JP2007224446A - Melt spinning apparatus and method - Google Patents

Melt spinning apparatus and method Download PDF

Info

Publication number
JP2007224446A
JP2007224446A JP2006046280A JP2006046280A JP2007224446A JP 2007224446 A JP2007224446 A JP 2007224446A JP 2006046280 A JP2006046280 A JP 2006046280A JP 2006046280 A JP2006046280 A JP 2006046280A JP 2007224446 A JP2007224446 A JP 2007224446A
Authority
JP
Japan
Prior art keywords
cooling air
air blowing
cooling
resin
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046280A
Other languages
Japanese (ja)
Other versions
JP4760441B2 (en
JP2007224446A5 (en
Inventor
Kenji Ito
憲司 伊藤
Shuichi Kawasaki
秀一 川崎
Naoyuki Kinoshita
直之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006046280A priority Critical patent/JP4760441B2/en
Publication of JP2007224446A publication Critical patent/JP2007224446A/en
Publication of JP2007224446A5 publication Critical patent/JP2007224446A5/ja
Application granted granted Critical
Publication of JP4760441B2 publication Critical patent/JP4760441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melt spinning apparatus and method with which a yarn having excellent uniformity ratio of illuminance is obtained. <P>SOLUTION: A melt spinning apparatus having a spinneret with annularly arranged spinning holes and a cooling cylinder with a cooling air blowing part 8 equipped with a plurality of air blasting holes arranged inside a resin spun from the annularly arranged spinning holes below the spinneret is used, cooling air is blown out from the cooling cylinder so as to make the air velocity distribution of the cooling air at the cooling air blowing part satisfy relational expression represented by formula V<SB>jmax</SB>≤25.0 (m/sec) ¾V<SB>a</SB>-V<SB>j</SB>¾<0.14×V<SB>a</SB>(V<SB>j</SB>is an air velocity V<SB>jmax</SB>at an arbitrary part in a range of ≥5% and <70% of the whole length of the cooling air blowing part from the highest part in a resin traveling direction of the cooling air blowing part; V<SB>jmax</SB>is the maximum of V<SB>j</SB>and V<SB>a</SB>is an average air velocity at a part in a range of ≥5% and <70% of the whole length of the cooling air blowing part from the highest part in the resin traveling direction of the cooling air blowing part) and a melt spun resin is solidified. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紡糸口金の下方中心部に設けられ冷却風を供給する冷却筒を有する溶融紡糸装置およびそれを用いた溶融紡糸方法に関するものであり、さらに詳しくは、均斉度の優れた単糸繊度1.5dtex以下の極細マルチフィラメント(以後極細糸という)を得るにあたって好適に用いることが可能な溶融紡糸装置およびそれを用いた溶融紡糸方法に関するものである。   The present invention relates to a melt spinning apparatus having a cooling cylinder that is provided at a lower center portion of a spinneret and supplies cooling air, and a melt spinning method using the same, and more specifically, a single yarn fineness having excellent uniformity. The present invention relates to a melt spinning apparatus that can be suitably used for obtaining an ultrafine multifilament of 1.5 dtex or less (hereinafter referred to as ultrafine yarn) and a melt spinning method using the melt spinning apparatus.

紡糸口金の下方中心部に冷却風を供給する冷却筒を設けた溶融紡糸装置は、たとえば特許文献1に紹介されている。しかし、この文献に記載の装置では紡糸直後の未固化のポリマーに速度の速い冷却風が当たり、糸揺れを発生しやすく、むしろ糸条の均斉度を悪化させ易いという問題がある。とくに比表面積の大きい単糸繊度1.5dtex以下の極細糸を紡糸する場合は、糸揺れが大きくなり、糸条の繊度斑が発生し、これに起因する染め斑や糸品質斑を発生させ易い。   A melt spinning apparatus provided with a cooling cylinder for supplying cooling air to the central portion below the spinneret is introduced in, for example, Patent Document 1. However, in the apparatus described in this document, there is a problem that a fast cooling air hits an unsolidified polymer immediately after spinning, and yarn swinging is likely to occur, rather the yarn uniformity is easily deteriorated. In particular, when spinning a very fine yarn having a large specific surface area and having a single yarn fineness of 1.5 dtex or less, the yarn sway is increased, and fineness of the yarn is generated.

また、特許文献2、3には、冷却筒より吐出される冷却風の冷却筒長手方向の速度分布をコントロールする方法が開示されている。しかし、これら文献に記載の方法は、いずれも冷却筒長手方向に冷却風速が斬減もしくは斬増するため冷却風の過不足が生じ易く、糸条を安定して冷却する事が難しいという問題があり、結果的に均斉度の優れた糸条を得ることは困難である。
特開昭52-15615号公報 特開昭61-174411号公報 特開昭63-219612号公報
Patent Documents 2 and 3 disclose a method of controlling the velocity distribution in the longitudinal direction of the cooling cylinder of the cooling air discharged from the cooling cylinder. However, each of the methods described in these documents has a problem that the cooling air speed is reduced or increased in the longitudinal direction of the cooling cylinder, so that the cooling air is likely to be excessive or insufficient, and it is difficult to stably cool the yarn. As a result, it is difficult to obtain a yarn with excellent uniformity.
Japanese Patent Laid-Open No. 52-15615 JP 61-174411 A JP 63-219612 JP

本発明は上述した問題点を解決するためになされたものであり、均斉度の優れた糸条を製造できる溶融紡糸装置および溶融紡糸方法を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a melt spinning apparatus and a melt spinning method capable of producing a yarn having excellent uniformity.

