KR100919493B1 - Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure - Google Patents

Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure

Info

Publication number
KR100919493B1
KR100919493B1 KR1020080004793A KR20080004793A KR100919493B1 KR 100919493 B1 KR100919493 B1 KR 100919493B1 KR 1020080004793 A KR1020080004793 A KR 1020080004793A KR 20080004793 A KR20080004793 A KR 20080004793A KR 100919493 B1 KR100919493 B1 KR 100919493B1
Authority
KR
South Korea
Prior art keywords
aggregate
coated
water
circulating
concrete
Prior art date
Application number
KR1020080004793A
Other languages
Korean (ko)
Other versions
KR20090078930A (en
Inventor
박신
임남기
Original Assignee
박신
임남기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박신, 임남기 filed Critical 박신
Priority to KR1020080004793A priority Critical patent/KR100919493B1/en
Publication of KR20090078930A publication Critical patent/KR20090078930A/en
Application granted granted Critical
Publication of KR100919493B1 publication Critical patent/KR100919493B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 수성발수제로 피복된 순환골재와 이를 이용한 콘크리트 조성물에 관한 것으로, 그 목적은 수성발수제를 순환굵은골재에 피복하여 콘크리트용 골재로 사용가능하도록 순환 굵은 골재의 성능을 개선시킨 수성발수제로 피복된 순환골재를 제공하는 것이다. The present invention relates to a circulating aggregate coated with an aqueous water repellent and a concrete composition using the same, the purpose of which is coated with an aqueous water repellent to improve the performance of the circulating coarse aggregate to be used as a concrete aggregate by coating the water repellent agent on the circulating coarse aggregate To provide recycled aggregates.

본 발명은 수성발수제에 24시간 침지시키고 이를 기건상태에서 24시간 이상 건조시켜 순환골재에 수성발수제를 피복시키도록 되어 있으며, 이와 같이 피복된 순환 굵은 골재를 콘크리트 배합시 천연골재와 치환할 경우에도 우수한 압축강도 및 내구성을 구비하도록 되어 있다. The present invention is to immerse in water-based water repellent for 24 hours and to dry it for more than 24 hours in air condition to coat the water-repellent agent in the circulating aggregate, excellent even when replacing the coated coarse aggregate with natural aggregate when mixing concrete Compressive strength and durability are provided.

Description

수성발수제로 피복된 순환골재와 이를 이용한 콘크리트 조성물{Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure}Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure}

본 발명은 수성발수제로 피복된 순환골재의 성능개선과 이를 이용한 콘크리트 조성물에 관한 것으로, 순환골재의 표면을 수성발수제로 피복하여, 순환골재의 공극과 균열을 최소화하여 순환골재의 흡수율을 근본적으로 저하시켜 우수한 물성을 구비한 콘크리트 조성물을 생성할 수 있는 수성발수제로 피복된 순환골재와 이를 이용한 콘크리트 조성물에 관한 것이다. The present invention relates to the improvement of the performance of the recycled aggregate coated with an aqueous water repellent and a concrete composition using the same, by coating the surface of the recycled aggregate with an aqueous water repellent, by minimizing the voids and cracks of the recycled aggregate, the absorption rate of the recycled aggregate is fundamentally reduced The present invention relates to a recycled aggregate coated with an aqueous water repellent and a concrete composition using the same, which can produce a concrete composition having excellent physical properties.

일반적으로 건설폐기물은 각종 건축물의 철거시에 발생되는 폐건축자재를 뜻하는 것으로, 주로 철근류와 시멘트 덩이인 폐콘크리트, 폐목재, 폐플라스틱류 등이 대부분을 차지한다. In general, construction waste refers to waste building materials generated at the time of demolition of various buildings, and mostly reinforcement and cement lumps, such as waste concrete, waste wood, and waste plastics.

이러한 건설폐기물은 합법적인 절차에 따라 가연성 폐기물은 소각하고, 폐콘크리트와 같은 비가연성 폐기물은 분쇄하여 순환골재로 재활용하고 있다. These construction wastes are incinerated according to a legal procedure, and non-combustible wastes such as waste concrete are crushed and recycled into recycled aggregates.

상기와 같은 순환골재는 폐콘크리트에 포함되어 있는 철재류 및 플라스틱 등의 불순물을 제거한 후, 폐콘크리트 덩이를 압축파쇄 또는 롯트밀, 볼밀, 튜브밀 등을 이용하여 분쇄하고, 스크린을 이용하여 파쇄물을 입도 별로 선별, 분리하거나 풍력을 이용하여 슬러지를 제거하는 건식 처리법에 의해 제조하거나,As described above, the recycled aggregate is removed from impurities such as iron and plastics contained in the waste concrete, and then the waste concrete mass is crushed by using a compression crushing or lot mill, ball mill, tube mill, etc. Manufactured by a dry treatment method to separate, separate, or remove sludge using wind power,

폐콘크리트를 일정한 크기로 파쇄한 후에 습식상태에서 골재 표면의 모르타르 박리를 목적으로 튜브밀, 드럼형 박리장치, 로드밀, 볼밀 등 이들 기종 중 1 개 종류를 사용하여 파쇄하고, 스크린에서 물로 처리하여 슬러지와 세골재를 분급하는 습식처리법에 의해 제조되고 있다. After crushing the waste concrete to a certain size, it is crushed by using one of these types such as tube mill, drum type peeler, rod mill, ball mill for the purpose of peeling mortar from aggregate surface in the wet state, and treated with water on the screen. It is manufactured by a wet treatment method for classifying sludge and fine aggregates.

그러나, 상기와 같은 건식처리법에 의해 생산된 순환골재는 박리와 분급의 효율이 낮아서 생산된 순환골재를 콘크리트용 골재로 단독으로 사용하기에는 부적합하였으며,However, the recycled aggregate produced by the above-mentioned dry treatment method is not suitable for using the recycled aggregate produced alone due to low efficiency of peeling and classification as the aggregate for concrete.

습식방법에 의해 생산된 순환골재는 건식방법에 의해 생산된 순환골재보다는 우수하나, 이 역시 콘크리트용 골재로 단독으로 사용하기에는 부적합하였다. The recycled aggregate produced by the wet method is superior to the recycled aggregate produced by the dry method, but this is also unsuitable for use alone as a concrete aggregate.

즉, 종래의 순환골재는 공극과 균열, 흡수율 등의 요인으로 인하여 콘크리트용 골재로 사용할 경우, 천연골재에 비해 콘크리트 강도 감소, 내구성 저하 및 건조수축증대, 배합수 관리 등의 문제점이 발생하여 구조용이 아닌 비구조용으로 도로 포장 기층용, 아스팔트 콘크리트용 등으로 사용하였다. In other words, the conventional recycled aggregate is used for concrete aggregates due to factors such as voids, cracks, and water absorption, and thus, structural problems are caused by problems such as reduced concrete strength, reduced durability, increased dry shrinkage, and mixed water management compared to natural aggregates. For non-structural use, it was used for road pavement bases and asphalt concrete.

본 발명은 상기와 같은 문제점을 해소하여 순환골재의 고부가가치 활용을 위한 것으로, 그 목적은 수성발수제를 순환굵은골재에 피복하여 콘크리트용 골재로 사용가능하도록 순환 굵은 골재의 성능을 개선시킨 수성발수제로 피복된 순환골재를 제공하는 것이다. The present invention is to solve the problems described above to utilize the high value of the recycled aggregate, its purpose is to cover the water-repellent agent to the circulating coarse aggregate to improve the performance of the coarse aggregate aggregate to be used as concrete aggregate It is to provide a coated recycled aggregate.

본 발명의 또 다른 목적은 콘크리트용 천연골재를 순환 굵은 골재로 치환한 경우에도 우수한 압축강도 및 내구성을 구비할 수 있는 수성발수제로 피복된 순환골재와 이를 이용한 콘크리트 조성물을 제공하는 것이다. Still another object of the present invention is to provide a circulating aggregate coated with an aqueous water repellent which can have excellent compressive strength and durability even when natural aggregate for concrete is replaced with a circulating coarse aggregate, and a concrete composition using the same.

본 발명은 순환골재 내·외부에 발달된 공극 및 균열을 충진하여 흡수율을 저하시키는 피복처리시스템을 활용하는 방안으로 수성발수제에 24시간 침지시키고 이를 기건상태에서 24시간 이상 건조시켜 순환골재에 수성발수제를 피복시키도록 되어 있다. The present invention is to utilize the coating treatment system to reduce the absorption rate by filling the pores and cracks developed in the interior and exterior of the circulating aggregate to immerse in an aqueous water repellent for 24 hours and to dry it for more than 24 hours in air condition to the aqueous aggregate Is to cover.

이때, 상기 수성발수제는 실란계 수성발수제로, 액상타입이며, 색상은 유백색, 밀도는 약 0.96(g/㎤)이다. At this time, the water-based water repellent is a silane-based water-repellent agent, the liquid type, the color is milky white, the density is about 0.96 (g / cm3).

또한, 피복 전 순환골재는 3종 순환골재로서 파쇄 및 체가름한 골재를 사용하였다.In addition, the circulating aggregate before coating was used as three kinds of circulating aggregate, crushed and sieved aggregate.

이와 같이 본 발명은 순환골재에 수성발수제를 피복하여 순환골재 자체의 공극 및 균열의 충진효과를 구비하여 순환골재의 흡수율을 근본적으로 저하시키고, 이를 통해 콘크리트용 골재로 사용가능하도록 물리적 성질을 개선시킴과 동시에, 콘크리트 배합시 슬럼프 및 공기량 규정을 만족하고 강도와 내구성을 향상시킬 수 있다. As described above, the present invention has a filling effect of voids and cracks in the recycled aggregates by coating an aqueous water repellent agent on the recycled aggregates, thereby fundamentally lowering the absorption rate of the recycled aggregates, thereby improving physical properties so that the aggregates can be used as concrete aggregates. At the same time, it is possible to meet the slump and air volume regulations when concrete mixing and improve strength and durability.

또한, 본 발명은 침지에 의해 순환골재에 수성발수제를 피복시키도록 되어 있어, 제조가 용이하고, 대량생산이 가능하며, 생산비용 및 원가를 절감할 수 있으며, 침지에 의한 피복시에도 골재 상호간 엉겨 붙지 않는 등의 효과가 있다. In addition, the present invention is to coat the water-repellent agent to the recycled aggregate by dipping, it is easy to manufacture, mass production is possible, can reduce the production cost and cost, entangled with each other when the coating by dipping There is no effect such as sticking.

도 1 은 본 발명에 따른 피복순환골재의 제조방법을 보인 블록예시도1 is an exemplary block diagram showing a method for manufacturing a coated circulation aggregate according to the present invention.

도 2 는 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 슬럼프값을 보인 예시도Figure 2 is an exemplary view showing the slump value according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 45%

도 3 은 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 슬럼프값을 보인 예시도Figure 3 is an exemplary view showing the slump value according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 50%

도 4 는 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 슬럼프값을 보인 예시도4 is an exemplary view showing a slump value according to the uncoated and coated recycled aggregate replacement ratio when the water / cement ratio is 55%

도 5 는 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 공기량을 보인 예시도5 is an exemplary view showing the amount of air according to the uncoated, coated circulation aggregate replacement rate when the water / cement ratio is 45%

도 6 은 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 공기량을 보인 예시도6 is an exemplary view showing the amount of air according to the uncoated, coated circulation aggregate replacement rate when the water / cement ratio is 50%

도 7 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 공기량을 보인 예시도7 is an exemplary view showing the amount of air according to the uncoated, coated circulation aggregate replacement rate when the water / cement ratio is 55%

도 8 은 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 압축강도를 보인 예시도8 is an exemplary view showing the compressive strength according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 45%

도 9 는 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 압축강도를 보인 예시도9 is an exemplary view showing the compressive strength according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 50%

도 10 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 압축강도를 보인 예시도10 is an exemplary view showing the compressive strength according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 55%

도 11 은 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 휨강도를 보인 예시도11 is an exemplary view showing the bending strength according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 45%

도 12 는 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 휨강도를 보인 예시도12 is an exemplary view showing the bending strength according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 50%

도 13 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 휨강도를 보인 예시도13 is an exemplary view showing the bending strength according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 55%

도 14 및 도 15 는 본 발명에 따른 콘크리트 중성화 현황 및 깊이를 보인 사진예시도14 and 15 is a photographic example showing the current state and depth of concrete neutralization according to the present invention

도 16 은 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 중성화 깊이를 보인 예시도Figure 16 is an exemplary view showing the neutralization depth according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 45%

도 17 는 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 중성화 깊이를 보인 예시도Figure 17 is an exemplary view showing the neutralization depth according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 50%

도 18 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 중성화 깊이를 보인 예시도18 is an illustration showing the neutralization depth according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 55%

도 19 는 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 건조중량감소량을 보인 예시도19 is an exemplary view showing the dry weight loss according to the uncoated, coated recycled aggregate substitution rate when the water / cement ratio is 45%

도 20 은 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 건조중량감소량을 보인 예시도20 is an exemplary view showing the dry weight loss according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio is 50%

도 21 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 건조중량감소량을 보인 예시도21 is an exemplary view showing the dry weight loss according to the uncoated, coated recycled aggregate substitution rate when the water / cement ratio is 55%

도 1 은 본 발명에 따른 피복순환골재의 제조방법을 보인 블록예시도를 도시한 것으로, 본 발명은 수성발수제에 순환굵은골재를 20∼28시간, 바람직하게는 24시간 침지시키고 이를 기건상태에서 24시간 이상, 24∼72시간정도 건조시켜 순환골재에 수성발수제를 피복시키도록 되어 있다. Figure 1 shows a block example showing a method for producing a coated circulation aggregate according to the present invention, the present invention is immersed in the water-repellent agent circulating coarse aggregate 20 to 28 hours, preferably 24 hours and 24 in the air condition It is made to dry for about 24 to 72 hours or more, and to coat an aqueous water repellent agent on a circulating aggregate.

본 발명에서는 실란계 수성발수제를 순환골재에 피복하였는데, 그 이유는 콘크리트 표층부의 균열과 공극 속에 침투하여 일정한 침투깊이를 확보하고, 동시에 균열과 공극의 내부표면에 수밀막을 형성함으로서 보호·보강의 개념이 도입된 발수제이기 때문이다.In the present invention, the silane-based water-repellent agent was coated on the circulating aggregate. The reason for this was to penetrate into the cracks and pores of the concrete surface layer to secure a constant depth of penetration, and at the same time to form a watertight film on the inner surface of the cracks and voids to protect and reinforce the concept. This is because it is introduced water repellent.

또한, 실란계 수성 발수제와 유성발수제를 동시에 실험해 본 결과 실란계 수성 발수제를 피복한 순환골재의 성능이 더욱 우수하였으며, 실란계 유성 발수제를 피복한 순환골재에서는 실란계 수성 발수제를 피복한 순환골재와 달리 피복시 골재상호간에 엉겨 붙는 현상이 발생하여 제조가 용이하지 않아 생산성이 저하하였으므로 실란계 수성 발수제를 사용하여 순환골재에 피복시켰다. In addition, the silane-based water repellent and oil-based water repellent were tested at the same time, and the performance of the recycled aggregate coated with the silane-based water repellent was more excellent.In the recycled aggregate coated with the silane-based water repellent, the recycled aggregate coated with the silane-based water repellent was Unlike the entanglement between aggregates during coating, the production was not easy and the productivity was reduced. Thus, the silane-based water repellent was used to coat the recycled aggregate.

상기 피복 전 순환굵은 골재는 3종 순환골재로서 파쇄 및 체가름한 골재를 의미하며, 이와 같은 순환굵은 골재는 아래의 [표1]과 같은 물리적 성질을 구비한다. The circulating coarse aggregate before the coating means three kinds of crushed aggregates and crushed aggregates, and such circulating coarse aggregates have physical properties as shown in Table 1 below.

[표1]Table 1

상기 순환굵은골재는 폐콘크리트에 포함되어있는 철재류 및 플라스틱 등의 불순물을 제거한 후 단순파쇄하고 스크린을 이용하여 파쇄물을 입도별로 선별, 분리한 건식 처리법으로 제조한 것으로, 굵은 골재의 크기는 건축공사 표준시방서에서 제시한 골재의 중량비로 통과하는 최대치수를 25㎜로 적용하였다. The circulating coarse aggregate is manufactured by the dry treatment method that removes impurities such as iron materials and plastics contained in the waste concrete, and then simply crushes and sorts and separates crushed materials by particle size using a screen, and the size of the coarse aggregate is a construction standard. The maximum dimension passed by the weight ratio of aggregates presented in the specification was applied to 25 mm.

상기 수성발수제는 실란계 수성발수제로, 액상타입이며, 밀도는 약 0.96(g/㎤)를 구비한다. The water-based water repellent is a silane-based water repellent, liquid type, and has a density of about 0.96 (g / cm 3).

또한, 상기 수성발수제는 일예로서, n-옥틸트리에톡시실란(Octyltriethoxysila -ne), 아미노기함유 실록산(Aminofunctional Siloxane) 및 물로 이루어져 있다. In addition, the aqueous water-repellent agent is composed of n-octyltriethoxysila-ne, amino group-containing siloxane (Aminofunctional Siloxane) and water as an example.

이하 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

밀도 0.96(g/㎤)의 유백색이며 액상타입인 실란계 수성발수제에 3종 순환골재를 24시간 침지시키고, 이를 다시 기건상태에서 24시간 건조하여 수성발수제가 피복된 순환굵은 골재를 제조하였으며, 이와 같이 수성발수제가 피복된 순환굵은골재에 대한 물리적 성질을 측정하였다. 그 결과는 [표2]와 같다. Three types of circulating aggregates were immersed in a milky white liquid silane-based water-repellent agent having a density of 0.96 (g / cm 3) for 24 hours, and dried again in a dry state for 24 hours to prepare a circulating coarse aggregate coated with an aqueous water-repellent agent. The physical properties of the coarse aggregate coated with an aqueous water repellent were measured. The results are shown in [Table 2].

