JP3806621B2 - Concrete reinforcement method - Google Patents
Concrete reinforcement method Download PDFInfo
- Publication number
- JP3806621B2 JP3806621B2 JP2001190080A JP2001190080A JP3806621B2 JP 3806621 B2 JP3806621 B2 JP 3806621B2 JP 2001190080 A JP2001190080 A JP 2001190080A JP 2001190080 A JP2001190080 A JP 2001190080A JP 3806621 B2 JP3806621 B2 JP 3806621B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- solution
- lithium nitrite
- water glass
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0004—Compounds chosen for the nature of their cations
- C04B2103/0006—Alkali metal or inorganic ammonium compounds
- C04B2103/0008—Li
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コンクリートの中性化、クラック発生などによる劣化を防止又は抑止するコンクリート補強工法に関する。
【0002】
【従来の技術】
コンクリートについては、様々な劣化要因が知られており、古くから劣化に対処するための検討がなされてきた。劣化の要因としてはコンクリート内部に進入する炭酸ガスによって、コンクリートがアルカリ性から中性化し、これに伴う水、酸素、炭酸ガス、塩類による鉄筋の発錆、腐蝕や、海水の塩によるコンクリートの化学的劣化、クラックの発生による漏水を契機とするコンクリートの損傷等が挙げられる。このようなコンクリートの劣化要因に対する従来の対応としては、コンクリートを形成するセメントの組成変更や急硬性モルタルを用いる応急処置などが挙げられる。
【0003】
上記のようなコンクリートの劣化に対処する技術は、中性化、クラック発生などによる劣化に対してセメントの組成変更である程度の効果が認められる。しかし、急硬性モルタルを用いる場合には応急的にクラックへ充填することは可能であるが、更に進行しようとする劣化に対しては劣化抑止の効果が現れない。
【0004】
コンクリートの表面強度を改善させるものとして、珪酸リチウムの水溶液が知られているが、高粘性で浸透し難い水溶液の状態であるため、浸透深さが1〜2mm程度である。更に、亜硝酸リチウムの水溶液を硬化コンクリートの開口部から加圧供給し、その後高炉スラグ微粉末を主材とするセメント質注入材を充填する補修方法が特開平5-214818号で提案されているが、セメント質注入材は開口部も、クラックもある程度大きい状態のときにしか充分な注入ができないので、進行しつつある亀裂等に効果が期待できない。微細な部分にまで注入しようとすると、水セメント比が大きくなり、強度が低下する傾向がある。また、微細な空隙が多く発生する。
【0005】
特許第2521274号では、ポルトランドセメント組成物と、微細シリカ、水ガラス、および珪弗化マグネシウム又はマグネシア並びにシリカを含んだ珪弗化物の少なくとも1種からなる水溶性珪弗化物を含有するコンクリート劣化抑止結晶増進剤を提案し、効果的に抑制できるとしている。しかし、この組成物は構成する素材が複雑であり、製造コストが高くつく。しかも、スラリー状物の安定性維持が容易でない。その上、補修後の強度が充分ではない。
【0006】
【発明が解決しようとする課題】
そこで、本発明では硬化コンクリートの深部まで微細な空隙を埋めてクラック発生などによる劣化を防止又は抑止するコンクリート補強工法を検討した。
【0007】
【課題を解決するための手段】
