piece was 250 mL. Moreover, as shown in FIG. 2, it was confirmed that the permeability of the repairing agent of "Li+NH+water" is higher than that of other repairing agents.

また、450℃で加熱したシリーズNo.1の被補修コンクリートの角柱供試体をほぼ三等分して、それぞれ(a)10Mの水酸化ナトリウム水溶液(NH)、(b)珪酸リチウム(Li)、及び(c)「Li+NH+水」の補修剤に10時間浸漬した。浸漬後の断面写真を図3に示す。同図に示すように、珪酸リチウム(Li)に浸漬した場合の浸透深さは最も小さかった。一方、「Li+NH+水」の補修剤は、供試体を完全に浸透することができた。 Moreover, the series No. heated at 450°C. The prismatic test piece of concrete to be repaired in 1 was divided into approximately three equal parts, and (a) 10M sodium hydroxide aqueous solution (NH), (b) lithium silicate (Li), and (c) "Li + NH + water" were repaired. It was immersed in the agent for 10 hours. A cross-sectional photograph after immersion is shown in FIG. As shown in the figure, the penetration depth was the smallest when immersed in lithium silicate (Li). On the other hand, the "Li+NH+water" repair agent was able to completely permeate the specimen.

このように、「Li+NH+水」の補修剤は浸透性が高いことが確認された、したがって、補修剤の使用効果を検証するための注入試験(補修剤の注入試験)では、「Li+NH+水」の補修剤を使用した。 Thus, it was confirmed that the repair agent of "Li + NH + water" has high permeability. I used a restorative.

2.2 補修剤の注入試験の結果
加熱後のコンクリートの注入に適する「Li+NH+水」中の水の割合を変え、表5に示すようにA、B、C液からなる補修剤を調製した。すなわち、水の割合はA液<B液<C液である。
450℃で加熱した被補修コンクリートの円柱供試体(効果検証用コンクリート供試体)にB液とC液、550℃と650℃で加熱した被補修コンクリートの円柱供試体(効果検証用コンクリート供試体)にA液とB液を注入した。加熱温度レベル、液の種類ごとにそれぞれ3本の円柱供試体に対して注入を行った。
なお、A、B、C液における、珪酸リチウムと水酸化ナトリウムとのモル比(珪酸リチウム:水酸化ナトリウム)及び珪酸リチウムとアルカリ金属の水酸化物との合計の質量濃度を表6に示す。
2.2 Results of Repair Agent Injection Test Repair agents consisting of liquids A, B, and C as shown in Table 5 were prepared by changing the ratio of water in "Li + NH + water" suitable for pouring into heated concrete. That is, the ratio of water is A liquid < B liquid < C liquid.
Cylindrical test piece of concrete to be repaired (concrete test piece for effect verification) heated at 450°C, solution B and solution C, and cylindrical test piece of concrete to be repaired (concrete test piece for effect verification) heated at 550°C and 650°C (concrete test piece for effect verification) A solution and B solution were injected into the . Three cylindrical specimens were injected for each heating temperature level and liquid type.
Table 6 shows the molar ratio of lithium silicate and sodium hydroxide (lithium silicate:sodium hydroxide) and the total mass concentration of lithium silicate and alkali metal hydroxide in solutions A, B and C.

Figure 0007243982000005
Figure 0007243982000005

Figure 0007243982000006
Figure 0007243982000006

(1)注入時間
前述したように、円柱供試体(効果検証用コンクリート供試体)が完全に湿り、液が表面に滲み出すまで250mLの水を注入できたため、250mLの注入にかかる時間を比べ、A、B、C液の注入性を考察した。各液の250ml注入時間を表7及び表8に示すに示す。
(1) Injection time As mentioned above, the cylindrical specimen (concrete specimen for effect verification) was completely wet, and 250 mL of water could be injected until the liquid oozed out to the surface. The injectability of liquids A, B, and C was considered. Tables 7 and 8 show the injection time of 250 ml of each solution.

