JP2007063689A - Device for cooling yarn - Google Patents

Device for cooling yarn Download PDF

Info

Publication number
JP2007063689A
JP2007063689A JP2005249348A JP2005249348A JP2007063689A JP 2007063689 A JP2007063689 A JP 2007063689A JP 2005249348 A JP2005249348 A JP 2005249348A JP 2005249348 A JP2005249348 A JP 2005249348A JP 2007063689 A JP2007063689 A JP 2007063689A
Authority
JP
Japan
Prior art keywords
yarn
cooling
cooling air
spinning
spun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249348A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hagiwara
克之 萩原
Shuhei Fujioka
修平 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005249348A priority Critical patent/JP2007063689A/en
Publication of JP2007063689A publication Critical patent/JP2007063689A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for cooling a yarn, which makes it possible to spin the multifilament yarn having a small single filament fineness in a state reducing filament sway to control fineness irregularity. <P>SOLUTION: This device for cooling the yarn, comprising at least a spinneret (1) in which spinning holes for spinning a thermoplastic synthetic multifilament yarn (2) comprising 90 to 300 filaments having a single filament fineness of 0.1 to 1.0 dtex and used for clothing are formed on double or triple multiple concentric circles, an annealing means (3) disposed just under the spinneret (1) to anneal the spun yarn (2), and a yarn-cooling device (4) disposed just under the annealing means (3) to cool the spun yarn (2) with a cooling gas is characterized in that the device for cooling the yarn has a circular cooling gas-blowing device (4) for radially blowing the cooling gas from the outermost periphery of the spun yarn (2) to the innermost periphery to surround the spun yarn (2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリエステル、ポリアミド等の熱可塑性合成繊維を溶融紡糸する際に紡出された糸条を冷却するために用いる糸条の冷却装置に関する。   The present invention relates to a yarn cooling device used for cooling a spun yarn when a thermoplastic synthetic fiber such as polyester or polyamide is melt-spun.

ポリアミド、ポリエステルなどの熱可塑性ポリマーを紡糸口金に穿孔された紡糸孔から溶融吐出した後、紡出糸条を冷却する方法は、熱可塑性合成繊維の溶融紡糸における一般的なプロセスである。このような合成繊維の冷却プロセスは、高品質な糸を得る上で重要な役割を果たしており、特に、衣料用長繊維の溶融紡糸プロセスでは紡糸後の糸強度や伸度、染織性に非常に大きな影響を与えることが知られている。   A method of cooling a spun yarn after melt-discharging a thermoplastic polymer such as polyamide or polyester from a spinning hole perforated in a spinneret is a general process in melt spinning a thermoplastic synthetic fiber. Such a cooling process for synthetic fibers plays an important role in obtaining high-quality yarns, and in particular, in the melt spinning process for garment long fibers, the yarn strength, elongation, and dyeing properties after spinning are extremely high. It is known to have a big impact.

近年、織物、編物あるいは不織布等の材料として細繊度の糸条が幅広く使用されている。しかも、これら細繊度の糸条を用いた布帛では、その風合や機能性をより高めるために、更にその単糸繊度を細くする傾向にある。このため、このようなマルチフィラメント糸として、構成単糸数が90本以上で、その単糸繊度が0.3デシテックス以下のものを生産することが行われるようになってきた。しかも、生産性を高めるために、一つの口金から多数本の単糸群(以下、この“単糸群”を“フィラメント群”ともいう)を紡出するようになってきている。   In recent years, yarns with fineness have been widely used as materials such as woven fabrics, knitted fabrics and nonwoven fabrics. And in the fabric using the yarn of these fineness, in order to raise the feel and functionality more, the single yarn fineness tends to be further thinned. For this reason, production of such multifilament yarns having 90 or more constituent single yarns and a single yarn fineness of 0.3 dtex or less has been carried out. Moreover, in order to increase productivity, a large number of single yarn groups (hereinafter, this “single yarn group” is also referred to as “filament group”) have been spun from one base.

このような多数の細繊度単糸群で構成される糸条を効率よく製造しようとすると、一枚の口金に多数の紡糸孔を高密度で穿孔する必要がある。しかしながら、一枚の口金に90個以上の紡糸孔群を穿孔しようとすると、これらの紡糸孔群から紡出された単糸群を均一に冷却するのが難しくなる。そうすると、得られるマルチフィラメント糸を構成する単糸群の繊度の均一性が悪化する。また、冷却不良や冷却不足が原因となって単糸同士の密着による断糸が発生したり、溶融紡糸後の糸条を後工程で処理した場合に染斑が発生したりする。   In order to efficiently produce a yarn composed of such a large number of fine single yarn groups, it is necessary to drill a large number of spinning holes in a single die at high density. However, when trying to punch 90 or more spinning hole groups in one die, it becomes difficult to uniformly cool the single yarn group spun from these spinning hole groups. If it does so, the uniformity of the fineness of the single yarn group which comprises the obtained multifilament yarn will deteriorate. Further, due to poor cooling or insufficient cooling, yarn breakage due to close contact between single yarns may occur, or dyeing may occur when the yarn after melt spinning is processed in a subsequent process.

そこで、このような問題を解消するために、特許文献1(特開平5−125609号公報)において、紡糸口金に穿設する紡糸孔の配列を二重正方格子にして、紡出されたフィラメント群間へ冷却風を良好に貫流させることが提案されている。   Therefore, in order to solve such a problem, in Patent Document 1 (Japanese Patent Laid-Open No. 5-125609), the spinning filament group is spun by using a double square lattice as the arrangement of the spinning holes formed in the spinneret. It has been proposed to allow the cooling air to flow in between.

しかしながら、この特許文献1に記載の技術を含む特許文献2(特開平7−97709号公報)や特許文献3(特開2000−34615号公報)などに提案されている従来技術は、横吹冷却方法を前提としている。すなわち、図3に例示したように、冷却風を一定長さに渡って横方向から吹き付けて糸条を冷却する冷却装置10を口金1の直下に配置し、紡糸口金1から紡出されたマルチフィラメント糸2に対してほぼ直角に、その横方向から吹き付けて冷却する方法を採用している。   However, the prior art proposed in Patent Document 2 (Japanese Patent Laid-Open No. 7-97709) and Patent Document 3 (Japanese Patent Laid-Open No. 2000-34615) including the technology described in Patent Document 1 is a horizontal blowing cooling method. Is assumed. That is, as illustrated in FIG. 3, a cooling device 10 that cools the yarn by blowing cooling air from the lateral direction over a certain length is disposed immediately below the base 1, and the multi-spinned from the spinneret 1 A method is adopted in which the filament yarn 2 is cooled by spraying from the lateral direction at a substantially right angle.

しかしながら、この横吹冷却方法を採用する場合、冷却装置10から供給される冷却風の乱れをなくすことが要求される。そこで、従来技術においては、均一な風速でかつ一定の風向を有する冷却風を供給すると共に、走行糸条2の周りに生成する随伴気流が発達するの抑制する冷却風制御が主に行われてきた。   However, when this horizontal blow cooling method is adopted, it is required to eliminate the disturbance of the cooling air supplied from the cooling device 10. Therefore, in the prior art, cooling air control that mainly supplies cooling air with a uniform wind speed and a constant air direction and suppresses the development of the accompanying air flow generated around the traveling yarn 2 has been mainly performed. It was.

すなわち、従来の冷却風制御技術においては、冷却風の供給源がもともと有している気流乱れを冷却風吹出口での冷却風の吹出圧力を均圧制御することによって冷却風の吹出風量や吹出風速を均一化している。通常、このような均圧制御は、前記金網、パンチングプレートあるいは多孔質金属板等からなる様々な均圧化部材5’を用いて行われる。また、冷却風の吹出方向(図中に矢印で示した方向)を一定に揃えて整流するために冷却風吹出口と糸条2との間に平行整流板やハニカム板などを整流部材6’として設置して、整流された冷却風を糸条に吹き付けることが行われる。   In other words, in the conventional cooling air control technology, the air flow turbulence inherent in the cooling air supply source is controlled by equalizing the cooling air blowing pressure at the cooling air outlet, so that the cooling air blowing rate and the blowing air velocity are controlled. Is uniform. Usually, such pressure equalization control is performed by using various pressure equalizing members 5 ′ made of the above-described wire mesh, punching plate, porous metal plate or the like. Further, in order to rectify the cooling air blowing direction (the direction indicated by the arrow in the figure) with a constant flow, a parallel rectifying plate or a honeycomb plate is used as a rectifying member 6 'between the cooling air blowing outlet and the yarn 2. It is installed and rectified cooling air is blown onto the yarn.

しかしながら、紡糸口金1に穿設する紡糸孔群の穿孔密度が更に高くなる細繊度多フィラメント糸条2を溶融紡糸する場合は、これらの従来技術では限界に達している。その大きな原因は、横吹冷却方式を採用する限り、紡糸口金1から紡出されたマルチフィラメント糸2に対して、一方向からのみ冷却風が吹き付けることにある。   However, in the case of melt spinning the fine multifilament yarn 2 in which the perforation density of the spinning hole group formed in the spinneret 1 is further increased, these conventional techniques reach the limit. As long as the horizontal blow cooling method is adopted, the major cause is that the cooling air is blown from only one direction to the multifilament yarn 2 spun from the spinneret 1.

一般に、従来の横吹冷却方式では、口金の下流側へ走行する糸条2に対して冷却風が一方向から吹き付けられ、紡出されたフィラメント群間を貫流することによって、糸条2から熱を奪った後、反対側へ流出する。このとき、従来の横吹冷却方式では、フィラメント群と冷却風吹出面との間の距離が大きくなってしまうために、糸条2を冷却する能力が低下し、糸条2と冷却風との間の熱交換性能が低下してしまう。また、紡出糸条2の糸揺れも大きくなる。   In general, in the conventional horizontal blowing cooling method, cooling air is blown from one direction to the yarn 2 traveling downstream of the die, and heat is passed from the yarn 2 by flowing between the spun filament groups. After taking it, it flows out to the other side. At this time, in the conventional horizontal blowing cooling method, the distance between the filament group and the cooling air blowing surface becomes large, so the ability to cool the yarn 2 is reduced, and the distance between the yarn 2 and the cooling air is reduced. The heat exchange performance will be reduced. Further, the yarn swing of the spun yarn 2 is also increased.

そこで、この状況を克服するために、糸条2へ吹き付ける冷却風の速度や風量を大きくすればよいと考えられる。しかしながら、このような手段を採用すると、図3に例示したように、冷却を強化して風量や風速が強化されたために風圧によって走行糸条2が風下側へ大きくふくらむことにある。そうすると、かえって糸揺れを助長してしまうという問題が生じる。   Therefore, in order to overcome this situation, it is considered that the speed and the amount of cooling air blown onto the yarn 2 should be increased. However, when such a means is adopted, as illustrated in FIG. 3, the cooling yarn is strengthened and the air volume and the wind speed are strengthened, so that the traveling yarn 2 is greatly expanded toward the leeward side by the wind pressure. If it does so, the problem that a thread | yarn swing will be promoted on the contrary will arise.

なお、当然のことながら、横吹方式では、一つの口金から高密度で紡出するフィラメント数が多くなればなるる程、単糸群間への冷却風の貫通性が低下する。そうすると、冷却風の吹付側に位置するフィラメント群と反吹付側に位置するフィラメント群との間で冷却斑が生じてしまう。この要因が糸条の品質を低下させる諸要因の中で最も主要なものであり、極細マルチフィラメント糸に対する冷却プロセスとしての横吹冷却技術に限界が生じている大きな理由でもある。   As a matter of course, in the horizontal blowing method, as the number of filaments spun at a high density from one base increases, the penetration of the cooling air between the single yarn groups decreases. If it does so, a cooling spot will arise between the filament group located in the blowing side of cooling air, and the filament group located in the anti-blowing side. This factor is the most important factor that degrades the quality of the yarn, and is also a major reason why the horizontal blowing cooling technology as a cooling process for ultrafine multifilament yarns is limited.

特開平5−125609号公報Japanese Patent Laid-Open No. 5-125609 特開平7−97709号公報JP-A-7-97709 特開2000−34615号公報JP 2000-34615 A

前述の従来技術が有する諸問題に鑑み、本発明が解決しようとする課題は、特に衣料用長繊維の細繊度マルチフィラメント糸を溶融紡糸において、吐出フィラメント同士が密着断糸したり、断糸に至らない迄も繊度斑が発生したり、あるいは染斑が発生したりするのを効果的に抑制することができる糸条冷却装置を提供することにある。   In view of the above-mentioned problems of the prior art, the problem to be solved by the present invention is that, particularly in melt spinning fine filament multifilament yarns for clothing, discharge filaments are closely cut or broken. An object of the present invention is to provide a yarn cooling device that can effectively suppress the occurrence of fineness spots or the occurrence of dyeing spots even if not reached.

前記従来技術が有する諸問題について、本発明者らが鋭意検討した結果、独立した円筒状の冷却風吹出装置内に、多重同心円上に穿設された紡糸孔群から多重円筒状(円環状)に紡出されたマルチフィラメント糸を通過させることにより、糸条と冷却風の吹出面との距離を小さく保ちながら、走行する糸条に対して外周側から放射状に冷却風を吹き付けることを可能とした。そして、これにより、冷却風の吹出風速を従来方式よりも遅くしても、フィラメント群への冷却風の貫流性を確保でき、各フィラメント間に発生する冷却斑を抑制でき、均一な糸条冷却が可能であることを見出し、本発明に到達したものである。   As a result of intensive studies by the present inventors on the problems of the prior art, a multi-cylindrical shape (annular) is formed from a group of spinning holes drilled on multiple concentric circles in an independent cylindrical cooling air blowing device. By passing the multifilament yarn spun on the cooling yarn, it is possible to blow cooling air radially from the outer peripheral side to the running yarn while keeping the distance between the yarn and the cooling air blowing surface small. did. As a result, even if the cooling air blowing speed is slower than the conventional method, the flow of cooling air to the filament group can be secured, the cooling spots generated between the filaments can be suppressed, and uniform thread cooling can be achieved. It has been found that this is possible, and the present invention has been achieved.

ここに、前記課題を達成するための本発明として、
(1) 各熱可塑性合成フィラメントの単糸繊度が0.1〜1.0デシテックスである90〜300本の衣料用マルチフィラメント糸を紡出するための紡糸孔が2重又は3重の多重同心円上に穿設された一枚の紡糸口金と、該紡糸口金の直下に設けた紡出糸条を徐冷するための徐冷手段と、該徐冷手段の直下に設けられ且つ冷却風によって紡出糸条を冷却する糸条冷却装置とを備え、更に該糸条冷却装置が紡出糸条を囲繞するように紡出糸条の最外周側から最内周側へ向かって冷却風を放射状に発生させる円筒状の冷却風吹出装置を備えたことを特徴とする糸条冷却装置、
(2) 前記冷却風吹出装置の冷却風吹出口の内周面に対して、紡出糸条に吹き付ける冷却風の風量及び/又は風速を制御する均圧化部材を設けた(1)に記載の糸条冷却装置、
(3) 前記冷却風吹出装置の冷却風吹出口の内周面に設けた均圧化部材の外周側に冷却風の吹出方向を一定方向へ整流する整流部材を設けた、(2)に記載の糸条冷却装置、
(4)前記マルチフィラメント糸を複数本溶融紡糸する多錘の溶融紡糸装置に各錘毎に設けられた徐冷ゾーンを隣接錘と仕切る円筒状の仕切部材が設けられ、該仕切部材によって前記糸条冷却装置の直上から前記紡糸口金面までの糸条走行域を密閉した、(1)〜(3)の何れかに記載の糸条冷却装置、そして
(5) 一枚の紡糸口金に穿設する紡糸孔の穿設密度が2.2〜6.0個/cmである、(1)〜(4)の何れかに記載の糸条冷却装置が提供される。
Here, as the present invention for achieving the above-mentioned problem,
(1) Multiple concentric circles having two or three spinning holes for spinning 90 to 300 multifilament yarns for clothing, each thermoplastic synthetic filament having a single yarn fineness of 0.1 to 1.0 dtex A single spinneret perforated above, a slow cooling means for slowly cooling the spun yarn provided immediately below the spinneret, and a spinneret provided immediately below the slow cooling means and spun by cooling air. A yarn cooling device that cools the spun yarn, and further radiates cooling air radially from the outermost circumferential side to the innermost circumferential side of the spun yarn so that the yarn cooling device surrounds the spun yarn A yarn cooling device comprising a cylindrical cooling air blowing device to be generated
(2) The pressure equalizing member for controlling the air volume and / or the wind speed of the cooling air blown to the spun yarn is provided on the inner peripheral surface of the cooling air outlet of the cooling air blowing device. Yarn cooling device,
(3) The rectifying member that rectifies the blowing direction of the cooling air in a constant direction is provided on the outer peripheral side of the pressure equalizing member provided on the inner circumferential surface of the cooling air outlet of the cooling air blowing device. Yarn cooling device,
(4) A multi-filament melt spinning apparatus for melt-spinning a plurality of multifilament yarns is provided with a cylindrical partition member that partitions a slow cooling zone provided for each spindle from an adjacent spindle, and the yarn is separated by the partition member. The yarn cooling device according to any one of (1) to (3), wherein a yarn traveling area from directly above the yarn cooling device to the spinneret surface is sealed, and
(5) The yarn cooling device according to any one of (1) to (4), wherein a density of spinning holes to be drilled in one spinneret is 2.2 to 6.0 holes / cm 2. Is provided.

以上に述べたように、従来方式の冷却装置を用いた熱可塑性合成繊維(特に、ポリエステル繊維)の溶融紡糸装置では、特に単糸繊度が0.1〜1.0デシテックスと細繊度であって、フィラメント数が90〜300本のマルチフィラメント糸の冷却において、フィラメント(単糸)間で繊度斑の発生が小さな糸条を得ることが困難とされていた。しかしながら、本発明の糸条冷却装置を用いることによって、従来の横吹冷却方式と比較して、冷却風の風速及び/又は風量をより小さくしながら、走行糸条に対して最外周側から斉内州側へと放射状に冷却風を吹き付けることにより、糸揺れを抑制しながら糸条を冷却することで、単糸繊度が0.1〜1.0デシテックスと細繊度であって、フィラメント数が90〜300本のマルチフィラメント糸を良好に製造することが可能となった。   As described above, in a melt spinning apparatus for thermoplastic synthetic fibers (especially polyester fibers) using a conventional cooling device, the single yarn fineness is 0.1 to 1.0 dtex and the fineness is particularly fine. In the cooling of multifilament yarns having 90 to 300 filaments, it has been difficult to obtain a yarn with small occurrence of fineness unevenness between filaments (single yarns). However, by using the yarn cooling device of the present invention, it is possible to reduce the speed and / or volume of the cooling air from the outermost circumferential side with respect to the traveling yarn, while making the air velocity and / or air volume of the cooling air smaller. By blowing cooling air radially to the state side, the yarn is cooled while suppressing the yarn swing, so that the single yarn fineness is 0.1 to 1.0 dtex and the fineness is 90. It became possible to produce ~ 300 multifilament yarns satisfactorily.

また、本発明では、多数本のマルチフィラメント糸を同時に溶融紡糸する多錘紡糸装置において、多重同心円上に紡糸孔を穿孔して、紡出糸条が円環状に紡出されるような配置とする。更に、紡出糸条を囲繞するように紡出糸条の最外周側から最内周側へ向かって冷却風を放射状に発生させる円筒状の冷却風吹出装置を設け、その直上に各錘を個別に仕切る円筒状の仕切部材を設置する。この仕切部材の設置によって、前記徐冷領域において紡出された各錘糸条に外部から擾乱を及ぼす気流の流入を遮断することができる。その結果、より繊度斑が小さく均質な合成繊維を得ることが可能となる。   Further, in the present invention, in a multi-spindle spinning apparatus that simultaneously melts and spins a large number of multifilament yarns, a spinning hole is perforated on multiple concentric circles so that the spun yarn is spun into an annular shape. . Furthermore, a cylindrical cooling air blowing device that radially generates cooling air from the outermost circumferential side to the innermost circumferential side of the spun yarn is provided so as to surround the spun yarn, and each weight is provided immediately above it. Cylindrical partition members that are individually partitioned are installed. By installing this partition member, it is possible to block the inflow of airflow that causes disturbance from the outside to each spindle yarn spun in the slow cooling region. As a result, it is possible to obtain a uniform synthetic fiber with smaller fineness spots.

また、単糸繊度が非常に小さくて、フィラメント数が多い糸条では、従来のように一方向から冷却風を供給せずに、放射状に冷却風を供給し、紡出糸条の最外周側から最内周側へと冷却風を貫通させる。そうすると、従来型の横吹方式の冷却方法で生じる紡出糸条のふくらみを無くすことができ、紡出糸条と冷却風吹出面との間の距離を短くすることが可能となる。したがって、糸条と冷却風との間の熱交換性を決定する冷却風の流速を従来方式よりも小さく保つことができる。その結果、従来方式よりも遅い流速を持った冷却風であっても十分な冷却性能を有するため、単糸繊度斑の原因となる糸揺れを抑制しながら糸条の冷却を実現することが可能となる。   For yarns with very small single yarn fineness and a large number of filaments, the cooling air is supplied radially without supplying cooling air from one direction as in the past, and the outermost peripheral side of the spun yarn The cooling air is penetrated from the innermost side to the innermost side. If it does so, the swelling of the spinning yarn which arises with the cooling method of the conventional side blowing system can be eliminated, and it becomes possible to shorten the distance between a spinning yarn and a cooling wind blowing surface. Therefore, the flow velocity of the cooling air that determines the heat exchange property between the yarn and the cooling air can be kept smaller than that of the conventional method. As a result, even cooling air with a slower flow rate than the conventional method has sufficient cooling performance, so it is possible to achieve cooling of the yarn while suppressing yarn fluctuation that causes unevenness of single yarn fineness. It becomes.

以下に本発明の実施例を図面に基づいて説明する。
図1は、ポリエステル、ポリアミドなどからなる熱可塑性ポリマーの溶融紡糸装置に、本発明の糸条冷却装置を適用した一実施形態を模式的に示した正断面図であって、その概略装置構成の説明図である。この図1において、1は溶融紡糸装置に装着された紡糸口金、2は糸条、3は円筒状の仕切部材、4は円筒状の冷却風吹出装置、5は冷却風の均圧化部材、6は冷却風の整流部材、7は油剤付与装置、8は糸条交絡装置、9は一対の引取ロ−ラ、そして、10は巻取機をそれぞれ示している。また、図2は、前記紡糸口金1をポリマーの吐出面Fから見た平面図であって、一点鎖線で示したC1及びC2は2重同心円、Hはこの2重同心円上に穿設された紡糸孔群をそれぞれ示す。
Embodiments of the present invention are described below with reference to the drawings.
FIG. 1 is a front sectional view schematically showing an embodiment in which the yarn cooling device of the present invention is applied to a melt spinning device of a thermoplastic polymer made of polyester, polyamide, etc. It is explanatory drawing. In FIG. 1, 1 is a spinneret mounted on a melt spinning apparatus, 2 is a yarn, 3 is a cylindrical partition member, 4 is a cylindrical cooling air blowing device, 5 is a cooling air pressure equalizing member, Reference numeral 6 denotes a cooling air flow regulating member, 7 denotes an oil agent applying device, 8 denotes a yarn interlacing device, 9 denotes a pair of take-up rollers, and 10 denotes a winder. FIG. 2 is a plan view of the spinneret 1 as viewed from the polymer discharge surface F, where C1 and C2 indicated by alternate long and short dash lines are double concentric circles, and H is drilled on the double concentric circles. Each spinning hole group is shown.

以上のように構成される溶融紡糸装置において、多重同心円(図2では、2重同心円(C1)及び(C2)である)上に紡糸口金1に穿設された紡糸孔群Hから吐出されたポリマーは、円筒状(円環状)のマルチフィラメント糸2を形成しながら下流側へ走行する。そして、紡出された該マルチフィラメント糸2は、口金1の直下に設けられた円筒状の仕切部材3によって糸条走行域が囲まれて外部から密閉された徐冷領域へ細繊度マルチフィラメント糸2に成形された状態で紡出される。   In the melt spinning apparatus configured as described above, the material was discharged from the spinning hole group H formed in the spinneret 1 on the multiple concentric circles (in FIG. 2, the double concentric circles (C1) and (C2)). The polymer travels downstream while forming a cylindrical (annular) multifilament yarn 2. Then, the spun multifilament yarn 2 is finely multifilament yarn into a slow cooling region in which the yarn traveling region is surrounded by a cylindrical partition member 3 provided immediately below the base 1 and sealed from the outside. Spinned in a state of being molded into 2.

ついで、この紡出糸条2は、前記仕切部材3の直下に設けられた円筒状の冷却風吹出装置4の内部を走行し、紡出糸条2の最外周側から最内周側へと放射状に吹き出される冷却風により所定の温度にまで冷却される。なお、前記冷却風吹出装置4には、その冷却風吹出面に、均圧化部材5と整流部材6が設けられ、図示省略した冷却風の供給手段などと共に糸条冷却装置を構成している。   Next, the spun yarn 2 travels inside a cylindrical cooling air blowing device 4 provided immediately below the partition member 3, and moves from the outermost peripheral side of the spun yarn 2 to the innermost peripheral side. It cools to predetermined temperature with the cooling air blown off radially. The cooling air blowing device 4 is provided with a pressure equalizing member 5 and a rectifying member 6 on the cooling air blowing surface, and constitutes a yarn cooling device together with a cooling air supply means (not shown).

ここで、前記均圧化部材5は、冷却風が通過する際に圧力損失を起させる多孔質部材で構成されており、これによって冷却風吹出面に供給する冷却風に所定の背圧を生じさせることで、冷却風の吹出面から紡出糸条2に吹き付ける冷却風の流量及び/又は速度を一定にする役割を果たしている。また、前記整流部材6は、均圧化部材5を通過した冷却風の風向(図中に矢付き線分で示している)が紡出糸条2に対して垂直になるように揃える役割を果たしている。   Here, the pressure equalizing member 5 is composed of a porous member that causes a pressure loss when the cooling air passes, thereby generating a predetermined back pressure in the cooling air supplied to the cooling air blowing surface. Thus, it plays a role of making the flow rate and / or speed of the cooling air blown from the cooling air blowing surface to the spun yarn 2 constant. Further, the rectifying member 6 has a role of aligning the direction of the cooling air that has passed through the pressure equalizing member 5 (shown by the arrowed line segment in the drawing) to be perpendicular to the spun yarn 2. Plays.

その際、前記機能を果たすための重要なパーツである均圧化部材5については、冷却風が通過する際に圧力損失を起させる多孔質部材であって、例えば多孔質焼結金属部材、市販の高密度に金属細線又はプラスチックス細線を編んだり織ったりした織網物あるいは不織布を一層又は多層に積層した抵抗体、更には孔開きプレートを積層した積層板などを挙げることができる。また、これら部材を複数組み合せても良い。   At that time, the pressure equalizing member 5 which is an important part for fulfilling the above function is a porous member which causes a pressure loss when the cooling air passes, for example, a porous sintered metal member, commercially available Examples thereof include a resistor formed by laminating a single layer or multiple layers of a woven net or a non-woven fabric woven or woven of metal fine wires or plastic fine wires at a high density, and a laminated plate obtained by laminating perforated plates. A plurality of these members may be combined.

次に、前記機能を果たすための重要なパーツである整流部材6については、冷却風が通過する間隙を形成して上下に平行に重なり合った平行板、更に、該平行板に加えて鉛直方向にも冷却風が通過する間隙を形成して格子状に積層された格子状板、あるいはハニカム(蜂の巣)板などを挙げることができる。   Next, with respect to the rectifying member 6 which is an important part for fulfilling the above function, a parallel plate which is vertically overlapped by forming a gap through which cooling air passes, and in addition to the parallel plate in the vertical direction. In addition, a lattice plate or a honeycomb (honeycomb) plate laminated in a lattice shape by forming a gap through which cooling air passes can be used.

以上に述べたようにして冷却された紡出糸条2は、冷却風吹出装置4の下方に位置する油剤付与装置7により油剤が付与された後に、糸条交絡装置8によってフィラメント間に交絡処理が施されて一対のゴデットローラ(引取ロ−ラ9)に引き取られ、最終的に巻取機10に巻き取られて、衣料用長繊維からなる糸条パッケージとされる。なお、図1の実施形態例では、溶融紡糸した糸条2を延伸する延伸工程については、説明を省略したが、通常、図1に例示した溶融紡糸工程のように一旦巻取機9に巻き取って延伸工程へ供給するか、あるいは、一旦巻き取らずに溶融紡糸工程に引き続いて直接紡糸延伸工程で延伸される。   The spun yarn 2 cooled as described above is entangled between filaments by the yarn interlacing device 8 after the oil agent is applied by the oil applying device 7 located below the cooling air blowing device 4. Is taken up by a pair of godet rollers (take-up rollers 9) and finally taken up by a winder 10 to form a yarn package made of long fibers for clothing. In the embodiment shown in FIG. 1, the description of the drawing process for drawing the melt-spun yarn 2 is omitted. Usually, however, it is once wound around the winder 9 as in the melt spinning process illustrated in FIG. The film is taken and supplied to the drawing process, or is drawn in the direct spinning drawing process after the melt spinning process without winding.

本発明の糸条冷却装置の一部を構成する冷却風吹出装置4では、前述のように均圧化部材5によって風量及び/又は風速が均一化された冷却風が整流部材6から風向きが紡出糸条に対して垂直となるように紡出糸条2の最外周側から最内周側へと放射状に吹き付けられる。したがって、従来の横吹冷却方式と異なり、本発明の糸条冷却装置によると、走行糸条2により近い距離から、より弱い風速でフィラメント群中を冷却風が容易に貫流することができるので、当然のことながら従来方式のように吹付方向への糸条2のふくらみも生じず、その結果として、糸揺れも小さくなる。そうすると、単糸繊度斑も小さくなって、より品質の高い糸条を得ることができる。   In the cooling air blowing device 4 that constitutes a part of the yarn cooling device of the present invention, as described above, the cooling air whose air volume and / or wind speed is made uniform by the pressure equalizing member 5 is spun from the rectifying member 6 in the direction of the wind. The spinning yarn 2 is sprayed radially from the outermost circumferential side to the innermost circumferential side so as to be perpendicular to the outgoing yarn. Therefore, unlike the conventional horizontal blow cooling method, according to the yarn cooling device of the present invention, the cooling air can easily flow through the filament group at a weaker wind speed from a distance closer to the traveling yarn 2. However, the yarn 2 does not bulge in the spraying direction as in the conventional method, and as a result, the yarn sway is reduced. If it does so, a single yarn fineness spot will also become small and a higher quality thread can be obtained.

なお、冷却風が吹き付けられる紡出糸条は、わずかに2重円筒状又は3重円筒状の周列を形成して下流側に向かって走行しているに過ぎないから、冷却風のフィラメント群間への貫流性は極めて良好である。したがって、従来方式では、高密度で紡出された多数のフィラメント群の全体に対して一方向から冷却風を吹き付ける際に顕著となる冷却風の吹付側フィラメント群と反吹付側フィラメント群とに生じる冷却斑を極めて良好に抑制することができる。   The spinning yarn to which the cooling air is blown is formed only in a double cylindrical or triple cylindrical circumferential row and travels toward the downstream side. The flow through is very good. Therefore, in the conventional method, the cooling air blowing side filament group and the anti-blowing side filament group, which become conspicuous when cooling air is blown from one direction to the whole of a large number of filament groups spun at high density, are generated. Cooling spots can be suppressed very well.

また、本発明の糸条冷却装置では、紡出糸条2を囲繞する円筒状吹出面から冷却風を走行糸条に吹き付けることができるため、冷却風の吹付面積をより大きくすることができる。また、冷却風の吹付距離が横吹冷却方式の場合のように反吹付側フィラメント群において極めて長くなってしまうということも無く、冷却風の吹出面と紡出糸条2との間の吹付距離を短く設定することが可能となる。このことは、糸条と冷却風との間の熱交換性を大きく向上できることを意味している。   Further, in the yarn cooling device of the present invention, since the cooling air can be blown onto the traveling yarn from the cylindrical blowing surface surrounding the spun yarn 2, the cooling air blowing area can be further increased. Moreover, the spraying distance between the cooling air blowing surface and the spun yarn 2 can be reduced without causing the cooling air blowing distance to be extremely long in the anti-blowing side filament group as in the case of the horizontal blowing cooling method. It becomes possible to set it short. This means that the heat exchange between the yarn and the cooling air can be greatly improved.

なお、糸条冷却装置の冷却風吹出面から吹き出される冷却風は、吹き出された当初は吹出方向が整流部材によってきれいに一定方向へ揃えられているが、冷却風は気体であるから水などの液体と異なって吹き出されると直ぐに拡散して乱れてしまうという性質を有している。しかも、冷却風の吹出距離が長くなればなるほど、この冷却風の拡散と乱れがより顕著に現われてしまう。   Note that the cooling air blown from the cooling air blowing surface of the yarn cooling device is initially blown out in a uniform direction by the rectifying member. However, since the cooling air is a gas, it is a liquid such as water. In contrast, it has the property of being diffused and disturbed as soon as it is blown out. In addition, the longer the cooling air blowing distance is, the more noticeably the diffusion and disturbance of the cooling air appears.

このように、従来の糸条冷却装置では、紡糸糸条2が冷却風の反吹出側へふくらむので、冷却風の吹出面と紡出糸条Yとの間の距離がより大きくなり、冷却風は拡散してしまう。したがって、フィラメント群間への冷却風の貫流性が低下すると共に、紡出糸条Yとの間の熱交換性も低下することとなる。そうすると、冷却能力が低下してしまうため、吹き出す冷却風の風速を大きくせざるを得ず、その結果として、かえって糸揺れを誘発し易くなるという問題が生じることは前述の通りである。   As described above, in the conventional yarn cooling device, the spun yarn 2 swells to the cooling air counter-blowing side, so that the distance between the cooling air blowing surface and the spun yarn Y becomes larger, and the cooling air Will spread. Therefore, the flowability of the cooling air between the filament groups is lowered, and the heat exchange property with the spun yarn Y is also lowered. As a result, the cooling capacity is lowered, and the speed of the cooling air to be blown out has to be increased. As a result, the problem that the yarn is liable to be induced is caused as described above.

このような従来技術に対して、本発明の糸条冷却装置では、吹出面から吹き出す冷却風の流速あるいは風量をより小さく設定することが可能となる。このため、至近距離から紡出糸条2をより小さな風速で冷却できる。その結果、繊度斑が発生する最も大きな要因である糸揺れを更に小さくすることができる。したがって、紡糸口金1に穿設する紡糸孔Hの穿孔密度をより高くできる。このように、本発明においては、一枚の紡糸口金1に穿設する紡糸孔Hの穿設密度を2.2〜6.0個/cm、より好ましくは、2.5〜4.5個/cmとすることができる。 Compared to such a conventional technique, in the yarn cooling device of the present invention, it is possible to set the flow velocity or the air volume of the cooling air blown out from the blowing surface to be smaller. For this reason, the spun yarn 2 can be cooled with a smaller wind speed from a close distance. As a result, it is possible to further reduce the yarn sway, which is the largest factor causing fineness spots. Therefore, the drilling density of the spinning holes H drilled in the spinneret 1 can be further increased. Thus, in the present invention, the drilling density of the spinning holes H drilled in one spinneret 1 is 2.2 to 6.0 holes / cm 2 , more preferably 2.5 to 4.5. Pieces / cm 2 .

ここで、一枚の紡糸口金1に穿設する紡糸孔Hの穿設密度を2.2個/cm未満であれば、本発明の糸条冷却装置を使用するまでもなく、従来の糸条冷却装置を使用しても充分な効果が得られる。したがって、本発明では、一枚の紡糸口金1に穿設する紡糸孔Hの穿設密度が2.2個/cm以上であることが好ましいが、6.0個/cmを超えると本発明の糸条冷却装置を用いてもフィラメント群間への冷却風の還流性能が低下し、「背景技術」欄で述べたような問題を惹起するため好ましくない。 Here, if the drilling density of the spinning holes H to be drilled in one spinneret 1 is less than 2.2 / cm 2 , it is not necessary to use the yarn cooling device of the present invention, and the conventional yarn Even if a strip cooling device is used, a sufficient effect can be obtained. Therefore, in the present invention, it is preferable that the perforation density of the spin holes H perforated in one spinneret 1 is 2.2 or more / cm 2 , but if it exceeds 6.0 / cm 2 , Even if the yarn cooling device of the invention is used, the reflux performance of the cooling air between the filament groups is lowered, which causes problems as described in the “Background Art” section, which is not preferable.

本発明が対象とする細繊度マルチフィラメント糸のように、単糸繊度の小さな銘柄においては、口金1の直下で極力急冷し、冷却固化点を上流側に移動させると共に、紡糸張力を上昇させて糸揺れを少なくすることが紡糸技術として重要である。しかしながら、冷却固化点を上流側に移動させると、口金1の直下に設けた徐冷領域における紡出糸条2の伸長挙動が極めて重要となる。   For brands with small single yarn fineness, such as the fineness multifilament yarns targeted by the present invention, quench as much as possible immediately below the base 1 and move the cooling solidification point to the upstream side and increase the spinning tension. It is important as a spinning technique to reduce yarn swing. However, when the cooling and solidifying point is moved to the upstream side, the elongation behavior of the spun yarn 2 in the slow cooling region provided immediately below the die 1 becomes extremely important.

そこで、本発明の糸条冷却装置では、円筒状の冷却風吹出装置4の内部へ紡出糸条2を走行させて、紡出糸条2が受ける外乱を極力抑制すると共に、冷却風吹出装置4の直上に存在する徐冷領域にも各錘毎に個別に円筒状の仕切部材3を設ける。そして、紡糸口金1と冷却風吹出装置4との間の徐冷領域を密閉することで、冷却風吹出装置4から噴出された冷却風が徐冷領域に進入するのを防止することができる。また、各錘での糸揺れの要因となる外部気流の流入による影響を抑制することができ、更なる繊度斑抑制技術として重要かつ有効である。   Therefore, in the yarn cooling device of the present invention, the spun yarn 2 is caused to travel inside the cylindrical cooling air blowing device 4 to suppress disturbances received by the spun yarn 2 as much as possible, and the cooling air blowing device. A cylindrical partition member 3 is also provided for each weight individually in the slow cooling region existing immediately above 4. Then, by sealing the slow cooling region between the spinneret 1 and the cooling air blowing device 4, it is possible to prevent the cooling air blown from the cooling air blowing device 4 from entering the slow cooling region. Moreover, the influence by the inflow of the external airflow that causes the thread swaying at each weight can be suppressed, which is important and effective as a further fineness unevenness suppression technique.

更に、円筒状冷却風吹出装置4から吹き出す冷却風の風速を小さくすることとの相乗効果により、糸揺れを更に抑制しながら急冷を実現し、本発明の糸条冷却装置では、油剤付与装置7も更に上流側に移動させることができる。その結果、紡出されたフィラメント群を集束する位置を短くすることができ、更に糸揺れ防止の効果を向上させている。しかしながら、紡出糸条2の冷却固化が遅い場合、すなわち、冷却固化点が更に下流側に伸びる場合には、油剤付与装置7と紡出糸条2との間の摩擦抵抗が大きくなり、油剤付与装置7との擦過による単糸切れ、あるいは断糸を誘発することが分かっている。   Furthermore, due to the synergistic effect of reducing the wind speed of the cooling air blown from the cylindrical cooling air blowing device 4, rapid cooling is realized while further suppressing the yarn swinging. In the yarn cooling device of the present invention, the oil agent applying device 7 Can be moved further upstream. As a result, the position where the spun filament groups are converged can be shortened, and the effect of preventing yarn swing is further improved. However, when cooling and solidification of the spun yarn 2 is slow, that is, when the cooling and solidifying point extends further downstream, the frictional resistance between the oil agent applying device 7 and the spun yarn 2 becomes large, and the oil agent It has been found that single yarn breakage or yarn breakage is induced by rubbing with the applying device 7.

本発明に係わる糸条冷却装置を溶融紡糸工程に適用した場合の一実施形態例を模式的に示した説明図(正断面図)である。It is explanatory drawing (front sectional drawing) which showed typically the example of 1 embodiment at the time of applying the yarn cooling device concerning this invention to a melt spinning process. 紡糸口金をポリマーの吐出面から見た平面図である。It is the top view which looked at the spinneret from the discharge surface of the polymer. 従来の横吹冷却方式に係わる糸条冷却装置の溶融紡糸工程への適用例を模式的に示した説明図(正断面図)である。It is explanatory drawing (front sectional drawing) which showed typically the example of application to the melt spinning process of the yarn cooling device concerning the conventional horizontal blow cooling system.

符号の説明Explanation of symbols

1:紡糸口金
2:マルチフィラメント糸
3:円筒状の仕切部材
4:冷却風吹出装置
5:冷却風の均圧化部材
6:冷却風の整流部材
7:油剤付与装置
8:糸条交絡装置
9:一対の引取ロ−ラ
10:巻取機
1: Spinneret 2: Multifilament yarn 3: Cylindrical partition member 4: Cooling air blowing device 5: Cooling air pressure equalizing member 6: Cooling air flow straightening member 7: Oil supply device 8: Yarn entanglement device 9 : A pair of take-up rollers 10: Winding machine

Claims (5)

各熱可塑性合成フィラメントの単糸繊度が0.1〜1.0デシテックスである90〜300本の衣料用マルチフィラメント糸を紡出するための紡糸孔が2重又は3重の多重同心円上に穿設された一枚の紡糸口金と、該紡糸口金の直下に設けた紡出糸条を徐冷するための徐冷手段と、該徐冷手段の直下に設けられ且つ冷却風によって紡出糸条を冷却する糸条冷却装置とを備え、更に該糸条冷却装置が紡出糸条を囲繞するように紡出糸条の最外周側から最内周側へ向かって冷却風を放射状に発生させる円筒状の冷却風吹出装置を備えたことを特徴とする糸条冷却装置。   Spinning holes for spinning 90-300 multifilament yarns for clothing having a single yarn fineness of each thermoplastic synthetic filament of 0.1-1.0 dtex are formed on double or triple concentric circles. A single spinneret provided, a slow cooling means for slowly cooling the spun yarn provided immediately below the spinneret, and a spun yarn provided by cooling air provided immediately below the slow cooling means. A yarn cooling device that cools the yarn, and further generates cooling air radially from the outermost circumferential side to the innermost circumferential side of the spun yarn so that the yarn cooling device surrounds the spun yarn. A yarn cooling device comprising a cylindrical cooling air blowing device. 前記冷却風吹出装置の冷却風吹出口の内周面に対して、紡出糸条に吹き付ける冷却風の風量及び/又は風速を制御する均圧化部材を設けた、請求項1に記載の糸条冷却装置。   The yarn according to claim 1, further comprising a pressure equalizing member for controlling an air volume and / or a wind speed of the cooling air blown to the spun yarn with respect to an inner peripheral surface of the cooling air outlet of the cooling air blowing device. Cooling system. 前記冷却風吹出装置の冷却風吹出口の内周面に設けた均圧化部材の外周側に冷却風の吹出方向を一定方向へ整流する整流部材を設けた、請求項2に記載の糸条冷却装置。   The yarn cooling according to claim 2, wherein a rectifying member that rectifies the blowing direction of the cooling air in a constant direction is provided on an outer peripheral side of the pressure equalizing member provided on an inner circumferential surface of the cooling air outlet of the cooling air blowing device. apparatus. 前記マルチフィラメント糸を複数本溶融紡糸する多錘の溶融紡糸装置に各錘毎に設けられた徐冷ゾーンを隣接錘と仕切る円筒状の仕切部材が設けられ、該仕切部材によって前記糸条冷却装置の直上から前記紡糸口金面までの糸条走行域を密閉した、請求項1〜3の何れかに記載の糸条冷却装置。   The multi-filament melt spinning apparatus for melt-spinning a plurality of multifilament yarns is provided with a cylindrical partition member that partitions a slow cooling zone provided for each spindle from an adjacent spindle, and the yarn cooling apparatus is provided by the partition member. The yarn cooling device according to any one of claims 1 to 3, wherein a yarn traveling region from directly above to the spinneret surface is sealed. 一枚の紡糸口金に穿設する紡糸孔の穿設密度が2.2〜6.0個/cmである、請求項1〜4の何れかに記載の糸条冷却装置。 Bored density of spinning holes formed in a single spinneret is from 2.2 to 6.0 pieces / cm 2, yarn cooler according to any one of claims 1 to 4.
JP2005249348A 2005-08-30 2005-08-30 Device for cooling yarn Pending JP2007063689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249348A JP2007063689A (en) 2005-08-30 2005-08-30 Device for cooling yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249348A JP2007063689A (en) 2005-08-30 2005-08-30 Device for cooling yarn

Publications (1)

Publication Number Publication Date
JP2007063689A true JP2007063689A (en) 2007-03-15

Family

ID=37926211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249348A Pending JP2007063689A (en) 2005-08-30 2005-08-30 Device for cooling yarn

Country Status (1)

Country Link
JP (1) JP2007063689A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150037A (en) * 2007-11-29 2009-07-09 Toray Ind Inc Cooling device for spinning and melt-spinning method
CN102797059A (en) * 2012-09-03 2012-11-28 江苏恒力化纤股份有限公司 Manufacturing method of high-strength and high-elongation polyester industrial yarn
CN103160939A (en) * 2011-12-08 2013-06-19 上海启鹏工程材料科技有限公司 Compressing spinning-spinneret assembly and implementing method thereof
CN116815375A (en) * 2023-08-28 2023-09-29 常州虹纬纺织有限公司 Slub yarn production system and working method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593816A (en) * 1979-01-10 1980-07-16 Unitika Ltd Production of extremely fine polyester fiber
JPH08113818A (en) * 1994-10-19 1996-05-07 Teijin Ltd Melt spinning apparatus
JPH0931741A (en) * 1995-07-18 1997-02-04 Kanebo Ltd Melt spinning machine of high-multifilament
JP2000136434A (en) * 1998-11-02 2000-05-16 Teijin Ltd Production of thermoplastic synthetic fiber
JP2002309431A (en) * 2000-06-21 2002-10-23 Toray Eng Co Ltd Spinning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593816A (en) * 1979-01-10 1980-07-16 Unitika Ltd Production of extremely fine polyester fiber
JPH08113818A (en) * 1994-10-19 1996-05-07 Teijin Ltd Melt spinning apparatus
JPH0931741A (en) * 1995-07-18 1997-02-04 Kanebo Ltd Melt spinning machine of high-multifilament
JP2000136434A (en) * 1998-11-02 2000-05-16 Teijin Ltd Production of thermoplastic synthetic fiber
JP2002309431A (en) * 2000-06-21 2002-10-23 Toray Eng Co Ltd Spinning apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150037A (en) * 2007-11-29 2009-07-09 Toray Ind Inc Cooling device for spinning and melt-spinning method
CN103160939A (en) * 2011-12-08 2013-06-19 上海启鹏工程材料科技有限公司 Compressing spinning-spinneret assembly and implementing method thereof
CN102797059A (en) * 2012-09-03 2012-11-28 江苏恒力化纤股份有限公司 Manufacturing method of high-strength and high-elongation polyester industrial yarn
CN116815375A (en) * 2023-08-28 2023-09-29 常州虹纬纺织有限公司 Slub yarn production system and working method thereof
CN116815375B (en) * 2023-08-28 2023-11-24 常州虹纬纺织有限公司 Slub yarn production system and working method thereof

Similar Documents

Publication Publication Date Title
JP2007063690A (en) Device for cooling yarn
JP2014159649A (en) Apparatus for cooling yarns
JP2010106393A (en) Apparatus and method for producing multifilament yarn
JP2010077553A (en) Apparatus and method for producing filament yarn
JP2007063689A (en) Device for cooling yarn
JP2007063679A (en) Device for cooling yarn
JP5428979B2 (en) Spin pack and method for producing filament yarn
JP2006241611A (en) Melt-spinning equipment of synthetic fiber
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JP2015014071A (en) Line-of-thread cooling system
JP2011153391A (en) Yarn-cooling apparatus, and melt-spinning method
JP2007247121A (en) Yarn cooling device
JP4988318B2 (en) Multi-spindle melt spinning apparatus and ultrafine multifilament yarn obtained therefrom
JP5585469B2 (en) Synthetic fiber melt spinning equipment
KR100502397B1 (en) Molten yarn take-up device
JP2007186810A (en) Melt-spinning apparatus and melt-spinning method
JPH1018122A (en) Melt spinning
JP2009068154A (en) Yarn cooling device
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JP2007031892A (en) Yarn cooling apparatus
JP5925657B2 (en) Melt spinning equipment
JP2003193325A (en) Melt spinning equipment
JP3668004B2 (en) Melt spinning equipment
JP2003166114A (en) Melt spinning device
JP2006104600A (en) Method for producing synthetic fiber multifilament yarn and production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100727

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201