JP2007245267A - Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting - Google Patents

Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting Download PDF

Info

Publication number
JP2007245267A
JP2007245267A JP2006070233A JP2006070233A JP2007245267A JP 2007245267 A JP2007245267 A JP 2007245267A JP 2006070233 A JP2006070233 A JP 2006070233A JP 2006070233 A JP2006070233 A JP 2006070233A JP 2007245267 A JP2007245267 A JP 2007245267A
Authority
JP
Japan
Prior art keywords
layer
inclination angle
hard coating
coating layer
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006070233A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Hiroshi Hara
央 原
Kazuhiro Kono
和弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006070233A priority Critical patent/JP2007245267A/en
Publication of JP2007245267A publication Critical patent/JP2007245267A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated cutting tool made of cermet exerting excellent anti-chipping performance in the high-speed, intermittent cutting. <P>SOLUTION: The α-type Al<SB>2</SB>O<SB>3</SB>layer constituting the hard coating layer is formed as a dual layer α-type Al<SB>2</SB>O<SB>3</SB>layer consisting of a reformed layer and a standard layer, and crystal grains having a hexagonal crystal lattice existing within the measuring range on a surface to be polished is irradiated individually with an electron beam using a scanning electron microscope of field emission type, and measurement is conducted for the inclination angle of the normal to the (0001) face as the crystal face of each crystal grain relative to the normal to the surface to be polished, whereupon the measured inclination angles are divided, followed by plotting an inclination angle frequency distribution graph formed by totalizing the frequencies existing in each division, in which the reformed layer exhibits an inclination angle frequency distribution graph having the max. peak in the inclination angle division within the range 0-10 degs. while the standard layer exhibits an inclination angle frequency distribution graph having no peak over the whole measured inclination angle division within the range 0-45 degs. and further has a pattern where the hard coating layer residual stress is reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に硬質被覆層の構成層である酸化アルミニウム層(以下、Al23層で示す)がすぐれた高温強度を有し、各種の鋼や鋳鉄などの切削加工を、高速で、かつ機械的衝撃を伴なう断続切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 The present invention has an excellent high-temperature strength, particularly an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer) that is a constituent layer of a hard coating layer, and can cut various steel and cast iron at high speed. A surface-coated cermet cutting tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of time even under intermittent cutting conditions with mechanical impact (hereinafter referred to as “cutting tools”) , Referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、2〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiCO) A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
A coated cermet tool formed by chemical vapor deposition of the hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used in

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やα型Al23層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer and the α-type Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool have a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer is the layer itself. For the purpose of improving the strength of the crystal, a vertically grown crystal formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to have an organization.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化する傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速で、かつ機械的衝撃を伴なう断続切削条件で用いた場合には、特に硬質被覆層を構成するα型Al23層の高温強度が不十分であり、さらに前記硬質被覆層には、層形成時の冷却過程で発生する引張応力が残留することと相俟って、硬質被覆層にチッピング(微少欠け)が発生し易くなり、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem if this is used for continuous cutting or interrupted cutting under normal conditions such as steel or cast iron, but this is particularly high-speed interrupted cutting with mechanical impact. When used under conditions, the α-type Al 2 O 3 layer constituting the hard coating layer has insufficient high-temperature strength, and the hard coating layer has a tensile stress generated during the cooling process during layer formation. In combination with the remaining, chipping (slight chipping) is likely to occur in the hard coating layer, and this causes the service life in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記α型Al23層の高温強度を一段と向上させ、さらに前記硬質被覆層の残留引張応力の低減を図り、もって高速断続切削加工条件でチッピング発生のない被覆サーメット工具を開発すべく研究を行った結果、
(a−1)上記の従来被覆サーメット工具の硬質被覆層としてのα型Al23層は、一般に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されるが、この通常条件形成のα型Al23層(以下、標準層という)について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、図3に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すこと。
The present inventors have, from the viewpoint as described above, focuses on coated cermet tool α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular the α-type the Al 2 O 3 layer As a result of further research to develop a coated cermet tool that does not generate chipping under high-speed interrupted cutting processing conditions, further reducing the residual tensile stress of the hard coating layer.
(A-1) The α-type Al 2 O 3 layer as the hard coating layer of the conventional coated cermet tool is generally a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
The α-type Al 2 O 3 layer (hereinafter referred to as the standard layer) formed under the normal conditions is subjected to a field emission scanning electron microscope as shown in FIG. As shown in the schematic explanatory diagram in (b), each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal line of the surface polished surface is obtained. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees of the measurement inclination angle is set to a pitch of 0.25 degrees. When the inclination angle number distribution graph is created by dividing each of the areas and counting the frequencies existing in each section, the distribution of the measured inclination angles on the (0001) plane is 0 to 45 degrees as illustrated in FIG. An unbiased inclination angle number distribution graph within the range of.

(a−2)一方、α型Al23層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:6〜10%、CO2:0.1〜1%、HCl:0.3〜3%、H2S:0.5〜1%、Ar:10〜35%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:5〜8kPa、
の条件、すなわち反応ガス組成を調整して上記の通常条件の反応ガス組成とは異なった反応ガス組成とした条件(反応雰囲気の温度および圧力は上記の通常条件と同じ)で形成すると、この結果形成されたα型Al23層(以下、改質層という)は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り5〜8kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の0〜10度の範囲内で変化すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて0〜10度の範囲内に傾斜角区分の最高ピークが現れる改質層は、上記の通常条件形成の標準層に比して、高温硬さの低下はあるが、相対的にすぐれた高温強度を有するようになること。
(A-2) On the other hand, the α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,
Reaction gas composition: volume%, AlCl 3 : 6 to 10%, CO 2 : 0.1 to 1%, HCl: 0.3 to 3%, H 2 S: 0.5 to 1%, Ar: 10 to 10% 35%, H 2 : remaining,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 5 to 8 kPa,
If the reaction gas composition is adjusted to the reaction gas composition different from the reaction gas composition of the above normal conditions (the temperature and pressure of the reaction atmosphere are the same as the above normal conditions), this result is obtained. The formed α-type Al 2 O 3 layer (hereinafter referred to as a modified layer) was also measured using a field emission scanning electron microscope, as shown in FIGS. 1 (a) and 1 (b). The crystal grains having a hexagonal crystal lattice existing therein are irradiated with electron beams, and the normal of the (0001) plane, which is the crystal plane of the crystal grains, is inclined with respect to the normal of the surface polished surface The angle is measured, and the measured inclination angle within the range of 0 to 45 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in the respective sections are totaled. When expressed in the angle distribution graph, as illustrated in FIG. A sharp maximum peak appears at a specific position in the oblique section. According to the test results, when the reaction atmosphere pressure in the chemical vapor deposition apparatus is changed within the range of 5 to 8 kPa as described above, the sharp maximum peak appears. The position changes within the range of 0 to 10 degrees of the inclination angle section, and the total of the frequencies existing in the range of 0 to 10 degrees represents a ratio of 45 to 65% of the entire frequencies in the inclination angle frequency distribution graph. The reformed layer in which the highest peak of the tilt angle section appears in the range of 0 to 10 degrees in the tilt angle number distribution graph as a result is higher in hardness than the standard layer formed under the normal conditions described above. There is a decrease in height, but it has relatively good high-temperature strength.

(b−1)一般に、被覆サーメット工具における硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度で工具基体表面に蒸着され、常温に冷却されることにより形成されるが、常温への冷却過程で、前記工具基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方が相対的に大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留引張応力が高速断続切削加工ではチッピング発生を促進するように作用すること。 (B-1) In general, a hard coating layer in a coated cermet tool is formed by being deposited on the surface of a tool base at a reaction temperature of about 1000 ° C. and cooled to room temperature by a chemical vapor deposition apparatus. In the cooling process, since the thermal expansion coefficient of the hard coating layer is relatively larger than the thermal expansion coefficient of the tool base, tensile stress remains in the hard coating layer. Residual tensile stress in the hard coating layer acts to promote chipping in high-speed intermittent cutting.

(b−2)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、前記工具基体のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図5〜11に前記単一基本形状マークを円形とした場合の実施例で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図5〜7に例示のものは硬質被覆層の層厚が相対的に薄く、図8,9および図10,11に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)でレーザービーム照射模様を形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様の形成によって、高速断続切削加工に際しての硬質被覆層中の残留応力が原因のチッピング発生が著しく抑制されるようになること。 (B-2) On the other hand, a single basic shape mark, for example, a single basic shape mark such as a circle, a triangle, and a quadrangle, or a similar shape thereof, is either one of the rake face and flank face of the tool base, Alternatively, as shown in the embodiment in which the single basic shape mark is circular in FIGS. 5 to 11, for example, as shown in FIGS. Either or both of the aggregate marks of the basic shape marks are distributed (in this case, the examples shown in FIGS. 5 to 7 have a relatively thin hard coating layer, and FIGS. 8 and 9 and FIGS. 10 and 11). (Showing a distribution mode when the layer thickness is increased according to the above), and the single basic shape mark is a digging surface where any one of the constituent layers of the hard coating layer is exposed ( Before this case The depth of the exposed surface of the single basic shape mark is individually adjusted according to the layer thickness of the hard coating layer, but corresponds to 5 to 20% of the layer thickness in order to reduce the residual stress efficiently. If the laser beam irradiation pattern is formed at a depth that is a guideline), the residual stress of the hard coating layer is significantly reduced. By forming this hard coating layer residual stress reduction pattern, high-speed intermittent cutting is performed. The occurrence of chipping due to residual stress in the hard coating layer is significantly suppressed.

(c)したがって、下部層がTi化合物層からなる硬質被覆層の上部層であるα型Al23層を、Al23層全体の平均層厚に占める割合で55〜80%の上記改質層と、残りの上記標準層からなる上下2重層構造とし、表面研磨面の測定で、前記改質層を、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、前記標準層を、0〜45度の範囲の測定傾斜角区分全体に亘ってピークが存在せず、測定傾斜角の分布が不偏的な傾斜角度数分布グラフを示す2重層α型Al23層で構成し、さらに硬質被覆層残留応力低減模様を形成してなる被覆サーメット工具は、前記2重層α型Al23層が、相対的にすぐれた高温強度を有する改質層と高温硬さを有する標準層からなることから、Al23層全体の特性としてすぐれた高温強度と高温硬さを兼ね備えるようになり、かつ前記硬質被覆層残留応力低減模様によって内部に残留する引張応力はきわめて小さなものとなるので、特に高速断続切削条件で切削加工を行っても、上記の硬質被覆層の上部層全体が、上記標準層に相当する(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示す単層α型Al23層で構成された従来被覆サーメット工具に比して、硬質被覆層にチッピングの発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(C) Therefore, the α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer whose lower layer is a Ti compound layer, is 55 to 80% of the total layer thickness of the Al 2 O 3 layer. A top and bottom double layer structure consisting of a modified layer and the rest of the standard layer, and by measuring the surface polished surface, the modified layer has the highest peak in the tilt angle section within the range of 0 to 10 degrees, The inclination angle distribution graph in which the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45 to 65% of the entire frequencies in the inclination angle distribution graph, and the standard layer is set to 0 to 45 degrees. It is composed of a double layer α-type Al 2 O 3 layer showing no inclination angle distribution graph in which there is no peak over the entire measured inclination angle range, and the distribution of the measured inclination angle is unbiased. The coated cermet tool formed with the residual stress reducing pattern is the double Since the α-type Al 2 O 3 layer is composed of a modified layer having relatively high temperature strength and a standard layer having high temperature hardness, it has excellent high temperature strength and high temperature as the characteristics of the entire Al 2 O 3 layer. Since the tensile stress remaining inside is extremely small due to the hard coating layer residual stress reducing pattern, the above hard coating layer can be obtained even when cutting under high-speed intermittent cutting conditions. The entire upper layer of the single layer α-type Al 2 O 3 layer shows an unbiased inclination angle number distribution graph within the range of the measured inclination angle of the (0001) plane corresponding to the standard layer in the range of 0 to 45 degrees. Compared to the conventional coated cermet tool composed of the above, the hard coating layer will exhibit superior wear resistance over a long period of time without the occurrence of chipping.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(a)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、2〜15μmの平均層厚を有するα型Al23層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる被覆サーメット工具において、
上記α型Al23層を、Al23層全体の平均層厚に占める割合で55〜80%の改質層と、残りの標準層からなる上下2重層構造とし、さらに電界放出型走査電子顕微鏡を用い、上記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記α型Al23層の改質層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、
(B)上記α型Al23層の標準層は、0〜45度の範囲の測定傾斜角区分全体に亘ってピークが存在せず、測定傾斜角の分布が不偏的な傾斜角度数分布グラフを示す、
以上(A)および(B)からなる2重層α型Al23層で構成し、
さらに、上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention has been made based on the above research results, and it covers the rake face and flank face of the tool base, and the entire surface of the cutting edge ridge line where these both faces meet.
(A) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm,
(B) an α-type Al 2 O 3 layer having an average layer thickness of 2 to 15 μm as an upper layer;
In the coated cermet tool formed by chemical vapor deposition of the hard coating layer composed of (a) and (b) above,
The α-type Al 2 O 3 layer has an upper and lower double layer structure consisting of 55 to 80% of the modified layer and the remaining standard layer in the ratio of the average layer thickness of the entire Al 2 O 3 layer, and a field emission type Using a scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal of the crystal grain is normal to the surface polished surface. Measuring the inclination angle formed by the normal line of the (0001) plane, and dividing the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles every pitch of 0.25 degrees; When expressed in the slope angle distribution graph, which is the sum of the frequencies existing in each category,
(A) The modified layer of the α-type Al 2 O 3 layer has the highest peak in the tilt angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing in the range of 0 to 10 degrees. Shows an inclination angle number distribution graph occupying a proportion of 45 to 65% of the entire frequency in the inclination angle number distribution graph,
(B) In the standard layer of the α-type Al 2 O 3 layer, there is no peak over the entire measurement inclination angle section in the range of 0 to 45 degrees, and the inclination angle number distribution in which the measurement inclination angle distribution is unbiased. Showing the graph,
It is composed of a double layer α-type Al 2 O 3 layer composed of (A) and (B) above.
Furthermore, either one or both of the rake face and the flank face, or the single basic shape mark and the set mark of the single basic shape mark are distributed over the entire surface of both surfaces, The single basic shape mark is formed by irradiating a laser beam with a hard coating layer residual stress reduction pattern in which any one of the constituent layers of the hard coating layer is exposed.
The hard coating layer is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed intermittent cutting.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には2重層α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層全体の高温強度向上に寄与するほか、工具基体と2重層α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the double-layer α-type Al 2 O 3 layer and contributes to improving the high-temperature strength of the entire hard coating layer by its excellent high-temperature strength. The double-layer α-type Al 2 O 3 layer has a function of firmly adhering to any of the two layers, thereby improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, the above-described effect is sufficiently obtained. On the other hand, if the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed cutting with high heat generation, which causes uneven wear. Was determined to be 3 to 20 μm.

(b)2重層α型Al23層(上部層)
上記の通り、2重層α型Al23層の改質層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、化学蒸着装置における反応雰囲気圧力を、上記の通り5〜8kPaの範囲内で変化させると、傾斜角区分の0〜10度の範囲内で変化すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すようになるものであり(この場合前記反応雰囲気圧力を調整しても65%以上の度数割合を占めるようにすることはできない)、したがって、前記反応雰囲気圧力が前記範囲から低い方に外れても、また高い方に外れても、測定傾斜角の最高ピーク位置は0〜10度の範囲から外れてしまうと共に、これに対応して傾斜角度数分布グラフにおける前記0〜10度の範囲内に存在する度数の割合も度数全体の45%未満となってしまい、所望のすぐれた高温強度を確保することができないものとなる。
また、2重層α型Al23層は、改質層のすぐれた高温強度と標準層のすぐれた高温硬さによって、すぐれた高温強度と高温硬さを具備するようになるが、前記改質層の層厚がAl23層全体の平均層厚に占める割合で55%未満では、所望のすぐれた高温強度を確保することができず、チッピングが発生し易くなり、一方同層厚が同じく80%を越えると、高温硬さが急激に低下し、摩耗進行が加速するようになることから、前記改質層の層厚をAl23層全体の平均層厚に占める割合で55〜80%と定め、残りを前記標準層(上記従来α型Al23層に相当)で占める上下2重層構造とした。
さらに、2重層α型Al23層全体の平均層厚が2μm未満では、これのもつすぐれた特性を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、切刃部にチッピングが発生し易くなることから、その全体平均層厚を2〜15μmと定めた。
(B) Double layer α-type Al 2 O 3 layer (upper layer)
As described above, the highest peak position of the measured tilt angle in the tilt angle number distribution graph of the double layer α-type Al 2 O 3 layer is the reaction atmosphere pressure in the chemical vapor deposition apparatus, as described above, in the range of 5 to 8 kPa. And the sum of the frequencies existing within the range of 0 to 10 degrees is 45 to 65 of the entire frequencies in the tilt angle frequency distribution graph. % Of the inclination angle number distribution graph (in this case, even if the reaction atmosphere pressure is adjusted, it is not possible to occupy a frequency ratio of 65% or more). Regardless of whether the atmospheric pressure is out of the above range or out of the above range, the maximum peak position of the measured inclination angle is out of the range of 0 to 10 degrees, and the inclination angle number distribution is corresponding to this. G The ratio of the frequency existing within the range of 0 to 10 degrees in the rough is also less than 45% of the entire frequency, and the desired excellent high-temperature strength cannot be ensured.
The double-layer α-type Al 2 O 3 layer has excellent high-temperature strength and high-temperature hardness due to the high-temperature strength of the modified layer and the high-temperature hardness of the standard layer. If the layer thickness of the porous layer is less than 55% of the average layer thickness of the entire Al 2 O 3 layer, the desired excellent high-temperature strength cannot be ensured, and chipping is likely to occur. However, if it exceeds 80%, the high-temperature hardness rapidly decreases and the progress of wear accelerates. Therefore, the layer thickness of the modified layer is a ratio of the average layer thickness of the entire Al 2 O 3 layer. The upper and lower double layer structure is defined as 55 to 80%, and the remainder is occupied by the standard layer (corresponding to the conventional α-type Al 2 O 3 layer).
Furthermore, if the average layer thickness of the entire double-layer α-type Al 2 O 3 layer is less than 2 μm, the excellent characteristics of the double layer α-type Al 2 O 3 layer cannot be exhibited sufficiently, while the average layer thickness exceeds 15 μm and becomes too thick. Then, since chipping is likely to occur in the cutting edge portion, the overall average layer thickness is set to 2 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆サーメット工具は、硬質被覆層の上部層を構成する2重層α型Al23層が、すぐれた高温強度と高温硬さを有し、かつ硬質被覆層残留応力低減模様を形成することにより、各種の鋼や鋳鉄などの切削加工を高速で、かつ高い機械的衝撃を伴なう断続切削条件で行っても、前記硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cermet tool of the present invention, the double layer α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer has excellent high temperature strength and high temperature hardness, and forms a hard coating layer residual stress reduction pattern. As a result, even when cutting various steels and cast irons at high speed and under intermittent cutting conditions with high mechanical impact, the hard coating layer has excellent wear resistance without occurrence of chipping. It can be used to further extend the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder was blended in the blending composition shown in Table 1, and then added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚で、Ti化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、表4に示される条件にて、表5に示される組み合わせよび目標層厚で、改質層(a)〜(j)のいずれかと標準層(1)〜(8)のいずれかからなる2重層α型Al23層を硬質被覆層の上部層として蒸着形成し、
(c)さらに、レーザービーム照射装置を用い、上記硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.5mmの円形、
硬質被覆層残留応力低減模様:図5〜11に示される実施模様のうちのいずれかを表5
に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表5に全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. The Ti compound layer is deposited as a lower layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 5 under the conditions shown in FIG.
(B) Next, under the conditions shown in Table 4, any one of the modified layers (a) to (j) and the standard layers (1) to (8) with the combinations and target layer thicknesses shown in Table 5 A double layer α-type Al 2 O 3 layer made of the above is formed by vapor deposition as the upper layer of the hard coating layer,
(C) Furthermore, using a laser beam irradiation device, the hard coating layer,
Laser beam output: 10W
The shape of a single basic shape mark: a circle with a diameter of 0.5 mm,
Hard coating layer residual stress reduction pattern: Table 5 shows any of the implementation patterns shown in FIGS.
Applicable in the combinations shown in
Depth of the exposed surface of the single basic shape mark: the depth shown in Table 5 as a percentage of the total target layer thickness,
The coated cermet tools 1 to 13 of the present invention were produced by forming a hard coating layer residual stress reducing pattern under the conditions described above.

また、比較の目的で、硬質被覆層の上部層である単層α型Al23層を、表4に示される標準層(1)〜(8)の形成条件(上記の通り、前記標準層(1)〜(8)の形成条件は単層α型Al23層の形成条件と同一である)にて、表7に示される組み合わせよび目標層厚で形成し、硬質被覆層残留応力低減模様の形成を行なわない以外は、上記の本発明被覆サーメット工具1〜13と同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, the single layer α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer, is formed on the formation conditions of the standard layers (1) to (8) shown in Table 4 (as described above, the standard The formation conditions of the layers (1) to (8) are the same as the formation conditions of the single-layer α-type Al 2 O 3 layer), with the combinations and target layer thicknesses shown in Table 7, and the hard coating layer remaining Conventional coated cermet tools 1 to 13 were produced under the same conditions as the above-described coated cermet tools 1 to 13 of the present invention except that the stress reduction pattern was not formed.

ついで、上記の本発明被覆サーメット工具1〜13と従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する2重層α型Al23層および単層α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆サーメット工具1〜13の2重層α型Al23層の改質層および標準層について、それぞれの表面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
また、従来被覆サーメット工具1〜13の単層α型Al23層(上記の通り上記標準層(1)〜(8)のいずれかに相当)についても、表面研磨面を同一の条件で観察し、同一条件で傾斜角度数分布グラフを作成した。
Subsequently, the double-layer α-type Al 2 O 3 layer and the single-layer α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above-described coated cermet tool 1 to 13 of the present invention and the conventional coated cermet tool 1 to 13 Using the field emission type scanning electron microscope, an inclination angle number distribution graph was prepared.
That is, the inclination angle number distribution graph shows the modified layer of the double layer α-type Al 2 O 3 layer and the standard layer of the above-described coated cermet tools 1 to 13 in a state where each surface is a polished surface. Set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface is irradiated with 1 nA within the measurement range of each polished surface. By irradiating each crystal grain having an existing hexagonal crystal lattice and using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step with respect to the normal line of the polished surface. The inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees of the measurement inclination angle is calculated. Divide every 0.25 degree pitch In addition, it was created by counting the frequencies existing in each category.
Further, the surface polished surfaces of the conventional coated cermet tools 1 to 13 of the single layer α-type Al 2 O 3 layer (corresponding to any one of the standard layers (1) to (8) as described above) are also subjected to the same conditions. Observed, and created a tilt angle distribution graph under the same conditions.

この結果得られた各種のα型Al23層の傾斜角度数分布グラフにおいて、表5〜7にそれぞれ示される通り、本発明被覆サーメット工具1〜13の2重層α型Al23層の改質層は、(0001)面の測定傾斜角の分布が、それぞれ0〜10度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、本発明被覆サーメット工具1〜13の2重層α型Al23層の標準層、並びに従来被覆サーメット工具1〜13の単層α型Al23層は、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表5〜7には、上記の各種のα型Al23層の傾斜角度数分布グラフにおいて、それぞれ0〜10度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図2,3は、本発明被覆サーメット工具2の2重層α型Al23層の改質層および標準層の傾斜角度数分布グラフ、図4は従来被覆サーメット工具3の単層α型Al23層の傾斜角度数分布グラフである。
In the inclination angle number distribution graphs of the various α-type Al 2 O 3 layers obtained as a result, as shown in Tables 5 to 7, double-layer α-type Al 2 O 3 layers of the coated cermet tools 1 to 13 of the present invention, respectively. The modified layer of (0001) shows a gradient angle distribution graph in which the distribution of the measured inclination angle of the (0001) plane shows the highest peak in the inclination angle section within the range of 0 to 10 degrees, respectively. The standard layer of the double-layer α-type Al 2 O 3 layer of the cermet tools 1 to 13 and the single-layer α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13 have a distribution of measured inclination angles on the (0001) plane. An inclination angle distribution graph that is unbiased within the range of 0 to 45 degrees and does not have the highest peak is shown.
Tables 5 to 7 show the inclination angle numbers of all inclination angle numbers existing in the inclination angle sections in the range of 0 to 10 degrees in the above-mentioned inclination angle number distribution graphs of the various α-type Al 2 O 3 layers. The percentage of the entire distribution graph is shown.
2 and 3 are graphs showing the distribution of inclination angle numbers of the double layer α-type Al 2 O 3 layer and the standard layer of the coated cermet tool 2 of the present invention, and FIG. 4 is a single layer α of the conventional coated cermet tool 3. the inclination angle frequency distribution graph of the mold the Al 2 O 3 layer.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S35Cの長さ方向等間隔2本縦溝入り丸棒、
切削速度:380m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件Aという)での炭素鋼の湿式高速断続切削試験(通常の切削速度は200m/min.)、
被削材:JIS・SNCM439の長さ方向等間隔2本縦溝入り丸棒、
切削速度:360m/min.、
切り込み:2mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件(切削条件Bという)での合金鋼の湿式高速断続切削試験(通常の切削速度は200m/min.)、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件Cという)での鋳鉄の湿式高速断続切削試験(通常の切削速度は200m/min.)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS · S35C lengthwise equal two round bars with longitudinal grooves,
Cutting speed: 380 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 200 m / min.) Of carbon steel under the conditions (referred to as cutting conditions A),
Work material: JIS / SNCM439 two longitudinally-equipped round bars in the longitudinal direction,
Cutting speed: 360 m / min. ,
Cutting depth: 2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 200 m / min.) Of alloy steel under the following conditions (referred to as cutting condition B),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 400 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
The wet high speed intermittent cutting test (normal cutting speed is 200 m / min.) Of cast iron under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

Figure 2007245267
Figure 2007245267

表5〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層である2重層α型Al23層の上下2重層構造の改質層が、(0001)面の傾斜角度数分布グラフで0〜10度の範囲内の傾斜角区分で最高ピークを示し、この結果として相対的にすぐれた高温強度を有し、一方同標準層が相対的にすぐれた高温硬さを保持し、さらに前記硬質被覆層には硬質被覆層残留応力低減模様が形成されることから、鋼や鋳鉄の切削加工を、高速で、かつ高い機械的衝撃を伴なう断続切削条件で行っても、チッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層全体が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示し、前記標準層(a)〜(h)のいずれかに相当する単層α型Al23層で構成され、硬質被覆層残留応力低減模様の形成がない従来被覆サーメット工具1〜13においては、いずれも前記単層α型Al23層の高温強度が不十分であるばかりでなく、前記硬質被覆層中の残留応力が相対的に高いために、高速断続切削条件では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 8, the coated cermet tools 1 to 13 of the present invention each have a double layer α-type Al 2 O 3 layer upper and lower double layer structure modified layer, which is the upper layer of the hard coating layer. The (0001) plane tilt angle number distribution graph shows the highest peak in the tilt angle section in the range of 0 to 10 degrees, and as a result, it has relatively good high-temperature strength, while the same standard layer is relatively It retains excellent high-temperature hardness, and the hard coating layer is formed with a pattern for reducing residual stress in the hard coating layer, so steel and cast iron are machined at high speed with high mechanical impact. Even when performed under intermittent cutting conditions, chipping does not occur and excellent wear resistance is exhibited. On the other hand, the entire upper layer of the hard coating layer has a measured inclination angle distribution on the (0001) plane of 0 to 45 degrees. Inclination number distribution graph that is unbiased within the range and does not have the highest peak The conventional coated cermet tools 1 to 13 are composed of a single α-type Al 2 O 3 layer corresponding to any one of the standard layers (a) to (h) and have no hard coating layer residual stress reducing pattern formed. In both cases, not only the high-temperature strength of the single-layer α-type Al 2 O 3 layer is insufficient but also the residual stress in the hard coating layer is relatively high. It is clear that chipping occurs in the layer, leading to a service life in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高速断続切削でもチッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has excellent wear resistance without occurrence of chipping even in continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons, especially in high-speed interrupted cutting. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfactorily cope with higher performance of the cutting device, labor saving and energy saving of cutting, and lower cost.

硬質被覆層を構成するα型Al23層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of the case of measuring the crystal grain of the α-type the Al 2 O 3 layer constituting the hard coating layer (0001) plane. 本発明被覆サーメット工具2の硬質被覆層を構成する2重層α型Al23層の改質層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the modified layer of the double layer α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 本発明被覆サーメット工具2の硬質被覆層を構成する2重層α型Al23層の標準層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the standard layer of the double layer α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 従来被覆サーメット工具3の硬質被覆層を構成する単層α型Al23層(標準層に相当)の(0001)面の傾斜角度数分布グラフである。4 is an inclination angle number distribution graph of a (0001) plane of a single-layer α-type Al 2 O 3 layer (corresponding to a standard layer) constituting a hard coating layer of a conventional coated cermet tool 3. 実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。It is a schematic perspective view of this invention coating cutting tip which formed the hard coating layer residual stress reduction pattern as an Example by laser beam irradiation formation. 図5以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 6 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIG. 5 is formed by laser beam irradiation. 図5,6以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 7 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図5〜7以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 8 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図5〜8以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 9 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 図5〜9以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 10 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図5〜10以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 11 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、、
(a)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着した状態でα型の結晶構造を有し、かつ2〜15μmの平均層厚を有するα型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる表面被覆サーメット製切削工具において、
上記α型酸化アルミニウム層を、酸化アルミニウム層全体の平均層厚に占める割合で55〜80%の改質層と、残りの標準層からなる上下2重層構造とし、さらに電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記α型酸化アルミニウム層の改質層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、
(B)上記α型酸化アルミニウム層の標準層は、0〜45度の範囲の測定傾斜角区分全体に亘ってピークが存在せず、測定傾斜角の分布が不偏的な傾斜角度数分布グラフを示す、
以上(A)および(B)からなる2重層α型酸化アルミニウム層で構成し、
さらに、上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
Over the rake face and flank face of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and further across the entire surface of the cutting edge ridge line where these both sides intersect,
(A) As a lower layer, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer, and has an overall average of 3 to 20 μm A Ti compound layer having a layer thickness,
(B) an α-type aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state and an average layer thickness of 2 to 15 μm as an upper layer;
In the surface-coated cermet cutting tool formed by chemical vapor deposition of the hard coating layer composed of (a) and (b) above,
The α-type aluminum oxide layer has an upper and lower double layer structure consisting of 55 to 80% of the modified layer and the remaining standard layer in the ratio of the average thickness of the entire aluminum oxide layer, and a field emission scanning electron microscope. The crystal grain of the crystal grain is used with respect to the normal of the surface polished surface by irradiating each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface with an electron beam (0001 ) Measure the tilt angle formed by the normal of the surface, and divide the measured tilt angle within the range of 0-45 degrees out of the measured tilt angle by pitch of 0.25 degrees and exist in each section When it is shown in the inclination angle frequency distribution graph obtained by counting the frequencies to be
(A) In the modified layer of the α-type aluminum oxide layer, the highest peak is present in the tilt angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is The inclination angle number distribution graph which occupies the ratio of 45 to 65% of the whole frequency in the inclination angle number distribution graph is shown.
(B) The standard layer of the α-type aluminum oxide layer has an inclination angle number distribution graph in which no peak exists over the entire measurement inclination angle range of 0 to 45 degrees and the distribution of the measurement inclination angle is unbiased. Show,
It is composed of a double layer α-type aluminum oxide layer composed of (A) and (B) above.
Furthermore, either one or both of the rake face and the flank face, or the single basic shape mark and the set mark of the single basic shape mark are distributed over the entire surface of both surfaces, The single basic shape mark was formed by irradiating a laser beam with a hard coating layer residual stress reduction pattern in which any one of the constituent layers of the hard coating layer was exposed.
A surface-coated cermet cutting tool with a hard coating layer that features excellent chipping resistance in high-speed intermittent cutting.
JP2006070233A 2006-03-15 2006-03-15 Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting Withdrawn JP2007245267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070233A JP2007245267A (en) 2006-03-15 2006-03-15 Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070233A JP2007245267A (en) 2006-03-15 2006-03-15 Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting

Publications (1)

Publication Number Publication Date
JP2007245267A true JP2007245267A (en) 2007-09-27

Family

ID=38590087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070233A Withdrawn JP2007245267A (en) 2006-03-15 2006-03-15 Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting

Country Status (1)

Country Link
JP (1) JP2007245267A (en)

Similar Documents

Publication Publication Date Title
JP4747324B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2009006427A (en) Surface coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP4530141B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP2007160464A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2007185751A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting material hard to work
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP2005246596A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2007245267A (en) Coated cermet cutting tool having hard coating layer exerting excellent anti-chipping performance in high-speed, intermittent cutting
JP2006315149A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2005246598A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2005279915A (en) Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer
JP2006043802A (en) Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting
JP4692065B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602