[표2][Table 2]

이때, 흡수율은 KS F 2503(굵은 골재의 비중 및 흡수량 시험), 함수율은 KS F 2550(골재의 함수율 및 표면수율 측정방법), 마모율은 KS F 2508(로스엔젤레스 시험기에 의한 굵은 골재의 마모시험방법), 안정성은 KS F 2507(골재의 안정성 시험방법), 입자모양 판정 실적율은 KS F 2505(골재의 단위용적 중량 및 공극률 시험방법)에 의해 시험하였다. At this time, absorption rate is KS F 2503 (specific gravity and absorption test of coarse aggregate), moisture content is KS F 2550 (measurement method of moisture content and surface yield of aggregate), wear rate is KS F 2508 (wear test method of coarse aggregate by Los Angeles testing machine) ), The stability was tested by KS F 2507 (aggregate stability test method) and the particle shape determination performance rate by KS F 2505 (unit volume weight and porosity test method of aggregate).

상기 [표2]에서와 같이, 수성발수제가 피복된 순환굵은골재는 폐 콘크리트로부터 생산된 순환굵은골재의 규정(KS F 2573 : 2006 콘크리트용 순환골재)-절건밀도 2.5(g/㎤)이상, 흡수율 3%이하, 마모율 40%이하, 실적율 55%이상, 안정성 12%이하로, 수성발수제 피복 순환굵은골재를 시험한 결과 절건밀도 규정을 제외한 모든 규정을 만족하고 있음을 알 수 있다. 그러나 건축공사 표준시방서(2006년)의 05000콘크리트공사 2.1.2 골재 다 1) 단서조항에 따르면 절건밀도 2.4(g/㎤)이상 일 경우 콘크리트가 소정의 품질을 가지고 있다는 것이 확인될 경우 사용할 수 있다는 조항에 따라 수성발수제 피복 순환굵은골재의 일반콘크리트 활용이 가능한 것임을 알 수 있다. As shown in [Table 2], the circulating coarse aggregate coated with the water-repellent agent is the regulation of the circulating coarse aggregate produced from the waste concrete (KS F 2573: 2006 circulating aggregate for concrete)-a dry density of 2.5 (g / cm 3) or more, With water absorption less than 3%, wear rate less than 40%, performance rate more than 55%, and stability less than 12%, it was found that the water-repellent coating circulating coarse aggregate was tested to satisfy all regulations except dry density. However, 05000 concrete construction 2.1.2 aggregate of the construction standard specification (2006) 1) According to the proviso clause, it can be used when it is confirmed that the concrete has a certain quality if the dry density is more than 2.4 (g / cm3). According to the provisions, it can be seen that the general concrete can be used for the water-repellent coating circulating coarse aggregate.

실시예 2Example 2

실시예 1 과 같이 제조된 순환굵은 골재를 이용하여 아래의 [표3]과 같이 콘크리트 조성물을 배합하였다. 이때, 시멘트는 포트랜드 시멘트를 이용하였으며, 천연골재 중 잔골재는 하동산 강모래를, 굵은 골재는 경남 진해산 쇄석자갈을 이용하였다. The concrete composition was blended as shown in Table 3 below using the circular coarse aggregate prepared as in Example 1. At this time, the cement was used Portland cement, the fine aggregate among the natural aggregates used Hadongsan river sand, the coarse aggregates used Jinhaesan crushed stone gravel.

[표3]Table 3

실시예 3Example 3

실시예 2 에 의해 배합된 콘크리트 조성물에 대하여, 슬럼프 및 공기량을 측정하였으며, 그 결과는 아래의 [표4] 및 도 2 내지 7 과 같다. 이때, 콘크리트 조성물의 목표 슬럼프는 18±2㎝ 로 설정하였으며, 슬럼프 실험방법은 KS F 2421(콘크리트의 슬럼프 시험방법)에 의해 측정하였다. 또한, 목표 공기량은 4.5±1.5% 로 설정하였으며, 공기량 실험방법은 KS F 2421(굳지않은 콘크리트의 압력법에 의한 공기함유량 시험방법)에 의해 측정하였다. For the concrete composition blended by Example 2, the slump and the amount of air were measured, and the results are shown in Table 4 below and FIGS. 2 to 7. At this time, the target slump of the concrete composition was set to 18 ± 2 cm, the slump test method was measured by KS F 2421 (test method of concrete slump). In addition, the target air volume was set to 4.5 ± 1.5%, the air volume test method was measured by KS F 2421 (air content test method by the pressure method of the concrete concrete).

[표4]Table 4

도 2 는 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 슬럼프를, 도 3 은 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 슬럼프를, 도 4 는 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 슬럼프를 도시한 것으로, 물/시멘트비 별 무피복, 피복 순환굵은골재 치환율에 따른 슬럼프치를 실험해 본 결과, 수성피복 순환굵은골재를 사용한 콘크리트의 슬럼프치는 플레인(Plain-천연골재만을 사용해 제조한 콘크리트)과 유사한 슬럼프치를 나타내고 있으며, 목표 슬럼프 규정에 적합한 범위에 들어가고 있었다. Figure 2 is a slump according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 45%, Figure 3 is a slump according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 50%, Figure 4 is water It shows the slump according to the replacement rate of uncoated and coated circulating aggregate when the ratio of cement / cement ratio is 55%, and the experiment of the slump value according to the uncoated and coated circulating coarse aggregate substitution rate by water / cement ratio, The slump value of the concrete showed a slump value similar to that of the plain (concrete manufactured using only plain aggregate), and was in the range suitable for the target slump specification.

그러나 무피복 순환굵은골재를 사용한 경우는 순환굵은골재 치환율이 증가함에 따라 슬럼프 감소량이 증가하였으며, 100% 치환일 경우는 목표 슬럼프 규정범위를 벗어난 것으로 조사되었다. However, in the case of using uncoated cyclic coarse aggregate, the decrease in slump was increased as the cyclic coarse aggregate replacement rate was increased.

