KR20050112311A - Manufacturing method of recycled aggregate from dust of waste concrete and recycled aggregate produced therefrom - Google Patents

Manufacturing method of recycled aggregate from dust of waste concrete and recycled aggregate produced therefrom Download PDF

Info

Publication number
KR20050112311A
KR20050112311A KR1020040037354A KR20040037354A KR20050112311A KR 20050112311 A KR20050112311 A KR 20050112311A KR 1020040037354 A KR1020040037354 A KR 1020040037354A KR 20040037354 A KR20040037354 A KR 20040037354A KR 20050112311 A KR20050112311 A KR 20050112311A
Authority
KR
South Korea
Prior art keywords
fine powder
recycled aggregate
waste concrete
coating
waste
Prior art date
Application number
KR1020040037354A
Other languages
Korean (ko)
Other versions
KR100560042B1 (en
Inventor
박노경
김구대
정형진
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR20040037354A priority Critical patent/KR100560042B1/en
Publication of KR20050112311A publication Critical patent/KR20050112311A/en
Application granted granted Critical
Publication of KR100560042B1 publication Critical patent/KR100560042B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0262Details of the structure or mounting of specific components for a battery compartment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 폐콘크리트 분쇄/분급 공정시 발생되는 폐미분말을 상온에서 성형체로 성형한 후 개질 유황 코팅액을 사용하여 코팅함으로써 건설현장에서 사용할 수 있는 재생골재를 제조하는 방법 및 이로부터 제조된 재생골재에 관한 것이다. 보다 구체적으로, 본 발명의 방법은 폐콘크리트 미분말을 제공하는 단계, 상기 미분말과 시멘트 혼합물을 상온에서 구형 또는 펠렛 형태로 성형하는 단계, 상기 성형된 성형체를 건조시키는 단계 및 개질 유황 코팅액을 사용하여 상기 건조된 성형체를 코팅하는 단계를 포함한다.The present invention is a method for producing recycled aggregates that can be used in construction sites by molding the fine powder generated in the waste concrete crushing / classification process into a molded body at room temperature and then using a modified sulfur coating solution and the recycled aggregate produced therefrom It is about. More specifically, the method of the present invention comprises the steps of providing the waste concrete fine powder, molding the fine powder and cement mixture into a spherical or pellet form at room temperature, drying the molded molded body and using the modified sulfur coating solution Coating the dried formed body.

본 발명에 따르면, 폐콘크리트에서 발생되는 폐미분말을 상온에서 성형하여 코팅함으로써 다시 건설현장에 사용할 수 있는 우수한 물성을 갖는 재생골재를 생산할 수 있기 때문에 폐자원 재활용과 환경오염을 최소화하는 효과를 기대할 수 있다.According to the present invention, by forming and coating the waste fine powder generated from the waste concrete at room temperature, it is possible to produce recycled aggregates having excellent physical properties that can be used again in construction sites, so that the effect of recycling waste resources and minimizing environmental pollution can be expected. have.

Description

폐콘크리트 미분말을 이용한 재생골재 제조방법 및 그로부터 제조된 재생골재{Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom}Manufacturing Method of Recycled Aggregate Using Waste Concrete Fine Powder and Recycled Aggregate Produced therefrom {Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom}

본 발명은 폐콘크리트의 미분말을 이용한 재생골재 제조방법 및 이로부터 제조된 재생골재에 관한 것이다.The present invention relates to a method for producing recycled aggregate using fine powder of waste concrete, and to a recycled aggregate prepared therefrom.

보다 상세하게는, 본 발명은 폐콘크리트 분쇄/분급 공정시 발생되는 폐미분말을 상온에서 성형체로 성형한 후 코팅함으로써 건설현장에서 사용할 수 있는 재생골재를 제조하는 방법 및 이로부터 제조된 재생골재에 관한 것이다.More specifically, the present invention relates to a method for producing recycled aggregates that can be used in construction sites by coating the waste fine powder generated during the waste concrete pulverization / classification process into a molded body at room temperature, and to a recycled aggregate prepared therefrom. will be.

현재 국내외에서는 재건축, 재개발 사업에 따라 발생되는 폐콘크리트량이 갈수록 증가하고 있고 이러한 폐콘크리트를 재활용하기 위하여 폐콘크리트를 분쇄/분급/수쇄 등의 공정을 거쳐서 재생골재를 생산하는 공정에서 폐미분말 (이하 "미분말"이라 칭한다)이 다량 발생하나, 이미 오랜 시간 동안 탄산화가 진행된 미분말이어서 일정한 강도를 발휘할 수 있는 수경성을 발휘하지 못하므로 전량 폐기되고 있는 실정이다.Currently, the amount of waste concrete generated by reconstruction and redevelopment projects is increasing at home and abroad, and in order to recycle the waste concrete, waste fine powder is produced in the process of producing recycled aggregates through the process of grinding, classifying and crushing waste concrete. A large amount of fine powder is generated), but since it is already a fine powder that has undergone carbonation for a long time, the entire powder is discarded since it does not exhibit hydraulic properties capable of exhibiting a certain strength.

이와 같은 미분말을 재활용하기 위한 연구가 국내외에서 시도되고 있는데 개발된 기술들은 다음과 같다.Research to recycle such fine powder is being attempted at home and abroad. The developed technologies are as follows.

미분말을 1300℃ 이상의 고온에서 용융하여 비정질을 유지한 채 냉각물을 분쇄하여 골재를 제조하는 방법 (일본 특개2000-72501호), 미분말을 약 700℃ 정도에 온도에서 수시간 동안 열처리하여 CaCO3에서 CaO 형태로 복원시킴으로써 다시 수화성을 회복시켜 재생 시멘트 (대한민국 특허공고 제10-0379697호) 또는 시멘트 클링커 원료로 사용하는 기술 (일본 특허 공개 제2003-313056호) 등과 미분에 단순히 시멘트나 혼화제 등을 첨가하여 골재를 제작하여 고유동 및 저분리성 콘크리트를 제조하는 방법 (일본특허 특허공개 제2003-2724호, 특허공개 평8-151248호)이 개시되어 있다.Fine powder of the melt by way of producing the aggregate by crushing one cooling water maintained the amorphous (Japanese Patent Laid-Open No. 2000-72501), the fine powder at a high temperature above 1300 ℃ by heating for several hours at a temperature about 700 ℃ in CaCO 3 By restoring hydration by restoring to CaO form, it is possible to use regenerated cement (Korean Patent Publication No. 10-0379697) or cement clinker raw material (Japanese Patent Publication No. 2003-313056) and to fine powders. Disclosed is a method (Japanese Patent Laid-Open No. 2003-2724, Japanese Patent Laid-Open No. Hei 8-151248) for producing aggregate by adding aggregate.

그러나, 현재까지의 기술은 열처리를 실시하기 위하여 막대한 시설비를 요구되고, 고가의 혼화제 등을 첨가하여도 실제로 시멘트에 혼합되어서 사용할 수 있는 미분말의 첨가량이 제한되고 있는 실정이다.However, the technology up to now requires enormous facility costs in order to perform heat treatment, and even if an expensive admixture is added, the amount of fine powder that can be actually mixed and used in cement is limited.

또한, 과거에는 미개질된 유황 (보통 유황)과 골재를 가열 혼합하여 유황 콘크리트를 제작하였으나 장기적인 내구성 등에 문제가 있음이 밝혀졌고, 따라서 유황 콘크리트의 품질향상과 상업적 이용을 위해서는 부적절한 것으로 판명되었다.In addition, in the past, sulfur-concrete was produced by heating and mixing unmodified sulfur (usually sulfur) and aggregate, but it was found to be problematic for long-term durability, and therefore, it was found to be inadequate for quality improvement and commercial use of sulfur concrete.

본 발명은 상기 문제점들을 해결하기 위한 것으로서, 고가의 혼화제를 첨가하지 않고 고온에서 열처리를 실시하지 않으면서도 우수한 재생골재를 폐콘크리트 미분말로부터 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to provide an excellent recycled aggregate from waste concrete fine powder without adding an expensive admixture and without performing heat treatment at a high temperature.

본 발명자들은 미분말을 상온에서 상이한 공정을 이용하여 성형한 후, 성형체를 개질 유황 코팅액을 사용하여 코팅함으로써 상기 목적을 달성할 수 있음을 밝혀내어 본 발명을 완성하게 되었다.The present inventors have found that the above object can be achieved by molding the fine powder using a different process at room temperature and then coating the molded body with a modified sulfur coating solution to complete the present invention.

따라서, 본 발명은 폐콘크리트 분쇄/분급 공정시 발생되는 폐미분말을 상온에서 성형한 후 개질 유황 코팅액을 사용하여 코팅함으로써 건설현장에서 사용할 수 있는 재생골재를 제조하는 방법 및 이로부터 제조된 재생골재를 제공한다.Accordingly, the present invention is a method for producing a recycled aggregate that can be used in construction sites by coating the waste fine powder generated during the waste concrete grinding / classification process at room temperature and using a modified sulfur coating solution and the recycled aggregate produced therefrom to provide.

보다 구체적으로, 본 발명의 미분말을 이용하여 재생골재를 제조하는 방법은More specifically, the method for producing recycled aggregate using the fine powder of the present invention

폐콘크리트 미분말을 제공하는 단계,Providing waste concrete fine powder,

상기 미분말과 시멘트 혼합물을 상온에서 구형 또는 펠렛 형태로 성형하는 단계,Molding the fine powder and cement mixture into a spherical or pellet form at room temperature,

상기 성형된 성형체를 건조시키는 단계 및Drying the molded body and

개질 유황 코팅액을 사용하여 상기 건조된 성형체를 코팅하는 단계Coating the dried formed body using a modified sulfur coating solution

를 포함한다.It includes.

이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

먼저 폐콘크리트를 미분말화하여 출발물질을 준비하는 단계는 폐콘크리트를 재활용하기 위하여 기존에 사용되고 있는 공지의 방법 중 분쇄/분급만을 행하고 세척공정은 생략해도 가능하다. 즉, 분쇄된 폐콘크리트에서 미분말, 예를 들어 직경 0.15 mm 이하의 미분말과 0.15 mm 초과의 골재로 분리하여 상기 분리된 미분을 사용하면 가능하다. 그러나, 본 발명의 출발물질인 미분말의 입도크기를 굳이 한정시킬 필요는 없고, 성형기 내에서 성형이 이루어질 수 있는 직경이면 가능하다.First, the step of preparing the starting material by pulverizing the waste concrete may be performed only the grinding / classification of known methods that are conventionally used to recycle the waste concrete, and the washing process may be omitted. That is, it is possible to use the separated fine powder by separating the fine powder, for example, fine powder having a diameter of 0.15 mm or less and aggregates of more than 0.15 mm from the pulverized waste concrete. However, it is not necessary to limit the particle size of the fine powder, which is the starting material of the present invention, as long as the diameter can be formed in the molding machine.

또한, 본 발명에 사용되는 미분말은 폐콘크리트 미분말 뿐만 아니라 석재 가공업소에서 배출되는 석분 등과 같은 미분말을 포함하는 것으로서, 미분말이면 어느 종류든지 골재 제조시 원료로 사용해도 무방하다.In addition, the fine powder used in the present invention includes not only waste concrete fine powder but also fine powder such as stone powder discharged from a stone processing industry, and any type of fine powder may be used as a raw material in the production of aggregates.

미분말을 상온에서 구형 또는 펠렛으로 성형하는 단계는 미분말 자체가 오랜 시간 탄산화되어서 경화성이 매우 약한 물질이기 때문에 재생골재로서의 특성을 부여하기 위해 압출 공정 또는 펠레타이저(pelletizer)를 이용하여 실시하는 것이다. 인공적으로 골재를 제조할 때에 골재가 가지고 있는 물성 중 강도 특성을 재료공학적 관점에서 최대값으로 발현시키기 위하여는 구형으로 성형을 하여야 되는데 이를 위해서 펠레타이저를 이용하여 성형하는 방법이 있는데, 이와 같은 성형방법은 구형으로의 형상은 양호하나 단위시간당 생산효율을 높이기 위해서는 압출기를 사용하여 연속공정으로 제조하는 것이 더 바람직하다.The step of forming the fine powder into a spherical or pellet at room temperature is carried out using an extrusion process or a pelletizer to impart the characteristics as a recycled aggregate because the fine powder itself is carbonated for a long time and is a very hard material. When manufacturing aggregates artificially, in order to express the strength characteristic of aggregates to the maximum value from the viewpoint of material engineering, it must be molded into a spherical shape. For this, there is a method of forming using a pelletizer. The method has a good spherical shape, but in order to increase the production efficiency per unit time, it is more preferable to manufacture a continuous process using an extruder.

본 발명의 일실시태양에서는, 압출기를 이용하여 성형 공정을 수행하는데, 미분말에 시멘트를 물과 같이 혼합하여 압출한 후, 압출기 다이 끝부분에 절단기, 예를 들어 압축공기 절단기를 부착하여 압출물을 일정한 크기로 절단한다. 이때 압출공정시 미분말과 시멘트의 유동성을 양호하게 하기 위하여 첨가제를 첨가할 수 있고, 상기 첨가제의 바람직한 예는 가소성 점토류, 플라이애쉬, 메틸셀룰로스, 물유리 등을 포함하고, 이로 제한되지 않는다. 또한, 절단된 압출물을 펠레타이저 내에서 굴려서 완전 구형으로 성형한 다음에 건조공정을 행할 수도 있다.In one embodiment of the present invention, the molding process is carried out using an extruder, and the cement is mixed with water in the fine powder and extruded, and then a cutter, for example, a compressed air cutter, is attached to the end of the extruder die to extrude the extrudate. Cut to a constant size. At this time, an additive may be added to improve the fluidity of the fine powder and cement during the extrusion process, and preferred examples of the additive include, but are not limited to, plastic clay, fly ash, methylcellulose, water glass, and the like. In addition, the cut extrudate may be rolled in a pelletizer, molded into a completely spherical shape, and then dried.

상기 미분말에 시멘트를 물과 같이 혼합할 때, 미분말 대 시멘트의 혼합 비율이 90:10 내지 10:90이고, 물은 미분말 입도 및 분포도와 시멘트 첨가량에 따라 결정되며, 예를 들어 전체 배합물 총량 기준으로 20 내지 50 중량%일 수 있다.When cement is mixed with the fine powder with water, the mixing ratio of fine powder to cement is 90:10 to 10:90, and water is determined according to the fine powder particle size and distribution and the amount of cement added, for example, based on the total amount of the total compound. 20 to 50% by weight.

절단된 성형체는 상온 내지 약 200 ℃, 바람직하게는 절단된 성형체를 미리 예열시켜 코팅 조건이 균일하게 이루어지도록 약 120℃ 내지 140℃로 유지되는 콘베이어 벨트 내부로 이동하면서 건조되고 잠열을 보유하고 있는 상태로 콘베이어 라인 끝에 설치되어 있는 코팅반응조 내부를 통과하면서 코팅작업이 이루어진다.The cut molded body is dried and retains latent heat while moving into a conveyor belt maintained at about 120 ° C to 140 ° C so as to preheat the cut molded body in advance to a predetermined temperature, so that the coating conditions are uniform. The coating is performed while passing through the coating reactor installed at the end of the furnace line.

성형된 성형체는 물유리, 콜로이드 실리카졸, 개질 유황 등의 코팅액을 이용하여 코팅하는데, 본 발명에서는 개질 유황을 제조하여 사용하였다. 유황 코팅액을 제조하는데 사용되는 유황은 분말상, 플레이크상 또는 용융 유황을 사용해도 무방하나, 석유정제시 부산물로 배출되는 유황에 올리고머 등을 첨가하여 제조할 수 있다.The molded article is coated using a coating solution such as water glass, colloidal silica sol, modified sulfur, etc. In the present invention, modified sulfur was prepared and used. The sulfur used to prepare the sulfur coating liquid may be powdered, flaked or molten sulfur, but may be prepared by adding oligomers or the like to sulfur discharged as a byproduct during petroleum refining.

구체적으로, 국내 정유공장에서 부산물로 배출되고 있는 유황과 석유화학 공장에서 부산물로 배출되고 있는 싸이클로펜타디엔 올리고머와 시약급 디싸이클로펜타디엔 (DCPD)를 사용하여 공지된 방법에 따라 개질 유황을 제조할 수 있다.Specifically, reformed sulfur can be produced according to a known method using sulfur discharged as a by-product from a domestic refinery and cyclopentadiene oligomer and reagent-grade dicyclopentadiene (DCPD) discharged as a by-product from a petrochemical plant. Can be.

본 발명의 일실시태양에 따르면, 싸이클로펜타디엔 올리고머와 디싸이클로펜타디엔을 50:50의 부피피로 혼합하고, 유황 100 부피%를 기준으로 5%의 상기 혼합물을 유황과 고온, 예를 들어 120℃ 내지 180℃에서 항온 유지되는 반응기에서 혼합반응시켜 개질 유황을 합성하고, 이 개질 유황액을 상온에서 냉각하여 플레이크 (flake) 상태로 보관하다가 코팅작업시 플레이크 덩어리들을 다시 130℃로 녹여서 코팅액으로 사용할 수 있다. 코팅작업시 코팅액은 120℃ 내지 150℃를 유지하면서 사용하는데, 유황의 용융온도와 작업유동성을 감안하여 약 130℃ 온도를 일정하게 유지할 수 있는 항온조 내에서 행하는 것이 바람직하다.According to one embodiment of the invention, the cyclopentadiene oligomer and dicyclopentadiene are mixed at a volumetric volume of 50:50, and 5% of the mixture based on 100% by volume of sulfur is sulfur and high temperature, for example 120 ° C. The modified sulfur is synthesized by mixing and reacting in a reactor kept at a constant temperature from 180 ° C., and the reformed sulfur solution is cooled to room temperature and stored in a flake state. have. In the coating operation, the coating liquid is used while maintaining the temperature of 120 ° C. to 150 ° C., in consideration of the melting temperature of the sulfur and the working fluidity, preferably in a thermostat that can maintain a constant temperature of about 130 ° C.

상기 용융 상태의 개질 유황액 항온조는 콘베이어 라인 끝부분에 설치되고, 이 항온조 내부로 건조가 완료되면서 잠열을 보유하고 있는 상태의 성형체가 통과되면서 코팅이 이루어지게 된다.The molten reformed sulfur bath is installed at the end of the conveyor line, the coating is made while passing the molded body having a latent heat as the drying is completed into the chamber.

코팅 시간은 경제성 측면에서 약 10분 내외가 바람직하지만, 구형체의 기공율과 직경 등을 감안하여 임의로 결정할 수 있다.The coating time is preferably about 10 minutes in terms of economical efficiency, but may be arbitrarily determined in consideration of the porosity and diameter of the spherical body.

코팅이 끝난 성형체는 약 5분 내에 경화가 완료되어 지면에 강하게 내리칠 경우에도 깨지지 않고 튀어 올라올 수 있는 정도의 탄력성과 초기강도를 발휘할 수 있는 재생골재로서 제조된다.The coated molded body is manufactured as a recycled aggregate capable of exhibiting elasticity and initial strength that can be raised without breaking even when hardened to the ground in about 5 minutes.