上記課題を検討した結果、硬化コンクリートの表面又はひび割れから亜硝酸リチウム溶液を浸透させる工程と、該溶液の溶媒を気化乾燥させて前記亜硝酸リチウムの濃度を高める工程と、水ガラスを浸透させる工程とからなり、硬化コンクリート中の空隙に対して前記亜硝酸リチウムと珪酸ソーダとの反応により珪酸リチウム結晶を生成させる工法を見出した。水ガラスに代えて水ガラスとカルボン酸又はその誘導体の配合物の溶液を用いると、更に強固となり、クラック発生などによる劣化を防止又は抑止することができる。
【0008】
また、硬化コンクリートの表面又はひび割れから亜硝酸リチウム溶液を浸透させる工程と、該溶液の溶媒を気化乾燥させて前記亜硝酸リチウムの濃度を高める工程と、水ガラスとカルボン酸又はその誘導体の配合物の溶液を浸透させる工程と、亜硝酸リチウムを混入した合成樹脂エマルジョン配合のポリマーモルタルを充填又は塗布する工程と、硬化した合成樹脂エマルジョン配合のポリマーモルタル表面に水ガラスとカルボン酸又はその誘導体の配合物の溶液を浸透させる工程からなりコンクリートとポリマーモルタルの補強と接着力向上を行うコンクリート補強工法も開発したのである。
【0009】
更に、硬化コンクリートの表面又はひび割れから亜硝酸リチウムにアルカリ土類金属イオンを加えた溶液又は別個に調整した溶液を浸透させる工程と、水ガラスとカルボン酸又はその誘導体の配合物の溶液を浸透させる工程とからなるコンクリート補強工法とした。ここにいうアルカリ土類金属イオンを供する塩は、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムのうちの一種又は複数種の配合が好ましい。亜硝酸リチウムにアルカリ土類金属イオンを加える理由としては、亜硝酸リチウム浸透過程におけるコンクリート中からのカルシウムオンの溶出をアルカリ土類金属イオンが減少させることが考えられるし、更に、アルカリ土類金属イオンが水ガラスとカルボン酸又はその誘導体の配合物の溶液中の多価カルボン酸のカルボキシル基と反応し結合して、コンクリートのひび割れを閉鎖するものとも考えられる。その結果として高いレベルのコンクリート補強と補修を可能にしたのである。
【0010】
水ガラスとカルボン酸又はその誘導体の配合物のことを、以下、水ガラス系コンクリート改質剤という。ここにいうカルボン酸は多価カルボン酸が好ましく、なかでもシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、クエン酸が良好である。フマール酸やマレイン酸等も使用できるが、価格面や相溶性、取り扱い易さ等から難点がある。
【0011】
【発明の実施の形態】
以下本発明を実施例によって詳細に説明する。
実施例1
実施例と比較例との供試体の条件を同じにするために、供試体の硬化コンクリートとして、300mm×300mm H=50mmのコンクリート桝蓋を半分に区切り、その片側に亜硝酸リチウム水溶液(400g/リットル溶液)を0.2Kg/m2の塗布条件で9g塗布した。この状態で2時間放置して自然乾燥させた。その後、水ガラス系コンクリート改質剤溶液として、水ガラス25Kgにシュウ酸100g及び水15リットルを配合したものを9g塗布し浸透させた。
【0012】
施工後1週間の引張り試験を、実施例1と亜硝酸リチウムも水ガラス系コンクリート改質剤も作用させない比較例1について行った。引張り試験は下記のように行った。供試体それぞれに4cm×4cm、深さ2mmの切込みを3個所(n=3試験用)設け、これらの切込みへ雌ねじ付き引張り用金物を速硬性エポキシ樹脂により接着固定した。これを2時間養生させた後、建研式引張り試験機PLT-400によって引張り試験を行った。その結果を表1中に示す。未処理の比較例と比べて181〜220%引張り強度が向上している。
【0013】
【表1】
【0014】
実施例2
実施例1と同じサイズのコンクリート桝蓋を半分に区切り、その片側に亜硝酸リチウム水溶液(400g/リットル溶液)を0.2Kg/m2の塗布条件で9g塗布した。この状態で2時間放置して自然乾燥させた。その後、水ガラス系コンクリート改質剤溶液として、水ガラス25Kgにクエン酸10g及び水15リットルを配合した改質剤を9g塗布し浸透させた。2時間自然乾燥後、合成樹脂エマルジョンとプレミックスモルタルの配合物(ポリマーセメントモルタル、電気化学工業(株)製 RIS321)1Kgに亜硝酸リチウム(400g/リットル溶液)10gを混練したものを厚さ5mmになるよう塗布した。塗布24時間後、水ガラス系コンクリート改質剤溶液として、水ガラス25Kgにクエン酸10g及び水15リットルを配合した改質剤を9g塗布し浸透させた。
比較例2として、同じコンクリート桝蓋の残り半分に、合成樹脂エマルジョンとプレミックスモルタルの配合物(ポリマーセメントモルタル、電気化学工業(株)製 RIS321)1Kgに亜硝酸リチウム(400g/リットル溶液)10gを混練したものを厚さ5mmになるよう塗布した。
【0015】
実施例1及び比較例1と同様な試験方法及び装置によって、引張り試験を行った。その結果を表1中に併せて示す。比較例2の合成樹脂エマルジョンとプレミックスモルタルの配合物(ポリマーセメントモルタル、電気化学工業(株)製 RIS321)1Kgに亜硝酸リチウム(400g/リットル溶液)10gを混練したものは、メーカー試験のカタログ表示の試験結果とほぼ同等の数値となったものと比べ、170〜240%引っ張り強度が向上している。
【0016】
実施例3
コンクリート擁壁に、亜硝酸リチウム40%溶液を0.2kg/m2塗布し1時間後、清水0.2kg/m2塗布散布した。その状態で、24時間自然乾燥を行い、水ガラス系コンクリート改質剤溶液として、水ガラス25Kgにクエン酸10g及び水15リットルを配合した改質剤(CS-21)水溶液を0.2kg/m2塗布し、1時間後に清水0.2kg/m2塗布散布した。2週間期間養生を行った。
それぞれの工程ごとにシュミットハンマーにより1測点につき25点測定し換算計算式により推定圧縮強度に換算した。結果を表2に示す。
【0017】
【表2】
【0018】
亜硝酸リチウムを塗布乾燥した段階で一旦数値が低下する傾向が現れる。これは、亜硝酸リチウム水溶液中にカルシウムイオンが溶出したためと思われる。CS-21塗布後2週間経過した状態で数値が増えているが、亜硝酸リチウムにより数値の低下した部分ほど数値が大きく増える傾向が見られる。
【0019】
実施例4
亜硝酸リチウム40%溶液100重量部に0.2〜0.8重量部の水酸化カルシウムを溶解させ、プラスチック容器内でCS-21と化合し反応させた。これを水分を揮散させた後、秤量した。その結果を表3に示す。
【0020】
【表3】
【0021】
表3より明らかなように、亜硝酸リチウム40%水溶液100重量部にわずかに0.2〜0.8重量部の水酸化カルシウムを添加したに過ぎないにもかかかわらず、乾燥後の重量が68gから135gに大きく増加している。このことは、水酸化カルシウムの存在によって乾燥後の固形分が結晶水等の水分を内部に保有しているためであると考えられる。実施例4はアルカリ土類金属イオンが水ガラス系コンクリート改質剤溶液中の多価カルボン酸のカルボキシル基と共に作用して、コンクリートのひび割れを閉鎖する可能性を示している。
【0022】
実施例5
劣化したコンクリート橋舗装コンクリートでシュミットハンマーにより施工前と施工後2週間で同じ箇所の測定値の変化を比較した。
施工方法
亜硝酸カルシウム40%水溶液100重量部に水酸化カルシウム粉体を0.8重量部を溶解させた液体を0.2g/m2塗布し、浸透させ24時間自然乾燥後、CS-21を0.2g/m2塗布し、その後2週間目に測定した。その結果を表4に示す。
【0023】
【表4】
【0024】
この実施例では、コンクリートにひび割れが発生している箇所、ひび割れ付近の数値変化が大きかった。また、亜硝酸リチウムを塗布した段階での強度低下が抑制できた。これらのことから、劣化したコンクリートの補強に大きく寄与することが実証された。
【0025】
【発明の効果】
本発明は、硬化コンクリートの深部まで微細な空隙を埋めてクラック発生などによる劣化を防止又は抑止し、また、発生しているひび割れをより緻密に充填することができることにより劣化を防止又は抑止し、加えて、断面欠損部等に充填するポリマーモルタル又は化粧用に施工するポリマーモルタルの接着力、強度、水密性を著しく改善できるコンクリート補強工法を可能にした。加えてアルカリ土類金属イオンが水ガラス系コンクリート改質剤溶液中の反応基と反応して、コンクリートのひび割れを完全に閉鎖する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete reinforcing method for preventing or suppressing deterioration due to neutralization of concrete, occurrence of cracks, and the like.
[0002]
[Prior art]
As for concrete, various deterioration factors are known, and studies have been made for dealing with deterioration for a long time. The cause of deterioration is that the carbon dioxide gas entering the concrete causes the concrete to be neutralized from alkalinity, resulting in rusting and corrosion of the reinforcing bars due to water, oxygen, carbon dioxide, and salts, and chemicals of the concrete due to salt from seawater. Examples include damage to concrete caused by water leakage due to deterioration and generation of cracks. Conventional measures against such deterioration factors of concrete include a change in the composition of cement forming the concrete and an emergency treatment using a rapid hardening mortar.
[0003]
The above-described technology for coping with deterioration of concrete is recognized to some extent by changing the composition of the cement against deterioration due to neutralization, crack generation, and the like. However, when a quick-hardening mortar is used, it is possible to fill the cracks urgently, but the effect of inhibiting deterioration does not appear for further deterioration.
[0004]
An aqueous solution of lithium silicate is known for improving the surface strength of concrete. However, since the aqueous solution is highly viscous and difficult to penetrate, the penetration depth is about 1 to 2 mm. Furthermore, a repairing method is proposed in Japanese Patent Laid-Open No. 5-21818 / 2008 in which an aqueous solution of lithium nitrite is supplied under pressure from an opening of hardened concrete and then filled with a cementitious injecting material mainly composed of blast furnace slag fine powder. However, since the cementitious injection material can be injected sufficiently only when the opening and the crack are somewhat large, an effect cannot be expected for a crack or the like that is progressing. If it tries to inject | pour into a fine part, there exists a tendency for water cement ratio to become large and for intensity | strength to fall. In addition, many fine voids are generated.
[0005]
In Japanese Patent No. 2521274, a concrete deterioration inhibitor containing a Portland cement composition and a water-soluble silicofluoride composed of fine silica, water glass, and at least one of siliceous fluoride containing magnesium or magnesia and silica. A crystal enhancer has been proposed and can be effectively controlled. However, the composition of the composition is complicated, and the production cost is high. Moreover, it is not easy to maintain the stability of the slurry. In addition, the strength after repair is not sufficient.
[0006]
[Problems to be solved by the invention]
Therefore, in the present invention, a concrete reinforcement construction method was investigated in which fine voids are filled up to the deep part of the hardened concrete to prevent or inhibit deterioration due to cracking or the like.
[0007]
[Means for Solving the Problems]
As a result of examining the above problems, the step of infiltrating the lithium nitrite solution from the surface or cracks of the hardened concrete, the step of evaporating and drying the solvent of the solution to increase the concentration of the lithium nitrite, and the step of infiltrating the water glass And a method of producing lithium silicate crystals by the reaction of the lithium nitrite and sodium silicate with respect to the voids in the hardened concrete. When a solution of a mixture of water glass and carboxylic acid or a derivative thereof is used in place of water glass, the solution becomes stronger and deterioration due to generation of cracks can be prevented or suppressed.
[0008]
Also, a step of infiltrating a lithium nitrite solution from the surface or cracks of the hardened concrete, a step of evaporating and drying the solvent of the solution to increase the concentration of the lithium nitrite, and a mixture of water glass and carboxylic acid or a derivative thereof A step of impregnating a solution of the above, a step of filling or applying a polymer mortar blended with a synthetic resin emulsion mixed with lithium nitrite, and a blend of water glass and carboxylic acid or a derivative thereof on the surface of the polymer mortar blended with a cured synthetic resin emulsion They also developed a concrete reinforcement method, which consists of a process of infiltrating the solution of the object and reinforces the concrete and polymer mortar and improves the adhesion.
[0009]
Further, a step of infiltrating a solution of alkaline earth metal ions into lithium nitrite or a separately prepared solution from the surface or cracks of the hardened concrete, and a solution of a mixture of water glass and a carboxylic acid or a derivative thereof are infiltrated. A concrete reinforcement method consisting of a process was adopted. The salt that provides the alkaline earth metal ion here is preferably one or more of beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. The reason for adding alkaline earth metal ions to lithium nitrite is that alkaline earth metal ions may decrease the elution of calcium ions from the concrete during the lithium nitrite infiltration process. It is also considered that the ions react with and bind to the carboxyl groups of the polyvalent carboxylic acid in the solution of the mixture of water glass and carboxylic acid or derivative thereof to close the cracks in the concrete. The result is a high level of concrete reinforcement and repair.
[0010]
A blend of water glass and carboxylic acid or a derivative thereof is hereinafter referred to as a water glass concrete modifier. The carboxylic acid here is preferably a polyvalent carboxylic acid, and oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and citric acid are particularly preferable. Although fumaric acid, maleic acid, etc. can be used, there are difficulties in terms of price, compatibility, ease of handling, and the like.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
In order to make the conditions of the specimens in the examples and comparative examples the same, as the hardened concrete of the specimens, a 300 mm × 300 mm H = 50 mm concrete cover was divided in half, and an aqueous lithium nitrite solution (400 g / 9 g of a 1 liter solution) was applied under a coating condition of 0.2 kg / m 2 . In this state, it was left to dry for 2 hours. Thereafter, 9 g of a water glass concrete modifier solution containing 25 kg of water glass and 100 g of oxalic acid and 15 liters of water was applied and infiltrated.
[0012]
A tensile test for one week after the construction was performed on Example 1 and Comparative Example 1 in which neither lithium nitrite nor water glass concrete modifier was allowed to act. The tensile test was performed as follows. Each of the specimens was provided with three incisions of 4 cm × 4 cm and a depth of 2 mm (for n = 3 test), and tensile metal fittings with female threads were bonded and fixed to these incisions with a fast-curing epoxy resin. After this was cured for 2 hours, a tensile test was conducted with a Kenken type tensile tester PLT-400. The results are shown in Table 1. Compared with the untreated comparative example, the tensile strength is improved by 181-120%.
[0013]
[Table 1]
[0014]
Example 2
A concrete coffin lid of the same size as in Example 1 was divided in half, and 9 g of a lithium nitrite aqueous solution (400 g / liter solution) was applied on one side under a coating condition of 0.2 kg / m 2 . In this state, it was left to dry for 2 hours. Thereafter, 9 g of a modifier containing 10 g of citric acid and 15 liters of water in 25 kg of water glass was applied and infiltrated as a water glass concrete modifier solution. After natural drying for 2 hours, a blend of synthetic resin emulsion and premixed mortar (polymer cement mortar, RIS321 manufactured by Denki Kagaku Kogyo Co., Ltd.) 1 Kg mixed with 10 g of lithium nitrite (400 g / liter solution) 5 mm thick It applied so that it might become. 24 hours after application, 9 g of a modifier containing 10 g of citric acid and 15 liters of water in 25 kg of water glass was applied and infiltrated as a water glass concrete modifier solution.
As Comparative Example 2, the other half of the same concrete jar lid was mixed with 1 kg of synthetic resin emulsion and premix mortar (polymer cement mortar, RIS321 manufactured by Denki Kagaku Kogyo Co., Ltd.) and 10 g of lithium nitrite (400 g / liter solution). A kneaded mixture was applied to a thickness of 5 mm.
[0015]
A tensile test was performed using the same test method and apparatus as in Example 1 and Comparative Example 1. The results are also shown in Table 1. A blend of synthetic resin emulsion and premixed mortar of Comparative Example 2 (Polymer cement mortar, RIS321 manufactured by Denki Kagaku Kogyo Co., Ltd.) 1 kg of kneaded lithium nitrite (400 g / liter solution) 10 g The tensile strength is improved by 170-240% compared to the test results that are almost equivalent to the displayed test results.
[0016]
Example 3
A concrete retaining wall was coated with 0.2 kg / m 2 of a 40% lithium nitrite solution, and one hour later, it was sprayed with 0.2 kg / m 2 of fresh water. In that state, it was naturally dried for 24 hours, and as a water glass-based concrete modifier solution, 0.2 kg / m 2 of a modifier (CS-21) aqueous solution containing 10 g of citric acid and 15 liters of water in 25 kg of water glass. After 1 hour, 0.2 kg / m 2 of fresh water was applied and sprayed. Curing was performed for 2 weeks.
For each process, 25 points were measured for each measurement point with a Schmitt hammer, and converted into estimated compressive strength using a conversion formula. The results are shown in Table 2.
[0017]
[Table 2]
[0018]
There is a tendency for the value to decrease once when lithium nitrite is applied and dried. This seems to be due to the elution of calcium ions in the aqueous lithium nitrite solution. The value increases after 2 weeks of application of CS-21, but there is a tendency for the value to increase significantly as the value decreases due to lithium nitrite.
[0019]
Example 4
0.2 to 0.8 parts by weight of calcium hydroxide was dissolved in 100 parts by weight of a lithium nitrite 40% solution, combined with CS-21 in a plastic container, and reacted. This was weighed after evaporating moisture. The results are shown in Table 3.
[0020]
[Table 3]
[0021]
As is apparent from Table 3, the weight after drying was reduced from 68 g to 135 g, although only 0.2 to 0.8 parts by weight of calcium hydroxide was added to 100 parts by weight of lithium nitrite 40% aqueous solution. It has increased greatly. This is presumably because the solid content after drying retains moisture such as crystal water due to the presence of calcium hydroxide. Example 4 shows the possibility of alkaline earth metal ions acting with the carboxyl groups of the polyvalent carboxylic acid in the water glass concrete modifier solution to close the cracks in the concrete.
[0022]
Example 5
We compared the changes in measured values at the same location before and after construction with Schmidt Hammer in degraded concrete bridge pavement concrete.
Construction method Apply a solution of 0.8 parts by weight of calcium hydroxide powder in 100 parts by weight of 40% aqueous solution of calcium nitrite, apply 0.2 g / m 2 and let it infiltrate for 24 hours. m 2 was applied and then measured at 2 weeks. The results are shown in Table 4.
[0023]
[Table 4]
[0024]
In this example, there was a large change in the numerical value in the vicinity of the cracked part and in the cracked part of the concrete. Moreover, the strength reduction at the stage of applying lithium nitrite could be suppressed. From these, it was proved that it greatly contributes to the reinforcement of deteriorated concrete.
[0025]
【The invention's effect】
The present invention is to prevent or suppress deterioration due to the occurrence of cracks by filling fine voids to the deep part of the hardened concrete, and to prevent or suppress deterioration by being able to more closely fill the generated cracks, In addition, a concrete reinforcement method capable of remarkably improving the adhesive strength, strength, and water tightness of the polymer mortar to be filled in the cross-sectional defect portion or the like or the polymer mortar to be applied for cosmetics has been made possible. In addition, alkaline earth metal ions react with reactive groups in the water glass concrete modifier solution to completely close the cracks in the concrete.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001190080A JP3806621B2 (en) | 2000-10-05 | 2001-06-22 | Concrete reinforcement method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-305701 | 2000-10-05 | ||
JP2000305701 | 2000-10-05 | ||
JP2001190080A JP3806621B2 (en) | 2000-10-05 | 2001-06-22 | Concrete reinforcement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002179479A JP2002179479A (en) | 2002-06-26 |
JP3806621B2 true JP3806621B2 (en) | 2006-08-09 |
Family
ID=26601581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001190080A Expired - Fee Related JP3806621B2 (en) | 2000-10-05 | 2001-06-22 | Concrete reinforcement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3806621B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4599209B2 (en) * | 2004-12-01 | 2010-12-15 | 富士化学株式会社 | Reinforcement and reinforcement method for concrete or mortar |
JP4515328B2 (en) * | 2005-05-20 | 2010-07-28 | 株式会社アストン | Concrete repair method |
JP4629501B2 (en) * | 2005-05-31 | 2011-02-09 | コニシ株式会社 | How to repair cracks |
JP4664949B2 (en) * | 2007-08-20 | 2011-04-06 | 株式会社アストン | Concrete repair method |
KR100820276B1 (en) | 2007-09-12 | 2008-04-08 | 주식회사 에스알건설 | Composition compound for repairing concrete structure, manufacturing method thereof and repairing method of concrete structure using the composition compound |
JP5352074B2 (en) * | 2007-10-31 | 2013-11-27 | 株式会社竹中工務店 | Method for treating concrete molded body using alkaline treatment liquid |
KR100849528B1 (en) | 2008-03-31 | 2008-08-06 | 주식회사 에스알건설 | Overlay pavement and repairing method for road with rapid set acrylic-modified concrete and suface reinforcing agent |
JP6257166B2 (en) * | 2013-04-03 | 2018-01-10 | 株式会社ラドジャパン | Concrete modifier and concrete modification method |
JP5751499B2 (en) * | 2013-04-03 | 2015-07-22 | 学校法人福岡大学 | Reaction accelerator and concrete reinforcement method used in silicate surface impregnation method |
-
2001
- 2001-06-22 JP JP2001190080A patent/JP3806621B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002179479A (en) | 2002-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100913255B1 (en) | Composition of cement mortar for reinforcing of section and method of using thereof | |
JP7243982B2 (en) | Concrete repair agent | |
KR101472485B1 (en) | Geo-polymer mortar cement composition using the same construction methods | |
KR102087707B1 (en) | Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment | |
KR101119893B1 (en) | High-strength fibrous inorganic polymer mortar and method repair or supplementary concrete | |
JPH0761852A (en) | Cement composition | |
JPS6320799B2 (en) | ||
JPH0380754B2 (en) | ||
JP3806621B2 (en) | Concrete reinforcement method | |
KR100643524B1 (en) | Mortar mixed for covering on deteriorated concrete and method for covering on deteriorated concrete | |
KR100879882B1 (en) | Restoring concrete structures by using strengthening agency, eco-friendly repair mortar and epoxy paint | |
KR101556231B1 (en) | Composition compound for repairing concrete srtructure and composition method using the same thing | |
KR100466947B1 (en) | Polymer mortar and method repair or supplementary concrete | |
KR102158536B1 (en) | Repair and reinforcement composition for improving durability of reinforced concrete structure and construction method using same | |
JP2018002509A (en) | Neutralization suppression of cement-based cured product and chloride ion permeation suppression method | |
KR102597407B1 (en) | A reconstruction material composition using self-healing materials of infrastructure facilities deteriorated in salt damage and yellow corrosion environment, and a construction method using the same | |
US20220242790A1 (en) | Non-invasive repair and retrofitting of hardened cementitious materials | |
CA2976078C (en) | Non-invasive repair and retrofitting of hardened reinforced concrete structures | |
JP2003120041A (en) | Repair method for concrete deteriorated by salt damage | |
KR20170104834A (en) | Method of repair, supplement and insulation of concrete using quick hardening and high-strength inorganic polymer mortar | |
JP2001180994A (en) | Coagulating and hardening accelerator stabilized at low viscosity | |
KR100561233B1 (en) | Ready mixed concrete contained watertight, inorganic, crack decreasing matter | |
KR100259574B1 (en) | Method for repairing crack of concrete constructions | |
JP2694190B2 (en) | Concrete deterioration inhibiting composition | |
KR102334793B1 (en) | A mortar composition and method for repairing and enhancing concrete structure using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060515 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3806621 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140519 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |