JP2007237309A - 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 - Google Patents
高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 Download PDFInfo
- Publication number
- JP2007237309A JP2007237309A JP2006061333A JP2006061333A JP2007237309A JP 2007237309 A JP2007237309 A JP 2007237309A JP 2006061333 A JP2006061333 A JP 2006061333A JP 2006061333 A JP2006061333 A JP 2006061333A JP 2007237309 A JP2007237309 A JP 2007237309A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- degrees
- hard coating
- inclination angle
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
【課題】高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具を提供する。
【解決手段】硬質被覆層のTiCN層およびα型Al2O3層が、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子および六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面および{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を区分し、各区分内の度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、かつ硬質被覆層残留応力低減模様を有する。
【選択図】図3
【解決手段】硬質被覆層のTiCN層およびα型Al2O3層が、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子および六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面および{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を区分し、各区分内の度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、かつ硬質被覆層残留応力低減模様を有する。
【選択図】図3
Description
この発明は、特に各種の鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
従来、一般に、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(1)下部層が、いずれも化学蒸着形成または物理蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜14μmの平均層厚を有する酸化アルミニウム(以下、α型Al2O3で示す)層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、被覆サーメット工具が知られており、この被覆サーメット工具は、各種の鋼や鋳鉄などの被削材の連続切削や断続切削に用いられている。
特開平6−31503号公報
(1)下部層が、いずれも化学蒸着形成または物理蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜14μmの平均層厚を有する酸化アルミニウム(以下、α型Al2O3で示す)層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、被覆サーメット工具が知られており、この被覆サーメット工具は、各種の鋼や鋳鉄などの被削材の連続切削や断続切削に用いられている。
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、特にこれを切削条件の厳しい高速断続切削加工、すなわち切刃部にきわめて速いピッチで機械的熱的衝撃の加わる高速断続切削加工に用いた場合、硬質被覆層を構成するTi化合物層は相対的に高い高温強度を有し、かつα型Al2O3層は、相対的に高温硬さおよび耐熱性にすぐれるものの、特に前記α型Al2O3層の高温強度不足は著しく、また前記Ti化合物層においても前記高速断続切削加工に十分満足に対応できる高温強度を具備するものではなく、さらに前記硬質被覆層には、層形成時の冷却過程で発生する引張応力が残留することと相俟って、硬質被覆層にチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、上記の従来被覆サーメット工具の硬質被覆層を構成する、特にTi化合物層のうちのTiCN層(以下、従来TiCN層という)およびα型Al2O3層(以下、従来Al2O3層という)に着目し、これ両層の高温強度を一段と向上させ、さらに前記硬質被覆層の残留圧縮応力の低減を図り、もって高速断続切削加工条件でチッピング発生のない被覆サーメット工具を開発すべく研究を行った結果、
(A−a)上記の従来TiCN層は、通常の化学蒸着装置にて、
反応ガス組成−体積%で、TiCl4:2〜10%、CH3CN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来TiCN層の形成に先だって、
反応ガス組成−体積%で、TiCl4:0.2〜1%、C3H6(メチルエチレン):1〜5%、N2:20〜40%、H2:残り、
反応雰囲気温度:700〜800℃、
反応雰囲気圧力:3〜13kPa、
成膜時間:0.5〜3時間、
の条件で、望ましくは0.02〜0.5μmの平均層厚で種薄膜としてのTiCN薄膜(以下、TiCN種薄膜という)を形成し、このTiCN種薄膜の上に上記の従来TiCN層の形成条件と同じ条件でTiCN層を形成すると、形成時の前記TiCN層は、前記TiCN種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたTiCN層(以下、履歴TiCN層という)は、上記の従来TiCN層に比して、一段とすぐれた高温強度を有し、すぐれた耐機械的熱的衝撃性を具備するようになること。
(A−a)上記の従来TiCN層は、通常の化学蒸着装置にて、
反応ガス組成−体積%で、TiCl4:2〜10%、CH3CN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来TiCN層の形成に先だって、
反応ガス組成−体積%で、TiCl4:0.2〜1%、C3H6(メチルエチレン):1〜5%、N2:20〜40%、H2:残り、
反応雰囲気温度:700〜800℃、
反応雰囲気圧力:3〜13kPa、
成膜時間:0.5〜3時間、
の条件で、望ましくは0.02〜0.5μmの平均層厚で種薄膜としてのTiCN薄膜(以下、TiCN種薄膜という)を形成し、このTiCN種薄膜の上に上記の従来TiCN層の形成条件と同じ条件でTiCN層を形成すると、形成時の前記TiCN層は、前記TiCN種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたTiCN層(以下、履歴TiCN層という)は、上記の従来TiCN層に比して、一段とすぐれた高温強度を有し、すぐれた耐機械的熱的衝撃性を具備するようになること。
(A−b)上記の被覆サーメット工具の硬質被覆層の下部層を構成する従来TiCN層と履歴TiCN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図5に例示される通り、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記履歴TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さが上記TiCN種薄膜形成時の反応雰囲気温度および反応雰囲気圧力によって変化し、グラフ横軸の傾斜角区分位置が同じく反応ガスのTiCl4含有量によって変化すること。
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図5に例示される通り、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記履歴TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さが上記TiCN種薄膜形成時の反応雰囲気温度および反応雰囲気圧力によって変化し、グラフ横軸の傾斜角区分位置が同じく反応ガスのTiCl4含有量によって変化すること。
(A−c)上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.2〜1%とすることにより、上記履歴TiCN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、反応雰囲気温度を700〜800℃、反応雰囲気圧力を3〜13kPaとすることにより、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、TiCl4の含有量が0.2%未満でも、またその含有量が1%を越えても、いずれの場合も上記履歴TiCN層の傾斜角度数分布グラフで、最高ピークの傾斜角区分位置が10度を越えた位置に現れるようになり、この結果前記履歴TiCN層に一段のすぐれた高温強度を確保することができなくなり、また、反応雰囲気温度および反応雰囲気圧力に関しては、温度が700℃未満でも、800℃を越えても、さらに圧力が3kPa未満でも、13kPaを越えても、前記履歴TiCN層の傾斜角度数分布グラフにおける0〜10度の範囲内に存在する度数数割合が45%未満になってしまい、この場合も一段の高温強度の向上を図ることができないこと。
(B−a)上記の従来Al2O3層は、通常の化学蒸着装置にて、
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:0.5〜10%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来Al2O3層の形成に先だって、
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:5〜10%、HCl:0.3〜3%、CH3CN:0.02〜0.1%、NO:0.02〜0.4%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:3〜13kPa、
成膜時間:0.5〜2時間、
の条件で、望ましくは0.02〜0.5μmの平均層厚で種薄膜としてのAl2O3薄膜(以下、Al2O3種薄膜という)を形成し、このAl2O3種薄膜の上に上記の従来Al2O3層の形成条件と同じ条件でα型Al2O3層を形成すると、形成時の前記α型Al2O3層は、前記Al2O3種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたα型Al2O3層(以下、履歴Al2O3層という)は、α型Al2O3層自身が具備するすぐれた高温硬さおよび耐熱性を損なうことなく、上記の従来Al2O3層に比して、一段とすぐれた高温強度を具備するようになること。
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:0.5〜10%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来Al2O3層の形成に先だって、
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:5〜10%、HCl:0.3〜3%、CH3CN:0.02〜0.1%、NO:0.02〜0.4%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:3〜13kPa、
成膜時間:0.5〜2時間、
の条件で、望ましくは0.02〜0.5μmの平均層厚で種薄膜としてのAl2O3薄膜(以下、Al2O3種薄膜という)を形成し、このAl2O3種薄膜の上に上記の従来Al2O3層の形成条件と同じ条件でα型Al2O3層を形成すると、形成時の前記α型Al2O3層は、前記Al2O3種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたα型Al2O3層(以下、履歴Al2O3層という)は、α型Al2O3層自身が具備するすぐれた高温硬さおよび耐熱性を損なうことなく、上記の従来Al2O3層に比して、一段とすぐれた高温強度を具備するようになること。
(B−b)上記(a)の履歴Al2O3層および従来Al2O3層について、電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有するAl2O3結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来Al2O3層は、図6に例示される通り、{0001}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記履歴Al2O3層は、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さが上記Al2O3種薄膜形成時の反応雰囲気温度および反応雰囲気圧力によって変化し、グラフ横軸の傾斜角区分位置が同じく反応ガスのCH3CN含有量によって変化すること。
(B−c)上記の通り、上記Al2O3種薄膜形成に際して、上記反応ガスにおけるCH3CNの含有量を0.02〜0.1%とすることにより、上記履歴Al2O3層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、反応雰囲気温度を800〜900℃、反応雰囲気圧力を3〜13kPaとすることにより、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、CH3CNの含有量が0.02%未満でも、またその含有量が0.1%を越えても、上記履歴TiCN層の傾斜角度数分布グラフで、最高ピークの傾斜角区分位置が10度を越えた位置に現れるようになり、この結果前記履歴Al2O3層に所望のすぐれた高温強度を確保することができなくなり、また、反応雰囲気温度および反応雰囲気圧力に関しては、温度が800℃未満でも、また900℃を越えても、さらに圧力が3kPa未満でも、また13kPaを越えても、いずれも場合も前記履歴Al2O3層の傾斜角度数分布グラフにおける0〜10度の範囲内に存在する度数割合が45%未満になってしまい、高温強度に所望の向上効果が得られないこと。
(C−1)通常、上記の従来被覆サーメット工具における硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度で工具基体表面に蒸着され、常温に冷却されることにより形成されるが、常温への冷却過程で、前記工具基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方がきわめて大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留圧縮応力が高速断続切削加工ではチッピング発生を促進するように作用すること。
(C−2)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、前記工具基体のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図7〜13に前記単一基本形状マークを円形とした場合の実施例で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図7〜9に例示のものは硬質被覆層の層厚が相対的に薄く、図10,11および図12,13に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)でレーザービーム照射模様を形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様の形成によって、高速断続切削加工に際しての硬質被覆層中の残留応力が原因のチッピング発生が著しく抑制されるようになること。
(D)以上の通り、硬質被覆層の上部層が上記履歴Al2O3層で構成され、かつ下部層のうちの1層が上記履歴TiCN層からなるTi化合物層で構成され、さらに硬質被覆層残留応力低減模様が形成された被覆サーメット工具は、特に切刃部にきわめて速いピッチで機械的熱的衝撃が加わる高速断続切削加工でも、前記硬質被覆層が著しくすぐれた高温強度を具備し、かつ引張残留応力のきわめて低いものとなることから、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること
以上(A)〜(D)に示される研究結果を得たのである。
以上(A)〜(D)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(1)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層が、1〜14μmの平均層厚を有するα型Al2O3層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、被覆サーメット製切削工具において、
(A)上記(1)のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す履歴TiCN層、
(B)上記のα型Al2O3層を、化学蒸着形成した状態で、同じくα型の結晶構造を示し、かつ電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す履歴Al2O3層、
で構成し、
(C)さらに、上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
(1)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層が、1〜14μmの平均層厚を有するα型Al2O3層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、被覆サーメット製切削工具において、
(A)上記(1)のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す履歴TiCN層、
(B)上記のα型Al2O3層を、化学蒸着形成した状態で、同じくα型の結晶構造を示し、かつ電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す履歴Al2O3層、
で構成し、
(C)さらに、上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(A)下部層
(a)Ti化合物層
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層である履歴Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(A)下部層
(a)Ti化合物層
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層である履歴Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(b)履歴TiCN層
上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.2〜1%とすることにより、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、反応雰囲気温度を700〜800℃、反応雰囲気圧力を3〜13kPaとすることにより、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す履歴TiCN層が形成されるようになり、この結果として前記履歴TiCN層はさらに一段とすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.2〜1%とすることにより、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、反応雰囲気温度を700〜800℃、反応雰囲気圧力を3〜13kPaとすることにより、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す履歴TiCN層が形成されるようになり、この結果として前記履歴TiCN層はさらに一段とすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B)上部層(履歴Al2O3層)
履歴Al2O3層は、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、この結果すぐれた高温強度を具備し、耐チッピング性の向上が図られるようになる外、Al2O3層自身のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が14μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜14μmと定めた。
履歴Al2O3層は、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、この結果すぐれた高温強度を具備し、耐チッピング性の向上が図られるようになる外、Al2O3層自身のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が14μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜14μmと定めた。
この発明の被覆サーメット工具は、上記の従来被覆サーメット工具の硬質被覆層の下部層を構成するTi化合物層のうちの1層であるTiCN層および上部層であるα型Al2O3層を、上記の通りいずれも高温強度が一段と向上した履歴TiCN層および履歴Al2O3層で構成し、さらに硬質被覆層残留応力低減模様を形成することにより、特に切刃部にきわめて速いピッチで機械的熱的衝撃の加わる鋼や鋳鉄などの高速断続切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を発揮するようにしたものである。
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
つぎに、これらの工具基体の表面に、通常の化学蒸着装置を用い、表3に示される条件にて、硬質被覆層の下部層としてTi化合物層を形成し、この場合、前記Ti化合物層のうちの履歴TiCN層を形成するに際しては、まず表4に示される条件、すなわち試験結果に基づいて定められた目標履歴TiCN層に対する種薄膜a〜kの条件でTiCN種薄膜を形成し、引続いて、上記の通り表3に示される従来TiCN層の形成条件と同じ条件で履歴TiCN層を、表6に示される組み合わせおよび目標層厚で蒸着形成し、
ついで、まず表5に示される条件、すなわち試験結果に基づいて定められた目標履歴Al2O3層に対する種薄膜A〜Kの条件でAl2O3種薄膜を表6に示される組み合わせで形成し、引続いて、上記の通り表3に示される従来Al2O3層の形成条件と同じ条件で履歴Al2O3層を、上部層として表6に示される組み合わせおよび目標層厚で蒸着形成し、
さらに、レーザービーム照射装置を用い、上記硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.5mmの円形、
硬質被覆層残留応力低減模様:図7〜13に示される実施模様のうちのいずれかを表6に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表6に全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
ついで、まず表5に示される条件、すなわち試験結果に基づいて定められた目標履歴Al2O3層に対する種薄膜A〜Kの条件でAl2O3種薄膜を表6に示される組み合わせで形成し、引続いて、上記の通り表3に示される従来Al2O3層の形成条件と同じ条件で履歴Al2O3層を、上部層として表6に示される組み合わせおよび目標層厚で蒸着形成し、
さらに、レーザービーム照射装置を用い、上記硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.5mmの円形、
硬質被覆層残留応力低減模様:図7〜13に示される実施模様のうちのいずれかを表6に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表6に全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
また、比較の目的で、表7に示される通り、TiCN種薄膜およびAl2O3種薄膜の形成を行なわずに、表3に示される条件で従来TiCN層および従来Al2O3層の形成を行ない、かつ硬質被覆層残留応力低減模様の形成を行なわない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する履歴TiCN層および従来TiCN層、さらに履歴Al2O3層および従来Al2O3層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の履歴TiCN層および従来TiCN層、さらに履歴Al2O3層および従来Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子(TiCN)または六方晶結晶格子(Al2O3)を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面(TiCN層)または{0001}面(Al2O3層)の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
すなわち、上記傾斜角度数分布グラフは、上記の履歴TiCN層および従来TiCN層、さらに履歴Al2O3層および従来Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子(TiCN)または六方晶結晶格子(Al2O3)を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面(TiCN層)または{0001}面(Al2O3層)の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
この結果得られた各種の履歴TiCN層および従来TiCN層、さらに各種の履歴Al2O3層および従来Al2O3層の傾斜角度数分布グラフにおいて、{112}面または{0001}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表8,9にそれぞれ示した。
上記の各種の傾斜角度数分布グラフにおいて、表8,9にそれぞれ示される通り、本発明被覆サーメット工具の履歴TiCN層および履歴Al2O3層は、いずれも{112}面および{0001}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層および従来Al2O3層は、いずれも{112}面および{0001}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図3,4は、本発明被覆サーメット工具7の履歴TiCN層および履歴Al2O3層の傾斜角度数分布グラフ、図5,6は、従来被覆サーメット工具7の従来TiCN層および従来Al2O3層の傾斜角度数分布グラフをそれぞれ示すものである。
なお、図3,4は、本発明被覆サーメット工具7の履歴TiCN層および履歴Al2O3層の傾斜角度数分布グラフ、図5,6は、従来被覆サーメット工具7の従来TiCN層および従来Al2O3層の傾斜角度数分布グラフをそれぞれ示すものである。
さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層のTi化合物層とAl2O3層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SCr420Hの長さ方向等間隔2本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.5mm、
送り:0.35mm/rev、
切削時間:10分、
の条件(切削条件Bという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:2mm、
送り:0.35mm/rev、
切削時間:10分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
被削材:JIS・SCr420Hの長さ方向等間隔2本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.5mm、
送り:0.35mm/rev、
切削時間:10分、
の条件(切削条件Bという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:2mm、
送り:0.35mm/rev、
切削時間:10分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
表6〜10に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の下部層のTi化合物層のうちの1層および上部層が、それぞれ前記下部層のうちの1層にあっては{112}面、さらに上記上部層にあっては{0001}面の傾斜角がいずれも0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示す履歴TiCN層および履歴Al2O3層で構成され、さらに前記硬質被覆層には硬質被覆層残留応力低減模様が形成され、切刃部にきわめて速いピッチで機械的熱的衝撃の加わる高速断続切削加工でも、前記履歴TiCN層および履歴Al2O3層のいずれもが一段とすぐれた高温強度を具備し、かつ、前記硬質被覆層中の引張残留応力がきわめて低い状態にあることから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のTi化合物層のうちの1層および上部層が、それぞれ前記下部層のうちの1層にあっては{112}面、さらに上記上部層にあっては{0001}面の測定傾斜角の分布がいずれも0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層および従来Al2O3層で構成され、さらに前記硬質被覆層には硬質被覆層残留応力低減模様の形成がない従来被覆サーメット工具1〜13においては、いずれも高速断続切削加工では硬質被覆層の高温強度が不十分であるばかりでなく、前記硬質被覆層中の残留応力が相対的に高いために、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に切刃部にきわめて速いピッチで機械的熱的衝撃の加わる高速断続切削加工でも、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
Claims (1)
- 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(1)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着形成した状態でα型の結晶構造および1〜14μmの平均層厚を有する酸化アルミニウム層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削工具において、
(A)上記(1)のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す炭窒化チタン層、
(B)上記(2)の酸化アルミニウム層を、化学蒸着形成した状態で、同じくα型の結晶構造を示し、かつ電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す酸化アルミニウム層、
で構成し、
(C)さらに、上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006061333A JP2007237309A (ja) | 2006-03-07 | 2006-03-07 | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006061333A JP2007237309A (ja) | 2006-03-07 | 2006-03-07 | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007237309A true JP2007237309A (ja) | 2007-09-20 |
Family
ID=38583340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006061333A Withdrawn JP2007237309A (ja) | 2006-03-07 | 2006-03-07 | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007237309A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015047643A (ja) * | 2013-08-29 | 2015-03-16 | 三菱マテリアル株式会社 | 耐チッピング性にすぐれた表面被覆切削工具 |
-
2006
- 2006-03-07 JP JP2006061333A patent/JP2007237309A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015047643A (ja) * | 2013-08-29 | 2015-03-16 | 三菱マテリアル株式会社 | 耐チッピング性にすぐれた表面被覆切削工具 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518260B2 (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4747324B2 (ja) | 硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4518259B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5023839B2 (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP6139057B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5326845B2 (ja) | 高速断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5240668B2 (ja) | 硬質合金鋼の高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2007167987A (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4756453B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4466848B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5029099B2 (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP5023896B2 (ja) | 表面被覆切削工具 | |
JP4793749B2 (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2006198740A (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4811787B2 (ja) | 硬質被覆層の改質κ型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具 | |
JP2006315154A (ja) | 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2007237309A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4747338B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2007160464A (ja) | 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2007185751A (ja) | 難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2008168419A (ja) | 重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4793629B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4894406B2 (ja) | 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2005279915A (ja) | 硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具 | |
JP5019257B2 (ja) | 表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090512 |