본 발명에 따른 재생골재는 조골재로 이용해도 좋고, 조골재와 함께 사용되는 세골재의 형태로 이용해도 좋다. 조골재로 이용하는 경우에는 골재크기가 5 내지 20 ㎜ 정도가 적당하고 조골재와 함께 세골재로 이용하는 경우에는 5 ㎜ 이하가 바람직하다. 그러나 현재까지도 재생골재를 사용하고 있는 현장에서는 재생골재 사용에 따른 장기적 내구성에 대한 검증사례가 없기 때문에 재생골재와 천연골재를 일정량 같이 사용하고 있는 실정이므로, 용도별로 쓰이는 골재에 크기를 굳이 한정시킬 필요는 없다.The recycled aggregate according to the present invention may be used as coarse aggregate, or may be used in the form of fine aggregate used with coarse aggregate. When used as coarse aggregate, the aggregate size is about 5 to 20 mm is suitable, and when used as fine aggregate with coarse aggregate, 5 mm or less is preferable. However, even in the field where recycled aggregates are used up to now, there is no case of verifying the long-term durability due to the use of recycled aggregates, so it is necessary to limit the size to the aggregates used for each use because it is a situation that a certain amount of recycled aggregates and natural aggregates are used together. There is no.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

<실시예 1 내지 3><Examples 1 to 3>

폐콘크리트 재활용 업체에서 직경 0.15 mm 이하의 미분말을 입수하고, 이 미분말을 표 1에 나타낸 바와 같은 양으로 시멘트와 배합하고, 여기에 전체 배합물 총량 기준으로 실시예 1의 경우 37%, 실시예 2의 경우에는 34%, 실시예 3의 경우에는 30%의 물을 첨가하여 혼합한 후 호퍼를 통하여 2축 스크류 압출기 (유성기업 제품)에 주입하고 압출작업을 실시하였다. 압출된 혼합물을 다이 끝에 부착되어 있는 압축공기 절단기를 이용하여 약 10 ㎜ 크기로 절단하였다.A fine concrete with a diameter of 0.15 mm or less was obtained from a waste concrete recycling company, and the fine powder was blended with cement in an amount as shown in Table 1, which was 37% of Example 1 based on the total amount of the formulation, In the case of 34% and in the case of Example 3, 30% of water was added and mixed, and then injected into a twin screw extruder (product of oil company) through a hopper and extrusion was performed. The extruded mixture was cut to a size of about 10 mm using a compressed air cutter attached to the die end.

PID 방식으로 일정한 온도가 유지되는 항온조(실리콘 오일을 열매로 사용)내에 6,000 ml용 3구 (가운데 구멍은 45/50 조인트를 장착한 독일산 IKA 임펠러가 설치되어 있고, 다른 구멍 하나는 24/40 조인트용 콘덴서가 끼워져 있고 마지막 구멍은 올리고머와 DCPD를 투입하는 구멍으로 구성되어 있음) 모양의 유리 반응기를 제작하였다.Three holes for 6,000 ml are installed in a thermostatic chamber (silicone oil is used as a fruit) that maintains a constant temperature by using a PID method (the center hole is a German IKA impeller equipped with a 45/50 joint, and the other hole is 24/40). A condenser for the joint was inserted and the last hole was composed of an oligomer and a hole into which DCPD was injected.

이 반응기 내에 공업용 분말유황 4,000 g을 투입한 후 온도를 서서히 올리면서 130℃에서 액상으로 녹인 후 믹서기에 임펠러를 교반시키면서 싸이클로펜타디엔 올리고머 100 cc를 약 5 내지 10분 내에 투입하였다. 이어서, 약 10분 후에 DCPD 100 ㏄를 투입한 후, 발열반응으로 반응기 내부에 액상물 온도가 130℃에서 약 145℃ 정도까지 상승되는 점에 유의하면서 반응온도를 140℃로 유지하면서 교반을 진행하였다. 약 4시간이 경과하면 약간의 점성이 생기는데 이때에 반응을 종료시켰다. 만약 반응액 온도가 160℃ 정도까지 상승하면 반응액 색상이 검은색으로 변함과 동시에 일시에 점도가 상승하면서 경화되어 반응기가 손상을 입게 된다.4,000 g of industrial powdered sulfur was added to the reactor, and then dissolved in a liquid phase at 130 ° C while gradually raising the temperature. Cyclopentadiene was stirred with an impeller in a blender. 100 cc of oligomer was added in about 5-10 minutes. Subsequently, after about 10 minutes, DCPD 100 ㏄ was added thereto, and the stirring was performed while maintaining the reaction temperature at 140 ° C, noting that the liquid temperature rose from 130 ° C to about 145 ° C by exothermic reaction. . After about 4 hours, a little viscous viscosity occurred, and the reaction was terminated. If the temperature of the reaction solution rises to about 160 ° C., the color of the reaction solution turns black and at the same time, the viscosity rises and hardens, causing damage to the reactor.

상기 절단된 성형체를 약 130℃로 유지되는 콘베이어 벨트 내부로 이동하면서 건조되면서 잠열을 보유하고 있는 상태로 콘베이어 라인 끝부분에 설치되어 있는 코팅 반응조 내부를 통과시켰다. 이 반응조는 약 130℃가 유지되는 상기 제조한 코팅용액을 포함하며, 약 10분간 통과하면서 코팅시킨 후 상온에서 냉각하여 재생골재를 얻었다.The cut molded body was moved into the conveyor belt maintained at about 130 ° C. and passed through the inside of the coating reactor installed at the end of the conveyor line while retaining latent heat. The reactor includes the coating solution prepared above, which is maintained at about 130 ° C., and is coated while passing for about 10 minutes, followed by cooling at room temperature to obtain a recycled aggregate.

<실시예 4><Example 4>

실시예 2와 동일한 방식으로 성형체를 제조하되, 코팅시간을 1분으로 하여 코팅을 수행하였다.A molded product was prepared in the same manner as in Example 2, but the coating was performed with a coating time of 1 minute.

<실시예 5>Example 5

실시예 2와 동일한 방식으로 성형체를 제조하되, 코팅시간을 5분으로 하여 코팅을 수행하였다.A molded product was prepared in the same manner as in Example 2, but the coating was performed with a coating time of 5 minutes.

<실시예 6><Example 6>

실시예 2와 동일한 방식으로 성형체를 제조하되, 코팅시간을 30분으로 하여 코팅을 수행하였다.A molded product was prepared in the same manner as in Example 2, but the coating was performed with a coating time of 30 minutes.

<시험예><Test Example>

상기 실시예에서 제조된 재생골재의 물성을 측정하기 위하여 밀도, 흡수율 및 압축강도 등을 측정하였다.In order to measure the physical properties of the recycled aggregate prepared in the above example, the density, water absorption and compressive strength were measured.

흡수율은 건조 후에 무게 측정시 더이상 무게가 감소되지 않는 일정한 무게값, 즉 항량이 될 때까지 건조한 골재의 무게를 건조무게로 정하고 수돗물에 하루 동안 함침시킨 후에 꺼내어 골재 표면의 물기를 젖은 수건으로 부드럽게 닦은 후에 측정한 무게를 함침무게로 하여 측정하였는데, 건조된 골재표면을 통하여 골재 내부 속으로 들어간 물의 양을 환산하여 계산하였다. 밀도는 무게에 대한 부피비로 측정하는데 항량이 될 때까지 건조시킨 골재무게를 측정한 후 실린더에서 물부력 원리를 이용하여 측정하였고, 수중 측정법과는 약간의 편차를 일으킬 수 있다.Absorption rate is a constant weight that no longer loses weight when weighed after drying, that is, the weight of the dry aggregate is set to dry weight until it becomes a constant weight, impregnated with tap water for one day, and then taken out, and the surface of the aggregate is gently wiped with a damp towel. The weight measured afterwards was measured as the impregnating weight, which was calculated by converting the amount of water into the aggregate through the dried aggregate surface. Density is measured by volume ratio to weight. After measuring the dry aggregate weight until the weight is measured, it is measured by the principle of water buoyancy in the cylinder, which may cause slight deviation from underwater measurement.

압축강도 시험편은 시멘트 1:잔골재 (폐재생골재) 2:제조한 재생골재 2의 배합비로 혼합하여 직경 100 ㎜ x 길이 200 ㎜ 실린더 형상의 콘크리트 공시체를 KSF 2403 (콘크리트의 강도시험용 공시체 제작방법)에 준하여 제작하였다. 제조한 콘크리트 공시체를, 23℃, 상대습도 90%가 유지되는 항온항습기 내에서 1일 양생한 후 탈형하여, 시험편을 20℃ 정도가 유지되는 수돗물에서 수중 양생한 후 KSF2405 (콘크리트에 압축강도 시험방법)에 준하여 만능시험기 (UTM)를 사용하여 28일 강도를 측정하였다.Compressive strength test pieces were mixed at the mixing ratio of cement 1: fine aggregate (waste recycled aggregate) 2: recycled aggregate 2, and 100 mm diameter x 200 mm cylindrical concrete specimens were prepared in KSF 2403 (Method for Producing Concrete Strength Test Specimens). It produced according to. The prepared concrete specimens were cured in a constant temperature and humidity chamber maintained at 23 ° C. and 90% relative humidity for 1 day, and then demolded.Then, the specimens were cured in tap water maintained at about 20 ° C. and then tested for KSF2405 (compressive strength test on concrete). ) Was measured for 28 days using a universal testing machine (UTM).

상기 측정 결과를 하기 표 1에 나타내었다.The measurement results are shown in Table 1 below.

미분말(wt%)Fine powder (wt%) 시멘트(wt.%)Cement (wt.%) 코팅시간(분)Coating time (minutes) 밀 도(gr/㎤)Density (gr / cm 3) 흡수율(%)Absorption rate (%) 압축강도(kg/㎠)Compressive strength (kg / ㎠) 외관검사Visual inspection 실시예 1Example 1 9090 1010 1010 1.911.91 0.590.59 450450 양호Good 실시예 2Example 2 8080 2020 1010 2.072.07 0.510.51 510510 양호Good 실시예 3Example 3 7070 3030 1010 2.142.14 0.440.44 540540 양호Good 실시예 4Example 4 8080 2020 1One 1.851.85 0.850.85 310310 보통usually 실시예 5Example 5 8080 2020 55 1.901.90 0.620.62 506506 양호Good 실시예 6Example 6 8080 2020 3030 2.012.01 0.520.52 520520 양호Good

표 1에서 알 수 있는 바와 같이, 미분말 상태보다 미분말을 재생골재로 제조한 후에 물성이 크게 향상되었음을 알 수 있다.As can be seen from Table 1, it can be seen that the physical properties are greatly improved after the fine powder is prepared from the recycled aggregate than the fine powder state.

미분말을 수거한 상태로 본 발명자들이 측정한 밀도와 흡수율은 각각 1.42, 26.39%인 반면, 실시예 1 내지 6에 따라 재생골재화하여 코팅한 후에 각각 1.85 내지 2.14로, 0.85% 내지 0.44%로 대폭 개선되었다. 특히 흡수율은 거의 1% 이하를 나타내는데 이것은 일반 쇄석과 거의 같은 흡수율 범위를 보여주고 있다.The density and water absorption measured by the present inventors in the state of collecting the fine powder were 1.42 and 26.39%, respectively, after coating with recycled aggregates according to Examples 1 to 6 to 1.85 to 2.14 and 0.85% to 0.44%, respectively. Improvements were made. In particular, the absorption rate is almost 1% or less, which is almost the same as the general crushed stone.

밀도값은 시멘트량이 증가할수록 증가되는 전형적인 현상을 보이고 있는데 이것은 재생골재를 사용되는 용도에 따라서 조절하여 생산할 수 있음을 의미한다. 압축강도 결과도 시멘트량에 따라 비례하나 변화량이 크지는 않아 보인다. 목측으로 관찰한 외관검사는 대체적으로 양호하나 코팅시간이 1분인 실시예 4의 경우에서만 표면이 다소 매끄럽지가 않고 아직 반응이 덜 된 상태를 보여준다.The density value shows a typical phenomenon that increases as the amount of cement increases, which means that the recycled aggregate can be adjusted according to the use. Compressive strength results are also proportional to the amount of cement, but the change is not large. The visual inspection observed by the neck side was generally good, but only in the case of Example 4, where the coating time was 1 minute, the surface was not smooth, and the reaction was still less.

생산성을 고려한 최적의 조건은 미분말 90 중량%에 시멘트 10%를 첨가하여 압출한 후에, 코팅시간을 10분 이내로 하는 것이 경제적인 것으로 보인다. 코팅시간은 구형체의 기공율과 직경 및 생산성 등을 감안해야 하므로 적절하게 조절될 수 있을 것이다.The optimum condition considering productivity seems to be economical after extruding by adding 10% of cement to 90% by weight of fine powder. The coating time may be properly adjusted since the porosity, diameter and productivity of the spherical body should be taken into consideration.

본 발명에 따르면, 폐콘크리트에서 발생되는 폐미분말을 상온에서 성형하여 코팅함으로써 다시 건설현장에 사용할 수 있는 우수한 물성을 갖는 재생골재를 생산할 수 있기 때문에 폐자원 재활용과 환경오염을 최소화하는 효과를 기대할 수 있다.According to the present invention, by forming and coating the waste fine powder generated from the waste concrete at room temperature, it is possible to produce recycled aggregates having excellent physical properties that can be used again in construction sites, so that the effect of recycling waste resources and minimizing environmental pollution can be expected. have.

도 1은 본 발명의 제조방법을 나타낸 공정도.1 is a process chart showing a manufacturing method of the present invention.

Claims (6)

폐콘크리트 미분말을 제공하는 단계,Providing waste concrete fine powder, 상기 미분말과 시멘트 혼합물을 상온에서 구형 또는 펠렛 형태로 성형하는 단계,Molding the fine powder and cement mixture into a spherical or pellet form at room temperature, 상기 성형된 성형체를 건조시키는 단계 및Drying the molded body and 개질 유황 코팅액을 사용하여 상기 건조된 성형체를 코팅하는 단계Coating the dried formed body using a modified sulfur coating solution 를 포함하는, 미분말을 이용하여 재생골재를 제조하는 방법.To include, using the fine powder to produce a recycled aggregate. 제1항에 있어서, 개질 유황 코팅액이 싸이클로펜타디엔 올리고머와 디싸이클로펜타디엔 혼합물을 유황과 반응시켜 제조된 것인 방법.The process of claim 1, wherein the modified sulfur coating solution is prepared by reacting a cyclopentadiene oligomer and a dicyclopentadiene mixture with sulfur. 제1항에 있어서, 미분말과 시멘트 혼합물에 유동성 개선을 위해 가소성 점토류, 플라이애쉬, 메틸셀룰로스 및(또는) 물유리를 첨가하는 것을 포함하는 방법.The process of claim 1 comprising adding plastic clay, fly ash, methylcellulose and / or waterglass to the fine powder and cement mixture for improved flowability. 제1항에 있어서, 상기 성형이 압출 성형인 방법.The method of claim 1, wherein the molding is extrusion molding. 제1항에 있어서, 미분말 대 시멘트의 혼합 비율이 90:10 내지 10:90인 방법.The process of claim 1 wherein the mixing ratio of fine powder to cement is from 90:10 to 10:90. 제1항 기재의 방법으로 제조된 재생골재.Recycled aggregate produced by the method of claim 1.
KR20040037354A 2004-05-25 2004-05-25 Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom KR100560042B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20040037354A KR100560042B1 (en) 2004-05-25 2004-05-25 Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20040037354A KR100560042B1 (en) 2004-05-25 2004-05-25 Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom

Publications (2)

Publication Number Publication Date
KR20050112311A true KR20050112311A (en) 2005-11-30
KR100560042B1 KR100560042B1 (en) 2006-03-13

Family

ID=37287228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20040037354A KR100560042B1 (en) 2004-05-25 2004-05-25 Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom

Country Status (1)

Country Link
KR (1) KR100560042B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857101B1 (en) * 2008-03-14 2008-09-05 계대영 Inserting material for water supply and drainage pipe recycling concrete
KR100911659B1 (en) * 2007-06-25 2009-08-10 최문선 Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
KR100919493B1 (en) * 2008-01-16 2009-09-28 박신 Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure
US8207249B2 (en) 2008-10-15 2012-06-26 Hanmi E&C Co., Ltd. Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
CN102757214A (en) * 2011-04-29 2012-10-31 青岛鼎基环境防护科技有限公司 Sulfur-modified composite material used as corrosion-proof coating
CN111168557A (en) * 2020-01-06 2020-05-19 深圳市华威环保建材有限公司 Recycled aggregate shaping device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017992B1 (en) 2008-12-22 2011-03-02 최문선 Method and apparatus for spreading modified sulfur binder
KR101017991B1 (en) 2008-12-24 2011-03-03 최문선 Concrete pavement method of a road by using modified sulfur binder
KR101017989B1 (en) 2008-12-24 2011-03-03 최문선 Asphalt pavement method of a road by using modified sulfur binder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911659B1 (en) * 2007-06-25 2009-08-10 최문선 Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
KR100919493B1 (en) * 2008-01-16 2009-09-28 박신 Recycled Aggregates coated with Water-based Water Repellent Agent and Application to a Concrete Structure
KR100857101B1 (en) * 2008-03-14 2008-09-05 계대영 Inserting material for water supply and drainage pipe recycling concrete
US8207249B2 (en) 2008-10-15 2012-06-26 Hanmi E&C Co., Ltd. Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
CN102757214A (en) * 2011-04-29 2012-10-31 青岛鼎基环境防护科技有限公司 Sulfur-modified composite material used as corrosion-proof coating
CN111168557A (en) * 2020-01-06 2020-05-19 深圳市华威环保建材有限公司 Recycled aggregate shaping device

Also Published As

Publication number Publication date
KR100560042B1 (en) 2006-03-13

Similar Documents

Publication Publication Date Title
KR100560042B1 (en) Manufacturing Method of Recycled Aggregate from Dust of Waste Concrete and Recycled Aggregate Produced Therefrom
CN101045617B (en) Magnesium waste slag building brick and producing method
EP2655502A1 (en) Composite of polymeric material with mineral fillers
CN111704404A (en) Shrinkage-compensating concrete and preparation method thereof
CN113354329A (en) Concrete synergist and preparation method and application thereof
US20070210474A1 (en) Divided Solid Compositions With A High Talc Content, Which Are Intended To Be Incorporated In A Thermoplastic Material
CN105885237A (en) Moisture-proof plastic woven bag
CN111571768B (en) Method for producing fine iron powder waste residue foamed brick
KR100386969B1 (en) The method for manufacturing and Unsaturated Polyester Mortar
KR100466528B1 (en) Artificial basalt composition, building material manufactured by the artificial basalt composition and method for manufacturing the same
EP1598164B1 (en) Polymeric foam extrusion process
KR100940946B1 (en) A method of manufacturing a flame retardant interior materials using the waste styrofoam
KR100306004B1 (en) A manufacturing process of a plastics for construction materials
KR101076137B1 (en) a production method of an artificial aggregate and an artificial aggregate produced by the same
CN111171476A (en) Composite heat insulation material for green building and preparation method thereof
JP2001261425A (en) Sulfur composition molding raw material and its manufacturing method
KR0133247B1 (en) Preparation process to block product from carpet waste materials
CN107382143A (en) A kind of granolith
RU2270817C1 (en) Mix to produce articles of composite materials
RU2218370C1 (en) Method of production of bitumen-polymeric compositions
SU1033465A1 (en) Method for making granulated foamed glass
CN111205556A (en) Polypropylene composite material and preparation method thereof
JPS5948028B2 (en) Method for producing phenolic resin molding material
RU2109710C1 (en) Method for manufacturing of construction articles
CN105778293A (en) Preparation method for ultralight high-rigidity polypropylene modified material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141216

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee