JP4148001B2 - Method for producing ultrafine multifilament yarn and melt spinning apparatus - Google Patents

Method for producing ultrafine multifilament yarn and melt spinning apparatus Download PDF

Info

Publication number
JP4148001B2
JP4148001B2 JP2003094299A JP2003094299A JP4148001B2 JP 4148001 B2 JP4148001 B2 JP 4148001B2 JP 2003094299 A JP2003094299 A JP 2003094299A JP 2003094299 A JP2003094299 A JP 2003094299A JP 4148001 B2 JP4148001 B2 JP 4148001B2
Authority
JP
Japan
Prior art keywords
cooling air
yarn
spinneret
melt spinning
multifilament yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003094299A
Other languages
Japanese (ja)
Other versions
JP2004300614A (en
Inventor
秀一 川崎
直之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003094299A priority Critical patent/JP4148001B2/en
Publication of JP2004300614A publication Critical patent/JP2004300614A/en
Application granted granted Critical
Publication of JP4148001B2 publication Critical patent/JP4148001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製糸操業性に優れ、かつ染め品質が良好なポリエステル極細マルチフィラント糸の製造方法と溶融紡糸装置に関するものである。
【0002】
【従来の技術】
従来、極細マルチフィラメント糸の製造方法において、口金から吐出された糸条に対して安定した冷却を行う方法としては、糸条の全周方向から冷却風を吹き付けて均一な冷却を行うようにする環状冷却方法が知られている。
【0003】
また、紡糸糸条に対して実質的に直角方向から冷却風を吹き付け、しかも吹き付け風を若干弱めると共に反対側から吸引を行う方法も知られている。更に、冷却風の吹き付け方向を、紡糸糸条に対して実質的に直角方向ではなく若干上方に向けて、糸条の固化点を口金面に近づけ、糸揺れによる繊度斑を防止する方法も知られている。
【0004】
加えて、口金と冷却装置の間に、仕切板を設け口金近傍に冷却風の流動を防ぎ、口金面の温度斑を減少させ、断面斑及び繊度斑を防止することが提案されている(特許文献1参照。)。
【0005】
しかしながら、単繊維繊度をより小さくした場合には、糸条に発生する断面斑および繊度斑が増加するため、紡糸口金面と冷却風の吹き出し部の上端面との距離をより小さく、糸条の固化点を口金面に近づけ、糸揺れを防止する方法は、斑防止には効果があるが、例えば、紡糸口金面と冷却風の吹き出し部の上端面との距離を15mmを下回るような距離をとると口金面が冷え操業性に問題が生じる。また別に、紡糸口金と冷却装置の間に仕切板を用いる方法では、口金近傍への冷却風の流動を防ぐことができず、断面斑及び繊度斑防止の効果が得られなかった(特許文献1参照。)。
【0006】
【特許文献1】
特開平9−137317号公報
【0007】
【発明が解決しようとする課題】
そこで本発明の目的は、単糸繊度が1.2デシテックス以下のポリエステル極細マルチフィラント糸を、例えば、2,000m/分以上の高速引取速度で溶融紡糸する場合にも、断面斑および繊度斑の少ない糸を紡糸することができるポリエステル極細マルチフィラント糸の製造方法と溶融紡糸装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成せんとするものであり、本発明のポリエステル極細マルチフィラント糸の製造方法は、単繊維繊度が1.2デシテックス以下のポリエステル極細マルチフィラメント糸を製造する方法において、ポリエステルを紡糸口金から溶融紡出し、紡出された糸条を紡糸口金下方で冷却風により冷却しながら引き取るに際し、前記紡糸口金面と前記冷却風の吹き出し部の上端面との距離を10から40mmに設定するとともに、前記冷却風が紡出された糸条に対して全周方向から吹き出すようにされ、かつ該紡出された糸条の走行方向に直角方向から下向きに5〜20度傾斜して吹き出すようにしたことを特徴とする極細マルチフィラメント糸の製造方法である。
【0009】
本発明の極細マルチフィラメント糸の製造方法は、紡出糸条を紡糸口金下方で冷却風により冷却しながら引取速度2,000m/分以上で引き取り、単繊維繊度1.2デシテックス以下のポリエステル極細マルチフィラント糸を製造するに場合に特に好適である。
【0010】
また、本発明の極細マルチフィラメント糸の溶融紡糸装置は、紡糸口金を備えた溶融押出装置、冷却風の吹き出し部を有する冷却装置、油剤付与装置および巻取装置から構成され、単繊維繊度が1.2デシテックス以下のポリエステル極細マルチフィラメント糸の溶融紡糸装置において、該紡糸口金面と冷却風の吹き出し部の上端面との距離を10〜40mmに設定すると共に、前記冷却風が紡出された糸条に対して全周方向から吹き出すようにされ、かつ該冷却装置の冷却風の吹き出しの向きを紡糸方向に直角方向から下向きに5〜20度傾斜して形成してなることを特徴とする極細マルチフィラメント糸の溶融紡糸装置紡糸口金を備えた溶融押出装置である。
【0011】
この溶融紡糸装置においては、冷却装置が、冷却風の向きを調製する整流部材を有すること、および、整流部材が、紡糸方向に直角方向から下向きに5〜20度傾斜した孔が形成された多孔性部材で構成されていることが好ましい態様として内包されている。
【0012】
【発明の実施の形態】
以下、本発明の極細マルチフィラント糸の製造方法の一実施例について、図1を参照して詳細に説明する。図1は、本発明の極細マルチフィラメント糸の製造工程と溶融紡糸装置を説明するための概略図である。
【0013】
図1において、溶融紡糸装置は、溶融押出装置1、冷却装置3、油剤付与装置4、引取ローラ5、6および巻取装置7とを備えている。溶融押出装置1は紡糸口金2を有しており、溶融押出装置1において溶融されたポリマーは、紡糸口金2から吐出される。この紡糸口金2の吐出孔の形状は、丸断面、三角断面、または多葉断面等の多様な断面形状のうち、いずれか所望の断面形状を有するフィラメントを得るため適宜選択することができる。
【0014】
紡糸口金2から吐出された溶融状態にある糸条は、次に冷却装置3において冷却固化された後、油剤付与装置4により油剤が付与され、その後一対の引取ローラー5、6を介して巻取装置7により巻き取られる。
【0015】
冷却装置3は好適には整流部材31を有しており、整流部材31としては冷却装置3に供給される冷却風を整流して糸条に冷却風を当てるタイプのものを採用し、糸条に対し全周方向から吹き出す円周クエンチ方式を採用することができる。また、冷却装置3の整流部材31において、冷却風の吹き出し口は紡糸方向(紡糸糸条の走行方向)に開口しており、かつ紡糸糸方向に直角方向から下向きに5〜20度傾斜した孔が形成された多孔性部材である。この整流部材31により、冷却装置3に供給された冷却風は整流され、紡糸方向に直角方向から下向きに傾斜した冷却風が形成さる。孔の形状は円形、台形、八角形又は六角形が採用でき、全面にわたって内側から外側に開口し、かつ、内側から外側に5〜20度傾斜した孔の配列である。
【0016】
傾斜した孔が形成された多孔性部材としては、例えば、セルロースリボンを螺旋状に巻いて熱硬化成形した多孔性部材が挙げられる。この多孔性部材は、セルロースリボン(材質:紙)に熱硬化性樹脂(フェノール樹脂)を含浸後、加熱硬化することで、リボン層にすき間(孔:40μm程度の大きさ)が形成され、これらのすき間は外周から中心に向かって均一に分布している。そして、このセルロースリボンを螺旋状に巻き付けるとき、傾斜を付けて巻き付けることにより、すき間は中心に向かって傾斜する。孔は内から外に連通している。
【0017】
なお、傾斜したが配列した多孔性部材を構成する材質としては、適度な剛性を有していれば、紙、木、金属および合成樹脂等特に限定されない。
【0018】
溶融押出装置1において、紡糸口金2面と冷却装置3の冷却風の吹出部の上端面3aとの距離Lは、未延伸糸の繊度斑の良否を支配するうえで重要である。繊度斑の発生を防止するためには、紡糸口金2から吐出された糸条を安定して急冷することが効果的であり、また、同距離Lが大きくなると、吐出直後の固化していない糸条に対する冷却風の吹き付けによる糸条の揺れが大きくなり、断面斑や繊度斑が多数生じる。そのため、紡糸口金面2と冷却風の吹出部の上端面3aはできるだけ近接させることが好ましいが、一方では、紡糸口金2と冷却風の吹出部の上端面3aが近すぎると、同冷却風により紡糸口金2面に部分的な温度斑が生じ、紡糸口金2面の雰囲気温度が大きく乱れ、各フイラメントを均一に冷却することができず、各フイラメント間に構造斑が発生する。
【0019】
しかしながら、本発明においては、紡糸口金面2と冷却風の吐出部の上端面3aとの距離Lを小さくても、冷却装置3に供給された冷却風を、整流部材31を通過させることにより紡糸方向に直角方向から下向きに傾斜して吹き出させることができるため、紡糸口金2面への冷却風の流入がなくなり、冷却風による紡糸口金2面の雰囲気温度を乱さない。
【0020】
上述のように、本発明では紡糸口金面の雰囲気温度に着目し、紡糸口金2面と冷却風の吹出部の上端面3aとの距離Lを10〜40mmの範囲に設定すると共に、冷却風を冷却風の吹き出しの向きを、紡糸方向(糸条の走行方向)に直角方向から下向きに5〜20度傾斜して吹き出すようにしたことにより、糸条の固化点を口金面に近づけ、糸揺れが防止できることにより極細マルチフィラメント糸の紡糸であってもマルチフィラメント糸に生じる断面斑及び繊度斑のいずれをも著しく減少させることができ、各単繊維間の構造のバラツキが改善され品質が向上する。
【0021】
次に、上記の溶融紡糸装置を用いた極細マルチフイラメント糸を得るための溶融紡糸方法について説明する。前述の溶融紡糸装置は、極細のマルチフィラメント糸の溶融の溶融紡糸に適しており、このような糸条としては、例えば、単糸総繊度50〜100デシテックス、フィラメント数70〜200程度の糸条が挙げられる。
【0022】
本発明は、単繊維繊度が1.2デシテックス以下のポリエステル極細マルチフィラメント糸を製造する方法である。単繊維繊度が1.2デシテックスを超えると紡糸口金面と冷却風の吹出し部の上端面との距離が40mm以下では急冷され、製糸性が悪化する傾向を示す。
また、単繊維繊度が0.2デシテックス未満では溶融紡糸では製糸性が悪化する傾向を示す。
【0023】
また、上記の溶融紡糸装置を使用して極細マルチフイラメント糸の溶融紡糸を行うに際し、紡糸速度は、2,000〜3,500m/分程度の紡糸速度にて紡糸巻取りを行うことが好ましい。紡糸速度が2,000m/分未満では生産性に劣り、また3,500m/分を超えると紡糸張力が増大し、糸切れ等の問題が発生する傾向を示す。
【0024】
さらに、上記の溶融紡糸装置の場合、冷却装置3の整流部材31は、多孔性部材で孔の配列が、紡糸方向に直角方向から5度から20度までの下向きに傾斜しているものである。多孔性部材の孔の配列が、紡糸方向に5度未満の下向きでは、吹き出された冷却風が口金面に流入し、また、20度を超えると、冷却風が実質的に糸条と接する位置が下方に下がり、効果が損なわれる傾向を示す。
【0025】
また、冷却装置3から供給される冷却風の風速は、0.1〜0.3m/秒程度とすることが好ましく、紡糸された糸条と冷却装置3との距離は5〜20mm程度とすることが好ましい。冷却風の風速0.1m/秒未満では、糸条の冷却が不足し、製糸性が悪化し、また、0.3m/秒を超えると糸揺れが発生し、効果が損なわれる傾向を示す。また、糸条と冷却装置との距離5mm未満では、冷却装置と糸条が接触し、糸切れを発生する問題があり、また、距離20mmを超えると、糸条の冷却が不足し製糸性が悪化する傾向を示す。
【0026】
【実施例】
冷却装置の整流部材の材質と冷却風の向きおよび冷却風と吹き出し部の上端面との距離Lを異ならせた下記4種類の溶融紡糸装置(下記の実施例1、比較例1、2、比較例3)を用いて、口金孔数144個、紡糸温度280℃、冷却風の風速0.2m/s、冷却装置と糸条の距離10mm、紡糸速度2500m/分で、56デシテックス/144フィラメントのポリエチレンテレフタレート糸の溶融紡糸を行った。
【0027】
(実施例1)
図1に示す溶融紡糸装置において、冷却装置3の整流部材31に紡糸方向に開口し、かつ紡糸方向に直角方向から下向きに傾斜した孔が形成された多孔性部材として、セルロースリボンを螺旋状に巻いて熱硬化成形した多孔性部材(孔径40μm、10度下向き)を用い、冷却風と吹き出し部の上端面との距離Lを15mmとした溶融紡糸装置を用いた。
【0028】
(比較例1)
図1に示す溶融紡糸装置において、冷却装置3の整流部材31に紡糸方向に直角に開口した多孔性部材として金属粉体を焼結した多孔性部材(孔径40μm)を用い、冷却風と吹き出し部の上端面との距離Lを15mmとした溶融紡糸装置を用いた。
【0029】
(比較例2)
図1に示す溶融紡糸装置において、冷却装置3の整流部材31に紡糸方向に直角に開口した金網(100メッシュ)を用い、冷却風と吹き出し部の上端面との距離Lを15mmとした溶融紡糸装置を用いた。
(比較例3)
図1に示す溶融紡糸装置において、冷却装置3の整流部材31に紡糸方向に開口し、かつ紡糸方向に直角方向から下向きに傾斜した孔が形成された多孔性部材として、セルロースリボンを螺旋状に巻いて熱硬化成形した多孔性部材(孔径40μm、10度下向き)を用い、冷却風と吹き出し部の上端面との距離Lを50mmとした溶融紡糸装置を用いた。
【0030】
上記4種類の溶融紡糸装置による溶融紡糸を行い、口金面の温度とウースター斑を測定した。結果を表1に示す。
(ウスター斑)
ZELLWEGER USTER社のUSTER TESTER UT−4を使用して糸速25m/分でウスター斑を測定した。
【0031】
【表1】

Figure 0004148001
【0032】
【発明の効果】
本発明によれば、紡糸口金面と前記口金面と前記冷却風の吹出部の上端面との距離を10〜40mmに設定すると共に、前記冷却風が紡出された糸条に対して全周方向から吹き出すようにされ、かつ冷却風を紡糸方向(糸条の走行方向)に直角方向から下向きに5〜20度傾斜して吹き出させることにより、紡糸口金面への冷却風の流入がなくなり、冷却風による紡糸口金面の温度斑が減少して口金面の雰囲気温度が安定し、マルチフィラメントが均一に冷却され、断面斑及び繊度斑が低減される。
【図面の簡単な説明】
【図1】 本発明の極細マルチフィラメント糸の製造工程と溶融紡糸装置を説明するための概略図である。
【符号の説明】
1 溶融押出装置
2 紡糸口金
3 冷却装置
31 整流部材
3a 上端面
4 油剤付与装置
5、6 引取ローラ
7 巻取装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyester ultrafine multifilament yarn having excellent yarn operability and good dyeing quality, and a melt spinning apparatus.
[0002]
[Prior art]
Conventionally, in a method for producing an ultrafine multifilament yarn, as a method for stably cooling the yarn discharged from the die, cooling air is blown from the entire circumferential direction of the yarn to perform uniform cooling. Annular cooling methods are known.
[0003]
There is also known a method in which cooling air is blown from a direction substantially perpendicular to the spun yarn, and the blowing air is slightly weakened and suction is performed from the opposite side. Also known is a method for preventing fineness unevenness due to yarn swinging by directing the cooling air blowing direction slightly upward rather than at right angles to the spun yarn and bringing the solidification point of the yarn closer to the base surface. It has been.
[0004]
In addition, it has been proposed to provide a partition plate between the base and the cooling device to prevent the flow of cooling air near the base, reduce temperature spots on the base surface, and prevent cross-section spots and fineness spots (patent) Reference 1).
[0005]
However, when the single fiber fineness is made smaller, cross-sectional spots and fineness spots generated on the yarn increase, so the distance between the spinneret surface and the upper end surface of the cooling air blowing portion is made smaller, and the yarn The method of bringing the solidification point close to the base surface and preventing yarn swinging is effective in preventing unevenness, but for example, the distance between the spinneret surface and the upper end surface of the cooling air blowing portion is less than 15 mm. If it takes, the base will be cold and a problem will arise in operability. In addition, in the method using a partition plate between the spinneret and the cooling device, the flow of cooling air to the vicinity of the base cannot be prevented, and the effect of preventing cross-sectional spots and fineness spots cannot be obtained (Patent Document 1). reference.).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-137317 [0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a cross-sectional spot and a fineness spot even when a polyester ultrafine multifilament yarn having a single yarn fineness of 1.2 dtex or less is melt-spun at a high take-up speed of, for example, 2,000 m / min or more. It is an object of the present invention to provide a method for producing a polyester extra fine multifilament yarn and a melt spinning apparatus capable of spinning a yarn with a small amount of yarn.
[0008]
[Means for Solving the Problems]
The present invention is intended to achieve the above object, and the method for producing a polyester extra fine multifilament yarn of the present invention is a method for producing a polyester extra fine multifilament yarn having a single fiber fineness of 1.2 decitex or less. When the spun yarn is taken out while being cooled by cooling air below the spinneret, the distance between the spinneret surface and the upper end surface of the cooling air blowing portion is 10 to 40 mm. The cooling air is blown out from the entire circumferential direction with respect to the spun yarn , and the running direction of the spun yarn is inclined 5 to 20 degrees downward from a right angle direction. An ultrafine multifilament yarn manufacturing method characterized by being blown out.
[0009]
The method for producing an ultrafine multifilament yarn according to the present invention comprises a polyester ultrafine multifilament having a single fiber fineness of 1.2 decitex or less, with a spun yarn being taken down at a take-up speed of 2,000 m / min or lower while being cooled by cooling air below the spinneret. It is particularly suitable for producing fillant yarns.
[0010]
The melt spinning apparatus for ultrafine multifilament yarns of the present invention comprises a melt extrusion apparatus equipped with a spinneret, a cooling apparatus having a cooling air blowing section, an oil agent applying apparatus and a winding apparatus , and has a single fiber fineness of 1. In a melt spinning apparatus for polyester extra-fine multifilament yarn of 2 decitex or less, the distance between the spinneret surface and the upper end surface of the cooling air blowing portion is set to 10 to 40 mm, and the yarn from which the cooling air is spun It has been blown out from the entire circumferential direction relative to the strip, and ultrafine characterized by comprising forming inclined 5-20 degrees downward from the direction perpendicular blowing direction of the cooling air in the spinning direction of the cooling device A melt extrusion apparatus equipped with a spinneret for a melt spinning apparatus for multifilament yarns.
[0011]
In this melt spinning apparatus, the cooling device has a rectifying member that adjusts the direction of the cooling air, and the rectifying member has a hole in which holes inclined by 5 to 20 degrees downward from a direction perpendicular to the spinning direction are formed. It is included as a preferable aspect that it is comprised with the sex member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the method for producing an ultrafine multifilament yarn of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic view for explaining a production process of an ultrafine multifilament yarn and a melt spinning apparatus of the present invention.
[0013]
In FIG. 1, the melt spinning apparatus includes a melt extrusion apparatus 1, a cooling apparatus 3, an oil agent applying apparatus 4, take-up rollers 5 and 6, and a winding apparatus 7. The melt extrusion apparatus 1 has a spinneret 2, and the polymer melted in the melt extrusion apparatus 1 is discharged from the spinneret 2. The shape of the discharge hole of the spinneret 2 can be appropriately selected in order to obtain a filament having any desired cross-sectional shape among various cross-sectional shapes such as a round cross section, a triangular cross section, and a multi-leaf cross section.
[0014]
The melted yarn discharged from the spinneret 2 is then cooled and solidified in the cooling device 3, and then the oil agent is applied by the oil agent applying device 4, and then wound through the pair of take-up rollers 5 and 6. It is wound up by the device 7.
[0015]
The cooling device 3 preferably has a rectifying member 31, and the rectifying member 31 is of a type that rectifies the cooling air supplied to the cooling device 3 and applies the cooling air to the yarn. it can be employed circumferential quench scheme blown from the entire circumferential direction with respect to. Further, in the rectifying member 31 of the cooling device 3, the cooling air outlet is opened in the spinning direction (traveling direction of the spun yarn), and is a hole inclined 5 to 20 degrees downward from the direction perpendicular to the spinning direction. Is a porous member formed. The rectifying member 31 rectifies the cooling air supplied to the cooling device 3 and forms cooling air inclined downward from the direction perpendicular to the spinning direction. The shape of the holes may be circular, trapezoidal, octagonal, or hexagonal, and is an array of holes that are open from the inside to the outside and inclined from the inside to the outside by 5 to 20 degrees over the entire surface.
[0016]
Examples of the porous member in which inclined holes are formed include a porous member obtained by thermosetting and molding a cellulose ribbon in a spiral shape. This porous member is formed by impregnating a cellulose ribbon (material: paper) with a thermosetting resin (phenolic resin) and then heat-curing to form gaps (pores: about 40 μm in size) in the ribbon layer. The gaps are uniformly distributed from the outer periphery toward the center. And when winding this cellulose ribbon helically, a clearance gap inclines toward a center by attaching an inclination and winding. The hole communicates from the inside to the outside.
[0017]
The material constituting the porous member in which the inclined holes are arranged is not particularly limited as long as it has an appropriate rigidity, such as paper, wood, metal, and synthetic resin.
[0018]
In the melt-extrusion apparatus 1, the distance L between the spinneret 2 surface and the upper end surface 3a of the cooling air blowing portion of the cooling device 3 is important in controlling the quality of fineness unevenness of the undrawn yarn. In order to prevent the occurrence of fineness unevenness, it is effective to stably cool the yarn discharged from the spinneret 2, and when the distance L becomes large, the yarn which has not been solidified immediately after the discharge. The swaying of the yarn due to the blowing of cooling air to the strip becomes large, and a large number of cross-section spots and fineness spots occur. For this reason, it is preferable that the spinneret surface 2 and the upper end surface 3a of the cooling air blowing portion be as close as possible. On the other hand, if the spinneret 2 and the upper end surface 3a of the cooling air blowing portion are too close, Partial temperature spots are generated on the surface of the spinneret 2, the atmospheric temperature of the surface of the spinneret 2 is greatly disturbed, the filaments cannot be cooled uniformly, and structural spots are generated between the filaments.
[0019]
However, in the present invention, even if the distance L between the spinneret surface 2 and the upper end surface 3a of the cooling air discharge portion is small, the cooling air supplied to the cooling device 3 is allowed to pass through the rectifying member 31 to perform spinning. Since the air can be blown downward from the direction perpendicular to the direction, the cooling air does not flow into the spinneret 2 surface, and the atmospheric temperature of the spinneret 2 surface by the cooling air is not disturbed.
[0020]
As described above, in the present invention, focusing on the atmospheric temperature of the spinneret surface, the distance L between the spinneret 2 surface and the upper end surface 3a of the cooling air blowing portion is set in the range of 10 to 40 mm, and the cooling air is The blowing direction of the cooling air is inclined by 5 to 20 degrees downward from the direction perpendicular to the spinning direction (running direction of the yarn), so that the solidification point of the yarn is brought close to the base surface, and the yarn shakes. Can prevent both cross-section spots and fineness spots in multifilament yarns even when spinning ultrafine multifilament yarns, improving the structure variation between single fibers and improving quality. .
[0021]
Next, a melt spinning method for obtaining an ultrafine multifilament yarn using the melt spinning apparatus will be described. The above-described melt spinning apparatus is suitable for melt spinning for melting ultrafine multifilament yarns. Examples of such yarns include yarns having a single yarn total fineness of 50 to 100 dtex and a filament number of about 70 to 200. Is mentioned.
[0022]
The present invention is a method for producing a polyester ultrafine multifilament yarn having a single fiber fineness of 1.2 dtex or less. When the single fiber fineness exceeds 1.2 decitex, when the distance between the spinneret surface and the upper end surface of the cooling air blowing portion is 40 mm or less, it is rapidly cooled, and the yarn-making property tends to deteriorate.
Moreover, if the single fiber fineness is less than 0.2 dtex, the spinning property tends to be deteriorated by melt spinning.
[0023]
Moreover, when performing melt spinning of ultrafine multifilament yarns using the above melt spinning apparatus, it is preferable to perform spinning winding at a spinning speed of about 2,000 to 3,500 m / min. When the spinning speed is less than 2,000 m / min, the productivity is inferior. When the spinning speed exceeds 3,500 m / min, the spinning tension increases, and problems such as yarn breakage tend to occur.
[0024]
Further, in the case of the melt spinning apparatus described above, the flow regulating member 31 of the cooling apparatus 3 is a porous member, and the arrangement of the holes is inclined downward from 5 degrees to 20 degrees from a direction perpendicular to the spinning direction. . When the hole arrangement of the porous member is downward at less than 5 degrees in the spinning direction, the blown cooling air flows into the base, and when it exceeds 20 degrees, the cooling air substantially contacts the yarn. Falls downward, indicating a tendency for the effect to be impaired.
[0025]
Further, the wind speed of the cooling air supplied from the cooling device 3 is preferably about 0.1 to 0.3 m / second, and the distance between the spun yarn and the cooling device 3 is about 5 to 20 mm. It is preferable. When the cooling air velocity is less than 0.1 m / sec, the yarn is not sufficiently cooled, and the yarn-making property is deteriorated, and when it exceeds 0.3 m / sec, yarn swaying occurs and the effect tends to be impaired. Also, if the distance between the yarn and the cooling device is less than 5 mm, there is a problem that the cooling device and the yarn come into contact with each other and yarn breakage occurs. Shows a tendency to get worse.
[0026]
【Example】
The following four types of melt spinning apparatuses (the following Example 1, Comparative Examples 1 and 2 and Comparative Examples) in which the material of the rectifying member of the cooling device, the direction of the cooling air, and the distance L between the cooling air and the upper end surface of the blowing portion are different. Example 3), the number of nozzle holes was 144, the spinning temperature was 280 ° C., the cooling air speed was 0.2 m / s, the distance between the cooling device and the yarn was 10 mm, the spinning speed was 2500 m / min, and the 56 dtex / 144 filaments Polyethylene terephthalate yarn was melt spun.
[0027]
(Example 1)
In the melt spinning apparatus shown in FIG. 1, a cellulose ribbon is spirally formed as a porous member in which a rectifying member 31 of the cooling device 3 is opened in the spinning direction and has a hole inclined downward from a direction perpendicular to the spinning direction. A melt spinning apparatus was used in which a porous member (hole diameter 40 μm, 10 ° downward) wound and thermoset was used, and the distance L between the cooling air and the upper end surface of the blowing portion was 15 mm.
[0028]
(Comparative Example 1)
In the melt spinning apparatus shown in FIG. 1, a porous member (pore diameter: 40 μm) obtained by sintering metal powder is used as the porous member opened at right angles to the spinning direction in the rectifying member 31 of the cooling device 3. A melt spinning apparatus having a distance L to the upper end surface of 15 mm was used.
[0029]
(Comparative Example 2)
In the melt spinning apparatus shown in FIG. 1, melt spinning using a wire mesh (100 mesh) opened at right angles to the spinning direction as the rectifying member 31 of the cooling apparatus 3 and the distance L between the cooling air and the upper end surface of the blowing part is 15 mm. A device was used.
(Comparative Example 3)
In the melt spinning apparatus shown in FIG. 1, a cellulose ribbon is spirally formed as a porous member in which a rectifying member 31 of the cooling device 3 is opened in the spinning direction and has a hole inclined downward from a direction perpendicular to the spinning direction. A melt spinning apparatus was used in which a porous member (hole diameter 40 μm, 10 ° downward) wound and thermoset was used, and the distance L between the cooling air and the upper end surface of the blowing portion was 50 mm.
[0030]
Melt spinning was performed using the above four types of melt spinning apparatuses, and the temperature of the die surface and Wooster spots were measured. The results are shown in Table 1.
(Worcester spots)
Worcester spots were measured at a yarn speed of 25 m / min using a ZELLWEGER USTER USTER TESTER UT-4.
[0031]
[Table 1]
Figure 0004148001
[0032]
【The invention's effect】
According to the present invention, the distance between the spinneret surface, the base surface, and the upper end surface of the cooling air blowing portion is set to 10 to 40 mm, and the entire circumference with respect to the yarn on which the cooling air is spun. The cooling air is blown out at an angle of 5 to 20 degrees downward from the direction perpendicular to the spinning direction (running direction of the yarn), so that the cooling air does not flow into the spinneret surface. The temperature variation on the spinneret surface due to the cooling air is reduced, the atmosphere temperature on the spinneret surface is stabilized, the multifilament is uniformly cooled, and the cross-section unevenness and fineness unevenness are reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view for explaining a production process of an ultrafine multifilament yarn of the present invention and a melt spinning apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Melt extrusion apparatus 2 Spinneret 3 Cooling apparatus 31 Rectification member 3a Upper end surface 4 Oil supply apparatus 5, 6 Take-up roller 7 Winding apparatus

Claims (5)

単繊維繊度が1.2デシテックス以下のポリエステル極細マルチフィラメント糸を製造する方法において、ポリエステルを紡糸口金から溶融紡出し、紡出された糸条を紡糸口金下方で冷却風により冷却しながら引き取るに際し、前記紡糸口金面と前記冷却風の吹き出し部の上端面との距離を10から40mmに設定するとともに、前記冷却風が紡出された糸条に対して全周方向から吹き出すようにされ、かつ該紡出された糸条の走行方向に直角方向から下向きに5〜20度傾斜して吹き出すようにしたことを特徴とする極細マルチフィラメント糸の製造方法。In the method for producing a polyester ultrafine multifilament yarn having a single fiber fineness of 1.2 dtex or less, when the polyester is melt-spun from the spinneret and the spun yarn is taken down while being cooled by cooling air below the spinneret, The distance between the spinneret surface and the upper end surface of the cooling air blowing portion is set to 10 to 40 mm, and the cooling air is blown from the entire circumferential direction to the spun yarn. A method for producing an ultrafine multifilament yarn, wherein the spun yarn is blown off at an angle of 5 to 20 degrees downward from a direction perpendicular to the running direction of the spun yarn. 紡出糸条を紡糸口金下方で冷却風により冷却しながら引取速度2,000m/分以上で引き取ることを特徴とする請求項1に記載の極細マルチフィラメント糸の製造方法。2. The method for producing an ultrafine multifilament yarn according to claim 1, wherein the spun yarn is drawn at a take-up speed of 2,000 m / min or more while being cooled by cooling air below the spinneret. 紡糸口金を備えた溶融押出装置、冷却風の吹き出し部を有する冷却装置、油剤付与装置および巻取装置から構成され、単繊維繊度が1.2デシテックス以下のポリエステル極細マルチフィラメント糸の溶融紡糸装置において、該紡糸口金面と冷却風の吹き出し部の上端面との距離を10〜40mmに設定すると共に、前記冷却風が紡出された糸条に対して全周方向から吹き出すようにされ、かつ該冷却装置の冷却風の吹き出しの向きを紡糸方向に直角方向から下向きに5〜20度傾斜して形成してなることを特徴とする極細マルチフィラメント糸の溶融紡糸装置。In a melt spinning apparatus for a polyester ultrafine multifilament yarn having a single fiber fineness of 1.2 decitex or less, comprising a melt extrusion apparatus equipped with a spinneret, a cooling apparatus having a cooling air blowing section, an oil agent applying apparatus and a winding apparatus. The distance between the spinneret surface and the upper end surface of the cooling air blowing portion is set to 10 to 40 mm, and the cooling air is blown out from the entire circumferential direction to the spun yarn, and the An ultrafine multifilament yarn melt spinning apparatus characterized in that the cooling air blowing direction of the cooling device is inclined 5 to 20 degrees downward from a direction perpendicular to the spinning direction. 冷却装置が、冷却風の向きを調製する整流部材を有することを特徴とする請求項3に記載の極細マルチフィラメント糸の溶融紡糸装置。The melt spinning apparatus for ultra-fine multifilament yarn according to claim 3, wherein the cooling device includes a rectifying member that adjusts the direction of the cooling air. 整流部材が、紡糸方向に直角方向から下向きに5〜20度傾斜した孔が形成された多孔性部材で構成されていることを特徴とする請求項4に記載の極細マルチフィラメント糸の溶融紡糸装置。5. The apparatus for melt spinning ultrafine multifilament yarn according to claim 4, wherein the rectifying member is composed of a porous member in which holes inclined by 5 to 20 degrees downward from a direction perpendicular to the spinning direction are formed. .
JP2003094299A 2003-03-31 2003-03-31 Method for producing ultrafine multifilament yarn and melt spinning apparatus Expired - Lifetime JP4148001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094299A JP4148001B2 (en) 2003-03-31 2003-03-31 Method for producing ultrafine multifilament yarn and melt spinning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094299A JP4148001B2 (en) 2003-03-31 2003-03-31 Method for producing ultrafine multifilament yarn and melt spinning apparatus

Publications (2)

Publication Number Publication Date
JP2004300614A JP2004300614A (en) 2004-10-28
JP4148001B2 true JP4148001B2 (en) 2008-09-10

Family

ID=33406889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094299A Expired - Lifetime JP4148001B2 (en) 2003-03-31 2003-03-31 Method for producing ultrafine multifilament yarn and melt spinning apparatus

Country Status (1)

Country Link
JP (1) JP4148001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422181A (en) * 2013-08-05 2013-12-04 福建景丰科技有限公司 Chinlon high-speed spinning technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962152A (en) * 2021-04-13 2021-06-15 浙江朝隆纺织机械股份有限公司 Quenching opposite blowing box and cross blowing structure of spun-bonded non-woven fabric
CN114808158B (en) * 2022-04-07 2023-06-09 桐昆集团浙江恒盛化纤有限公司 Method and equipment for producing high-uniformity fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422181A (en) * 2013-08-05 2013-12-04 福建景丰科技有限公司 Chinlon high-speed spinning technology

Also Published As

Publication number Publication date
JP2004300614A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP2007063679A (en) Device for cooling yarn
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JP2007063690A (en) Device for cooling yarn
JP4148001B2 (en) Method for producing ultrafine multifilament yarn and melt spinning apparatus
CN112458554B (en) Production equipment and preparation method of low linear density polyester fiber
JP5585469B2 (en) Synthetic fiber melt spinning equipment
JP4760441B2 (en) Melt spinning apparatus and melt spinning method
JP4904943B2 (en) Polyester fiber melt spinning equipment
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JPS6250566B2 (en)
JP2006104600A (en) Method for producing synthetic fiber multifilament yarn and production apparatus
JP5262834B2 (en) Method and apparatus for producing ultrafine synthetic fiber comprising multi-threads
JP2007126759A (en) Method for melt spinning of extra fine polyamide fiber
JP2009068154A (en) Yarn cooling device
JP2006225792A (en) Melt-spinning apparatus of synthetic fiber and method for carrying out melt spinning of synthetic fiber by using the apparatus
JP2006104601A (en) Method for producing synthetic fiber multifilament yarn and production apparatus
JP2734700B2 (en) Multifilament spinneret and melt spinning method
JP5332253B2 (en) Filament yarn manufacturing apparatus and manufacturing method
JP2010095827A (en) Melt-spinning apparatus
JP3252520B2 (en) Melt spinning equipment
KR100211140B1 (en) The method of preparing a polyester ultra fine multi filament yarn
JP3668004B2 (en) Melt spinning equipment
JPH02229210A (en) Method for spinning polyester fiber at high speed
JPS6317921B2 (en)
JP2007239135A (en) Melt-spinning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4148001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

EXPY Cancellation because of completion of term