이는 무피복, 피복 순환굵은골재의 흡수율에 기인하는 것으로 판단되며 슬럼프치의 실험결과를 분석해 볼 때 수성피복 순환굵은골재의 일반콘크리트 활용이 가능함을 알 수 있다. This is judged to be due to the absorption rate of uncoated and coated circulating coarse aggregate, and when analyzing the experimental results of the slump, it can be seen that the general concrete can be utilized for the circulating coarse aggregate of aqueous coating.

도 5 는 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 공기량을, 도 6 은 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 공기량을, 도 7 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 공기량을 도시한 것으로, 물/시멘트비 별 무피복, 피복 순환굵은골재 치환율에 따른 공기량을 실험해 본 결과, 수성피복 순환굵은골재를 사용한 콘크리트의 공기량은 플레인(Plain)과 유사한 공기량을 나타내고 있으며 목표 공기량 규정에 적합한 범위에 들어가고 있었다. 그러나 무피복 순환굵은골재를 사용한 경우는 순환굵은골재 치환율이 증가함에 따라 공기량이 증가하였으며 대부분 목표 공기량 규정범위를 벗어난 것으로 조사되었다. 이는 순환굵은골재의 수성발수제 피복에 따른 골재 자체의 공극 및 균열의 충진효과에 의한 것으로 판단되며 공기량의 실험결과를 분석해 볼 때 수성피복 순환굵은골재의 일반콘크리트 활용이 가능함을 알 수 있다. FIG. 5 shows the air amount according to the uncoated and coated recycled aggregate replacement rate when the water / cement ratio is 45%, FIG. 6 is the air amount according to the uncoated and coated recycled aggregate replacement ratio when the water / cement ratio is 50%, FIG. When the ratio of uncoated and coated circulating aggregates is 55%, the air volume according to the uncoated and coated circulating aggregate replacement rate is tested. The air volume of concrete shows air volume similar to that of plain and is in a range suitable for the target air volume regulation. However, in the case of using uncoated cyclic coarse aggregate, the air volume increased as the circulating coarse aggregate replacement rate increased. This is judged by the filling effect of the pores and cracks of the aggregate itself according to the coating of the water-repellent agent of the circulating coarse aggregate, and when analyzing the experimental results of the air volume, it can be seen that the general concrete can be used for the circulating coarse aggregate of the aqueous coating.

실시예 4Example 4

실시예 2 에 의해 배합된 콘크리트 조성물에 대하여, 공시체를 형성한 후, 이에 대한 압축강도 및 휨강도를 측정하였으며 그 결과는 아래의 [표5] 및 도 8 내지 도 13 과 같다. 상기 압축강도는 KS F 2405 (콘크리트의 압축강도 시험방법), 휨강도는KS F 2408(콘크리트 휨강도 시험방법)의 규정에 따라 제작된 공시체별 시험체의 폭 3개소, 높이 3개소를 측정하여 폭과 높이의 평균을 구하고 길이를 측정하였으며, 단순보 3등분점 시험방법으로 서서히 가압하여 파괴에 이르는 최대하중을 측정하였으며 다음의 식으로 휨강도를 산정하였다. For the concrete composition blended by Example 2, after forming the specimen, the compressive strength and the flexural strength thereof were measured, and the results are shown in Table 5 below and FIGS. 8 to 13. The compressive strength is measured by measuring the width and height of three specimens and three heights of specimens manufactured according to the provisions of KS F 2405 (concrete compressive strength test method) and KS F 2408 (concrete flexural strength test method). The average load was measured and the length was measured. The maximum load leading to failure was measured by the simple beam three-point test method, and the flexural strength was calculated by the following equation.

fb = Pl / bh2 (fb : 휨강도(MPa), P : 시험기가 나타내는 최대 하중(N), l : 지간(㎜), b : 파괴 단면의 나비(㎜), h : 파괴 단면의 높이(㎜))f b = Pl / bh 2 (f b : flexural strength (MPa), P: maximum load (N) indicated by the tester, l: span (mm), b: butterfly (mm) of fracture cross section, h: height of fracture cross section) (Mm))

[표5]Table 5

도 8 은 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 압축강도를, 도 9 는 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 압축강도를, 도 10 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 압축강도를 도시한 것으로, 물/시멘트비 45%에서 가장 높은 압축강도를 나타내고 있으며 물/시멘트비가 증가할수록 강도는 저하하는 것으로 나타났다. FIG. 8 shows compressive strength of uncoated and coated recycled aggregates at 45% water / cement ratio, and FIG. 9 shows compressive strength of uncoated and coated recycled aggregates at 50% water / cement ratio. Shows the compressive strength of uncoated and coated recycled aggregate at 55% water / cement ratio, showing the highest compressive strength at 45% water / cement ratio, and decreased as the water / cement ratio increased. .

일반적으로 천연모래와 순환굵은골재를 사용하여 제조된 콘크리트는 보통콘크리트에 비하여 15~30% 낮은 압축강도를 보이는 것으로 알려져 있으나, 본 발명에서 수성피복 순환굵은골재를 혼입한 콘크리트가 무피복 순환굵은골재를 사용한 경우에 비하여 강도개선 효과가 뚜렷하게 나타남을 알 수 있다. 이처럼 수성피복 순환굵은골재 콘크리트가 무피복 순환굵은골재 콘크리트에 비하여 높은 수준의 압축강도를 발현한 것은 골재의 피복처리를 통한 골재 자체의 공극 및 균열의 충진과 흡수율 저하에 기인한 것으로 판단된다. 또한 수성피복 순환굵은골재 콘크리트와 플레인(Plain)을 비교해 보면 수성피복순환굵은골재 치환율이 50%인 경우에는 플레인(Plain) 강도와 유사하거나 상회하며 100%인 경우는 유사하거나 다소 저하하는 것으로 나타났으므로 콘크리트 압축강도의 실험결과를 분석해 볼 때 수성피복 순환굵은골재의 일반콘크리트 활용이 가능함을 알 수 있다. In general, concrete manufactured using natural sand and circulating coarse aggregate is known to exhibit 15-30% lower compressive strength than ordinary concrete, but concrete mixed with aqueous coating circulating coarse aggregate is uncoated circulating coarse aggregate in the present invention. It can be seen that the strength improvement effect is apparent compared to the case using. The high level of compressive strength of aqueous coated circulating coarse aggregate concrete compared to uncoated cyclic coarse aggregate concrete is believed to be due to the filling and absorption of the voids and cracks in the aggregate itself. In addition, the comparison of water-coated cyclic coarse aggregate concrete and plain showed that when the replacement rate of water-coated cyclic coarse aggregate was 50%, it was similar to or higher than the plain strength and similar or slightly decreased when it was 100%. Therefore, when analyzing the experimental results of the concrete compressive strength, it can be seen that the general concrete utilization of the aqueous coating circulation coarse aggregate is possible.

도 11 은 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 휨강도를, 도 12 는 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 휨강도를, 도 13 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 휨강도를 도시한 것으로, 휨강도의 경우 압축강도와 같이 물/시멘트비가 증가할수록 강도는 저하하는 것으로 나타났으나 뚜렷한 경향은 나타나고 있지 않다. 3일 초기재령에서는 수성피복순환골재와 무피복 순환골재 모두 플레인(Plain)과 비교해서 유사한 강도를 나타내고 있으나, 물/시멘트비 50%를 제외하고 수성피복순환골재의 경우 플레인(Plain)에 비해 다소 낮은 강도를 나타내고 있다. 이는 초기재령에서 수성피막제에 의한 골재와 시멘트 페이스트간의 부착력에 기인한 것으로 판단되며 일반적인 콘크리트 휨강도/압축강도 관계인 1/5~1/8과 유사한 경향을 나타내고 있으므로 수성피복 순환굵은골재의 일반콘크리트 활용이 가능함을 알 수 있다. FIG. 11 shows the bending strength according to the uncoated and coated recycled aggregate replacement rate when the water / cement ratio is 45%, FIG. 12 shows the flexural strength according to the uncoated and coated recycled aggregate substitution rate when the water / cement ratio is 50%, and FIG. The flexural strength of uncoated and coated circulating aggregates at 55% / cement ratio is shown. In the case of flexural strength, as the water / cement ratio increases with the compressive strength, the strength decreases, but there is no obvious trend. At the early age of 3 days, both the aqueous coated circulation aggregate and the uncoated recycled aggregate showed similar strength compared to the plain, but the water coated cement aggregate was somewhat lower than the plain except for the water / cement ratio of 50%. The strength is shown. This is believed to be due to the adhesion between aggregate and cement paste due to aqueous coating at early age, and tends to be similar to 1/5 to 1/8 of general concrete flexural strength / compressive strength. It can be seen that.

실시예 5Example 5

실시예 2 에 의해 배합된 콘크리트 조성물에 대하여, 시험체를 형성한 후, 이에 대한 중성화 깊이를 측정하였으며 그 결과는 도 14 내지 도 18 과 같다. For the concrete composition blended in Example 2, after forming the test body, the neutralization depth thereof was measured, and the results are shown in FIGS. 14 to 18.

이때, 시험체 제작은 10㎝×10㎝×40㎝의 시험체를 측정 재령이 되었을 때 10㎝ 길이로 절단하여 측정하도록 되어 있으나, 시험의 편의를 위해 처음부터 10×20㎝의 공시체를 각 배합별로 제작하였다. 시험체는 4주간 수중양생을 실시한 후 1일동안 기중에서 양생하였다. 이는 중성화에 대한 시험체의 수분 영향을 줄이기 위한 것으로 기건양생이 끝난 후 중성화 시험장치에 집어넣고, 4주가 지난 후에 중성화 침투 정도를 측정하였다.At this time, the test specimen is to be measured by cutting the 10cm × 10cm × 40cm to 10cm length when the test age is measured, but for the convenience of the test to prepare a specimen of 10 × 20cm for each compounding from the beginning It was. The test bodies were cured in air for 1 day after underwater curing for 4 weeks. This is to reduce the water effect of the test subjects on the neutralization, and after putting the curing in the neutralization test apparatus, the degree of neutralization penetration was measured after 4 weeks.

중성화 시험은 현재 국내에는 관련 규준이 없어 일본의 JIS A 1153인 온도20±2℃, 상대습도 60±5%, 이산화탄소 농도 5±0.2% 조건으로 촉진중성화 실험을 행하였으며, 시험체 주변의 환경을 균일하게 하기 위하여 시험체의 간격을 2㎝ 이상 간격을 두어 실시하였다.Neutralization test currently has no relevant standards in Korea, and accelerated neutralization tests were conducted under conditions of 20 ± 2 ° C, 60 ± 5% relative humidity, and 5 ± 0.2% carbon dioxide concentration of JIS A 1153 in Japan. In order to ensure that the test specimens were spaced at least 2 cm apart.

측정은 소정의 재령이 경과한 시점에서 시험체를 절단한 후 1%의 페놀프탈렌인 용액을 분사한 후, 콘크리트 표면에서 착색부분까지의 거리는 12개소씩 계측하여 평균한 값을 중성화 깊이로 판정하였다. The measurement was carried out after cutting the test specimen at a predetermined age, and after spraying a 1% phenolphthalene solution, the distance from the concrete surface to the colored part was measured by 12 places and the average value was determined as the neutralization depth. .

도 14 및 도 15 는 본 발명에 따른 콘크리트 중성화 현황 및 깊이를 보인 사진예시도를, 도 16 은 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 중성화 깊이를, 도 17 는 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 중성화 깊이를, 도 18 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 중성화 깊이를 도시한 것으로, 모든 물/시멘트비 조건에서 플레인(Plain)과 무피복순환골재를 사용한 경우보다 피복순환굵은골재를 사용한 경우 중성화 깊이는 현저하게 감소하는 것으로 나타났으며, 중성화에 대한 우수한 저항성을 나타내는 것으로 나타났다. 14 and 15 is a photographic illustration showing the current state and depth of concrete neutralization according to the present invention, Figure 16 is a neutralization depth according to the uncoated, coated recycled aggregate replacement rate when the water / cement ratio 45%, Figure 17 is water The neutralization depth according to the uncoated and coated circulating aggregate substitution rate at 50% / cement ratio, and FIG. 18 shows the neutralization depth according to the uncoated and coated circulating aggregate substitution rate at 55% water / cement ratio. Neutralization depth was found to be significantly decreased and the resistance to neutralization was significantly reduced when coarse circulating aggregate was used than when plain and bare circulating aggregate were used under cement ratio.

이에 피복 순환굵은골재가 콘크리트 제조 후에도 지속적인 피복 상태를 유지하게 됨에 따라, 장기적인 내구성 증진에도 효과가 있을 것으로 기대되며, 수성피복순환굵은골재의 중성화에 대한 저항성이 우수한 것으로 나타나 수성피복 순환굵은골재의 일반콘크리트 활용이 가능함을 알 수 있다. As the coated circular coarse aggregate maintains the state of continuous coating even after concrete production, it is expected to be effective in improving the long-term durability, and the resistance to neutralization of the aqueous coated circular coarse aggregate has been shown to be excellent. It can be seen that the concrete can be used.

실시예 6Example 6

실시예 2 에 의해 배합된 콘크리트 조성물에 대하여, 공시체를 형성한 후, 이에 대한 건조중량 감소량을 측정하였으며 그 결과는 아래의 [표6] 및 도 19 내지 도 21 과 같다. 이때, 건조중량감소량 시험은 20±3℃의 양생조에서 28일간 수중양생이 끝난 공시체의 무게를 측정한 후 80±5℃의 건조로에서 중량감소가 없을 때까지 8시간 간격으로 공시체의 무게변화를 관찰하며 건조하였다. For the concrete composition blended by Example 2, after the specimen was formed, the dry weight reduction amount thereof was measured and the results are shown in Table 6 below and FIGS. 19 to 21. At this time, the dry weight loss test measures the weight of the specimens which have been cured under water for 28 days in a curing tank at 20 ± 3 ℃, and then changes the weights of the specimens every 8 hours until there is no weight loss in the 80 ± 5 ℃ drying furnace. Observed and dried.

[표6]Table 6

도 19 는 물/시멘트비 45%일 때, 무피복, 피복 순환골재 치환율에 따른 건조중량감소량을, 도 20 은 물/시멘트비 50%일 때, 무피복, 피복 순환골재 치환율에 따른 건조중량감소량을, 도 21 은 물/시멘트비 55%일 때, 무피복, 피복 순환골재 치환율에 따른 건조중량감소량을 도시한 것으로, 피복 순환굵은골재의 경우 무피복 순환굵은골재와 비교하여 전 조건에서 건조중량 감소량이 적은 것으로 측정되었으며 플레인(Plain)보다는 다소 상회하는 것으로 측정되었다. 특히 수성피복순환굵은골재의 치환율이 50%이고 물/시멘트비가 55%인 조건에서는 플레인(Plain)과 유사한 건조중량감소량이 측정되었는데 이는 피복 순환굵은골재가 콘크리트 제조 후에도 지속적인 피복상태를 유지하게 됨에 따라 장기적인 내구성 증진에도 효과가 있을 것으로 기대되므로 수성피복 순환굵은골재의 일반콘크리트 활용이 가능함을 알 수 있다. 19 shows the dry weight loss according to the uncoated and coated circulating aggregate substitution rate when the water / cement ratio is 45%, and FIG. 20 shows the dry weight loss according to the uncoated and coated circulating aggregate substitution rate when the water / cement ratio is 50%, 21 shows the dry weight loss according to the uncoated and coated recycled aggregate replacement rate when the water / cement ratio is 55%, and in the case of coated recycled coarse aggregate, the dry weight decrease is less at all conditions compared to the uncoated recycled coarse aggregate. It was measured to be slightly higher than Plain. In particular, the dry weight loss similar to plain was measured under the condition that the substitution rate of aqueous coated circulating aggregate was 50% and the water / cement ratio was 55%. It is expected that it will be effective to improve the long-term durability, so it can be seen that the general concrete utilization of the aqueous coating circulation coarse aggregate is possible.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

Claims (6)

콘크리트 첨가용 순환굵은 골재에 있어서,In the circular coarse aggregate for concrete addition, 상기 순환굵은 골재는 실란계 수성발수제가 피복되되,The circulating coarse aggregate is coated with a silane-based water repellent, 피복전 순환굵은 골재는 3종 순환골재이고,Circulating coarse aggregate before coating is 3 kinds of circulating aggregate, 수성발수제가 피복된 순환굵은골재는 하기 [표2]와 같은 물리적 성질을 구비하도록 형성된 것을 특징으로 하는 수성발수제로 피복된 순환골재.Circulating coarse aggregate coated with an aqueous water repellent is circulating aggregate coated with an aqueous water repellent, characterized in that formed to have the physical properties as shown in the following [Table 2]. [표2][Table 2] 삭제delete 청구항 1 에 있어서;The method according to claim 1; 상기 피복전 순환골재는 하기 [표1]과 같은 물리적 성질을 구비하는 것을 특징으로 하는 수성발수제로 피복된 순환골재.The circulating aggregate before coating the circulating aggregate coated with an aqueous water repellent, characterized in that it has the physical properties as shown in the following [Table 1]. [표1]Table 1 삭제delete 시멘트, 물, 모래, 굵은골재 및 잔골재를 포함하여 배합되는 콘크리트 조성물에 있어서;In the concrete composition which contains cement, water, sand, coarse aggregate, and fine aggregate; 상기 굵은 골재는,The coarse aggregate, 천연골재와 수성발수제가 피복된 순환굵은골재의 혼합골재로 이루어지거나, It consists of a mixed aggregate of natural aggregates and circulating coarse aggregate coated with an aqueous water repellent, 하기 [표1]의 3종 순환골재에 수성발수제가 피복되어 하기 [표2]와 같은 물리적 성질을 구비하는 순환굵은골재로 이루어진 것을 특징으로 하는 수성발수제로 피복된 순환골재를 이용한 콘크리트 조성물.A water-based water repellent is coated on the three recycled aggregates of the following [Table 1] concrete composition using the recycled aggregate coated with the water-repellent agent, characterized in that consisting of a circular coarse aggregate having the physical properties as shown in the following [Table 2]. [표1]Table 1 [표2][Table 2] 청구항 5 에 있어서;The method according to claim 5; 상기 혼합골재는 수성발수제가 피복된 순환굵은 골재가 50∼100%로 치환되어 첨가되는 것을 특징으로 하는 수성발수제로 피복된 순환골재를 이용한 콘크리트 조성물.The mixed aggregate is a concrete composition using a circular aggregate coated with an aqueous water repellent, characterized in that the cyclic coarse aggregate coated with an aqueous water repellent is added to be replaced by 50 to 100%.
KR1020080004793A 2008-01-16 2008-01-16 Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure KR100919493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080004793A KR100919493B1 (en) 2008-01-16 2008-01-16 Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080004793A KR100919493B1 (en) 2008-01-16 2008-01-16 Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure

Publications (2)

Publication Number Publication Date
KR20090078930A KR20090078930A (en) 2009-07-21
KR100919493B1 true KR100919493B1 (en) 2009-09-28

Family

ID=41336875

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080004793A KR100919493B1 (en) 2008-01-16 2008-01-16 Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure

Country Status (1)

Country Link
KR (1) KR100919493B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173441B1 (en) 2012-04-04 2012-08-16 국보환경(주) Permeable paving manufacture method to use eco-friendly recycled aggregate coated
KR102210650B1 (en) * 2020-08-12 2021-02-03 서재의 Method for manufacturing ready mixed concrete

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912605B1 (en) 2017-03-10 2018-10-30 경기대학교 산학협력단 Super-Hydrophobic Particle and Composite having the Same
FR3085678B1 (en) * 2018-09-10 2021-07-02 Institut Francais Des Sciences Et Technologies Des Transp De Lamenagement Et Des Reseaux PROCESS FOR TREATING RECYCLED AGGREGATES, AND USE OF AGGREGATES THUS TREATED
CN111977998B (en) * 2020-08-27 2021-12-07 长安大学 High-surface-roughness aggregate and preparation method thereof
KR102345422B1 (en) * 2021-03-16 2021-12-29 한양대학교 에리카산학협력단 Admixture of water-repellent impregnated natural zeolite and method for preparing the same
WO2022196868A1 (en) * 2021-03-16 2022-09-22 한양대학교 에리카산학협력단 Natural zeolite admixture, and repair mortar composition and water-repellent concrete composition which use same
KR102345425B1 (en) * 2021-03-29 2021-12-29 한양대학교 에리카산학협력단 Repair mortar composition and water-repellent concrete composition using natural zeolite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010089919A (en) * 2000-03-13 2001-10-17 김인술 Color granule and method for manufacturing thereof
JP2005001895A (en) * 2003-06-09 2005-01-06 Shimizu Corp Method of modifying regenerated aggregate
KR20050112311A (en) * 2004-05-25 2005-11-30 한국과학기술연구원 Manufacturing method of recycled aggregate from dust of waste concrete and recycled aggregate produced therefrom
KR20060112748A (en) * 2005-04-28 2006-11-02 이옥신 High strength water concrete composition comprising silanes main material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010089919A (en) * 2000-03-13 2001-10-17 김인술 Color granule and method for manufacturing thereof
JP2005001895A (en) * 2003-06-09 2005-01-06 Shimizu Corp Method of modifying regenerated aggregate
KR20050112311A (en) * 2004-05-25 2005-11-30 한국과학기술연구원 Manufacturing method of recycled aggregate from dust of waste concrete and recycled aggregate produced therefrom
KR20060112748A (en) * 2005-04-28 2006-11-02 이옥신 High strength water concrete composition comprising silanes main material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173441B1 (en) 2012-04-04 2012-08-16 국보환경(주) Permeable paving manufacture method to use eco-friendly recycled aggregate coated
KR102210650B1 (en) * 2020-08-12 2021-02-03 서재의 Method for manufacturing ready mixed concrete

Also Published As

Publication number Publication date
KR20090078930A (en) 2009-07-21

Similar Documents

Publication Publication Date Title
KR100919493B1 (en) Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure
Shi et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry
KR101173442B1 (en) Permeable concrete block manufacture method to use eco-friendly recycled aggregate coated
Zhutovsky et al. Effect of internal curing on durability-related properties of high performance concrete
Nunes et al. Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment
Hassan et al. The use of reclaimed asphalt pavement (RAP) aggregates in concrete
Tittarelli Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 2
KR101195378B1 (en) Permeable concrete block manufacture method to use eco-friendly recycled aggregate double-coated
KR102283150B1 (en) Pores and surface tretment of recycled aggregates for cement concrete using aqueous polymer emulsions
JP5388519B2 (en) Method for inhibiting drying shrinkage cracking of new concrete and crack inhibitor
Nagrockienė et al. Predicting frost resistance of concrete with different coarse aggregate concentration by porosity parameters
Sánchez et al. Influence of environmental conditions on durability properties of fly ash cement mortars
JP2013253015A (en) Method for plugging crack of existing concrete and crack plugging agent
Mardani-Aghabaglou et al. Water Transport of Lightweight Concrete with Different Aggregate Saturation Levels.
TWI654161B (en) Fly ash-containing construction material with improved strength and water resistance and methods of forming the same
Ez-zaki et al. Transport properties of blended cement based on dredged sediment and shells
Luan et al. Experimental study on mortar with the addition of hydrophobic silicone oil for water absorption, strength, and shrinkage
Dębska et al. Selected properties of epoxy mortars with perlite aggregate
Flores et al. Electrical resistivity measurement to study alkali-silica-reaction cracking in mortar
KR20120108684A (en) Water-soluble composite for strengthening and protecting the outer layer of concrete block, manufacturing method of concrete block, and method for strengthing the outer layer of concrete block using the composite
KR101949588B1 (en) Method of eco-friendly soil stabilizer and forest road pavement using the same
Omoniyi et al. Permeability coefficient and porosity characteristics of bagasse fiber reinforced concrete
Vignesh et al. A Study on Polymeric Fibre Reinforced Stabilized Mud Blocks
Karthika An Experimental Study on Strength & Durability of Concrete Using Partial Replacement of Cement with Nano Silica
Joel et al. Effect of curing condition on some properties of cement stabilized lateritic interlocking bricks

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140918

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150922

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160922

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170904

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190604

Year of fee payment: 11