Figure 0007243982000007
Figure 0007243982000007

Figure 0007243982000008
Figure 0007243982000008

これらの表に示すように、コンクリート供試体の加熱温度が高いほど、注入時間が短かった。また、ばらつきはあるが、水の割合が大きいほど、注入時間は短い傾向が見られた。更に、加熱前の強度レベルが高いほど、550℃以下の加熱であれば注入時間が短くなることが認められた。すなわち、完全注入までの時間は、補修剤の濃度、並びにコンクリートの加熱温度及び加熱前の強度に依存する。 As shown in these tables, the higher the heating temperature of the concrete specimen, the shorter the pouring time. In addition, although there was some variation, there was a tendency that the larger the proportion of water, the shorter the injection time. Furthermore, it was found that the higher the strength level before heating, the shorter the injection time when heating at 550° C. or less. That is, the time to complete injection depends on the concentration of the repair agent and the heating temperature and pre-heating strength of the concrete.

(2) 圧縮強度
コンクリート供試体の加熱前の圧縮強度を100%として、加熱直後と補修剤の加圧注入・再養生後のコンクリートの残存圧縮強度(%)を図4及び図5に示す。
図4に示すシリーズNo.1の被補修コンクリートの場合、450℃で加熱された供試体については、加熱後に圧縮強度が70%程度まで低下し、B液、C液を注入することで強度の回復がみられた。特にB液の場合、加熱前の90%程度まで回復した。550℃、650℃で加熱された供試体については、加熱後にそれぞれ50%、40%程度まで圧縮強度が低下した。しかし、A液を注入することで、それぞれ加熱前の80%、70%程度まで強度は回復した。
(2) Compressive strength Assuming that the compressive strength of the concrete specimen before heating is 100%, the residual compressive strength (%) of the concrete immediately after heating and after pressurized injection and recuring of the repair agent are shown in FIGS.
Series No. shown in FIG. In the case of the concrete to be repaired in No. 1, the compressive strength of the specimen heated at 450°C decreased to about 70% after heating, and the strength was recovered by injecting liquid B and liquid C. Especially in the case of liquid B, it recovered to about 90% of that before heating. The compressive strengths of the specimens heated at 550° C. and 650° C. decreased by 50% and 40%, respectively, after heating. However, by injecting liquid A, the strength recovered to about 80% and 70% of that before heating, respectively.

一方、図5に示すシリーズNo.2の被補修コンクリートの場合、450℃で加熱された供試体については、加熱直後に圧縮強度が50%程度まで低下し、B液を注入することで加熱前の85%程度まで回復した。550℃、650℃で加熱された供試体については、加熱直後にそれぞれ38%、28%程度まで圧縮強度が低下した。しかしB液を注入することで、それぞれ加熱前の90%、70%程度まで強度は回復した。
なお、いずれの供試体についても、水の注入による強度の回復促進は見られなかった。
On the other hand, the series No. shown in FIG. In the case of the concrete to be repaired in 2, the compressive strength of the specimen heated at 450° C. decreased to about 50% immediately after heating, and recovered to about 85% before heating by injecting liquid B. The compressive strengths of the specimens heated at 550° C. and 650° C. decreased to about 38% and 28%, respectively, immediately after heating. However, by injecting the B liquid, the strength recovered to about 90% and 70% of that before heating, respectively.
It should be noted that, for any of the specimens, no promotion of recovery of strength was observed due to the injection of water.

以下の試験により、コンクリートを補修剤に浸漬(含浸)する場合の浸透性と利用効果を評価した。
1.実験概要
1.1 補修剤の組成
前記の珪酸リチウム原液(Li),10Mの水酸化ナトリウム水溶液(NH)及び水を2:1:2の体積比で混合したものである。ここに、D液と称する。
The following test was used to evaluate the permeability and utilization effect of immersing (impregnating) concrete in the repair agent.
1. 1. Outline of Experiment 1.1 Composition of Repairing Agent The aforementioned lithium silicate undiluted solution (Li), 10M sodium hydroxide aqueous solution (NH) and water were mixed in a volume ratio of 2:1:2. Here, it is called D liquid.

まず、この補修剤(D液)について、浸漬の場合の浸透能力を確認するために、表9に示すシリーズNo.4の普通強度コンクリートを使って補修剤(D液)の無圧力浸透実験を行った。具体的には、300℃で加熱したシリーズNo.4のコンクリート円柱供試体(直径10cm)をD液に浸して24時間の間隔で供試体を割り、中心まで浸透したことを確認した。 First, in order to confirm the penetration ability in the case of immersion, the series No. shown in Table 9 was tested for this repair agent (solution D). No pressure penetration test of the repairing agent (Liquid D) was conducted using normal strength concrete No. 4. Specifically, series No. 1 heated at 300°C. A concrete columnar specimen (10 cm in diameter) of No. 4 was immersed in D solution, and the specimen was split at intervals of 24 hours to confirm penetration to the center.

1.2 被補修コンクリートの調合及び加熱
用いた被補修コンクリートは、表9に示すシリーズNo.3~No.5の普通強度コンクリートである。調合は表9及び表10に示すとおり。普通ポルトランドセメントと珪酸質の骨材を使った。サイズが直径100×高さ200mmの円柱供試体を作製し、20±3℃の水中において56日間養生した後に室内に保管した。その後、小型電気炉で供試体の加熱を行った。昇温速度を2~3℃/分とし、目標温度(300℃、500℃、650℃)で5時間維持した。加熱後は気中自然冷却をした。
1.2 Preparation and Heating of Concrete to be Repaired 3 to No. 5 normal strength concrete. Formulations are as shown in Tables 9 and 10. Ordinary Portland cement and siliceous aggregates were used. A cylindrical specimen having a size of 100 mm in diameter and 200 mm in height was prepared, cured in water at 20±3° C. for 56 days, and then stored indoors. After that, the specimen was heated in a small electric furnace. The temperature was raised at a rate of 2-3° C./min, and the target temperature (300° C., 500° C., 650° C.) was maintained for 5 hours. After heating, it was naturally cooled in the air.

Figure 0007243982000009
Figure 0007243982000009

Figure 0007243982000010
Figure 0007243982000010

1.3 加熱後の補修
密閉できる容器にD液を装入してから、シリーズNo.3~No.5の加熱後の供試体を7日間浸漬した。浸漬後に、供試体を温度20±2℃、相対湿度60±5%の室内で21日間気中養生を行った。加熱温度はそれぞれシリーズNo.3は300℃、No.4は500℃、及びNo.5は650℃とした。
1.3 Repair after heating After charging the D solution into a container that can be sealed, series No. 3 to No. The specimen after heating in 5 was immersed for 7 days. After the immersion, the specimen was air-cured for 21 days in a room at a temperature of 20±2° C. and a relative humidity of 60±5%. The heating temperature is set according to the series No. 3 is 300° C.; 4 is 500° C., and No. 5 was set at 650°C.

1.4 補修前後の測定
加熱前と補修後にJIS A 1108:2018(コンクリートの圧縮強度試験方法)に準じて圧縮強度を測定し、加熱直後と補修後の圧縮強度残存率を算出した。圧縮強度は3本の試験体の平均値とした。また、500℃,650℃加熱直後、浸漬による補修後の供試体の内部構造を走査型電子顕微鏡(SEM)で観察した。
1.4 Measurement before and after repair Compressive strength was measured before heating and after repair according to JIS A 1108:2018 (concrete compressive strength test method), and the compressive strength residual rate immediately after heating and after repair was calculated. Compressive strength was taken as the average value of three specimens. Further, the internal structure of the test piece immediately after heating at 500° C. and 650° C. and after repair by immersion was observed with a scanning electron microscope (SEM).

2.試験結果
2.1 圧縮強度
300℃,500℃,650℃で加熱され、補修剤に7日浸漬したシリーズNo.3~No.5の加熱前と加熱・補修後(浸漬・養生)の圧縮強度及び加熱前の強度と比較した残存率を図6に示す。図6に示すように、補修後の圧縮強度はそれぞれ93%,87%,86%まで回復した。補修剤の補修効果を浸漬の場合においても確認した。
2. 2. Test Results 2.1 Compressive Strength Series No. 1 was heated at 300° C., 500° C., and 650° C. and immersed in a repair agent for 7 days. 3 to No. Fig. 6 shows the compressive strength before heating and after heating/repairing (immersion/curing) of No. 5 and the residual rate compared with the strength before heating. As shown in Fig. 6, the compressive strength after repair recovered to 93%, 87% and 86%, respectively. The repair effect of the repair agent was also confirmed in the case of immersion.

2.2 補修後の内部構造の変化
加熱直後と補修後のSEM(500倍)写真を図7に示す。加熱直後の供試体にはひび割れと空隙が見られた。特に650℃で加熱されたシリーズNo.5の供試体は、500℃で加熱されたシリーズNo.4の供試体よりひび割れが大きく、空隙が多かった。しかし、補修剤の浸漬による補修後は、緻密になった。すなわち、500℃で加熱されたシリーズNo.4の供試体ではひび割れと空隙がほとんど見られなくなり、650℃で加熱されたシリーズNo.5の供試体ではひび割れや空隙が少なくなった。
2.2 Changes in internal structure after repair Fig. 7 shows SEM (500x) photographs immediately after heating and after repair. Cracks and voids were observed in the specimen immediately after heating. Especially series no. 5 is a series No. 5 heated at 500°C. The cracks were larger than those of the specimen No. 4, and there were many voids. However, after the repair by immersion in the repair agent, it became dense. That is, series No. 1 heated at 500°C. Cracks and voids were hardly seen in the specimen No. 4, and series No. 4 heated at 650°C. The specimen No. 5 had less cracks and voids.

3.補修剤の高浸透性のメカニズムに関する検討
珪酸リチウム、珪酸ナトリウム(水ガラス)又は珪酸カリウムを主成分とする珪酸塩系表面含浸材(水溶液)は、以前からコンクリートの防水、表面保護工法に広く使われている。含浸材の乾燥固化物及びそれとセメントの水和によって生じるCa(OH)との反応生成物C-S-Hゲルは、コンクリートの空隙を充填して改質効果を生じるためである。しかし、これら従来の珪酸塩系表面含浸材は表層部の数ミリまでしか浸透できないため、その適用範囲は、表層部の改質、防水及び保護に限られていた。珪酸塩系表面含浸材が深くまで浸透できないのは、含浸材がセメントの水和生成物Ca(OH)と反応してC-S-Hゲルを生じ、浸透経路を閉塞するためである。
3. Investigation on the mechanism of high permeability of repair agents Silicate-based surface impregnation materials (aqueous solutions), which are mainly composed of lithium silicate, sodium silicate (water glass) or potassium silicate, have long been widely used for waterproofing and surface protection of concrete. It is This is because the dried solidified impregnant and the CSH gel, which is a reaction product of Ca(OH) 2 produced by the hydration of the cement and the dried impregnant, fills the voids of the concrete to produce a modifying effect. However, since these conventional silicate-based surface impregnating materials can penetrate only up to several millimeters into the surface layer, their application range has been limited to modifying, waterproofing, and protecting the surface layer. The reason why the silicate-based surface impregnating material cannot penetrate deeply is that the impregnating material reacts with the hydration product Ca(OH) 2 of cement to form a C—S—H gel, blocking the permeation pathway.

本発明の補修剤の高浸透性のメカニズムを解明するため、補修剤の粘度を測定し、補修剤とCa(OH)との反応性を実験で確認した。
具体的には、先に表3に示した原料溶液のNH、Li及びWGの20℃時の粘度を測定した。その結果を表11に示す。また、浸漬実験に用いられたD液及びWGとNHの混合液(WG+NH、体積比1:1)の20℃時の粘度も測定した。その結果を表11に併記する。D液の粘度は最も小さいことを確認した。
In order to elucidate the mechanism of the high permeability of the repair agent of the present invention, the viscosity of the repair agent was measured and the reactivity between the repair agent and Ca(OH) 2 was experimentally confirmed.
Specifically, the viscosities of NH, Li, and WG of the raw material solutions shown in Table 3 were measured at 20°C. The results are shown in Table 11. In addition, the viscosities at 20° C. of liquid D and a mixture of WG and NH (WG+NH, volume ratio 1:1) used in the immersion experiment were also measured. The results are also shown in Table 11. It was confirmed that the viscosity of liquid D was the lowest.

Figure 0007243982000011
Figure 0007243982000011

仮に珪酸リチウム水溶液の粘度がNH添加の影響を受けなければ、D液(Li:NH:水=2:1:2)の20℃時の粘度は、47.2(Liの粘度)×(2/5)+34.9(NHの粘度)×(1/5)+1.00(水の粘度)×(2/5)=26.3mPa・sとなるはずであるが、測定値(12.7mPa・s)は計算値(26.3mPa・s)より小さくなっている。この結果より、NHの添加で珪酸リチウム水溶液の粘度が小さくなることがわかる。これは、NHの添加で珪酸リチウムが小分子化するためであると推定される。一方、WGとNHの混合液の粘度の計算値(24.8×(1/2)+34.9×(1/2)=30.0mPa・s)は、測定値(31.0mPa・s)とほぼ同じである。 If the viscosity of the lithium silicate aqueous solution is not affected by the addition of NH, the viscosity of solution D (Li: NH: water = 2: 1: 2) at 20 ° C. is 47.2 (viscosity of Li) × (2 /5) + 34.9 (viscosity of NH) x (1/5) + 1.00 (viscosity of water) x (2/5) = 26.3 mPa s, but the measured value (12.7 mPa ·s) is smaller than the calculated value (26.3 mPa·s). From this result, it can be seen that the addition of NH reduces the viscosity of the lithium silicate aqueous solution. This is presumed to be due to the addition of NH to make lithium silicate smaller molecules. On the other hand, the calculated value of the viscosity of the mixture of WG and NH (24.8 × (1/2) + 34.9 × (1/2) = 30.0 mPa s) is the measured value (31.0 mPa s) is almost the same as

補修剤とCa(OH)との反応性の考察実験では、5種類のアルカリ溶液(Li,NH,WG,D液,WG+NH)を用いた。WG+NH液は表11のものと同じである。100mLのアルカリ溶液に特級試薬のCa(OH)(純度96.0%以上)を5g溶かした。一晩後に、ろ紙(JIS3801 5種A 定量分析ろ紙)で液をろ過し、ろ過後のろ紙を105℃の温度で乾燥させて、ろ紙に残った固形物の重さを測定した。測定結果を表12に示す。 Examination of reactivity between repair agent and Ca(OH) 2 In the experiment, five types of alkaline solutions (Li, NH, WG, D solution, WG+NH) were used. The WG+NH solution is the same as in Table 11. 5 g of special grade reagent Ca(OH) 2 (purity of 96.0% or more) was dissolved in 100 mL of alkaline solution. After one night, the liquid was filtered with filter paper (JIS3801 Type 5 A quantitative analysis filter paper), the filtered filter paper was dried at a temperature of 105°C, and the weight of the solid matter remaining on the filter paper was measured. Table 12 shows the measurement results.

Figure 0007243982000012
Figure 0007243982000012

LiとWGにそれぞれCa(OH)を混ぜて生じた固形物は、珪酸イオンとカルシウムの反応生成物であると思われ、それぞれ38.4gと80.7gの固形物が生じた。これに対して、LiにNHを混ぜたD液では、ろ紙に残った固形物は38.4gから12.9gに減少した。体積比1:1でWGとNHを混ぜると、固形物は105.5gから41.1gに減少した。仮にCa(OH)と珪酸イオンが反応せず体積比で計算すると、D液のろ過固形物は(2/5)×38.4(g)+(1/5)×16.9(g)+(2/5)×5.3(g)=20.9(g)であり、WG+NHのろ過固形物は(1/2)×80.7(g)+(1/2)×16.9(g)=48.8(g)となる。これにより、NHの添加で珪酸イオンとCa(OH)の反応が抑えられることがわかった。また、反応の減少率は、珪酸ナトリウムの場合には(48.8-41.1)/48.8=15.8%で、珪酸リチウムの場合には(20.9-12.9)/20.9=38.3%である。珪酸リチウムのほうが反応の減少率は大きい。したがって、D液の浸透性は高い。 The solids produced by mixing Ca(OH) 2 with Li and WG, respectively, were believed to be reaction products of silicate ions and calcium, yielding 38.4 g and 80.7 g of solids, respectively. On the other hand, in the D solution in which NH was mixed with Li, the solid matter remaining on the filter paper decreased from 38.4 g to 12.9 g. Mixing WG and NH in a 1:1 volume ratio reduced the solids from 105.5 g to 41.1 g. Assuming that Ca(OH) 2 and silicate ions do not react and are calculated by volume ratio, the filtered solid matter of solution D is (2/5) × 38.4 (g) + (1/5) × 16.9 (g ) + (2/5) x 5.3 (g) = 20.9 (g) and the filtration solids of WG + NH is (1/2) x 80.7 (g) + (1/2) x 16 .9(g)=48.8(g). This indicates that the addition of NH suppresses the reaction between silicate ions and Ca(OH) 2 . Also, the reduction rate of reaction is (48.8-41.1)/48.8=15.8% for sodium silicate and (20.9-12.9)/ 20.9=38.3%. Lithium silicate shows a larger rate of decrease in reaction. Therefore, the permeability of liquid D is high.

珪酸リチウムと同様に、珪酸ナトリウム(水ガラス)は、水酸化ナトリウムの添加でCa(OH)と反応しにくくなる。したがって、適切な量の水を混合すれば珪酸ナトリウムや珪酸カリウムと水酸化ナトリウムの水溶液は高い浸透性をもち、コンクリートの内部補修に適用できると考えられる。 Like lithium silicate, sodium silicate (water glass) becomes less reactive with Ca(OH) 2 with the addition of sodium hydroxide. Therefore, if mixed with an appropriate amount of water, aqueous solutions of sodium silicate or potassium silicate and sodium hydroxide have high permeability and are considered to be applicable to internal repair of concrete.

前述したように、珪酸塩類(珪酸リチウム、珪酸ナトリウム又は珪酸カリウム)は、表面含浸材としてコンクリートの改質と表面保護によく使われる。これに対して本発明の補修剤は、前述のとおり加熱されたコンクリートに浸透する能力が高く、この高い浸透能力は加熱されていないコンクリートに対しても同様に発揮されると考えられるから、本発明の補修材は加熱されていないコンクリートの補修や改質にも適用できる。 As mentioned above, silicates (lithium silicate, sodium silicate or potassium silicate) are often used as surface impregnants for modifying and protecting concrete. On the other hand, the repairing agent of the present invention has a high ability to penetrate heated concrete as described above, and it is thought that this high penetrating ability is exhibited similarly to unheated concrete. The repair material of the invention can also be applied to repair or modify unheated concrete.

ここで、本発明の補修剤は、ジオポリマーコンクリートの補修剤としても使用可能である。C-A-S-Hゲルが含まれるジオポリマーコンクリートは、高温加熱を受けると、C-A-S-Hゲルが分解する可能性がある。また、ポルトランドセメントを用いたコンクリートと同様に、ペースト部と骨材部の高温加熱による膨張量と冷却による収縮量が異なるため、両者の界面にひび割れや損傷が生じる。このように高温加熱を受けて劣化したジオポリマーコンクリートに、本発明の補修剤を塗布や浸漬や注入すると、アルカリ刺激でC-A-S-Hゲルが再生成し、高温加熱前に未反応であった活性フィラーに縮重合反応が生じ、高温加熱後の損傷やひび割れを修復できる。このように本発明の補修剤は、高温加熱を受けて劣化したジオポリマーコンクリートの性能回復の促進を図りうる。よって、本発明において「コンクリート」とはジオポリマーコンクリートを含むものとする。 Here, the repair agent of the present invention can also be used as a repair agent for geopolymer concrete. Geopolymer concrete containing CASH gels can decompose the CASH gels when subjected to high temperature heating. In addition, as with concrete using Portland cement, cracks and damage occur at the interface between the paste portion and the aggregate portion due to differences in the amount of expansion due to high temperature heating and the amount of contraction due to cooling. When the repair agent of the present invention is applied, immersed, or injected into the geopolymer concrete that has been degraded by high-temperature heating, the CASH gel is regenerated by alkali stimulation, and is unreacted before high-temperature heating. A polycondensation reaction occurs in the active filler, which can repair damage and cracks after high-temperature heating. In this way, the repair agent of the present invention can promote recovery of the performance of geopolymer concrete that has been deteriorated due to high-temperature heating. Therefore, in the present invention, "concrete" shall include geopolymer concrete.

4. 結論
本発明の補修剤によれば、コンクリートが高温加熱を受けたどうかにかかわらず、その内部への浸透性が向上する。これにより、高温加熱を受けて劣化したコンクリートの性能回復を図ることができるとともに、高温加熱を受けていないコンクリートの内部までも改質することができる。
4. Conclusion According to the repair agent of the present invention, the penetration into the concrete is improved regardless of whether or not the concrete is subjected to high temperature heating. As a result, it is possible to recover the performance of the concrete deteriorated by being heated at a high temperature, and it is possible to reform even the inside of the concrete that has not been heated to a high temperature.

Claims (3)

珪酸塩類と、アルカリ金属の水酸化物とを含む水溶液よりなる、コンクリート補修剤であって、
前記珪酸塩類は珪酸リチウムを含んでなると共に、前記アルカリ金属の水酸化物は水酸化ナトリウムのみからなり、
かつ前記珪酸塩類と前記アルカリ金属の水酸化物との合計の質量濃度が5~20%である、コンクリート補修剤。
A concrete repairing agent comprising an aqueous solution containing a silicate and an alkali metal hydroxide ,
The silicates comprise lithium silicate, and the alkali metal hydroxide comprises only sodium hydroxide,
A concrete repairing agent , wherein the total mass concentration of the silicates and the alkali metal hydroxide is 5 to 20% .
前記珪酸塩類と前記アルカリ金属の水酸化物とのモル比が、
珪酸塩類:アルカリ金属の水酸化物=0.5~5.0:5.0である、請求項に記載のコンクリート補修剤。
The molar ratio between the silicates and the alkali metal hydroxide is
The concrete repair agent according to claim 1 , wherein the ratio of silicates: hydroxide of alkali metal is 0.5 to 5.0:5.0.
前記珪酸塩類及び前記アルカリ金属の水酸化物以外の他の水溶性物質を混合してなる、請求項1又は2に記載のコンクリート補修剤。 The concrete repairing agent according to claim 1 or 2 , which is obtained by mixing a water-soluble substance other than said silicates and said alkali metal hydroxide.
JP2019048887A 2018-03-26 2019-03-15 Concrete repair agent Active JP7243982B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058567 2018-03-26
JP2018058567 2018-03-26

Publications (2)

Publication Number Publication Date
JP2019172564A JP2019172564A (en) 2019-10-10
JP7243982B2 true JP7243982B2 (en) 2023-03-22

Family

ID=68170512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048887A Active JP7243982B2 (en) 2018-03-26 2019-03-15 Concrete repair agent

Country Status (1)

Country Link
JP (1) JP7243982B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102183B1 (en) * 2019-10-17 2022-01-21 Saint Gobain Weber Composition for the treatment of surfaces in contact with water to preserve the quality of water
KR102338398B1 (en) * 2021-08-18 2021-12-10 주식회사 성훈건설 Integrated repair method for crack repair or cross-section restoration of concrete structures
KR102445097B1 (en) * 2021-11-30 2022-09-21 (주)빅스코 이엔씨 Construction method for balconies in apartment houses and buildings
KR102445969B1 (en) * 2021-11-30 2022-09-23 주식회사 보정건축사사무소 Ourdoor wall waterproofing method of apartment houses and buildings
JP7311215B1 (en) * 2023-03-20 2023-07-19 株式会社リナック八千代 Concrete repair material and concrete repair method
JP7416504B1 (en) 2023-08-21 2024-01-17 株式会社スーパーシールド Concrete protectant, concrete protectant manufacturing method, concrete modifier, concrete modifier manufacturing method, and reinforcing steel corrosion inhibitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242294A (en) 2001-02-16 2002-08-28 Taiheiyo Cement Corp Anticorrosive sheet lining construction method
WO2005082813A1 (en) 2004-02-26 2005-09-09 B-Brain Corporation Silicious concrete modifier
JP2006183446A (en) 2004-12-01 2006-07-13 Fuji Kagaku Kk Reinforcing material and reinforcing method of concrete or mortar
JP2009173500A (en) 2008-01-28 2009-08-06 Nippon Sozai Kogaku Kenkyusho:Kk Impregnation composition for hardened cement product
JP2010070403A (en) 2008-09-17 2010-04-02 Linack Co Ltd Method for suppressing drying shrinkage crack of fresh concrete and crack reducing agent, and method for plugging crack of existing concrete and crack plugging agent
JP2016033108A (en) 2014-07-29 2016-03-10 積水化学工業株式会社 Material and method for repair of concrete structure
CN105503262A (en) 2015-12-07 2016-04-20 北京华石纳固科技有限公司 Composite material for repairation and maintenance of cement mortar or concrete, preparation method and application method thereof
JP2017226955A (en) 2016-06-20 2017-12-28 積水化学工業株式会社 Repair material for concrete structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147065A (en) * 1986-12-10 1988-06-20 小野田エー・エル・シー株式会社 Method of repairing light-weight aerated concrete building
KR101837412B1 (en) * 2016-04-12 2018-03-13 주식회사 모노화학 Repairing method of concrete structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242294A (en) 2001-02-16 2002-08-28 Taiheiyo Cement Corp Anticorrosive sheet lining construction method
WO2005082813A1 (en) 2004-02-26 2005-09-09 B-Brain Corporation Silicious concrete modifier
JP2006183446A (en) 2004-12-01 2006-07-13 Fuji Kagaku Kk Reinforcing material and reinforcing method of concrete or mortar
JP2009173500A (en) 2008-01-28 2009-08-06 Nippon Sozai Kogaku Kenkyusho:Kk Impregnation composition for hardened cement product
JP2010070403A (en) 2008-09-17 2010-04-02 Linack Co Ltd Method for suppressing drying shrinkage crack of fresh concrete and crack reducing agent, and method for plugging crack of existing concrete and crack plugging agent
JP2016033108A (en) 2014-07-29 2016-03-10 積水化学工業株式会社 Material and method for repair of concrete structure
CN105503262A (en) 2015-12-07 2016-04-20 北京华石纳固科技有限公司 Composite material for repairation and maintenance of cement mortar or concrete, preparation method and application method thereof
JP2017226955A (en) 2016-06-20 2017-12-28 積水化学工業株式会社 Repair material for concrete structure

Also Published As

Publication number Publication date
JP2019172564A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7243982B2 (en) Concrete repair agent
KR102087707B1 (en) Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment
KR101472485B1 (en) Geo-polymer mortar cement composition using the same construction methods
WO2021008341A1 (en) Cement-based material crack self-repairing agent capable of curing corrosive sea water ions, and preparation method therefor and application thereof
JPH0761852A (en) Cement composition
JP4484872B2 (en) Silicic concrete modifier
KR100643524B1 (en) Mortar mixed for covering on deteriorated concrete and method for covering on deteriorated concrete
JP5388519B2 (en) Method for inhibiting drying shrinkage cracking of new concrete and crack inhibitor
KR100879882B1 (en) Restoring concrete structures by using strengthening agency, eco-friendly repair mortar and epoxy paint
JP2013253015A (en) Method for plugging crack of existing concrete and crack plugging agent
KR101140102B1 (en) Method for repairing section of progressive concrete structure using eco-friendly geopolymer mortar
Kushartomo et al. The application of sodium acetate as concrete permeability-reducing admixtures
JPH0468272B2 (en)
KR100526418B1 (en) Concrete surface treatment method using inorganic repairing agent for concrete
JP2013107284A (en) Cured body and method for producing the same
KR102158536B1 (en) Repair and reinforcement composition for improving durability of reinforced concrete structure and construction method using same
JP3806621B2 (en) Concrete reinforcement method
US10647616B2 (en) Non-invasive repair and retrofitting of hardened reinforced concrete structures
TWI598317B (en) Permeability crystal self-healing cement-based waterproofing coating
JP4616930B1 (en) Protecting concrete structures
KR101931721B1 (en) Method for repairing concrete structure using eco-friendly inorganic polymer
JP6828875B2 (en) Concrete protection method
JP4761703B2 (en) Silica dispersion
JP2011184212A (en) Concrete modifier, and method for modifying concrete structure
WO2019167649A1 (en) Method for preventing occurrence of alkali aggregate reaction of cement-based hardened body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230228

R150 Certificate of patent or registration of utility model

Ref document number: 7243982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150