上記目的を達成するための本発明は、次の構成からなる。すなわち、
(1)紡糸孔が環状に配置された紡糸口金と、紡糸口金の下方で、かつ、環状に配置された紡糸孔から紡糸される熱可塑性樹脂よりも内側に配設される冷却筒とを備えた溶融紡糸装置であって、冷却筒は、複数個の送風孔を有する冷却風吹出部を有し、かつ、冷却風吹出部での冷却風の風速分布が以下の関係式を満たすものであることを特徴とする溶融紡糸装置。
In order to achieve the above object, the present invention has the following configuration. That is,
(1) A spinneret in which the spinning holes are arranged annularly, and a cooling cylinder arranged below the spinneret and inside the thermoplastic resin spun from the annularly arranged spinning holes. In the melt spinning apparatus, the cooling cylinder has a cooling air blowing portion having a plurality of blowing holes, and the air velocity distribution of the cooling air in the cooling air blowing portion satisfies the following relational expression. A melt spinning apparatus characterized by that.

Vjmax≦25.0 (m/sec)
│Va- Vj│<0.14×Va
ただし、
Vjは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における任意の部分での風速
Vjmaxは、Vjの最大値
Vaは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における部分での平均風速
(2)冷却筒は、冷却風流路の、冷却風流れ方向に関して送風孔よりも上流側で、かつ、冷却風流れ方向に交差する方向全域にわたって設けられた多孔性部材を有している、上記(1)記載の溶融紡糸装置。
(3)紡糸孔が環状に配置された紡糸口金と、紡糸口金の下方で、かつ、環状に配置された紡糸孔から紡糸される樹脂よりも内側に配設された、複数個の送風孔を有する冷却風吹出部を有する冷却筒とを備えた溶融紡糸装置を用い、冷却風吹出部での冷却風の風速分布が以下の関係式を満たすように冷却筒から冷却風を吹き出して、溶融紡糸した樹脂を固化することを特徴とする溶融紡糸方法。
V jmax ≦ 25.0 (m / sec)
│V a -V j │ <0.14 × V a
However,
V j is the wind speed at any part in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
V jmax is the maximum value of V j
V a is the average wind speed in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction. The melt spinning apparatus according to (1), wherein the melt spinning apparatus includes a porous member provided on an upstream side of the air blowing hole with respect to the flow direction and over the entire direction intersecting the cooling air flow direction.
(3) A spinneret in which the spinning holes are arranged annularly, and a plurality of blower holes arranged below the spinneret and inside the resin spun from the annularly arranged spinning holes. Using a melt spinning apparatus equipped with a cooling cylinder having a cooling air blowing portion and blowing the cooling air from the cooling cylinder so that the wind speed distribution of the cooling air in the cooling air blowing portion satisfies the following relational expression, and melt spinning: A melt spinning method characterized by solidifying the obtained resin.

Vjmax≦25.0 (m/sec)
│Va- Vj│<0.14×Va
ただし、
Vjは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における任意の部分での風速
Vjmaxは、Vjの最大値
Vaは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における部分での平均風速
ここで、「冷却風吹出部」とは、紡糸口金から吐出された熱可塑性樹脂に冷却風を供給する冷却筒の最も下流側の箇所で、送風孔が設けられている部分全体をいう。
V jmax ≦ 25.0 (m / sec)
│V a -V j │ <0.14 × V a
However,
V j is the wind speed at any part in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
V jmax is the maximum value of V j
V a is the average wind speed in the range of 5% to less than 70% of the total length of the cooling air blowing part from the uppermost end in the resin running direction of the cooling air blowing part. Here, “cooling air blowing part” means the spinneret The part where the ventilation hole is provided in the most downstream location of the cooling cylinder which supplies the cooling air to the thermoplastic resin discharged from is said.

また、複数個の紡糸孔が「環状」に設置されるとは、吐出される複数本のフィラメントの内側に冷却筒を配置できる空隙が形成される程度に複数孔の紡糸孔が設置されている状態をいう。   In addition, a plurality of spinning holes are provided in an “annular” manner, in which a plurality of spinning holes are provided to such an extent that a gap is formed inside the plurality of discharged filaments so that a cooling cylinder can be disposed. State.

本発明によれば、冷却筒から吹き出される冷却風の冷却風吹出部での風速分布が、樹脂走行方向において一定の関係式、
Vjmax≦25.0 (m/sec)
│Va- Vj│<0.14×Va
ただし、
Vjは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における任意の部分での風速
Vjmaxは、Vjの最大値
Vaは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における部分での平均風速
を満たすので、紡糸孔から吐出された樹脂は、上記雰囲気下で冷却固化される。すなわち、紡糸口金から吐出された樹脂が固化していない上流側の領域では、その樹脂をはげしく揺らさない程度に冷却風を吹き付け、樹脂が固化し始めてから十分冷却されるまでの下流側の領域では一定範囲内の風速の冷却風を吹き付けることで、樹脂走行方向に均一な冷却を行い、結果、均斉度の優れた糸条を得ることが可能となる。さらに本発明の溶融紡糸装置や溶融紡糸方法により生産された糸条を使用して布帛を生産する場合には、織り、編み段、染色斑等の少ない高品位の布帛を得ることができる。
According to the present invention, the wind speed distribution in the cooling air blowing portion of the cooling air blown from the cooling cylinder is a constant relational expression in the resin running direction,
V jmax ≦ 25.0 (m / sec)
│V a -V j │ <0.14 × V a
However,
V j is the wind speed at any part in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
V jmax is the maximum value of V j
V a because meet average wind speed at the portion in the range of 5% to less than 70% of the cooling air blow BBW entire length from the resin running direction uppermost end of the cooling air blow chubby, resin discharged from the spinning holes, the It is cooled and solidified under an atmosphere. In other words, in the upstream region where the resin discharged from the spinneret is not solidified, the cooling air is blown to such an extent that the resin is not shaken vigorously, and in the downstream region from when the resin starts to solidify until it is sufficiently cooled. By blowing cooling air having a wind speed within a certain range, uniform cooling is performed in the resin running direction, and as a result, a yarn having excellent uniformity can be obtained. Furthermore, when a fabric is produced using the yarn produced by the melt spinning apparatus or melt spinning method of the present invention, a high-quality fabric with less weaving, knitting steps, dyeing spots, etc. can be obtained.

図1は、本発明に係る装置の一例を示す概略縦断面の模式図、図2は図1に示す装置を冷却筒5の下面から見た概略図である。この装置は、パックハウジング1により固定された紡糸口金2と、その紡糸口金2の下方で、かつ、紡糸口金2に環状に穿設された複数個の紡糸孔3から吐出される複数本のフィラメント4の内側に位置するように設置された冷却筒5と、環状に穿設された複数個の紡糸孔3の最大配孔径dよりも内径Dが大きい、すなわち同フィラメント4の外側に位置するように配置された外筒6と、それら冷却筒5および外筒6よりも下流側に配置された給油ガイド7と、固化されたフィラメントの巻取手段(図示しない)などで構成されている。紡糸孔3から吐出された複数本のフィラメント4は、紡糸口金2の直下では未固化の樹脂であり、冷却筒5と外筒6との間で冷却、固化された後、給油され、以後必要に応じて延伸され、巻き取られる。   FIG. 1 is a schematic longitudinal sectional view showing an example of an apparatus according to the present invention, and FIG. 2 is a schematic view of the apparatus shown in FIG. This apparatus includes a spinneret 2 fixed by a pack housing 1 and a plurality of filaments discharged from a plurality of spinning holes 3 formed in an annular shape in the spinneret 2 below the spinneret 2. 4 has an inner diameter D that is larger than the maximum hole diameter d of the cooling cylinder 5 and the plurality of spinning holes 3 that are formed in an annular shape, that is, outside the filament 4. And the cooling cylinder 5 and the oil supply guide 7 arranged on the downstream side of the outer cylinder 6 and a winding means (not shown) of the solidified filament. A plurality of filaments 4 discharged from the spinning hole 3 are unsolidified resin immediately below the spinneret 2, cooled and solidified between the cooling cylinder 5 and the outer cylinder 6, and then supplied with oil. Is stretched and wound up.

ここで、冷却筒は図3の概略縦断面図に示すように中空構造になっており、たとえば冷却風吹出部8となる筒体を上部蓋9とベース10で挟み込んで固定して構成される冷却風吹出部8となる筒体は、厚み方向に多数の毛細管状の孔(送風孔)を有する多孔質の部材から構成し、冷却筒内部に送られた冷却風が冷却風吹出部から糸条方向へ整流されつつ吹き出され、樹脂を冷却する。多孔質部材としては、適度な剛性を有していればよく、紙、木、金属および合成樹脂等を用いることができる。例えば、セルロースリボンを螺旋状に巻いてフェノール樹脂などの熱硬化性樹脂を含浸、加熱硬化することで、リボン層全体にわたり40μm程度の大きさの孔を形成したものであってもよい。なお、本発明においては、冷却筒の最も下流側の箇所で、送風孔が設けられている部分をまとめて冷却風吹出部という。   Here, the cooling cylinder has a hollow structure as shown in the schematic longitudinal cross-sectional view of FIG. 3. For example, the cooling cylinder is configured by sandwiching and fixing the cylinder that becomes the cooling air blowing portion 8 between the upper lid 9 and the base 10. The cylinder which becomes the cooling air blowing part 8 is composed of a porous member having a large number of capillary holes (air blowing holes) in the thickness direction, and the cooling air sent into the cooling cylinder is threaded from the cooling air blowing part. The resin is blown out while being rectified in the strip direction to cool the resin. As a porous member, it should just have moderate rigidity, and paper, wood, a metal, a synthetic resin, etc. can be used. For example, a cellulose ribbon may be wound in a spiral shape, impregnated with a thermosetting resin such as a phenol resin, and heat-cured to form holes having a size of about 40 μm over the entire ribbon layer. In the present invention, the portion provided with the air blowing holes at the most downstream side of the cooling cylinder is collectively referred to as a cooling air blowing portion.

冷却筒には、冷却風流路の、冷却風流れ方向に関して送風孔よりも上流側で、かつ、冷却風流れ方向に交差する方向全域にわたって、冷却風吹出部での冷却風の樹脂走行方向の速度分布を制御するための手段が設置されている。これにより、冷却筒内部の圧力分布を均一にして送付孔から吹き出される冷却風の勢いを緩やかすることができる。すなわち、冷却風吹出部における冷却風の樹脂走行方向の速度分布を後述するような範囲にコントロールすることができる。   In the cooling cylinder, the speed of the cooling air flow direction in the resin running direction of the cooling air at the cooling air outlet is over the whole area in the direction upstream of the air blowing hole in the cooling air flow direction and intersecting the cooling air flow direction. Means are installed to control the distribution. Thereby, the pressure distribution inside the cooling cylinder can be made uniform and the momentum of the cooling air blown out from the delivery hole can be moderated. That is, it is possible to control the speed distribution of the cooling air in the resin running direction in the cooling air blowing part within a range as described later.

このような制御手段としては、多孔性部材が用いられ、具体的には、図3に示すような冷却筒エレメントのエア導入部に設置されるパンチングプレート11やメッシュ12などが挙げられる。これら多孔板やメッシュを使用する場合、冷却風に対しある程度の流動抵抗を与える必要があるので、、開口率が50%以下のものを使用することが好ましい。なお、開口率は、エア流れ方向に垂直な平面における多孔板やメッシュの開口部面積を冷却筒エレメントのエア導入部の流路面積で除した値であり、多孔性部材の任意の一断面で50%以下の開孔率となっていればよい。   As such a control means, a porous member is used, and specifically, a punching plate 11 or a mesh 12 installed in an air introduction portion of a cooling cylinder element as shown in FIG. When these perforated plates or meshes are used, it is necessary to give a certain amount of flow resistance to the cooling air, so it is preferable to use those having an aperture ratio of 50% or less. The aperture ratio is a value obtained by dividing the aperture area of the porous plate or mesh in a plane perpendicular to the air flow direction by the flow area of the air introduction portion of the cooling cylinder element, and is an arbitrary cross section of the porous member. It is sufficient that the hole area ratio is 50% or less.

このような速度分布コントロール手段を用いない場合、冷却筒下部の冷却風導入部より冷却筒内へ送り込まれた冷却風は、冷却筒内中心部を直進し、上方へ流れ、上部蓋裏面で進行方向を変えられ、冷却筒最上部より勢いよく冷却筒外部へ吹き出す。従って、このときの冷却筒からの冷却風速分布は図4に示す様になり易い。   When such a speed distribution control means is not used, the cooling air sent into the cooling cylinder from the cooling air introduction part at the lower part of the cooling cylinder goes straight in the central part of the cooling cylinder, flows upward, and proceeds on the back surface of the upper lid. The direction is changed, and the air is blown out from the top of the cooling cylinder. Therefore, the cooling air velocity distribution from the cooling cylinder at this time tends to be as shown in FIG.

一方、冷却風流路の、冷却風流れ方向に関して送風孔よりも上流側で、かつ、冷却風流れ方向に交差する方向全域にわたって多孔性部材を設置した場合、冷却筒へ送り込まれた冷却風は多孔性部材に当たり、従来技術では冷却筒内中心部を直進していた冷却風流れが分散され、冷却筒水平方向に対しても冷却風が均一に流れ易くなり、冷却筒上部〜中央部付近を均一に加圧する。これにより図5に示すように冷却筒長手方向に比較的均一な冷却風分布を得ることが可能になり、冷却風吹出部で、次の関係式を満たすような冷却風の風速分布が得られる。なお、下記関係式で示される風速分布のイメージ図を図6に示す。図4〜図6において、縦軸は冷却風吹出部の長さ方向における位置を、横軸は冷却筒より吹き出される冷却風の風速を表している。   On the other hand, when a porous member is installed in the cooling air flow path upstream of the air blowing hole in the cooling air flow direction and across the entire direction intersecting the cooling air flow direction, the cooling air sent to the cooling cylinder is porous. In the conventional technology, the cooling air flow that travels straight through the central part of the cooling cylinder in the conventional technology is dispersed, and the cooling air can easily flow even in the horizontal direction of the cooling cylinder. Pressurize. As a result, it becomes possible to obtain a relatively uniform cooling air distribution in the longitudinal direction of the cooling cylinder as shown in FIG. 5, and an air velocity distribution of the cooling air satisfying the following relational expression can be obtained at the cooling air blowing portion. . In addition, the image figure of the wind speed distribution shown with the following relational expression is shown in FIG. 4 to 6, the vertical axis represents the position in the length direction of the cooling air blowing portion, and the horizontal axis represents the wind speed of the cooling air blown from the cooling cylinder.

Vjmax≦25.0 (m/sec)
│Va- Vj│<0.14×Va
ただし、
Vjは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における任意の部分での風速
Vjmaxは、Vjの最大値
Vaは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における部分での平均風速
この結果、特に均斉度の優れた極細糸を製造することが容易になる。紡糸口金から吐出された溶融樹脂は冷却筒より吹き出される冷却風により固化され糸条を形成するが、このとき送風口から吹き出される冷却風の速度は強すぎると固化過程にある樹脂を大きく揺らすことになり、繊度斑になりやすく、また、弱すぎても冷却不足によりフィラメント間で固化にばらつきが生じ繊度斑になりやすい。従って、冷却風の速度は糸条を大きく揺らさない程度の風速を、すべてのフィラメントが固化するまでの間保つ必要がある。また口金から樹脂が吐出された直後は樹脂は粘度が低く、冷却風により揺らされやすいため特に冷却風の風速を低くする必要がある。従って、図6に示すように樹脂方向に一様な風速分布である必要がある
冷却筒の冷却風吹出部は、樹脂を確実に冷却、固化するために、樹脂走行方向150mm以上にわたって設けられていることが好ましい。一方、この距離は長すぎても紡糸作業に支障が出易いため、300mm以下であることが好ましい。
V jmax ≦ 25.0 (m / sec)
│V a -V j │ <0.14 × V a
However,
V j is the wind speed at any part in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
V jmax is the maximum value of V j
V a is the average wind speed in the range from 5% to less than 70% of the total length of the cooling air blowing part from the uppermost end in the resin running direction of the cooling air blowing part. As a result, ultrafine yarn with particularly excellent uniformity is produced. It becomes easy. The molten resin discharged from the spinneret is solidified by the cooling air blown from the cooling cylinder to form a thread, but if the speed of the cooling air blown from the air blowing port is too strong at this time, the resin in the solidifying process is increased. If it is too weak, it will cause unevenness in solidification among the filaments due to insufficient cooling, and it tends to become fineness spots. Therefore, it is necessary to keep the cooling air speed at such a level that the yarn is not greatly shaken until all the filaments are solidified. Immediately after the resin is discharged from the die, the viscosity of the resin is low and the resin is easily shaken by the cooling air. Therefore, as shown in FIG. 6, it is necessary to have a uniform wind speed distribution in the resin direction. The cooling air blowing portion of the cooling cylinder is provided over 150 mm or more in the resin running direction in order to reliably cool and solidify the resin. Preferably it is. On the other hand, if this distance is too long, the spinning operation is likely to be hindered. Therefore, the distance is preferably 300 mm or less.

また、冷却筒から吹き出された直後の冷却風は上述のとおり整流されているが、外気中を進むにつれ、冷却風の拡散方向も不均一になり整流性を失う。このため樹脂と冷却筒の距離とが離れていると樹脂を均一に冷却することが難しくなる。したがって、樹脂と冷却風吹出部との距離は15mm以下であることが好ましい。   Further, the cooling air just after being blown out from the cooling cylinder is rectified as described above. However, as it goes through the outside air, the diffusion direction of the cooling air becomes non-uniform and the rectifying property is lost. For this reason, when the distance between the resin and the cooling cylinder is large, it is difficult to cool the resin uniformly. Therefore, the distance between the resin and the cooling air blowing part is preferably 15 mm or less.

さらに、走行樹脂の外側のエアー流れも重要である。したがって、図1に示すように紡糸口金4の下方で、かつ走行するフィラメント4の外側に、冷却筒5と同程度の長さの外筒6を設置することが好ましい。   Furthermore, the air flow outside the running resin is also important. Therefore, as shown in FIG. 1, it is preferable to install an outer cylinder 6 having a length similar to that of the cooling cylinder 5 below the spinneret 4 and outside the traveling filament 4.

この外筒は次のように作用する。すなわち、紡糸口金孔より吐出された未固化の樹脂は冷却筒より吹き出される冷却風により冷却固化されつつ、引き取り速度まで加速されるため、冷却筒の中間部付近から下方へ樹脂走行方向に沿って随伴気流が発生する。この随伴気流の発生によって口金下面〜冷却筒上部付近の空気が引きずられ空気の飢餓状態が生じる。その結果、外筒を設置していない場合、図7に示すように、該空間に紡糸機まわりの外気が吸い込まれ冷却斑を発生し易くなる。しかし、図8に示すように、外筒6を設置する場合、外筒により口金下面〜冷却筒上部付近と外部が遮断されるため該空間に外気が流入しにくくなり、安定した冷却ができる。   This outer cylinder operates as follows. That is, the unsolidified resin discharged from the spinneret hole is accelerated to the take-up speed while being cooled and solidified by the cooling air blown from the cooling cylinder, so that the resin travels from the middle of the cooling cylinder downward along the resin running direction. Accompanying airflow is generated. By the generation of the accompanying airflow, the air near the bottom of the base to the upper part of the cooling cylinder is dragged, resulting in an air starvation state. As a result, when the outer cylinder is not installed, as shown in FIG. 7, outside air around the spinning machine is sucked into the space, and cooling spots are easily generated. However, as shown in FIG. 8, when the outer cylinder 6 is installed, the outer cylinder blocks the lower surface of the base to the upper portion of the cooling cylinder and the outside, so that it is difficult for outside air to flow into the space and stable cooling can be achieved.

そして、図9に示すように、外筒の内径が大きすぎると外筒内壁に沿って外筒下部より口金下面〜冷却筒上部付近に外気が流入しやすくなり、一方、外筒の内径が小さすぎると糸切れ時や紡糸準備時に糸条が融着し、作業が困難になるため、より安定した冷却を行い、かつ、作業を簡単にするために、外筒の内径とフィラメントの位置とが以下の関係式を満たすようにすることがより好ましい。   As shown in FIG. 9, when the inner diameter of the outer cylinder is too large, outside air easily flows from the lower part of the outer cylinder to the vicinity of the upper part of the cooling cylinder along the inner wall of the outer cylinder, while the inner diameter of the outer cylinder is small. If the thread is too long, the yarn will be fused at the time of yarn breakage or preparation for spinning, which makes the operation difficult.Therefore, in order to perform more stable cooling and simplify the operation, the inner diameter of the outer cylinder and the position of the filament are It is more preferable to satisfy the following relational expression.

1.20d<D<1.45d
ただし、dは環状に設置された紡糸孔を結んでできる近似円の最大直径であり、同心円上に複数の環状に配置された紡糸孔がある場合は円の直径が最も大きい径である。Dは外筒の内径である。
1.20d <D <1.45d
However, d is the maximum diameter of the approximate circle formed by connecting the spinning holes arranged in an annular shape, and when there are a plurality of annularly arranged spinning holes on the concentric circle, the diameter of the circle is the largest. D is the inner diameter of the outer cylinder.

(風速の測定方法)
風速は、KANOMAX社製アネモマスターを各測定点で冷却風吹出部に密着させ測定した。測定点は冷却風吹出部を構成する筒体の上端部より0,10,30,50,100,150,200mmの距離の位置で(上端部より200mmの位置での測定は筒体が200mmの場合のみ)、それぞれ円周方向に90°ずつ角度を変え4点測定し、この4点の風速平均を冷却風吹出部上端部からの各距離での風速とした。
(Measurement method of wind speed)
The wind speed was measured by bringing an anemone master manufactured by KANOMAX into close contact with the cooling air outlet at each measurement point. The measurement points are at distances of 0, 10, 30, 50, 100, 150, and 200 mm from the upper end of the cylinder that forms the cooling air outlet (measurement at a position 200 mm from the upper end is only when the cylinder is 200 mm), respectively. Four points were measured at 90 ° angles in the circumferential direction, and the average wind speed at these four points was taken as the wind speed at each distance from the upper end of the cooling air outlet.

(ウースター斑の測定方法)
ウースター斑は、ZELLWEGER USTER社のUSTER TESTER UT−4を使用して糸速50m/分、Z撚り、撚り数8000rpmで3分間、1/2inertで測定した。
(Measurement method of Wooster spots)
Wooster spots were measured using a ZELLWEGER USTER USTER TESTER UT-4 at a yarn speed of 50 m / min, Z twist, 8000 rpm for 3 minutes, 1/2 inch.

(実施例1)
図1に示す装置を用いてナイロン6ポリマーを260℃で溶融紡糸し、口金面より800mm下方で糸条を集束させ、紡糸油剤を付与させ、56dtex、98フィラメントの糸条を巻取速度4600m/minで巻き取った。このとき、冷却筒へ、温度18℃、湿度 70%RHの冷却風を、冷却筒内と大気圧との差圧が200Paとなるように加圧して送風し、冷却筒から吹き出される冷却風により樹脂を冷却した。その時の冷却風吹出部での風速を測定した。また、得られた糸条の長手方向の繊度均一性を表すウースター斑を測定した。
Example 1
The nylon 6 polymer is melt-spun at 260 ° C. using the apparatus shown in FIG. 1, the yarn is focused 800 mm below the base surface, a spinning oil is applied, and a 56 dtex, 98 filament yarn is wound at a winding speed of 4600 m / Rolled up in min. At this time, the cooling air blown from the cooling cylinder is blown by blowing the cooling air at a temperature of 18 ° C and a humidity of 70% RH so that the differential pressure between the inside of the cooling cylinder and the atmospheric pressure is 200 Pa. To cool the resin. The wind speed at the cooling air blowing part at that time was measured. In addition, Wooster spots representing the fineness uniformity in the longitudinal direction of the obtained yarn were measured.

なお、紡糸口金には直径0.15mmの紡糸孔を49個づつ2つの同心円上に等角度で配置したものを用いた。   The spinneret used was one in which 49 spinning holes with a diameter of 0.15 mm were arranged at equal angles on two concentric circles.

冷却筒の冷却風吹出部を構成する筒体としては、厚さ4.6mm、最外周に設置された紡糸孔から吐出されたフィラメントとの距離(糸条〜冷却筒距離)が9.0mmとなるような直径で、かつ、樹脂走行方向150mmにわたって濾過精度40μmの孔を有するフェノール樹脂含浸セルロースリボンを螺旋状に巻き付け筒状に成形した富士フィルター製フジボンを用いた。   The cylinder constituting the cooling air blowing part of the cooling cylinder has a thickness of 4.6 mm, and the distance (yarn to cooling cylinder distance) from the filament discharged from the spinning hole installed on the outermost periphery is 9.0 mm. Fuji filter Fujibon made of a phenolic resin-impregnated cellulose ribbon having a small diameter and a hole with a filtration accuracy of 40 μm in a resin running direction of 150 mm was spirally wound into a cylindrical shape.

また、上記筒体の、冷却風流れ方向における上流側端部には、図3に示すような直径2.0mmの孔を穿設した開口率40.3%のパンチングプレートを配置した。   In addition, a punching plate having an aperture ratio of 40.3% with a hole having a diameter of 2.0 mm as shown in FIG. 3 was disposed at the upstream end of the cylinder in the cooling air flow direction.

さらに、紡糸口金の下方でかつ走行樹脂の外周には、内径118mm、長さ78mmの外筒を設置した。   Further, an outer cylinder having an inner diameter of 118 mm and a length of 78 mm was installed below the spinneret and on the outer periphery of the running resin.

結果を表1、表2に示す。   The results are shown in Tables 1 and 2.

(実施例2)
ナイロン66ポリマーを285℃で溶融紡糸した点、冷却風吹出部を構成する筒体として、樹脂走行方向200mmにわたって送風孔を有したものを用いた点、そして、冷却筒内と大気圧との差圧が350Paとなるように冷却風を加圧して送風した点以外は実施例1と同様に紡糸し、冷却風吹出部での風速を測定した。結果を表1、表2に示す。
(Example 2)
The point that melt-spun nylon 66 polymer at 285 ° C, the point that has a blower hole over 200 mm in the resin running direction as the cylinder constituting the cooling air blowing part, and the difference between the inside of the cooling cylinder and atmospheric pressure Spinning was carried out in the same manner as in Example 1 except that the cooling air was pressurized and blown so that the pressure was 350 Pa, and the wind speed at the cooling air outlet was measured. The results are shown in Tables 1 and 2.

(実施例3)
冷却筒内と大気圧との差圧が350Paとなるように冷却風を加圧して送風した点以外は実施例1と同様に紡糸し、冷却風吹出部での風速を測定した。結果を表1、表2に示す。
(Example 3)
Spinning was performed in the same manner as in Example 1 except that the cooling air was pressurized and blown so that the differential pressure between the inside of the cooling cylinder and the atmospheric pressure was 350 Pa, and the wind speed at the cooling air outlet was measured. The results are shown in Tables 1 and 2.

(比較例1)
パンチングプレートを設けなかった点以外は実施例1と同様に紡糸し、冷却風吹出部での風速を測定した。結果を表1、表2に示す。
(Comparative Example 1)
Spinning was carried out in the same manner as in Example 1 except that the punching plate was not provided, and the wind speed at the cooling air blowing portion was measured. The results are shown in Tables 1 and 2.

(比較例2)
パンチングプレートを設けなかった点以外は実施例2と同様に紡糸し、冷却風吹出部での風速を測定した。結果を表1、表2に示す。
(Comparative Example 2)
Spinning was performed in the same manner as in Example 2 except that the punching plate was not provided, and the wind speed at the cooling air outlet was measured. The results are shown in Tables 1 and 2.

Figure 2007224446
Figure 2007224446

Figure 2007224446
Figure 2007224446

これらの結果より明らかなように実施例では糸条の長手方向の繊度均一性が向上していた。なお、ウースター斑は、生産されたフィラメントの品質を判断する重要なパラメータであり、ウースター値が高いほど最終的な織物における布帛の物理的特性、外観の均一性が悪化する。通常のフィラメントの単糸繊度範囲にある糸に関しては、ウースター斑の値が0.80%以下であれば、布帛においてウースター斑による品質上の問題がない。従来の技術によって得られる比較例1、2のミクロフィラメント糸は、通常、ウースター斑の値が0.80%を超えたが、本発明の方法を用いた実施例1〜3では、ウースター斑の値が安全に染色できる0.80%以下のフィラメント糸を製造することができた。   As apparent from these results, in the examples, the fineness uniformity in the longitudinal direction of the yarn was improved. Wooster spots are an important parameter for judging the quality of the produced filaments, and the higher the Wooster value, the worse the physical properties and appearance uniformity of the fabric in the final fabric. For yarns in the single filament fineness range of ordinary filaments, if the value of Wooster spots is 0.80% or less, there is no problem in quality due to Wooster spots in the fabric. In the microfilament yarns of Comparative Examples 1 and 2 obtained by the conventional technique, the value of Wooster spots usually exceeded 0.80%, but in Examples 1 to 3 using the method of the present invention, the value of Wooster spots was A filament yarn of 0.80% or less that can be safely dyed was produced.

本発明の一実施形態を示す溶融紡糸装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the melt spinning apparatus which shows one Embodiment of this invention. 図1に示す溶融紡糸装置を冷却筒5の下方から見た図であるIt is the figure which looked at the melt spinning apparatus shown in FIG. 1 from the downward direction of the cooling cylinder 5. 冷却筒、および、冷却風流路の、冷却風流れ方向に関して送風孔よりも上流側で、かつ、冷却風流れ方向に交差する方向全域にわたって設置される多孔性部材の概略図である。It is the schematic of the porous member installed in the cooling cylinder and the whole area of a cooling wind flow path upstream of a ventilation hole with respect to the cooling wind flow direction, and the direction which cross | intersects a cooling wind flow direction. 冷却風の速度コントロール手段を用いない場合の冷却風の速度分布図である。FIG. 6 is a velocity distribution diagram of cooling air when the cooling air velocity control means is not used. 冷却風の速度コントロール手段を用いる場合の冷却風の速度分布図である。FIG. 6 is a velocity distribution diagram of cooling air when cooling air velocity control means is used. 冷却風の速度コントロール手段を用いる場合の冷却風の速度分布のイメージ図である。It is an image figure of the velocity distribution of the cooling air when using the cooling air velocity control means. 外筒がない溶融紡糸装置における外気の流れを示す概略模式図である。It is a schematic diagram which shows the flow of the external air in a melt spinning apparatus without an outer cylinder. 外筒を有する溶融紡糸装置における外気の流れを示す概略模式図である。It is a schematic diagram which shows the flow of the external air in the melt spinning apparatus which has an outer cylinder. 内径が大きい外筒を取り付けた溶融紡糸装置における外気の流れを示す概略模式図である。It is a schematic diagram which shows the flow of the external air in the melt spinning apparatus which attached the outer cylinder with a large internal diameter.

符号の説明Explanation of symbols

1:パックハウジング
2:紡糸口金
3:紡糸孔
4:フィラメント
5:冷却筒
6:外筒
7:給油ガイド
8:冷却風吹出部
9:上部蓋
10:ベース
11:パンチングプレート
12:メッシュ
1: Pack housing 2: Spinneret 3: Spinning hole 4: Filament 5: Cooling cylinder 6: Outer cylinder 7: Refueling guide 8: Cooling air blowing part 9: Upper lid 10: Base 11: Punching plate 12: Mesh

Claims (3)

複数個の紡糸孔が環状に配置された紡糸口金と、紡糸口金の下方で、かつ、環状に配置された紡糸孔から紡糸される熱可塑性樹脂よりも内側に配設される冷却筒とを備えた溶融紡糸装置であって、冷却筒は、複数個の送風孔を有する冷却風吹出部を有し、かつ、冷却風吹出部での冷却風の風速分布が以下の関係式を満たすものであることを特徴とする溶融紡糸装置。
Vjmax≦25.0 (m/sec)
│Va- Vj│<0.14×Va
ただし、
Vjは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における任意の部分での風速
Vjmaxは、Vjの最大値
Vaは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における部分での平均風速
A spinneret having a plurality of spinning holes arranged annularly, and a cooling cylinder disposed below the spinning nozzle and inside the thermoplastic resin spun from the annularly arranged spinning holes. In the melt spinning apparatus, the cooling cylinder has a cooling air blowing portion having a plurality of blowing holes, and the air velocity distribution of the cooling air in the cooling air blowing portion satisfies the following relational expression. A melt spinning apparatus characterized by that.
V jmax ≦ 25.0 (m / sec)
│V a -V j │ <0.14 × V a
However,
V j is the wind speed at any part in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
V jmax is the maximum value of V j
V a is the average wind speed in the range from 5% to less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
冷却筒は、冷却風流路の、冷却風流れ方向に関して送風孔よりも上流側で、かつ、冷却風流れ方向に交差する方向全域にわたって設けられた多孔性部材を有している、請求項1記載の溶融紡糸装置。   2. The cooling cylinder has a porous member provided over the entire area of the cooling air flow path upstream of the air blowing hole in the cooling air flow direction and intersecting the cooling air flow direction. Melt spinning equipment. 複数個の紡糸孔が環状に配置された紡糸口金と、紡糸口金の下方で、かつ、環状に配置された紡糸孔から紡糸される樹脂よりも内側に配設された、複数個の送風孔を有する冷却風吹出部を有する冷却筒とを備えた溶融紡糸装置を用い、冷却風吹出部での冷却風の風速分布が以下の関係式を満たすように冷却筒から冷却風を吹き出して、溶融紡糸した樹脂を固化することを特徴とする溶融紡糸方法。
Vjmax≦25.0 (m/sec)
│Va- Vj│<0.14×Va
ただし、
Vjは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における任意の部分での風速
Vjmaxは、Vjの最大値
Vaは、冷却風吹出部の樹脂走行方向最上端部から冷却風吹出部全長の5%以上70%未満の範囲における部分での平均風速
A spinneret in which a plurality of spinning holes are annularly arranged, and a plurality of blower holes disposed below the spinneret and inside the resin spun from the annularly arranged spinning holes. Using a melt spinning apparatus equipped with a cooling cylinder having a cooling air blowing portion and blowing the cooling air from the cooling cylinder so that the wind speed distribution of the cooling air in the cooling air blowing portion satisfies the following relational expression, and melt spinning: A melt spinning method characterized by solidifying the obtained resin.
V jmax ≦ 25.0 (m / sec)
│V a -V j │ <0.14 × V a
However,
V j is the wind speed at any part in the range of 5% or more and less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
V jmax is the maximum value of V j
V a is the average wind speed in the range from 5% to less than 70% of the total length of the cooling air blowing part from the uppermost end of the cooling air blowing part in the resin running direction
JP2006046280A 2006-02-23 2006-02-23 Melt spinning apparatus and melt spinning method Expired - Fee Related JP4760441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046280A JP4760441B2 (en) 2006-02-23 2006-02-23 Melt spinning apparatus and melt spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046280A JP4760441B2 (en) 2006-02-23 2006-02-23 Melt spinning apparatus and melt spinning method

Publications (3)

Publication Number Publication Date
JP2007224446A true JP2007224446A (en) 2007-09-06
JP2007224446A5 JP2007224446A5 (en) 2009-04-30
JP4760441B2 JP4760441B2 (en) 2011-08-31

Family

ID=38546511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046280A Expired - Fee Related JP4760441B2 (en) 2006-02-23 2006-02-23 Melt spinning apparatus and melt spinning method

Country Status (1)

Country Link
JP (1) JP4760441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555241A (en) * 2015-09-27 2017-04-05 孙颖 Band deflector finish surge-tank
CN107304487A (en) * 2016-04-19 2017-10-31 欧瑞康纺织有限及两合公司 For the equipment for the filament cluster for cooling down annular extrusion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215615A (en) * 1975-07-28 1977-02-05 Toray Ind Inc Melt spinning machine
JPS61174411A (en) * 1985-01-22 1986-08-06 Asahi Chem Ind Co Ltd Cooling cylinder for melt-spinning of synthetic fiber
JPS63219612A (en) * 1987-03-05 1988-09-13 エムス−インヴエンタ・アクチエンゲゼルシヤフト Apparatus for cooling melt spun filament
JPH05505427A (en) * 1991-03-04 1993-08-12 エムス―インヴェンタ アクチェンゲゼルシャフト Melt spinning filament cooling equipment
JPH11350238A (en) * 1998-05-14 1999-12-21 Ems Inventa Ag Device for producing microfilament yarn high in uniformity of fineness from thermoplastic polymer and production using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215615A (en) * 1975-07-28 1977-02-05 Toray Ind Inc Melt spinning machine
JPS61174411A (en) * 1985-01-22 1986-08-06 Asahi Chem Ind Co Ltd Cooling cylinder for melt-spinning of synthetic fiber
JPS63219612A (en) * 1987-03-05 1988-09-13 エムス−インヴエンタ・アクチエンゲゼルシヤフト Apparatus for cooling melt spun filament
JPH05505427A (en) * 1991-03-04 1993-08-12 エムス―インヴェンタ アクチェンゲゼルシャフト Melt spinning filament cooling equipment
JPH11350238A (en) * 1998-05-14 1999-12-21 Ems Inventa Ag Device for producing microfilament yarn high in uniformity of fineness from thermoplastic polymer and production using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555241A (en) * 2015-09-27 2017-04-05 孙颖 Band deflector finish surge-tank
CN107304487A (en) * 2016-04-19 2017-10-31 欧瑞康纺织有限及两合公司 For the equipment for the filament cluster for cooling down annular extrusion
CN107304487B (en) * 2016-04-19 2021-11-23 欧瑞康纺织有限及两合公司 Device for cooling an annularly extruded filament bundle

Also Published As

Publication number Publication date
JP4760441B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP6069019B2 (en) Yarn cooling device
CN203238362U (en) Rectifying layer for side blowing device for spinning
JP2010077553A (en) Apparatus and method for producing filament yarn
JP2007119973A (en) Dry-wet spinning apparatus and dry-wet spinning method
JP2008231607A (en) Annular cooling apparatus for spinning and melt-spinning method
JP2007063690A (en) Device for cooling yarn
WO2001098564A1 (en) Melt spinning device
JP5428979B2 (en) Spin pack and method for producing filament yarn
JP4760441B2 (en) Melt spinning apparatus and melt spinning method
JP2007063679A (en) Device for cooling yarn
JP4946111B2 (en) Synthetic fiber melt spinning apparatus and synthetic fiber manufacturing method
JP2006336152A (en) Dry-wet spinning apparatus
JP2015014071A (en) Line-of-thread cooling system
JP2007247121A (en) Yarn cooling device
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JP4148001B2 (en) Method for producing ultrafine multifilament yarn and melt spinning apparatus
JP4904943B2 (en) Polyester fiber melt spinning equipment
JP2010077570A (en) Melt-spinning method and melt-spinning apparatus
JP2006104600A (en) Method for producing synthetic fiber multifilament yarn and production apparatus
JP2007063689A (en) Device for cooling yarn
JP5925657B2 (en) Melt spinning equipment
JP4988318B2 (en) Multi-spindle melt spinning apparatus and ultrafine multifilament yarn obtained therefrom
JP2009068154A (en) Yarn cooling device
WO2001071070A1 (en) Molten yarn take-up device
JP2003193325A (en) Melt spinning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees