JP2008231607A - Annular cooling apparatus for spinning and melt-spinning method - Google Patents

Annular cooling apparatus for spinning and melt-spinning method Download PDF

Info

Publication number
JP2008231607A
JP2008231607A JP2007072386A JP2007072386A JP2008231607A JP 2008231607 A JP2008231607 A JP 2008231607A JP 2007072386 A JP2007072386 A JP 2007072386A JP 2007072386 A JP2007072386 A JP 2007072386A JP 2008231607 A JP2008231607 A JP 2008231607A
Authority
JP
Japan
Prior art keywords
yarn
buffer chamber
spinning
airflow
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007072386A
Other languages
Japanese (ja)
Inventor
Shoji Funakoshi
祥二 船越
Seiji Mizukami
誠二 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007072386A priority Critical patent/JP2008231607A/en
Publication of JP2008231607A publication Critical patent/JP2008231607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an annular cooling apparatus for spinning, having excellent air flow uniformity in the circumferential direction, and free from the trouble of the contact and fusion of yarns by the oscillation of the yarn in the production of a multifilament yarn to give a yarn having high quality. <P>SOLUTION: The annular cooling apparatus for spinning cools and solidifies a yarn formed by the melt-spinning of a thermoplastic polymer by blasting air flow to the yarn from the outside to the inside of the running path of the yarn. The apparatus is provided with an air-flow introducing pipe 20, a first buffer chamber 13 connected to the air-flow introducing pipe 20 and having an annular flow channel, an annular straightening member 11 positioned at the downstream of the annular flow channel of the first buffer chamber 13, a second buffer chamber 12 provided with an annular flow channel, having a cross-sectional area of the flow channel larger than that of the first buffer channel and positioned at the downstream side of the annular straightening member 11, and an annular straightening filter 5 placed inside of the second buffer chamber 12 and having a flow channel to blast air flow inward. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、紡糸用環状冷却装置および溶融紡糸方法に関する。   The present invention relates to an annular cooling device for spinning and a melt spinning method.

マルチフィラメント糸の製造において、紡糸口金から吐出された熱可塑性ポリマに対して安定して冷却を行う方法については、従来から様々な研究・開発がなされており、幾つかの装置構造にて実施されている。一般的な冷却装置としては、紡出口金から吐出された糸条に対して、糸条の走行方向に直交する方向に、且つ一方向から気流を吹き付けて冷却するクロスフロータイプの冷却装置が広く知られているが、気流の吹き付け側と、気流の反吹き付け側のフィラメント間での冷却風の当たり方に斑ができるため、均一冷却ができず、糸物性斑が悪化する課題が残っている。特に、近年の極細化、多フィラメント化において、糸物性斑悪化が顕著となる。それに対して、他の冷却装置として、環状に配列された紡糸孔を有する紡糸口金から吐出された糸条に対して、糸条の走行経路の外側から内向きに気流を吹き付ける内吹き冷却装置がある。   In the production of multifilament yarns, various researches and developments have been made on the method of stably cooling the thermoplastic polymer discharged from the spinneret, and it has been implemented in several device structures. ing. As a general cooling device, there is a wide range of cross-flow type cooling devices that cool the yarn discharged from the spout gold by blowing airflow in one direction perpendicular to the running direction of the yarn. As is known, spots are formed on the airflow blowing side and the cooling airflow between the filaments on the airflow anti-spraying side, so uniform cooling cannot be achieved, and there remains a problem of deterioration of thread property spots. . In particular, in the recent ultrafine and multifilamentization, the deterioration of thread property spots becomes remarkable. On the other hand, as another cooling device, there is an internal blow cooling device that blows an airflow inward from the outside of the yarn traveling path to the yarn discharged from the spinneret having the spinning holes arranged in an annular shape. is there.

例えば、図9に示したような紡糸用冷却装置の冷却筒が特許文献1で開示されている。図9は、特許文献1の紡糸用環状冷却装置の円筒部の概略縦断面図である。図10(1)、図10(2)は、図9の円筒部の展開図である。図中、5は整流フィルタ、28は多孔質円筒、29はノズル孔をそれぞれ表す。以下、各図面において、説明済みの図に対応する部材が存在する場合は、同じ参照符号を用いて説明を省略することがある。ノズル孔29を有する多孔質円筒28は、糸条の走行方向に垂直な所定の断面においてノズル孔径を一定とし、且つ糸条走行方向の下流側に向かってノズル孔径を拡大し、またはノズル孔ピッチを糸条の走行方向の下流側に向かって密とすることで、気流が多孔質円筒28を通過する際の通過抵抗率を円周方向に均一、且つ糸条走行方向の下流側に向かって暫増させる。   For example, Patent Document 1 discloses a cooling cylinder of a spinning cooling device as shown in FIG. FIG. 9 is a schematic longitudinal sectional view of the cylindrical portion of the spinning annular cooling device of Patent Document 1. 10 (1) and 10 (2) are development views of the cylindrical portion of FIG. In the figure, 5 represents a rectifying filter, 28 represents a porous cylinder, and 29 represents a nozzle hole. Hereinafter, in each drawing, when a member corresponding to the already-explained drawing exists, the description may be omitted by using the same reference numerals. The porous cylinder 28 having the nozzle holes 29 has a constant nozzle hole diameter in a predetermined cross section perpendicular to the yarn traveling direction and expands the nozzle hole diameter toward the downstream side in the yarn traveling direction, or the nozzle hole pitch. Is dense toward the downstream side in the running direction of the yarn, so that the passage resistivity when the airflow passes through the porous cylinder 28 is uniform in the circumferential direction and toward the downstream side in the running direction of the yarn. Increase for a while.

さらに、上記と同様の機能を有するものとして、図11に示すように、フェルト状の布27を多孔質円筒28に巻き付けて、糸条走行方向の下流側に向かって巻き付けた布厚みを減少させるものがある。図11は、従来の紡糸用環状冷却装置の円筒部の概略縦断面図である。これらの手法によると、紡糸口金直下に加熱筒を設け、次いで連続して設けた冷却筒からの気流吹き出しを行なう際に、加熱筒直下において、糸条にかかる張力が低く、且つ随伴流も小さいために、気流の吹き付けによって糸揺れが発生する箇所では、供給気流を小さくし、随伴流が発生する箇所では、随伴流に見合う量の気流を供給することで、糸揺れを抑制し、糸条間の接触・融着を回避できることが記載されている。しかしながら、本発明者らの知見によれば、糸随伴流に見合う量の気流供給を糸条走行方向に適正に行ったとしても、冷却筒から吹き出す気流の風速が円周方向に均一でなければ、糸条間において随伴流発生位置が異なることになり、糸条走行方向に垂直な断面において随伴流のバランスが崩れ、気流の乱れによる糸条間の接触・融着が発生し、糸物性斑が悪化する。冷却筒に流入した気流に対して、上記の冷却筒の構成では、円周方向風速均一性を得るには不十分である。   Furthermore, as having the same function as described above, as shown in FIG. 11, a felt-shaped cloth 27 is wound around the porous cylinder 28 to reduce the thickness of the cloth wound toward the downstream side in the yarn traveling direction. There is something. FIG. 11 is a schematic longitudinal sectional view of a cylindrical portion of a conventional annular cooling device for spinning. According to these methods, when a heating cylinder is provided immediately below the spinneret, and then the air flow is blown out from the continuously provided cooling cylinder, the tension applied to the yarn is low and the accompanying flow is also small immediately below the heating cylinder. Therefore, by reducing the supply airflow at locations where yarn swaying occurs due to the blowing of airflow, and by supplying an amount of airflow commensurate with the accompanying flow at locations where accompanying flow is generated, It is described that contact and fusion can be avoided. However, according to the knowledge of the present inventors, even if an airflow of an amount corresponding to the yarn accompanying flow is appropriately performed in the yarn traveling direction, the air velocity of the airflow blown from the cooling cylinder is not uniform in the circumferential direction. As a result, the position of the accompanying flow is different between the yarns, the balance of the accompanying flow is lost in the cross section perpendicular to the yarn traveling direction, and contact and fusion between the yarns due to the turbulence of the air flow occur, Gets worse. With respect to the airflow flowing into the cooling cylinder, the structure of the cooling cylinder described above is insufficient to obtain circumferential wind speed uniformity.

また、図5、図6に示したような紡糸用冷却装置が特許文献2で開示されている。図5は、特許文献2の紡糸用環状冷却装置の概略縦断面図である。図6は、図5のB−B矢視図である。図中、1は気流供給口、2は反気流供給口、3は円筒外壁面、4はパンチングプレート、6はよどみ点、7は邪魔板、8はバッファ室をそれぞれ表す。紡糸用冷却装置が糸条の走行方向に2分割されたバッファ室8から構成され、各バッファ室8にはパンチングプレート4と整流フィルタ5を備えている。口金面に近い側のバッファ室8(図5の上の段のバッファ室)から吹き出される気流の風速を抑制することで、口金面直下雰囲気の保温性を維持しつつ、紡糸用冷却装置出口に近い側のバッファ室8(図5の下の段のバッファ室)から吹き出される気流の風速を増加させることで、糸随伴流によって誘発される外部から紡糸用冷却装置への気流の流入を防ぎ、気流の乱れによる糸条間の接触・融着を回避するものが提案されている。また、バッファ室8の均圧性を高めるためにパンチングプレート4の開口率を30〜60%とする手法や、パンチングプレート4に不織布を覆う等の手法が提案されている。   Further, Patent Document 2 discloses a spinning cooling device as shown in FIGS. FIG. 5 is a schematic longitudinal sectional view of the spinning annular cooling device of Patent Document 2. As shown in FIG. 6 is a BB arrow view of FIG. In the figure, 1 is an air flow supply port, 2 is an anti-air flow supply port, 3 is a cylindrical outer wall surface, 4 is a punching plate, 6 is a stagnation point, 7 is a baffle plate, and 8 is a buffer chamber. The spinning cooling device includes a buffer chamber 8 divided into two in the yarn traveling direction. Each buffer chamber 8 includes a punching plate 4 and a rectifying filter 5. By controlling the air velocity of the airflow blown out from the buffer chamber 8 on the side close to the base surface (the upper buffer chamber in FIG. 5), the heat-retaining property of the atmosphere immediately below the base surface is maintained, and the spinning cooling device outlet By increasing the wind speed of the airflow blown out from the buffer chamber 8 on the side close to (the lower buffer chamber in FIG. 5), the inflow of the airflow from the outside to the spinning cooling device induced by the yarn accompanying flow is prevented. Proposals have been made to prevent and avoid contact and fusion between yarns due to air current disturbance. In order to improve the pressure equalization of the buffer chamber 8, a method of setting the opening ratio of the punching plate 4 to 30 to 60% and a method of covering the punching plate 4 with a nonwoven fabric have been proposed.

ここで、特許文献2の紡糸用冷却装置内部の気流の流れ形態を説明する。気流供給口1から供給された気流は、バッファ室8の円筒外壁面3に沿って反気流供給口2へ周り込むと同時に、順次、バッファ室8の上部に流れ込み、パンチングプレート4、整流フィルタ5を通過して糸条の走行経路に向かって外側から内向きに吹き出される。反気流供給口2において、円筒外壁面3の両サイドから周り込んだ気流同士が衝突し、衝突エネルギにより加速されて、風速が増加するのに対して、気流供給口1から供給された気流が邪魔板7へ直接衝突する箇所では、よどみ点6が発生し風速が低下する。そのため、反気流供給側2は加圧され、気流供給口1は負圧となり、円周方向にて圧力不均衡が発生する。この圧力不均衡が一旦発生すると、その後にバッファ室8を通過し、パンチングプレート4と整流フィルタ5による整流部材を通過したとしても、十分な整流効果が得られず、整流フィルタ5より吹き出される風速の円周方向不均一が発生する。また、バッファ室8が供給風量に対して一定の体積空間を持たなければ、均圧効果が得られず、円周方向の圧力不均衡を低減させるのが困難となる。特に、邪魔板7がバッファ室8の内部に配置されることで、気流供給口1から円筒外壁面3に沿って円周方向に気流を導く流路を極端に狭くしているために、円周方向の圧力不均衡の発生は避けられない。よって、特許文献2に開示された装置構成では、整流フィルタ5から吹き出される気流の円周方向風速均一性を得ることは困難である。これは、特許文献2に記載の実施例の単糸繊度0.6dtex、フィラメント本数300の極細マルチフィラメント糸において、ウースター斑2%未満という、極めて大きな値を糸の太さ斑の良否判断基準として使用している点からも明らかであり、ウースター斑[H]0.5%以下と言った高い糸の太さ斑要求レベルには到底達成できない。また、円周方向風速の均一性に重要なバッファ室8の様態について、技術的な開示がされていない。   Here, the flow form of the airflow inside the spinning cooling device of Patent Document 2 will be described. The airflow supplied from the airflow supply port 1 flows into the anti-airflow supply port 2 along the cylindrical outer wall surface 3 of the buffer chamber 8 and simultaneously flows into the upper portion of the buffer chamber 8 to form the punching plate 4 and the rectifying filter 5. And is blown inward from the outside toward the traveling path of the yarn. In the anti-airflow supply port 2, airflows entering from both sides of the cylindrical outer wall surface 3 collide with each other and are accelerated by the collision energy to increase the wind speed, whereas the airflow supplied from the airflow supply port 1 At the point of direct collision with the baffle plate 7, a stagnation point 6 occurs and the wind speed decreases. Therefore, the anti-airflow supply side 2 is pressurized, the airflow supply port 1 becomes negative pressure, and a pressure imbalance occurs in the circumferential direction. Once this pressure imbalance occurs, even if it passes through the buffer chamber 8 and then passes through the rectifying member formed by the punching plate 4 and the rectifying filter 5, a sufficient rectifying effect cannot be obtained and the rectifying filter 5 is blown out. Unevenness in the circumferential direction of the wind speed occurs. Further, if the buffer chamber 8 does not have a constant volume space with respect to the supplied air volume, a pressure equalizing effect cannot be obtained, and it becomes difficult to reduce the pressure imbalance in the circumferential direction. In particular, since the baffle plate 7 is disposed inside the buffer chamber 8, the flow path that guides the airflow in the circumferential direction along the cylindrical outer wall surface 3 from the airflow supply port 1 is extremely narrowed. The occurrence of circumferential pressure imbalance is inevitable. Therefore, in the apparatus configuration disclosed in Patent Document 2, it is difficult to obtain circumferential wind speed uniformity of the airflow blown out from the rectifying filter 5. This is because, in the ultra-thin multifilament yarn having a single yarn fineness of 0.6 dtex and 300 filaments according to the example described in Patent Document 2, a very large value of less than 2% of Wooster's spots is used as a criterion for determining the quality of the yarn thickness spots. It is clear from the point of use, and it is impossible to achieve a high thread thickness spot requirement level of Worcester spot [H] of 0.5% or less. Further, there is no technical disclosure regarding the mode of the buffer chamber 8 that is important for the uniformity of the circumferential wind speed.

また、特許文献2と類似した装置構成を持つ紡糸用冷却装置が、特許文献3が開示されている。バッファ室8を糸条の走行方向に向かって連続して2個以上設けて、紡糸口金から最も離れた最下部のバッファ室8の吹出長を0.5m以下にし、最下部のバッファ室8の吹き出し風速を、上部に配列されたいずれのバッファ室8の吹き出し風速よりも大きくするものが提案されている。この手法を用いると、局所的に高速の気流を与えることで、気流は糸条束を貫通し、糸条束内層に滞留する熱風を容易に糸条束外層に排出でき、糸条の均一且つ迅速な冷却が可能となる。   Further, Patent Document 3 discloses a spinning cooling device having an apparatus configuration similar to that of Patent Document 2. Two or more buffer chambers 8 are continuously provided in the running direction of the yarn, the blowing length of the lowermost buffer chamber 8 farthest from the spinneret is 0.5 m or less, and the lowermost buffer chamber 8 It has been proposed that the blowing air speed be larger than the blowing air speed of any of the buffer chambers 8 arranged at the top. By using this technique, a high-speed air current is locally applied, so that the air current penetrates the yarn bundle and the hot air staying in the inner layer of the yarn bundle can be easily discharged to the outer layer of the yarn bundle. Rapid cooling is possible.

しかしながら、特許文献2に記載の紡糸用冷却装置と類似した装置構成を持つことより、上記同様に円周方向風速不均一の問題が発生するが、円周方向の風速均一化に関する技術的な開示はない。   However, since the apparatus configuration similar to the spinning cooling apparatus described in Patent Document 2 causes the problem of uneven circumferential wind speed as described above, the technical disclosure regarding the uniform wind speed in the circumferential direction occurs. There is no.

また、図12に示したように、紡糸用冷却装置の多孔質円筒フィルタ30が特許文献4に開示されている。図12は、従来の紡糸用環状冷却装置の概略横断面図である。多孔質円筒フィルタ30は、上記の整流フィルタ5と同様の機能を有するものをいう。多孔質円筒フィルタ30の外周全面に濾過抵抗の高い紙フィルタ31、または不織布31を巻き付けて円周方向に均一な風速分布を与える手法が提案されている。この手法を用いると、円周方向風速均一効果が小さな濾過抵抗の低いフィルタ30を内周に使用し、その外周に円周方向風速均一効果が大きな濾過抵抗の高い紙フィルタ31、または不織布31を巻き付けた2層構造とすることで、円周方向に均一な風速を持つ気流を供給することができる。その結果、糸条の接触、融着が無く、糸物性良好な糸条を得ることができる。更には、多孔質円筒フィルタ30の目詰まりを防止し、また定期的に外周側の濾過抵抗の高い紙フィルタ31を交換することで、支障なく長時間溶融紡糸が可能となる。   Also, as shown in FIG. 12, a porous cylindrical filter 30 of a spinning cooling device is disclosed in Patent Document 4. FIG. 12 is a schematic cross-sectional view of a conventional annular cooling device for spinning. The porous cylindrical filter 30 has a function similar to that of the rectifying filter 5 described above. A technique has been proposed in which a paper filter 31 or a nonwoven fabric 31 having a high filtration resistance is wound around the entire outer periphery of the porous cylindrical filter 30 to provide a uniform wind speed distribution in the circumferential direction. When this technique is used, a filter 30 having a low circumferential resistance in the circumferential direction and a low filtration resistance is used on the inner periphery, and a paper filter 31 having a high circumferential resistance and a high filtration resistance or a nonwoven fabric 31 is provided on the outer periphery thereof. By adopting a wound two-layer structure, an air flow having a uniform wind speed in the circumferential direction can be supplied. As a result, there is no contact or fusion of the yarns, and a yarn having good yarn physical properties can be obtained. Furthermore, clogging of the porous cylindrical filter 30 is prevented, and by periodically replacing the paper filter 31 having a high filtration resistance on the outer peripheral side, melt spinning can be performed for a long time without any trouble.

しかしながら、特許文献4に記載の円周方向風速分布では、風速値のバラツキが大きく、十分に均一化されているとは言えない。これは、特許文献4に記載の実施例の単糸繊度4.6dtex、吐出量0.6g/分/孔、巻取速度1300m/分、フィラメント数1000〜2000本のマルチフィラメント糸において、断面変動率4%未満という、極めて大きな太さ斑の良否判定基準として使用している点からも明かであり、ウースター斑[H]0.5%以下と言った高い糸の太さ斑要求レベルには到底達成できないのは明白である。更に、円周方向風速の均一性に重要なバッファ室の様態について、技術的な開示がされていない。   However, the circumferential wind speed distribution described in Patent Document 4 has a large variation in wind speed values and cannot be said to be sufficiently uniform. This is because the single yarn fineness of 4.6 dtex, discharge amount of 0.6 g / min / hole, winding speed of 1300 m / min, and multifilament yarn of 1000 to 2000 filaments in the example described in Patent Document 4 is changed in cross section. It is also clear from the fact that it is used as a quality judgment criterion for extremely large thickness spots of less than 4%, and the high thread thickness requirement level of Wooster spots [H] 0.5% or less It is clear that it cannot be achieved at all. Furthermore, there is no technical disclosure regarding the mode of the buffer chamber that is important for the uniformity of the circumferential wind speed.

また、特許文献5で開示されている紡糸用冷却装置について、図7、図8を用いて冷却装置本体、及び冷却装置内の気流の流れ形態について説明する。図7は、特許文献5の紡糸用環状冷却装置の円筒部の概略縦断面図である。図8は、図7のC−C矢視図である。この紡糸用冷却装置は、気流供給口1において邪魔板7を構成する。気流供給口1から供給された気流は、一旦邪魔板7に衝突し、気流導入管20内にて風速斑を低減させ、均一化された気流が、バッファ室8の円筒外壁面3に沿って反気流供給側2へ流れ込むと同時に、順次、バッファ室8の上部に流れ込み、整流フィルタ5を通過して、円周方向に均一風速として吹き出される。このような構成とすることにより、口金面直下雰囲気の保温性を維持しつつ、円周方向風速を均一化することができ、空気乱れによる糸の接触・融着を回避し糸物性斑を低減できる、と特許文献5には記載されている。   The spinning cooling device disclosed in Patent Document 5 will be described with reference to FIGS. 7 and 8 regarding the cooling device main body and the flow form of the airflow in the cooling device. FIG. 7 is a schematic longitudinal sectional view of a cylindrical portion of an annular cooling device for spinning disclosed in Patent Document 5. FIG. 8 is a view taken along the line CC in FIG. The spinning cooling device constitutes a baffle plate 7 at the airflow supply port 1. The airflow supplied from the airflow supply port 1 once collides with the baffle plate 7, reduces wind speed spots in the airflow introduction pipe 20, and the uniformized airflow flows along the cylindrical outer wall surface 3 of the buffer chamber 8. At the same time as it flows into the counter air flow supply side 2, it flows into the upper part of the buffer chamber 8 in sequence, passes through the rectifying filter 5, and is blown out as a uniform wind speed in the circumferential direction. By adopting such a configuration, it is possible to equalize the circumferential wind speed while maintaining the heat retention of the atmosphere immediately below the base surface, avoiding yarn contact and fusion due to air turbulence and reducing yarn property spots This is described in Patent Document 5.

しかしながら、一旦は気流導入管20内にて風速斑を低減、均一化された気流であるが、その後にバッファ室8の円周方向に周り込む気流により発生する気流供給口1側と反気流供給側2側での圧力不均衡状態による円周方向風速不均一は、十分に抑制できない。さらに、そこで一旦発生した円周方向風速不均一を低減させる整流部材を、気流を吹き出す直前に設けられた整流フィルタ5以外に持たない。また、バッファ室8が糸条冷却に必要な供給風量に対して一定の体積空間を持たなければ、均圧効果が得られず、圧力不均衡を低減させるのが困難となり、円周方向風速不均一が益々増長する。よって、上記の装置構成だけでは、最終的に整流フィルタ5から吹き出される気流の円周方向風速均一性を得るには不十分である。更には、近年の紡糸速度の著しい高速化や、多糸条化、マルチフィラメント化と言った極細繊維化においては、上記の装置構成を用いた円周方向風速均一性では、要求された糸物性斑を達成することが困難となってきている。これは、特許文献4に記載の実施例の単糸繊度5dtex、吐出量1000g/分、引取速度1000m/分、フィラメント数2000本のマルチフィラメントにおいて、ウースター斑3%という、極めて大きな値を糸物性斑の良否判断基準として使用している点からも明らかであり、近年の要求レベル水準として、例えばウースター斑[H]0.5%以下と言った高い糸の太さ斑要求レベルには到底達成できない。更には、糸太さ斑要求レベル自体も高まりつつある中で、更なる円周方向風速均一化が必要となっている。   However, once the airflow is reduced and uniformed in the airflow introduction pipe 20, the airflow supply port 1 side generated by the airflow that circulates in the circumferential direction of the buffer chamber 8 and the antiairflow supply are then generated. The uneven circumferential wind speed due to the pressure imbalance on the side 2 cannot be sufficiently suppressed. Further, there is no rectifying member for reducing uneven circumferential wind velocity once generated there other than the rectifying filter 5 provided immediately before the air flow is blown out. Further, if the buffer chamber 8 does not have a constant volume space with respect to the supply air volume necessary for cooling the yarn, the pressure equalizing effect cannot be obtained, and it becomes difficult to reduce the pressure imbalance, and the circumferential wind speed is not good. Uniformity increases more and more. Therefore, the above-described apparatus configuration alone is insufficient to obtain the circumferential air velocity uniformity of the airflow finally blown out from the rectifying filter 5. Furthermore, in recent high speed spinning, ultra-fine fibers such as multi-filaments and multi-filaments, in the circumferential wind speed uniformity using the above device configuration, the required yarn properties It has become difficult to achieve spots. This is because, in the multifilament having a single yarn fineness of 5 dtex, a discharge amount of 1000 g / min, a take-off speed of 1000 m / min, and a filament number of 2000 in the example described in Patent Document 4, a very large value of 3% Wooster unevenness is obtained. It is clear from the fact that it is used as a standard for judging the quality of spots, and as a required level in recent years, for example, a high thread thickness required level such as Wooster spots [H] of 0.5% or less is achieved. Can not. Furthermore, while the thread thickness unevenness requirement level itself is increasing, further uniform wind speed in the circumferential direction is required.

また、図13に示したような紡糸用冷却装置が特許文献6で開示されている。図13は、特許文献6の紡糸用環状冷却装置の概略縦断面図である。この紡糸用冷却装置は、第1気体室33、及び第2気体室32を設け、第1気体室33と第2気体室32の境界線上に有孔板34を設ける。そこで、気流供給口1より導入された気流は、まず第1気体室33に導かれて気流乱れ(ジェット)を低減し、その後に有孔板34を通過、第2気体室32に導かれることで均圧化を達成できる。その結果、整流フィルタ5から糸条の走行経路に向かって内向きに吹き出す気流の乱れを無くし、糸の接触・融着を回避し、糸物性斑を低減できる。また、有孔板34として孔径φ1〜5mm、孔ピッチ5〜10mmのパンチングプレート、または100〜500メッシュの金網を採用することが提案されている。また、有効板34を複数枚重ねる、または適当な間隔にて2段以上の多段とすることが提案されている。   Further, Patent Document 6 discloses a spinning cooling device as shown in FIG. FIG. 13 is a schematic longitudinal sectional view of the spinning annular cooling device of Patent Document 6. As shown in FIG. The spinning cooling device includes a first gas chamber 33 and a second gas chamber 32, and a perforated plate 34 is provided on the boundary line between the first gas chamber 33 and the second gas chamber 32. Therefore, the airflow introduced from the airflow supply port 1 is first guided to the first gas chamber 33 to reduce airflow turbulence (jet), then passes through the perforated plate 34 and is guided to the second gas chamber 32. Can achieve pressure equalization. As a result, it is possible to eliminate the disturbance of the airflow that blows inward from the rectifying filter 5 toward the running path of the yarn, to avoid yarn contact and fusion, and to reduce yarn physical property unevenness. Further, it has been proposed to employ a punching plate having a hole diameter of 1 to 5 mm and a hole pitch of 5 to 10 mm, or a metal mesh of 100 to 500 mesh as the perforated plate 34. Further, it has been proposed to stack a plurality of effective plates 34 or to have two or more stages at appropriate intervals.

しかしながら、有孔板34は、非特許文献1に記載の通り、パンチングプレートの孔径、孔ピッチ、間隔等の抵抗係数Kを最適化すると、じょう乱が消滅することで整流効果を発揮するが、糸条冷却に必要な風量に対して抵抗係数Kの設定を誤ると、じょう乱が大きくなり、反対に気流乱れを発生させる。有孔板34を通過後に気流乱れが一度発生すると、以降には整流フィルタ5以外に整流機構が無いために、円周方法風速不均一が増長する結果となる。また、非特許文献1に記載の理論式においても、定式化された式では無く、実験により得られた模範式であり、実際には環状流路形状において最適値を見つける必要がある。特に、糸条冷却に必要な風量は、様々な紡糸条件により異なるため、各必要風量に応じて有孔板34の孔径、孔ピッチ、間隔等の装置仕様を決定する必要があるが、明細書内は、どの程度の風量が必要かは全く記載されていない。よって、明細書に記載された装置仕様だけでは、圧力不均衡状態を十分に抑制できず、円周方向風速不均一が発生する。特に、近年の紡糸速度の著しい高速化や、多糸条化、マルチフィラメント化と言った極細繊維化においては、上記の装置構成を用いた円周方向風速均一性では、要求された糸物性斑を達成することが困難となってきている。これは、明細書中に記載の実施例の繊度50デニール(55.6dtex)、フィラメント数24本(単糸繊度2.08デニール(2.31dtex))のマルチフィラメント未延伸糸により得られたウースター斑を0.35%としていることから、例えば、単糸繊度0.1〜1.6dtexと言った極細マルチフィラメント糸において、ウースター斑[H]0.5%以下と言った高い糸の太さ斑要求レベルには到底達成できないのは明白である。   However, as described in Non-Patent Document 1, the perforated plate 34 exhibits a rectifying effect by eliminating the disturbance when the resistance coefficient K such as the hole diameter, hole pitch, and interval of the punching plate is optimized. If the resistance coefficient K is set incorrectly for the air volume necessary for cooling the yarn, the disturbance becomes large and, on the contrary, the air current is disturbed. Once the airflow turbulence occurs once after passing through the perforated plate 34, since there is no rectifying mechanism other than the rectifying filter 5 thereafter, the circumferential wind speed non-uniformity increases. Also, the theoretical formula described in Non-Patent Document 1 is not a formalized formula but a model obtained by experiment, and it is actually necessary to find an optimum value in the shape of the annular channel. In particular, since the air volume required for cooling the yarn varies depending on various spinning conditions, it is necessary to determine the apparatus specifications such as the hole diameter, hole pitch, and interval of the perforated plate 34 according to each required air volume. The inside does not describe how much airflow is required. Therefore, the pressure imbalance state cannot be sufficiently suppressed only by the apparatus specifications described in the specification, and circumferential wind speed nonuniformity occurs. In particular, in the recent rapid increase in spinning speed, and ultrafine fibers such as multiple yarns and multifilaments, the circumferential wind speed uniformity using the above-described apparatus configuration is required for the yarn property irregularities. It has become difficult to achieve. This is a Wooster obtained from a multifilament undrawn yarn having a fineness of 50 denier (55.6 dtex) and a filament number of 24 (single yarn fineness of 2.08 denier (2.31 dtex)) in the examples described in the specification. Since the unevenness is set to 0.35%, for example, in an ultra-fine multifilament yarn having a single yarn fineness of 0.1 to 1.6 dtex, a high yarn thickness such as Wooster unevenness [H] is 0.5% or less. It is clear that the required level of plaque cannot be achieved.

現在までに、特許文献1〜6以外にも紡糸用冷却装置において様々な技術検討が行われているが、本発明者らによって、数種類の紡糸用環状冷却装置の気流の吹き出し風速測定を実施した結果、一般的な紡糸用環状冷却装置での円周方向風速斑は5%が最良で、10〜20%を越えるものも多数あった。また、現在までに紡糸用冷却筒の吹き出し気流の円周方向風速均一化を究明したものは無く、紡糸用環状冷却装置および溶融紡糸方法においても十分な開示がなされていない。そのため、単糸繊度0.1〜1.6dtex、フィラメント数が2000本以下の極細マルチフィラメントを製造するに関して、気流の円周方向風速不均一が起因の糸条接触・融着が発生しやすく、糸揺れ等が発生し、糸の太さ斑や強度・伸度等の品質が極めて悪化し、更には、毛羽・糸切れが頻発し、製糸安定性等が劣化したり、紡糸すらできない等、多くの問題があった。
特開昭61−174411号公報 特開2003−253522号公報 特開昭47−29616号公報 特開昭50−160513号公報 特開昭60−126309号公報 特開昭46−65475号公報 社団法人日本機械学会、技術資料 管路・ダクトの抵抗係数、1979年1月20日初版、P109−P114 社団法人日本機械学会、技術資料 管路・ダクトの抵抗係数、1979年1月20日初版、P37−P50
To date, various technical studies have been made on spinning cooling devices other than Patent Documents 1 to 6, but the present inventors have performed airflow blowout velocity measurement of several types of spinning annular cooling devices. As a result, the circumferential wind speed spot in the general annular cooling device for spinning was 5%, and there were many that exceeded 10-20%. In addition, there has been no investigation to date of uniforming the circumferential air velocity of the blown airflow of the spinning cooling cylinder, and no adequate disclosure has been made in the annular cooling device for spinning and the melt spinning method. Therefore, for producing an ultrafine multifilament having a single yarn fineness of 0.1 to 1.6 dtex and a filament number of 2000 or less, yarn contact / fusion due to non-uniform wind speed in the circumferential direction of the airflow is likely to occur, Such as yarn swaying, thread thickness unevenness and quality such as strength and elongation are extremely deteriorated.Further, fluff and thread breakage occur frequently, and the stability of yarn production deteriorates, and even spinning is not possible. There were many problems.
JP-A 61-174411 JP 2003-253522 A JP 47-29616 A Japanese Patent Laid-Open No. 50-160513 JP 60-126309 A JP-A-46-65475 Japan Society of Mechanical Engineers, technical data, resistance coefficient of pipes and ducts, January 20, 1979, first edition, P109-P114 The Japan Society of Mechanical Engineers, technical data, resistance coefficient of pipes and ducts, January 20, 1979, first edition, P37-P50

本発明の目的は、気流の円周方向風速均一性に優れ、糸揺れによる糸条の接触・融着が無く、糸条の太さ斑や強度・伸度等の品質良好な糸条を得るために顕著な効果を発揮する紡糸用環状冷却装置および溶融紡糸方法を提供することにある。   An object of the present invention is to obtain a yarn having excellent quality such as thickness unevenness of the yarn and strength / elongation, which is excellent in the uniform air velocity in the circumferential direction of the air current, without contact or fusion of the yarn due to yarn sway. Therefore, an object of the present invention is to provide an annular cooling device for spinning and a melt spinning method that exhibit a remarkable effect.

上記目的を達成するために、熱可塑性ポリマを溶融紡出して得られた糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化する紡糸用環状冷却装置であって、気流導入管と、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1バッファ室と、該第1バッファ室の環状の流路の下流に位置し前記糸条の走行経路の外側を包囲し前記第1バッファ室の環状の流路の下流端全面を覆うように配設されたリング状整流部材と、該リング状整流部材の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記リング状整流部材の前記第1バッファ室側の前記糸条の走行経路に垂直な断面における流路断面積より大きい断面積を備えた第2バッファ室と、該第2バッファ室の内側に前記糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ環状の整流フィルタとを有することを特徴とする紡糸用環状冷却装置が提供される。   In order to achieve the above object, an spinning cooling apparatus for cooling and solidifying by blowing an air flow inward from the outside of a running path of a yarn obtained by melt spinning a thermoplastic polymer, comprising: an air flow introduction pipe; A first buffer chamber having an annular flow path that communicates with the air flow introduction tube and surrounds the outside of the travel path of the yarn, and downstream of the annular flow path of the first buffer chamber. A ring-shaped rectifying member that is positioned so as to surround the outside of the travel path of the yarn and cover the entire downstream end of the annular flow path of the first buffer chamber, and the downstream of the ring-shaped rectifying member, A flow path break in a cross section perpendicular to the thread travel path on the first buffer chamber side of the ring-shaped rectifying member, having an annular flow path disposed so as to surround the outside of the thread travel path A second buffer chamber having a cross-sectional area larger than the area, and the second buff There is provided an annular cooling device for spinning, characterized in that it has an annular rectifying filter which is disposed inside the chamber so as to surround the outside of the running path of the yarn and has a flow path for blowing airflow inwardly. The

また、本発明の好ましい形態によれば、前記第1バッファ室の正味バッファ流路長は3mm以上80mm以下であることを特徴とする紡糸用環状冷却装置が提供される。   According to a preferred aspect of the present invention, there is provided an annular cooling device for spinning, wherein a net buffer flow path length of the first buffer chamber is 3 mm or more and 80 mm or less.

また、本発明の好ましい形態によれば、前記第2バッファ室の各部の寸法が、以下の式(1)を満足することを特徴とする紡糸用環状冷却装置が提供される。
0.09≦D2OUT≦0.3 (m)
2INN/D2OUT≦0.95 ・・・(1)
但し、D2OUT:第2バッファ室の外径(m)、D2INN:第2バッファ室の内径(m)を示す。
Further, according to a preferred embodiment of the present invention, there is provided an annular cooling device for spinning, wherein dimensions of each part of the second buffer chamber satisfy the following expression (1).
0.09 ≦ D 2OUT ≦ 0.3 (m)
D 2INN / D 2OUT ≦ 0.95 (1)
Here, D 2OUT represents the outer diameter (m) of the second buffer chamber, and D 2INN represents the inner diameter (m) of the second buffer chamber.

また、本発明の好ましい形態によれば、前記第2バッファ室の環状の流路を糸条の走行経路を含む空間に対し気流を整流する円筒状整流部材を有することを特徴とする紡糸用環状冷却装置が提供される。   According to still another preferred aspect of the present invention, the spinning ring has a cylindrical rectifying member that rectifies the airflow with respect to the space including the traveling path of the yarn through the annular flow path of the second buffer chamber. A cooling device is provided.

また、本発明の別の形態によれば、紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化させるに際し、気流導入管より導かれた気流を、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1バッファ室まで導き、その後、該第1バッファ室の環状の流路の下流に位置し前記糸条の走行経路の外側を包囲し前記第1バッファ室の環状の流路の下流端全面を覆うように配設されたリング状整流部材を通過させ、その後、該リング状整流部材の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記リング状整流部材の前記第1バッファ室側の前記糸条の走行経路に垂直な断面における流路断面積より大きい断面積を備えた第2バッファ室まで導き、その後、該第2バッファ室の内側に前記糸条の走行経路の外側を包囲するように配設された環状の整流フィルタより気流を内向きに吹き出すことを特徴とする溶融紡糸方法が提供される。   Further, according to another aspect of the present invention, when the thermoplastic polymer is melt-spun from the spinneret and airflow is blown inward from the outside of the running path of the spun yarn to cool and solidify, The air flow guided is guided to the first buffer chamber having an annular flow path that is communicated with the air flow introduction pipe and is disposed so as to surround the outside of the travel path of the yarn, and then the first buffer. Passing through a ring-shaped rectifying member located downstream of the annular flow path of the chamber, surrounding the outside of the travel path of the yarn and covering the entire downstream end of the annular flow path of the first buffer chamber And then having an annular flow channel disposed downstream of the ring-shaped rectifying member so as to surround the outside of the travel path of the yarn, the ring-shaped rectifying member on the first buffer chamber side of the ring-shaped rectifying member Larger than the cross-sectional area of the channel in the cross section perpendicular to the yarn travel path To the second buffer chamber having a large cross-sectional area, and then the air flow is directed inward from an annular rectifying filter disposed inside the second buffer chamber so as to surround the outside of the traveling path of the yarn. A melt spinning method characterized by blowing is provided.

本発明において、「第2バッファ室の外径」とは、第2バッファ室の環状の流路の糸条の走行経路に垂直な断面における外径をいう。   In the present invention, the “outer diameter of the second buffer chamber” refers to an outer diameter in a cross section perpendicular to the yarn traveling path of the annular flow path of the second buffer chamber.

本発明において、「第2バッファ室の内径」とは、第2バッファ室の環状の流路の糸条の走行経路に垂直な断面における内径をいう。   In the present invention, the “inner diameter of the second buffer chamber” refers to an inner diameter in a cross section perpendicular to the yarn traveling path of the annular flow path of the second buffer chamber.

本発明において、「糸条の走行経路」とは、上方の紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条が下方にて巻き取られる主たる経路をいう。ここで、「上方」とは、紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条が巻き取られる主たる糸条の走行方向において、紡糸口金に近い側をいい、糸条に巻き取られる側を「下方」という。   In the present invention, the “yarn traveling route” refers to a main route through which a thermoplastic polymer is melt-spun from an upper spinneret and the spun yarn is wound downward. Here, “upward” means the side close to the spinneret in the traveling direction of the main yarn from which the thermoplastic polymer is melt-spun from the spinneret and the spun yarn is wound, and is wound around the yarn. The side to be taken is called “downward”.

本発明において、「第1バッファ室の正味バッファ流路長」とは、第1バッファ室の環状の流路において、流路から糸条の走行方向に直交する方向への気流の出入りがない部位の糸条走行方向の長さをいう。   In the present invention, the “net buffer flow path length of the first buffer chamber” is a portion in the annular flow path of the first buffer chamber where airflow does not enter or exit from the flow path in a direction perpendicular to the yarn traveling direction. The length of the yarn running direction.

本発明の紡糸用環状冷却装置および溶融紡糸方法によれば、上述したように、紡糸用環状冷却装置から吹き出す気流の円周方向風速均一性に優れることで、糸条の接触・融着が無く、糸の太さ斑や強度・伸度等の品質に極めて優れたマルチフィラメント糸を、製糸性、操業性良く得ることができる。   According to the annular cooling device for spinning and the melt spinning method of the present invention, as described above, there is no contact or fusion of the yarn by excellent circumferential air velocity uniformity of the airflow blown out from the spinning annular cooling device. Further, a multifilament yarn having excellent quality such as unevenness of yarn thickness and strength / elongation can be obtained with good yarn production and operability.

以下、図面を参照しながら、本発明の紡糸用環状冷却装置および溶融紡糸方法の最良の実施形態について詳細に説明する。図1は、本発明の代表的な実施形態に用いられる紡糸用環状冷却装置の概略断面図であり、図2は、図1のA−A矢視図であり、図3(1)から図3(8)は、本発明の別の実施形態に用いられる紡糸用環状冷却装置の概略縦断面図であり、図14は、本発明の代表的な実施形態に用いられる溶融紡糸装置の概略縦断面図である。   Hereinafter, the best embodiment of the spinning annular cooling device and the melt spinning method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an annular cooling device for spinning used in a typical embodiment of the present invention. FIG. 2 is a view taken along the line AA in FIG. 3 (8) is a schematic longitudinal sectional view of an annular cooling device for spinning used in another embodiment of the present invention, and FIG. 14 is a schematic longitudinal sectional view of a melt spinning device used in a typical embodiment of the present invention. FIG.

本発明の代表的な実施形態に用いられる溶融紡糸装置は、紡糸口金23、本発明の紡糸用環状冷却装置、油剤付与装置35、引取ローラ36、37、巻取装置38から構成される。図14において、紡糸口金23より紡出された糸条22は、本発明の紡糸用環状冷却装置から吹き出される気流で冷却され、油剤付与装置35で油剤を付与された後、引取ローラ36、37で巻き取られ、巻取装置38でパッケージ39として巻き取られる。上記の装置において、本発明の代表的な実施形態に用いられる紡糸用環状冷却装置は、気流導入管20と、気流導入管20から連結した気流供給口1と、気流供給口1に横方向から連結され、糸条の走行経路の外側を包囲するように配設され、第1バッファ外壁面14と内壁面16とに挟まれた環状の流路を有する第1バッファ室13と、その第1バッファ室13の下流に位置し、環状の流路の下流端全面を覆うように配設されたリング状整流部材11と、そのリング状整流部材11の下流に糸条の走行経路の外側を包囲するように配設され、第2バッファ室外壁面15と整流フィルタ5に挟まれた環状の流路を有し、リング状整流部材11の第1バッファ室13側の糸条の走行経路に垂直な断面における流路断面積より大きい断面積を備えた第2バッファ室12と、その第2バッファ室12を同心円内外に仕切る円筒状整流部材10と、その第2バッファ室12の内側に糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ環状の整流フィルタ5から構成される。その場合、リング状整流部材11から下流側、つまり第2バッファ室12側の糸条の走行経路方向の長さがリング状整流部材11から下流側に向かって0〜10mmの範囲の糸条の走行経路に垂直な流路断面積が、リング状整流部材11から上流側、つまり第1バッファ室13側の糸条の走行経路方向の長さがリング状整流部材11から上流側に向かって0〜70mmの範囲の糸条の走行経路に垂直な流路断面積より大きくするのが好ましい。   The melt spinning apparatus used in a typical embodiment of the present invention includes a spinneret 23, an annular cooling apparatus for spinning according to the present invention, an oil agent application apparatus 35, take-up rollers 36 and 37, and a winding apparatus 38. In FIG. 14, the yarn 22 spun from the spinneret 23 is cooled by an air flow blown from the spinning annular cooling device of the present invention, and after the oil agent is applied by the oil agent applying device 35, the take-up roller 36, It is wound up by 37 and wound as a package 39 by the winding device 38. In the above-described apparatus, the spinning annular cooling device used in the representative embodiment of the present invention includes the airflow introduction pipe 20, the airflow supply port 1 connected from the airflow introduction pipe 20, and the airflow supply port 1 from the lateral direction. A first buffer chamber 13 which is connected and disposed so as to surround the outside of the yarn traveling path, and has an annular flow path sandwiched between the first buffer outer wall surface 14 and the inner wall surface 16; A ring-shaped rectifying member 11 positioned downstream of the buffer chamber 13 so as to cover the entire downstream end of the annular flow path, and surrounds the outside of the yarn travel path downstream of the ring-shaped rectifying member 11 And has an annular flow path sandwiched between the outer wall surface 15 of the second buffer chamber and the rectifying filter 5, and is perpendicular to the yarn traveling path on the first buffer chamber 13 side of the ring-shaped rectifying member 11. Has a cross-sectional area larger than the channel cross-sectional area in the cross-section A second buffer chamber 12, a cylindrical rectifying member 10 for partitioning the second buffer chamber 12 in and out of a concentric circle, and an air flow disposed inside the second buffer chamber 12 so as to surround the outside of the yarn traveling path. It is comprised from the cyclic | annular rectification filter 5 with the flow path which blows out inward. In that case, the length of the yarn in the travel path direction downstream of the ring-shaped rectifying member 11, that is, the second buffer chamber 12 side, is in the range of 0 to 10 mm from the ring-shaped rectifying member 11 toward the downstream side. The cross-sectional area of the flow path perpendicular to the traveling path is 0 upstream from the ring-shaped rectifying member 11, that is, the length in the traveling path direction of the yarn on the first buffer chamber 13 side is 0 toward the upstream side from the ring-shaped rectifying member 11. It is preferable to make it larger than the cross-sectional area of the channel perpendicular to the running path of the yarn in the range of ˜70 mm.

別の実施形態として、図3(7)に示すように、第2バッファ室12は、第2バッファ室外壁面15と整流フィルタ5から挟まれた環状流路と、第2バッファ室外壁面15と内壁面16から挟まれた環状流路から構成され、内壁面16に段差を設けることで、リング状整流部材11の下流に配設された糸条の走行経路に垂直な流路断面積を拡幅させてもよい。   As another embodiment, as shown in FIG. 3 (7), the second buffer chamber 12 includes an annular channel sandwiched between the second buffer chamber outer wall surface 15 and the rectifying filter 5, and the second buffer chamber outer wall surface 15. It is composed of an annular flow path sandwiched from the wall surface 16, and by providing a step on the inner wall surface 16, the flow path cross-sectional area perpendicular to the running path of the yarn disposed downstream of the ring-shaped rectifying member 11 is widened. May be.

また、別の実施形態として、図3(6)に示すように、リング状整流部材11を介して上流側の第1バッファ室13の糸条の走行経路に垂直な流路断面積に対して、下流側の第2バッファ室12の糸条の走行経路に垂直な流路断面積が拡幅されていれば、第2バッファ室12のさらに上方空間では、糸条の走行経路に垂直な流路断面積が上方に向かい減少する複数のバッファ空間より構成されていてもよい。あるいは糸条の走行経路に垂直な流路断面積が上方に向かい増加、または減少する複数のバッファ空間より構成されていてもよく、更には、糸条の走行経路に垂直な流路断面積が上方に向かって連続的に減少、または増加するバッファ空間より構成されていてもよい。但し、この場合には、最も上方にあるバッファ空間の糸条の走行経路に垂直な流路断面積が、上方に向かって等しい流路形状とすることで、上方に流れる気流を一旦整流させるのが好ましい。ここで、第1バッファ室13、および第2バッファ室12の側面流路断面形状は、長方形、台形であることに限定されず、三角形、五角形、多角形または半円形、半楕円形であってもよく、糸条の走行経路に垂直な断面における形状が二重円形状であれば、特に形状を限定しない。   As another embodiment, as shown in FIG. 3 (6), with respect to the channel cross-sectional area perpendicular to the yarn traveling path of the upstream first buffer chamber 13 via the ring-shaped rectifying member 11. If the cross-sectional area of the flow path perpendicular to the yarn travel path in the second buffer chamber 12 on the downstream side is widened, the flow path perpendicular to the thread travel path in the space above the second buffer chamber 12 You may be comprised from several buffer space which cross-sectional area reduces toward upper direction. Alternatively, it may be composed of a plurality of buffer spaces whose flow path cross-sectional area perpendicular to the yarn travel path increases or decreases upward, and further, the flow path cross-sectional area perpendicular to the thread travel path is It may be composed of a buffer space that continuously decreases or increases upward. However, in this case, the air flow flowing upward is once rectified by making the flow passage cross-sectional area perpendicular to the yarn path in the uppermost buffer space equal to the upper flow passage. Is preferred. Here, the side channel cross-sectional shape of the first buffer chamber 13 and the second buffer chamber 12 is not limited to a rectangle or a trapezoid, but is a triangle, a pentagon, a polygon, a semicircle, or a semielliptical shape. The shape is not particularly limited as long as the shape in the cross section perpendicular to the traveling path of the yarn is a double circle.

本実施形態のリング状整流部材11は、容易に着脱可能な構造となっており、内壁面16、または第1バッファ外壁面14、あるいは双方にガイド溝を設けて、ボルト等で固定されている。リング状整流部材11は、気流の整流効果、及び着脱等の作業性を考慮するとリング状の一体成形品であるのが好ましいが、半月板状を数枚組み合わせて、リング状にしても構造上問題は無い。また、本実施形態では、リング状整流部材11は、多孔性部材であり、流路開口率が15〜60%のパンチングメタルを用いるのが、整流効果を得るために最も好適である。また、リング状整流部材11は、スリット流路を持つ積層構造体でもよく、多孔質セラミックであってもよく、金網であってもよく、ハニカム構造体であってもよい。また、図3(8)に示すように、リング状整流部材11の代替として、反気流供給側2の方の流路幅を狭く、かつ気流供給口1の方の流路幅を広く構成した偏芯リング21を装着してもよい。その場合には、反気流供給側2での風速の増加を抑えることで、円周方向の圧力不均衡を低減させるリング状整流部材11と同等の効果を持つ。この偏芯リング21とリング状整流部材11を併用してもよく、複数枚重ねて構成してもよい。但し、偏心リング21を用いた流路幅の調整による円周方向風速斑均一化は、流路幅寸法に対する風速分布の影響が大きく、様々な紡糸条件に応じた最適寸法を見つけるのに十分な検討を要することもある。   The ring-shaped rectifying member 11 of the present embodiment has a structure that can be easily attached and detached, and is provided with a guide groove on the inner wall surface 16 or the first buffer outer wall surface 14 or both, and is fixed with a bolt or the like. . The ring-shaped rectifying member 11 is preferably a ring-shaped integrally formed product in consideration of airflow rectifying effects and workability such as attachment / detachment. However, the ring-shaped rectifying member 11 may be formed into a ring shape by combining several meniscus shapes. There is no problem. In the present embodiment, the ring-shaped rectifying member 11 is a porous member, and it is most preferable to use a punching metal having a flow path opening ratio of 15 to 60% in order to obtain a rectifying effect. The ring-shaped rectifying member 11 may be a laminated structure having a slit channel, may be a porous ceramic, may be a wire mesh, or may be a honeycomb structure. Further, as shown in FIG. 3 (8), as an alternative to the ring-shaped rectifying member 11, the channel width on the side opposite to the airflow supply side 2 is narrow and the channel width on the airflow supply port 1 is wide. An eccentric ring 21 may be attached. In that case, it has the same effect as the ring-shaped rectifying member 11 that reduces the pressure imbalance in the circumferential direction by suppressing an increase in the wind speed on the anti-airflow supply side 2. The eccentric ring 21 and the ring-shaped rectifying member 11 may be used in combination, or a plurality of them may be stacked. However, the uniform wind speed variation in the circumferential direction by adjusting the flow path width using the eccentric ring 21 has a large influence of the wind speed distribution on the flow path width dimension, and is sufficient to find the optimum dimensions according to various spinning conditions. Consideration may be required.

ここで、リング状整流部材11の整流効果とは、流路を急激縮小させた後、大きく拡幅させることにより、微小空間において微小乱れ状態を形成し、混合させて気流の風速差を均一化させることが可能となる。そのため、別の実施形態として図3(2)に示すように、リング状整流部材11を、一定の間隔、例えば10〜50mmの間隔を持った2つ以上の多段構成とすることで、より気流の整流効果を得ることができる。更に、多段構成とする利点として、流路開口率を多少大きく設定しても、単数構成のリング状整流部材11と同等の整流効果を得ることができるため、目詰まりを抑止し、生産性、操業性向上が可能となる。また、リング状整流部材11の流路開口率は、気流流入側の第2バッファ室空間の流路断面積の30%以上60%以下の範囲とすることで、整流効果を効率良く達成できる。リング状整流部材11の流路開口率が60%以上の場合には、流路の急縮小が無く、流路の急縮小と急拡幅による気流の均一化効果が得られ難く、流路開口率が30%以下の場合には、流路の急縮小が過大すぎるために、リング状整流部材11を下方の下流側にて気流乱れが発生し、風速均一化が得られ難くなる。更には、流路開口率が30%以下の場合には、長期連続使用時には、整流部材での目詰まりが発生しやすく、生産性、操業性等が問題となる。   Here, the rectifying effect of the ring-shaped rectifying member 11 is that the flow path is rapidly reduced and then greatly widened to form a minute turbulent state in a minute space and mix to equalize the wind speed difference of the airflow. It becomes possible. Therefore, as shown in FIG. 3 (2) as another embodiment, the ring-shaped rectifying member 11 has two or more multi-stage configurations with a constant interval, for example, an interval of 10 to 50 mm. The rectifying effect can be obtained. Furthermore, as an advantage of the multi-stage configuration, even if the channel opening ratio is set to be somewhat large, the same rectifying effect as that of the single configuration ring-shaped rectifying member 11 can be obtained. Operability can be improved. The flow rate of the ring-shaped rectifying member 11 is 30% to 60% of the flow path cross-sectional area of the second buffer chamber space on the airflow inflow side, so that the rectifying effect can be achieved efficiently. When the flow passage opening ratio of the ring-shaped rectifying member 11 is 60% or more, there is no sudden shrinkage of the flow passage, and it is difficult to obtain a uniform airflow effect due to the sudden shrinkage and widening of the flow passage. When the ratio is 30% or less, the rapid shrinkage of the flow path is too large, and air flow turbulence occurs on the downstream side of the ring-shaped rectifying member 11, making it difficult to achieve uniform wind speed. Furthermore, when the flow path opening ratio is 30% or less, clogging with the flow straightening member is likely to occur during long-term continuous use, and productivity, operability, and the like become problems.

上記で述べたように、リング状整流部材11の整流効果を得るためには、リング状整流部材の選定、流路開口率の選定、枚数の選定、間隔の選定等を決定する必要がある。その際に、非特許文献1に記載の通り、リング状整流部材11を用いた抵抗係数の設定を誤ると、じょう乱が拡大し、整流効果が得られず、風速斑が悪化する。特に、風量が抵抗係数に大きく影響を及ぼすため、様々な紡糸条件において、リング状整流部材11の構成を最適化するのは、非常に困難となる。   As described above, in order to obtain the rectifying effect of the ring-shaped rectifying member 11, it is necessary to determine selection of the ring-shaped rectifying member, selection of the channel opening ratio, selection of the number of sheets, selection of the interval, and the like. At that time, as described in Non-Patent Document 1, if the setting of the resistance coefficient using the ring-shaped rectifying member 11 is mistaken, the disturbance increases, the rectifying effect cannot be obtained, and the wind speed spots are deteriorated. In particular, since the air volume greatly affects the resistance coefficient, it is very difficult to optimize the configuration of the ring-shaped rectifying member 11 under various spinning conditions.

そこで、整流効果を最も効率良く達成できる手段として、リング状整流部材11の配置が重要となる。つまりは、リング状整流部材11を介して、上流側に配設された第1バッファ室13の糸条の走行経路に垂直な流路断面積に対して、下流側に配設された第2バッファ室12の糸条の走行経路に垂直な流路断面積を拡幅させることで、リング状整流部材11の整流効果をより高めることが可能となる。その際、リング状整流部材11を多段構成にした場合には、各段におけるリング状整流部材11に対して、上記のように糸条の走行経路に垂直な流路断面積を拡幅してもよいが、好ましくは、最下流のリング状整流部材に対して、拡幅させるのが好ましい。   Therefore, the arrangement of the ring-shaped rectifying member 11 is important as a means for achieving the rectifying effect most efficiently. In other words, the second flow passage disposed on the downstream side with respect to the flow path cross-sectional area perpendicular to the yarn traveling path of the first buffer chamber 13 disposed on the upstream side via the ring-shaped rectifying member 11. By widening the cross-sectional area of the flow path perpendicular to the yarn running path in the buffer chamber 12, the rectifying effect of the ring-shaped rectifying member 11 can be further enhanced. At that time, if the ring-shaped rectifying member 11 has a multi-stage configuration, the flow passage cross-sectional area perpendicular to the yarn traveling path as described above may be widened with respect to the ring-shaped rectifying member 11 in each stage. Although it is good, it is preferable to widen the ring-shaped straightening member on the most downstream side.

上記で述べた、本実施形態の糸条の走行方向に垂直な流路断面積を拡幅する構造としては、階段状に急拡幅するのが、整流効果として最も好ましいが、連続的に流路断面積が大きくなるよう徐々に拡幅してもよい。流路断面積を徐々に拡幅する場合には、流路断面積の増幅区間の全長として糸条の走行方向上方に向かって50mm以内の範囲とするのがよい。   As described above, as the structure that widens the cross-sectional area of the flow path perpendicular to the running direction of the yarn of this embodiment, it is most preferable as a rectifying effect to rapidly widen in a staircase shape, You may widen gradually so that an area may become large. When the channel cross-sectional area is gradually widened, the total length of the channel cross-sectional area amplification section is preferably set within a range of 50 mm or more upward in the running direction of the yarn.

次に、本実施形態のリング状整流部材11を介した糸条の走行方向に垂直な流路断面積の拡幅比率(第1バッファ室と第2バッファ室の流路断面積の比)を1.1倍〜5倍の範囲とするのがよい。拡幅比率を1.1倍以下とすると、上記の整流効果が得られなくなる。拡幅比率を5倍以上とするには、リング状整流部材11の上流側に配設された第1バッファ室13の糸条の走行経路に垂直な流路断面積を極端に小さく、またはリング状整流部材11の下流側に配設された第2バッファ室12の糸条の走行経路に垂直な流路断面積を極端に大きくする必要がある。そこで、リング状整流部材11上流側に配設された糸条の走行経路に垂直な流路断面積を極端に小さくすると、流路急縮小による円周方向風速斑が発生する。更には、第1バッファ室13の体積空間が極小化されることより、均圧効果が妨げられ、気流乱れが発生する。また、リング状整流部材11下流側に配設された糸条の走行経路に垂直な流路断面積を極端に大きくすると、第2バッファ室12の外径アップに伴って装置が大型化し、単錘型の紡糸用環状冷却装置では口金間ピッチの制約を受け、作業性、操業性に問題が生じる。更には、生産スペースを広くする必要があり、設備投資が増大し、生産コスト面でも望ましくない。さらに、リング状整流部材11の下流側に配設された糸条の走行経路に垂直な流路断面積を極端に大きくするため、第2バッファ室12の内径を小径化する、つまりは紡糸用環状冷却筒が小径化されるため、多フィラメント糸の製造の際には、糸条間距離が近接し、接触・融着が発生し、糸物性斑が悪化し、製糸性不良となる問題が発生する。   Next, the widening ratio of the channel cross-sectional area perpendicular to the running direction of the yarn via the ring-shaped rectifying member 11 of the present embodiment (ratio of the channel cross-sectional areas of the first buffer chamber and the second buffer chamber) is 1 It is good to set it in the range of 1 to 5 times. If the widening ratio is 1.1 times or less, the above rectifying effect cannot be obtained. In order to increase the widening ratio by 5 times or more, the flow passage cross-sectional area perpendicular to the yarn traveling path of the first buffer chamber 13 disposed on the upstream side of the ring-shaped rectifying member 11 is extremely small, or the ring shape It is necessary to extremely increase the flow path cross-sectional area perpendicular to the yarn traveling path of the second buffer chamber 12 disposed on the downstream side of the rectifying member 11. Therefore, if the cross-sectional area perpendicular to the travel path of the yarn disposed on the upstream side of the ring-shaped rectifying member 11 is made extremely small, circumferential wind speed spots due to rapid contraction of the flow path occur. Furthermore, since the volume space of the first buffer chamber 13 is minimized, the pressure equalizing effect is hindered and airflow turbulence occurs. Further, if the flow path cross-sectional area perpendicular to the traveling path of the yarn disposed downstream of the ring-shaped rectifying member 11 is extremely increased, the apparatus becomes larger as the outer diameter of the second buffer chamber 12 increases, and the size of the apparatus increases. In the spindle-type annular cooling device for spinning, there is a problem in workability and operability due to restrictions on the pitch between the caps. Furthermore, it is necessary to widen the production space, which increases capital investment and is not desirable in terms of production cost. Further, the inner diameter of the second buffer chamber 12 is reduced, that is, for spinning, in order to extremely increase the flow path cross-sectional area perpendicular to the traveling path of the yarn disposed on the downstream side of the ring-shaped rectifying member 11. Since the diameter of the annular cooling cylinder is reduced, when manufacturing multifilament yarns, there is a problem in that the distance between the yarns is close, contact and fusion occur, the yarn property unevenness deteriorates, and the yarn production property is poor. appear.

次に、円筒状整流部材10は、容易に着脱可能な構造となっており、上部支持体17、または下部支持体18、あるいは双方にガイド溝を設けて、ボルト等で固定されているが、上下支持体にて挟み込んでもよく、上部支持体17、または下部支持体18に溶接にて固定されていてもよい。   Next, the cylindrical rectifying member 10 has a structure that can be easily attached and detached, and is provided with a guide groove on the upper support 17 or the lower support 18 or both, and is fixed with a bolt or the like. It may be sandwiched between the upper and lower supports, and may be fixed to the upper support 17 or the lower support 18 by welding.

本実施形態の円筒状整流部材10は、多孔性部材であり、通過気流の整流効果を得るためには流路開口率が20〜60%のパンチングメタルが最も好適であるが、スリット流路を持つ積層構造体でもよく、多孔質セラミックであってもよく、金網であってもよく、ハニカム構造体であってもよい。その円筒状整流部材10の糸条の走行方向における長さは、整流フィルタ5全長における整流効果を得るため、整流フィルタ5と同等長さが好ましいが、もしくは、整流フィルタ5全長より長さを大きくし、整流フィルタ5を包含できる長さに設定するのがよい。その場合、円筒状整流部材10が下部支持体18と接続される構造が最も好ましいが、第2バッファ室の空間途端にて切れていてもよい。また、別の実施形態として図3(3)に示すように、円筒状整流部材10は、円筒外径が異なる2つ以上の多段構成であってもよい。多段構成とすることで、整流効果が得やすくなるのは、上記のリング状整流部材11にて述べた通りであるが、さらには、糸走行方向風速分布を制御できる利点もある。また、図3(1)のように円筒状整流部材10が配置されて無い場合でもよく、図3(2)、図3(3)、図3(5)、図3(6)、図3(7)、図3(8)の装置構成において、円筒状整流部材10が配置されて無い場合でもよい。   The cylindrical rectifying member 10 of the present embodiment is a porous member, and punching metal having a channel opening ratio of 20 to 60% is most suitable for obtaining the rectifying effect of the passing airflow. It may be a laminated structure, a porous ceramic, a wire mesh, or a honeycomb structure. The length of the cylindrical rectifying member 10 in the running direction of the yarn is preferably equal to the length of the rectifying filter 5 in order to obtain a rectifying effect over the entire length of the rectifying filter 5, or larger than the total length of the rectifying filter 5. It is preferable to set the length to include the rectifying filter 5. In that case, the structure in which the cylindrical rectifying member 10 is connected to the lower support 18 is most preferable, but it may be cut off at the end of the space of the second buffer chamber. As another embodiment, as shown in FIG. 3 (3), the cylindrical rectifying member 10 may have two or more multistage configurations having different cylindrical outer diameters. The multi-stage configuration makes it easy to obtain a rectifying effect as described in the ring-shaped rectifying member 11 described above, and further has an advantage that the wind speed distribution in the yarn traveling direction can be controlled. Moreover, the case where the cylindrical rectification | straightening member 10 is not arrange | positioned like FIG. 3 (1) may be sufficient, and FIG. 3 (2), FIG. 3 (3), FIG. 3 (5), FIG. (7) In the device configuration of FIG. 3 (8), the cylindrical rectifying member 10 may not be disposed.

次に、整流フィルタ5は、気流の吹き出し口が糸条の走行経路に向かって中心方向に開口しており、かつ糸条の走行方向に直角方向から下向きに傾斜した孔が形成された多孔性部材である。この整流フィルタ5により気流は整流化され、糸走行方向に直角方向から下向きに傾斜した気流が形成される。孔の形状は、円形、台形、八角形又は六角形が採用でき、全面にわたって内径から外径に5〜20度傾斜した孔の配列である。傾斜した孔が形成された多孔性部材としては、セルロースリボンを螺旋状に巻いて熱硬化成形した多孔性部材を上げられる。この多孔性部材は、セルロースリボン(材質:紙)に熱硬化性樹脂(フェノール樹脂)を含浸後、加熱硬化することでリボン層に隙間(孔:40μm程度の大きさ)を形成され、これらの隙間は外周側から中心に向かって均一に分布している。そして、このセルロースリボンを螺旋状に巻き付けるとき、傾斜して巻き付けることにより、隙間は中心に向かって傾斜する構造となる。また、多孔性部材として、金属粒子、金属繊維を高温圧縮成形したものであってもよく、または外側から中心方向に向かって微細スリット溝を持つ環状リングを多層積層し、高温圧縮成形した積層構造体であってもよい。これらの多孔性部材の材質は、適度な剛性を有する紙製、木製、合成樹脂製、または金属製が適正である。   Next, the rectifying filter 5 has a porous structure in which an airflow outlet is opened in a central direction toward the yarn traveling path, and a hole inclined downward from a direction perpendicular to the yarn traveling direction is formed. It is a member. The airflow is rectified by the rectifying filter 5, and an airflow inclined downward from a direction perpendicular to the yarn traveling direction is formed. The shape of the hole may be a circle, trapezoid, octagon or hexagon, and is an array of holes inclined from the inner diameter to the outer diameter by 5 to 20 degrees over the entire surface. As a porous member in which inclined holes are formed, a porous member obtained by thermosetting and molding a cellulose ribbon in a spiral shape can be raised. This porous member is formed by impregnating a cellulose ribbon (material: paper) with a thermosetting resin (phenolic resin) and then heat-curing to form a gap (pore: about 40 μm) in the ribbon layer. The gaps are uniformly distributed from the outer peripheral side toward the center. And when winding this cellulose ribbon helically, it becomes a structure where a clearance gap inclines toward a center by inclining and winding. Further, the porous member may be a high-temperature compression-molded metal particle or metal fiber, or a multi-layer structure in which an annular ring having fine slit grooves is formed from the outside toward the center direction, and a high-temperature compression-molded laminated structure. It may be a body. The material of these porous members is suitably made of paper, wood, synthetic resin, or metal having an appropriate rigidity.

整流フィルタ5の糸条の走行方向における長さは、マルチフィラメント糸が最も急激に変化する最大細化変形位置を含有し、糸条の冷却固化位置を含有する長さが、糸の太さ斑抑制に好ましい形態である。気流の円周方向風速斑が悪い場合には、糸条の最大細化変形位置、および冷却固化位置の糸走行方向での差が発生する。特に冷却固化位置において著しい差が発生する分、冷却長さ、即ち整流フィルタ5長さを長尺化する必要があるが、円周方向風速斑が良好であれば、整流フィルタ5長さを適正長にすることが可能となる。よって、本実施形態の整流フィルタ5長さは、50〜500mmがよく、さらには100〜300mmが好適である。また、整流フィルタ5厚みは、スリット流路を通過する気流が十分に整流化できる厚みとして、1〜20mmがよく、さらには5〜10mmが好適である。   The length of the rectifying filter 5 in the running direction of the yarn includes the maximum thinning deformation position at which the multifilament yarn changes most rapidly, and the length including the cooling and solidifying position of the yarn is the thickness variation of the yarn. This is a preferred form for suppression. When the circumferential wind speed unevenness of the airflow is poor, a difference occurs in the yarn traveling direction between the maximum thinning deformation position of the yarn and the cooling and solidifying position. In particular, the cooling length, that is, the length of the rectifying filter 5 needs to be lengthened to the extent that a significant difference occurs at the cooling and solidifying position. However, if the circumferential wind speed spot is good, the length of the rectifying filter 5 is appropriate. It becomes possible to make it long. Therefore, the length of the rectifying filter 5 of the present embodiment is preferably 50 to 500 mm, and more preferably 100 to 300 mm. Further, the thickness of the rectifying filter 5 is preferably 1 to 20 mm, more preferably 5 to 10 mm, as a thickness that can sufficiently rectify the airflow passing through the slit flow path.

また、整流フィルタ5と上部支持体17、下部支持体18との接触面には、気密性を保つために、ゴムやシリコン、“テフロン(登録商標)”製のパッキン19a、19bを取り付けるのがよい。更には、下部支持体18にバネ伸縮構造を付与し、整流フィルタ5の上下シール面に絶えず面圧を付与することで、パッキン19a、19bの熱クリープ変形、エア内圧変動、または整流フィルタ5の熱寸法変化、経時的寸法変化に対応でき、連続安定して気密性を保持できる。
次に、本実施形態の紡糸用環状冷却装置内での気流の流れ状態を図1、図2にて説明する。図2は、図1のA−A矢視図である。本実施形態の紡糸用環状冷却装置内は、外部より気流を供給する装置構成上、環状流路を持つ第1バッファ室13に対して、気流導入管20を横方向より連結する。図2に示すように、気流導入管20は、第1バッファ室13に向かって放射状に開口し、流路断面積を暫増した流路とすることで、内壁面16への気流の直接衝突を低減させ、第1バッファ室13を均圧化し、整流フィルタ5から吹き出す気流の円周方向風速斑を低減させることができる。そこで、気流導入管20内において、外部より供給された気流を邪魔板7に衝突させ、一旦は風速斑を低減、均一化させた気流VAを形成する。そこで、まず空気流VAが気流供給口1から第1バッファ室13に流入し、第1バッファ外壁面14に沿って反気流供給側2に至る環状の流路を円周方向に流れる気流VRと、順次、上方に方向転換しリング状整流部材11に向かう気流VUを形成する。ここで、第1バッファ室13では、気流VRと気流VUが混在するために、気流VR、気流VUの整流化を同時に行うのが極めて困難となる。そこで、気流VRを気流VUへの方向転換を完了させるために、リング状整流部材11を気流供給口上端26より上方に配設することで、必要なバッファ空間を得ることができる。その際、リング状整流部材11を第1バッファ室の正味バッファ流路長の3mm以上80mm以下の範囲に配設することが好ましく、3mm以上の位置にリング状整流部材11を配設することで、気流VRを十分に方向転換させた気流VUを、リング状整流部材11に通過させることで、円周方向の圧力不均衡を低減し、気流VUの円周方向風速斑を低減できる。また、第1バッファ室の正味バッファ流路長を80mm以下とすることで、紡糸用環状冷却装置の高さを小型化でき、生産性を向上できる。反対に、80mm以上になる場合には、紡糸用環状冷却装置が大型化し、生産スペースを広くする必要があり、設備投資が増大し、生産コスト面で望ましくない。
Further, rubber, silicon, and packing made of “Teflon (registered trademark)” 19a and 19b are attached to the contact surfaces of the rectifying filter 5 with the upper support 17 and the lower support 18 in order to maintain airtightness. Good. Furthermore, by applying a spring expansion / contraction structure to the lower support 18 and constantly applying a surface pressure to the upper and lower seal surfaces of the rectifying filter 5, thermal creep deformation of the packings 19a and 19b, air internal pressure fluctuations, or the rectifying filter 5 It can cope with thermal dimensional changes and dimensional changes over time, and can keep airtightness stably and continuously.
Next, the flow state of the airflow in the spinning annular cooling device of the present embodiment will be described with reference to FIGS. FIG. 2 is an AA arrow view of FIG. In the spinning annular cooling device of the present embodiment, the air flow introduction pipe 20 is connected from the lateral direction to the first buffer chamber 13 having an annular flow channel because of the device configuration for supplying the air flow from the outside. As shown in FIG. 2, the airflow introduction pipe 20 opens radially toward the first buffer chamber 13, and the airflow directly collides with the inner wall surface 16 by making the flowpath a cross-sectional area slightly increased. , The pressure in the first buffer chamber 13 is equalized, and circumferential wind speed spots of the airflow blown out from the rectifying filter 5 can be reduced. Therefore, in the airflow introduction pipe 20, the airflow supplied from the outside is collided with the baffle plate 7, and the airflow VA in which the wind speed spots are once reduced and made uniform is formed. Therefore, first, the air flow VA flows into the first buffer chamber 13 from the air flow supply port 1 and flows in the circumferential direction through the annular flow path along the first buffer outer wall surface 14 to the counter air flow supply side 2. Then, the air flow VU is sequentially turned upward to form the air flow VU toward the ring-shaped rectifying member 11. Here, since the air flow VR and the air flow VU are mixed in the first buffer chamber 13, it is extremely difficult to simultaneously rectify the air flow VR and the air flow VU. Therefore, in order to complete the direction change of the airflow VR to the airflow VU, the necessary buffer space can be obtained by arranging the ring-shaped rectifying member 11 above the upper end 26 of the airflow supply port. At that time, the ring-shaped rectifying member 11 is preferably disposed in the range of 3 mm to 80 mm of the net buffer flow path length of the first buffer chamber, and the ring-shaped rectifying member 11 is disposed at a position of 3 mm or more. By allowing the airflow VU that has sufficiently changed the direction of the airflow VR to pass through the ring-shaped rectifying member 11, the pressure imbalance in the circumferential direction can be reduced, and the circumferential wind speed spots of the airflow VU can be reduced. Further, by setting the net buffer flow path length of the first buffer chamber to 80 mm or less, the height of the spinning annular cooling device can be reduced, and the productivity can be improved. On the other hand, when the length is 80 mm or more, the spinning annular cooling device needs to be enlarged and the production space needs to be widened, which increases capital investment and is not desirable in terms of production cost.

次に、リング状整流部材11を通過することで気流VUの整流性を向上させた後、第2バッファ室12の上方に流れる気流VUは、連続して上部に流れる気流VUを形成するのと同時に、糸状の走行経路の中心方向に流れる気流VSに分割されていくため、気流VUの風量は上方に従い漸減する。その際、円筒状整流部材10を備えている場合には、円筒状整流部材10を通過することで、気流VUを気流VSに方向転換させる機能を持つ。そして、第2バッファ室12を中心方向に流れる気流VSは、円筒状整流部材10の流路を急激縮小させた後、大きく拡幅させることにより、微小空間において微小乱れ状態を形成、混合させることで気流の風速差を低減させることができる。その際、円筒状整流部材10の筒径を大きくし、第2バッファ室外壁面15に近接させることで、円筒状整流部材10と整流フィルタ5に挟まれた環状の体積空間が大きくなり、流路の縮小、拡幅による整流効果が得られやすくなる。よって、整流フィルタ5から内向きに吹き出す気流の円周方向風速均一化を達成するためには、紡糸用環状冷却装置内を通過する気流VR、気流VU、気流VSの連続した整流化を達成することが重要である。   Next, after improving the rectifying property of the air flow VU by passing through the ring-shaped rectifying member 11, the air flow VU flowing above the second buffer chamber 12 forms the air flow VU flowing continuously upward. At the same time, since the airflow VS is divided into the airflow VS flowing in the center direction of the filamentous travel path, the airflow of the airflow VU gradually decreases in the upward direction. In that case, when the cylindrical rectification member 10 is provided, it has the function of changing the direction of the airflow VU to the airflow VS by passing through the cylindrical rectification member 10. Then, the air flow VS flowing in the center direction in the second buffer chamber 12 is formed by mixing and forming a minute turbulence state in a minute space by sharply reducing the flow path of the cylindrical rectifying member 10 and then widening it greatly. The difference in wind speed of the airflow can be reduced. At this time, by increasing the cylindrical diameter of the cylindrical rectifying member 10 and bringing the cylindrical rectifying member 10 close to the outer wall surface 15 of the second buffer chamber, the annular volume space sandwiched between the cylindrical rectifying member 10 and the rectifying filter 5 increases. The rectification effect due to the reduction and widening of the image can be easily obtained. Therefore, in order to achieve uniform circumferential wind speed of the airflow blown inward from the rectifying filter 5, continuous rectification of the airflow VR, the airflow VU, and the airflow VS passing through the spinning annular cooling device is achieved. This is very important.

ここで、第2バッファ室の環状流路を上方に通過する気流VUについて詳細に説明する。整流フィルタ5より吹き出す気流の円周方向風速均一化を達成するためには、第2バッファ室12内での気流VUの円周方向風速斑の発生を抑制し、その結果として気流VSの円周方向風速斑を低減させることが重要である。そのためには、第2バッファ室の外径D2OUT(m)、および第2バッファ室の内径D2INN(m)を以下の式(2)の範囲とすることで、気流VSの円周方向風速斑を低減し、整流フィルタ5からの円周方向風速均一化を達成できる。
0.09≦D2OUT≦0.3(m)
2INN/D2OUT≦0.95 ・・・(2)
そこで、第2バッファ室の外径D2OUT(m)≧0.3mの場合には、紡糸用環状冷却装置の外径が大型化するため、単錘型の紡糸用環状冷却装置では口金間ピッチの制約を受け、作業性、操業性に問題が生じる。更には、生産スペースを広くする必要があり、設備投資が増大し、生産コスト面でも望ましくない。
Here, the air flow VU passing upward through the annular flow path of the second buffer chamber will be described in detail. In order to achieve uniform circumferential wind speed of the airflow blown from the rectifying filter 5, the occurrence of circumferential wind speed spots of the airflow VU in the second buffer chamber 12 is suppressed, and as a result, the circumference of the airflow VS is reduced. It is important to reduce directional wind speed spots. For this purpose, by setting the outer diameter D 2OUT (m) of the second buffer chamber and the inner diameter D 2INN (m) of the second buffer chamber within the range of the following equation (2), the circumferential wind speed of the air flow VS Spots can be reduced, and uniform wind speed in the circumferential direction from the rectifying filter 5 can be achieved.
0.09 ≦ D 2OUT ≦ 0.3 (m)
D 2INN / D 2OUT ≦ 0.95 (2)
Therefore, when the outer diameter D 2OUT (m) ≧ 0.3 m of the second buffer chamber, the outer diameter of the spinning annular cooling device is increased. Due to the restrictions, workability and operability are problematic. Furthermore, it is necessary to widen the production space, which increases capital investment and is not desirable in terms of production cost.

第2バッファ室の外径D2OUT(m)≦0.09mの場合には、式(2)より、第2バッファ室の内径D2INN(m)は0.0855m以下となる。そこで、整流フィルタ5厚みを0.001m(整流フィルタ5の使用可能な最小厚み)とすると、整流フィルタ5の気流吹き出し部の内径寸法は0.0853mとなる。ここで、多フィラメント糸の製造の際に、糸の太さ斑が良く、且つ糸切れ等が無く良好な製糸性を得るためには、0.0700m以上の口金孔配向PCD外径が必要となることが本発明者らによって解明されている。よって、上記のように、整流フィルタ5内径寸法が0.0853m以下となると、整流フィルタ5と糸条が近接し過ぎることで糸揺れが大きくなり、接触・融着が発生し、糸物性斑が悪化し、製糸性不良となる問題が発生する。 When the outer diameter D 2OUT (m) ≦ 0.09 m of the second buffer chamber, the inner diameter D 2INN (m) of the second buffer chamber is 0.0855 m or less from Equation (2). Therefore, when the thickness of the rectifying filter 5 is 0.001 m (the minimum usable thickness of the rectifying filter 5), the inner diameter of the air flow blowing portion of the rectifying filter 5 is 0.0853 m. Here, when producing a multifilament yarn, in order to obtain a good yarn forming property with good yarn thickness unevenness and no yarn breakage or the like, a base hole orientation PCD outer diameter of 0.0700 m or more is required. It has been elucidated by the present inventors. Therefore, as described above, when the inner diameter dimension of the rectifying filter 5 is 0.0853 m or less, the rectifying filter 5 and the yarn are too close to each other, resulting in increased yarn swaying, contact / fusion, and yarn property spots. The problem worsens and results in poor yarn production.

また、0.95≦D2INN/D2OUTの場合には、第2バッファ室13の上方への流路が狭くなり過ぎて、気流VUの円周方向における風速斑が悪化する。更には、流路の急縮小により気流VUの風速が増加し、上部支持体17に気流VUが衝突するため、整流フィルタ5から内向きに吹き出す気流は、整流フィルタ5の上端(紡糸口金に近い側)近傍に風速最大ピーク値を持ち、下端(巻取側)に向かって減少する糸走行方向風速分布となる。このように、整流フィルタ5の上端近傍に風速最大ピーク値を持つ分布では、紡糸口金23より紡出された糸条22が冷却固化する直前の低張力状態において、整流フィルタ5上端の風速が速いため、糸揺れによる接触・融着が発生しやすく、糸物性斑が悪化する。 Further, in the case of 0.95 ≦ D 2INN / D 2OUT , the flow path upward of the second buffer chamber 13 becomes too narrow, and the wind speed spots in the circumferential direction of the air flow VU deteriorate. Furthermore, since the air velocity VU increases due to the sudden contraction of the flow path, and the air flow VU collides with the upper support 17, the air flow blown inward from the rectifying filter 5 is the upper end of the rectifying filter 5 (close to the spinneret). The wind speed distribution has a wind speed maximum peak value in the vicinity and decreases toward the lower end (winding side). As described above, in the distribution having the maximum wind speed peak value in the vicinity of the upper end of the rectifying filter 5, the wind speed at the upper end of the rectifying filter 5 is fast in the low tension state immediately before the yarn 22 spun from the spinneret 23 is cooled and solidified. For this reason, contact and fusion are likely to occur due to yarn swaying, resulting in deterioration of the thread property spots.

次に、非特許文献2に記載のように、式(3)は、第2バッファ室12の外径D2OUT(m)と第2バッファ室の内径D2INN(m)の総和と、冷却風供給風量Q(m/秒)と、空気の動粘性係数ν(m/秒)を掛け合わせたものであり、第2バッファ室12の環状流路における気流VUのレイノルズ数REVU2を表す。 Then, as described in Non-Patent Document 2, the formula (3), the sum of the outer diameter D 2OUT (m) and the second buffer chamber inner diameter D 2INN (m) of the second buffer chamber 12, the cooling air This is a product of the supplied air volume Q (m 3 / sec) and the air dynamic viscosity coefficient ν (m 2 / sec), and represents the Reynolds number RE VU2 of the air flow VU in the annular channel of the second buffer chamber 12. .

REVU2=4Q/{πν(D2OUT+D2INN)} ・・・(3)
但し、REVU2:第2バッファ室に通過する気流VUのレイノルズ数、
Q:冷却風供給風量(m/秒)、ν:気流の動粘性係数(m/秒)、
2OUT:第2バッファ室の外径(m)、
2INN:第2バッファ室の内径(m)を示す。
RE VU2 = 4Q / {πν (D 2OUT + D 2INN )} (3)
Where RE VU2 : Reynolds number of the air flow VU passing through the second buffer chamber,
Q: Cooling air supply air volume (m 3 / sec), ν: Kinematic viscosity coefficient of air stream (m 2 / sec),
D 2OUT : the outer diameter (m) of the second buffer chamber,
D 2INN : Indicates the inner diameter (m) of the second buffer chamber.

第2バッファ室12の流路内流れにおいて、気流VUのレイノルズ数REVU2が低ければ、気流は層流となり安定流れを形成するが、拡大すると層流から乱流に遷移し、気流乱れが発達し、気流VUの円周方向風速斑が悪化し、最終的に整流フィルタ5から吹出す気流の円周方向風速斑が悪化する。この層流と乱流の境界である臨界レイノルズ数REは、約5.0×10前後となることが非特許文献2に示されている。 If the Reynolds number RE VU2 of the air flow VU is low in the flow in the flow path of the second buffer chamber 12, the air flow becomes a laminar flow and forms a stable flow. However, the circumferential wind speed spots of the airflow VU are deteriorated, and the circumferential wind speed spots of the airflow finally blown out from the rectifying filter 5 are deteriorated. The critical Reynolds number RE C is a boundary of the laminar flow and turbulent flow, to be approximately 5.0 × 10 3 longitudinal disclosed in Non-Patent Document 2.

そこで、本発明者らによって解明したところでは、気流VUのレイノルズ数REVU2は、上記の臨界レイノルズ数REを挟む範囲として、2.5×10≦REVU2≦4.5×10となる範囲、更に好ましくは1.9×10≦REVU2≦1.1×10となる範囲とすることが円周方向風速斑低減に良く、よって、第2バッファ室12の外径D2OUT、第2バッファ室12の内径D2INNに合わせて、上記範囲を満足する供給風量Qを選択することができる。 Therefore, in was elucidated by the present inventors, the Reynolds number RE VU2 airflow VU is a range sandwiching the critical Reynolds number RE C above, and 2.5 × 10 2 ≦ RE VU2 ≦ 4.5 × 10 4 It is good for the reduction of circumferential wind speed spots to make the range of 1.9 × 10 3 ≦ RE VU2 ≦ 1.1 × 10 5 , more preferably, the outer diameter D 2OUT of the second buffer chamber 12. The supply air volume Q that satisfies the above range can be selected in accordance with the inner diameter D2INN of the second buffer chamber 12.

次に、整流フィルタ5より内向きに吹き出す気流の流れ形態が及ぼす糸条冷却について図4を用いて説明する。図4は、本発明の好ましい実施形態に用いられる紡糸用環状冷却装置から吹き出された気流の流れ形態を示した模式図である。単糸繊度が0.1〜1.6dtex以下、フィラメント数2000本以下のマルチフィラメント糸22を紡糸する場合、糸条の冷却固化が非常に早く、細化挙動に伴う糸随伴流VZの発生が紡糸口金23の直下より開始する。これらのマルチフィラメント糸22を、紡糸用環状冷却装置を用いて冷却する場合、紡糸用環状冷却装置上部より糸条の随伴流が発生し、糸条走行方向に多量の風量が流れるため、紡糸口金23の直下近傍において、空気が不足する一種の真空状態となり、この不足空気を補うために、紡糸口金23中心部では上昇気流VVが発生する。これらの発生を抑止するために、整流フィルタ5上端での供給空気量を多くすれば良いが、供給空気量が多くなれば、紡糸口金23の保温性が悪化し、特に紡糸口金23面から整流フィルタ5上端の気流の吹き付け開始距離(以降を冷却開始距離QTDと呼ぶ)を短くする必要のあるマルチフィラメント糸22では、その影響が顕著となり、糸切れが多発し、製糸性が悪化する。よって、紡出されたマルチフィラメント糸22を必要最小限にて効率良く冷却するには、糸走行方向において、糸条の細化、固化に応じた必要な風速、風量を与える必要がある。そこで、本実施形態の紡糸用環状冷却装置では、吹き出し気流の円周方向風速斑が解消し、糸条の冷却固化に適切な風量を付与できることから、上昇気流VZの円周方向風速斑が低減されるため、紡糸口金23の表面温度斑が解消し、よっては繊度斑を低減できる。さらに、紡糸口金23の表面温度斑が解消されることにより、冷却開始距離QTDが短縮できるため、マルチフィラメント糸を製造する際の製糸性が安定し、糸物性斑良好な糸条が得られる。   Next, the yarn cooling effected by the flow form of the airflow blown inward from the rectifying filter 5 will be described with reference to FIG. FIG. 4 is a schematic view showing the flow form of the airflow blown out from the spinning annular cooling device used in the preferred embodiment of the present invention. When the multifilament yarn 22 having a single yarn fineness of 0.1 to 1.6 dtex or less and a filament number of 2000 or less is spun, the yarn is cooled and solidified very rapidly, and the yarn accompanying flow VZ accompanying the thinning behavior is generated. It starts from directly under the spinneret 23. When these multifilament yarns 22 are cooled using an annular cooling device for spinning, an accompanying flow of yarn is generated from the upper portion of the annular cooling device for spinning, and a large amount of air flows in the running direction of the yarn. In the vicinity immediately below, a kind of vacuum state in which air is insufficient is generated, and in order to compensate for the insufficient air, an upward air flow VV is generated at the center of the spinneret 23. In order to suppress these occurrences, the amount of supply air at the upper end of the rectification filter 5 may be increased. However, if the amount of supply air increases, the heat retaining property of the spinneret 23 deteriorates, and in particular, the rectification starts from the surface of the spinneret 23. In the multifilament yarn 22 in which it is necessary to shorten the airflow blowing start distance (hereinafter referred to as the cooling start distance QTD) at the upper end of the filter 5, the influence becomes remarkable, yarn breakage occurs frequently, and the yarn-making property deteriorates. Therefore, in order to efficiently cool the spun multifilament yarn 22 with the necessary minimum, it is necessary to provide the necessary wind speed and air volume according to the thinning and solidification of the yarn in the yarn traveling direction. Therefore, in the annular cooling device for spinning according to the present embodiment, the circumferential wind speed spots of the blown airflow are eliminated, and an appropriate air volume can be imparted for cooling and solidifying the yarn, so that the circumferential wind speed spots of the updraft VZ are reduced. Therefore, the surface temperature unevenness of the spinneret 23 is eliminated, and therefore the fineness unevenness can be reduced. Further, since the surface temperature unevenness of the spinneret 23 is eliminated, the cooling start distance QTD can be shortened, so that the yarn forming property when producing the multifilament yarn is stabilized, and a yarn having good yarn physical property unevenness can be obtained.

ここで、気流の種類は、簡易に常用できる空気であるのが最も好ましいが、水溶性で空気より軽い気体、例えばアンモニアであってもよく、水溶性で空気より重い気体、例えば塩化水素であってもよく、非水溶性である気体、例えば窒素、酸素、水素であってもよく、メタン、エタン、プロパン、ブタンと言った天然ガスであってもよく、更には加湿水蒸気であってもよい。   Here, the type of airflow is most preferably air that can be easily and regularly used, but it may be a water-soluble gas that is lighter than air, such as ammonia, or a water-soluble gas that is heavier than air, such as hydrogen chloride. Alternatively, it may be a water-insoluble gas such as nitrogen, oxygen, hydrogen, natural gas such as methane, ethane, propane, or butane, or may be humidified steam. .

気流の温度は、10〜35℃範囲内に温度調整されたものが好ましいが、エネルギ効率を考えると建物内の雰囲気を特別の制御無しに付与するのでもよい。また、気流が、紡糸用環状冷却装置内に内蔵された加熱ヒータにより加熱された気流でもよく、外部の加熱手段により加熱された気流であってもよく、熱可塑性ポリマや熱可塑性ポリマから構成されるマルチフィラメント糸等の特徴、求める品質等により任意に設定すれば良い。   The temperature of the airflow is preferably adjusted in the range of 10 to 35 ° C., but considering the energy efficiency, the atmosphere in the building may be given without special control. The airflow may be an airflow heated by a heater built in the spinning annular cooling device, or may be an airflow heated by an external heating means, and is composed of a thermoplastic polymer or a thermoplastic polymer. What is necessary is just to set arbitrarily according to the characteristics, required quality, etc. of multifilament yarn.

本実施形態は、紡糸用環状冷却装置、および溶融紡糸方法によって得られる全てのマルチフィラメント糸に好適である。従って、マルチフィラメント糸を構成する熱可塑性ポリマにより特に限られるものではない。例えば、本実施形態に好適なマルチフィラメント糸を構成する熱可塑性ポリマの一例を挙げれば、ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン、ポリエチレン、ポリプロピレン等々が挙げられる。   This embodiment is suitable for all the multifilament yarns obtained by the annular cooling device for spinning and the melt spinning method. Therefore, it is not particularly limited by the thermoplastic polymer constituting the multifilament yarn. For example, examples of the thermoplastic polymer constituting the multifilament yarn suitable for this embodiment include polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, polypropylene, and the like.

本実施形態に好適なポリエステルの一例を挙げれば、例えば、ジカルボン酸またはそのエステル形成性誘導体およびジオールまたはそのエステル形成性誘導体から合成される熱可塑性ポリマで、繊維、フィルム、ボトル等の成形品として用いることができるものが挙げられる。ポリエステルの具体的な一例を挙げれば、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレート、ポリテトラメチレンテレフタレート、ポリエチレン−2、6−ナフタレンジカルボキシレート、ポリエチレン−1、2−ビス(2−クロロフェノキシ)エタン−4、4’−ジカルボキシレート等々が挙げられる。上記において、ポリエチレンテレフタレートが最も汎用的であるが、本実施形態は、ポリエチレンテレフタレートまたは主としてエチレンテレフタレート単位を含むポリエステル共重合体にも好適である。また、製糸安定性等を損なわない範囲で、各種のエステル形成性誘導体が共重合されていても良い。例えば、鮮明性に優れた染色が可能なポリエステルカチオン可染糸においては、一般的にソジウムソルホネート基を有するエステル形成性誘導体を、製糸安定性等を損なわない範囲で、10モル%以下共重合されるが、その様なものでも良い。   An example of a polyester suitable for this embodiment is, for example, a thermoplastic polymer synthesized from a dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof, as a molded article such as a fiber, a film, or a bottle. The thing which can be used is mentioned. Specific examples of the polyester include, for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid, polyethylene naphthalate, polybutylene naphthalate, polypropylene terephthalate, polytetramethylene terephthalate, polyethylene-2, 6- Naphthalenedicarboxylate, polyethylene-1,2-bis (2-chlorophenoxy) ethane-4,4'-dicarboxylate, and the like. In the above, polyethylene terephthalate is the most versatile, but this embodiment is also suitable for polyethylene terephthalate or polyester copolymers mainly containing ethylene terephthalate units. In addition, various ester-forming derivatives may be copolymerized within a range that does not impair the spinning stability. For example, in a polyester cation dyeable yarn capable of being dyed with excellent sharpness, an ester-forming derivative having a sodium sulfonate group is generally 10 mol% or less as long as the yarn-making stability is not impaired. Although copolymerized, such a thing may be sufficient.

本実施形態に好適なポリアミドの一例を挙げれば、例えば、ナイロン6、ナイロン66等々が挙げられる。本実施形態は、ナイロン6、ナイロン66にも好適である。   Examples of polyamides suitable for this embodiment include nylon 6, nylon 66, and the like. This embodiment is also suitable for nylon 6 and nylon 66.

また、本実施形態は、可塑剤を含有したセルロースエステル系熱可塑性ポリマにも好適である。セルロースエステルとは、セルロースの水酸基がエステル結合によって封鎖されているものを言い、具体例としては、例えば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレートなどカルボン酸とのエステル結合を有するものであっても良く、乳酸、グリコール酸、ヒドロキシ酸などオキシルカルボン酸あるいはそれらの重合体とのエステル結合を有するものであっても良く、カプロラクトン、プロピオラクトン、バレロラクトン、ピバロラクトンなどの環状エステルあるいはそれらの重合体とのエステルとなっているものであっても良く、更にはこれらの混合エステルとなっているものであっても良い。これらセルロースは、可塑剤を含有していても良く、可塑剤の具体例としては、例えば、比較的低分子量のものとしては、重量平均分子量が200〜4000であるポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどのポリアルキレングリコール化合物、グリセリン系化合物、カプロラクタム系化合物などの多価アルコール系化合物、ジメチルフタレート、ジエチルフタレート、ジヘキシルフタレート、ジオクチルフタレート、ジメトキシエチルフタレート、エチルフタリルエチルグルコート、ブチルフタリルブチルグリコートなどのフタル酸エステル類、テトラオクチルピロメリテート、トリオクチルトリメリテートなどの芳香族多価カルボン酸エステル類、ジブチルアジペート、ジオクチルアジペート、ジブチルセバケート、ジオクチルセバケート、ジエチルアゼテート、ジブチルアゼテート、ジオクチルアゼテートなどの脂肪族多価カルボン酸エステル類、グリセリントリアセテート、ジグリセリンテトラアセテートなどの多価アルコールの低級脂肪酸エステル類、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリクレジルホスフェートなどのリン酸エステル類などを挙げることができる。また、可塑剤の具体例としては、例えば、比較的高分子量のものとしては、ポリエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネートなどのグリコールと二塩基酸とからなる脂肪族ポリエステル類、ポリ乳酸、ポリグリコール酸などのオキシカルボン酸からなる脂肪族ポリエステル類、ポリカプロラクトン、ポリプロピオラクトン、ポリバレロラクトンなどのラクトンからなる脂肪族ポリエステル類、ポリビニルピロリドンなどのビニルポリマ類などが挙げられる。可塑剤は、これらを単独、あるいは併用して使用することができる。   In addition, this embodiment is also suitable for a cellulose ester-based thermoplastic polymer containing a plasticizer. Cellulose ester refers to those in which the hydroxyl group of cellulose is blocked by an ester bond, and specific examples include esters with carboxylic acids such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate. It may have a bond, may have an ester bond with oxylcarboxylic acid such as lactic acid, glycolic acid, hydroxy acid or a polymer thereof, caprolactone, propiolactone, valerolactone, pivalolactone, etc. It may be a cyclic ester or an ester thereof with a polymer thereof, or a mixed ester thereof. These celluloses may contain a plasticizer. Specific examples of the plasticizer include, for example, polyethylene glycol, polypropylene glycol, and polybutylene having a weight average molecular weight of 200 to 4000 as those having a relatively low molecular weight. Polyalkylene glycol compounds such as glycol, polyhydric alcohol compounds such as glycerin compounds and caprolactam compounds, dimethyl phthalate, diethyl phthalate, dihexyl phthalate, dioctyl phthalate, dimethoxyethyl phthalate, ethyl phthalyl ethyl glucoat, butyl phthalyl butyl Phthalic acid esters such as glycate, aromatic polycarboxylic acid esters such as tetraoctyl pyromellitate, trioctyl trimellitate, dibutyl adipate, dioctyl adipate, Aliphatic polycarboxylic acid esters such as butyl sebacate, dioctyl sebacate, diethyl azate, dibutyl azate, dioctyl azate, lower fatty acid esters of polyhydric alcohols such as glycerin triacetate and diglycerin tetraacetate, triethyl phosphate, tributyl Examples thereof include phosphate esters such as phosphate, tributoxyethyl phosphate and tricresyl phosphate. Specific examples of the plasticizer include, for example, aliphatic polyesters composed of glycol and dibasic acid such as polyethylene adipate, polybutylene adipate, polyethylene succinate, polybutylene succinate, and the like having a relatively high molecular weight. And aliphatic polyesters composed of oxycarboxylic acids such as polylactic acid and polyglycolic acid, aliphatic polyesters composed of lactones such as polycaprolactone, polypropiolactone and polyvalerolactone, and vinyl polymers such as polyvinylpyrrolidone. These plasticizers can be used alone or in combination.

更に、上記した熱可塑性ポリマに、製糸安定性等を損なわない範囲で、二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤が含有されていても良く、共重合が含まれても良い。   Furthermore, in the above-mentioned thermoplastic polymer, within a range not impairing the yarn production stability, matting agent such as titanium dioxide, silicon oxide, kaolin, anti-coloring agent, stabilizer, antioxidant, deodorant, flame retardant, Various functional particles such as yarn friction reducing agents, color pigments, surface modifiers, and additives such as organic compounds may be contained, and copolymerization may be included.

また、本実施形態に用いられる熱可塑性ポリマは、単一成分で構成しても、複数成分で構成してもよく、複数成分の場合には、例えば、芯鞘、サイドバイサイド等の構成が挙げられる。また、マルチフィラメント糸の断面形状は、丸、三角、扁平等の異形状や中空であってもよい。   In addition, the thermoplastic polymer used in the present embodiment may be composed of a single component or a plurality of components. In the case of a plurality of components, for example, a configuration such as a core sheath, side-by-side, etc. may be mentioned. . In addition, the cross-sectional shape of the multifilament yarn may be an irregular shape such as a circle, a triangle, a flat shape, or a hollow shape.

本実施形態は、紡糸用環状冷却装置、および溶融紡糸方法によって得られる全てのマルチフィラメント糸に好適である。従って、マルチフィラメント糸の単糸繊度により特に限られるものではない。例えば、延伸前または延伸されずに巻き取られた際の単糸繊度、あるいは延伸または延伸・仮撚後の単糸繊度が、0.1〜10dtexの範囲であっても良い。また、延伸または延伸・仮撚後の単糸繊度が、0.2〜3.2dtexの範囲であっても良い。単糸繊度が小さければ小さいほど、従来の技術との差異が明確となる。   This embodiment is suitable for all the multifilament yarns obtained by the annular cooling device for spinning and the melt spinning method. Therefore, it is not particularly limited by the single yarn fineness of the multifilament yarn. For example, the single yarn fineness before winding or when wound without being drawn, or the single yarn fineness after drawing or drawing / false twisting may be in the range of 0.1 to 10 dtex. Moreover, the range of 0.2-3.2 dtex may be sufficient as the single yarn fineness after extending | stretching or extending | stretching and false twisting. The smaller the single yarn fineness, the clearer the difference from the prior art.

本実施形態は、紡糸用環状冷却装置、および溶融紡糸方法によって得られる全てのマルチフィラメント糸に好適である。従って、マルチフィラメント糸の単糸数により特に限られるものではない。例えば、マルチフィラメント糸の単糸数が、30〜2000本範囲であっても良い。また、マルチフィラメント糸の単糸数が、30〜600本の範囲であっても良い。マルチフィラメント糸の単糸数が多ければ多いほど、従来の技術との差異が明確となる。   This embodiment is suitable for all the multifilament yarns obtained by the annular cooling device for spinning and the melt spinning method. Therefore, it is not particularly limited by the number of single filaments of the multifilament yarn. For example, the number of single filaments of the multifilament yarn may be in the range of 30 to 2000. The number of single filaments of the multifilament yarn may be in the range of 30 to 600. The greater the number of single filaments of the multifilament yarn, the clearer the difference from the prior art.

実施例中に使用した各特性値は以下の測定方法により求めた。
(1)糸太さ斑、ウースター斑[H]:
ZELLWEGER USTER社製 USTER TESTER UT−4(商品名)を使用し、糸速100m/分、供給張力1/30g/dtex、ツイスタ回転数8000rpmで5分間測定し、HInertで評価したウースター斑U%[H]が、「0.4未満」を◎、「0.4以上0.6未満」を○、「0.6以上1.0未満」を△、「1.0以上」を×として糸太さ斑として評価した。
(2)強度・伸度・強伸度積
ORIENTEC社のTENSILON RTC−1210A(商品名)を用い、製造された糸条(マルチフィラメント糸)より任意に切り出した試長200mmを、引張速度200mm/分で測定した強度・伸度を、次式より求めたものを強伸度積とした。
Each characteristic value used in the examples was determined by the following measurement method.
(1) Thread thickness spots, Wooster spots [H]:
Using a USTER TESTER UT-4 (trade name) manufactured by ZELLWEGER USTER, measured for 5 minutes at a yarn speed of 100 m / min, a supply tension of 1/30 g / dtex, and a twister rotation speed of 8000 rpm, Wooster spots U% evaluated by HInert [% H]: “less than 0.4” ◎, “0.4 or more and less than 0.6” ○, “0.6 or more and less than 1.0” Δ, “1.0 or more” × × It was evaluated as a patch.
(2) Strength / Elongation / Strong Elongation Product Using a TENSILON RTC-1210A (trade name) manufactured by ORIENTEC, a test length of 200 mm arbitrarily cut from the manufactured yarn (multifilament yarn) was used, and a tensile speed of 200 mm / The strength / elongation measured in minutes was obtained from the following formula as the strong elongation product.

強伸度積=強度(cN/dtex)×(伸度(%))1/2
(3)気流の吹き出し風速:
気流の吹き出し風速は、常温・常湿下において、アネモマスター風速計(日本カノマックス株式会社:MODEL6004(商品名))、またはケンブリッジアキュセンス風速計(デグリーコントロールズインク社:UAS1100PC(商品名))を用いて、風速計のプローブを整流フィルタ5の内周面から中心に向かって5mm〜10mmの間隙に設置して測定した。
(4)円周方向風速斑、円周方向風速不均一:
円周方向風速斑とは、常温・常湿の室内において、整流フィルタ5での気流の吹き出し風速として、円周方向に気流供給口1を0度とし、45度刻みに8点、糸走行方向に整流フィルタ5の上端より10mm位置、30mm位置、50mm位置として3箇所、8点×3箇所=24点を測定し、(下記[1]〜[3]式)、各高さ位置において円周方向風速値8点の平均値を算出し(下記[4]式)、各高さ位置において測定値との変動率を求め(下記[5]式)、その全変動率(ΔV10i、ΔV30i、ΔV50i:i=0〜315、45度)の標準偏差を求めた。
[1]整流フィルタ5の上端より10mm位置の風速;V10i(i=0〜315、45度)
[2]整流フィルタ5の上端より30mm位置の風速;V30i(i=0〜315、45度)
[3]整流フィルタ5の上端より50mm位置の風速;V50i(i=0〜315、45度)
[4]整流フィルタ5の上端より10、30、50mm位置の風速平均値:
10ave=(Sum(V10i))/8
30ave=(Sum(V30i))/8
50ave=(Sum(V50i))/8 (i=0〜315、45度)
[5]整流フィルタ5の上端より10、30、50mm位置における風速平均値からの風速変動率;
ΔV10i=(V10i−V10ave)/V10ave
ΔV30i=(V30j−V30ave)/V30ave
ΔV50i=(V50j−V50ave)/V50ave(i=0〜315、45度)
(5)製糸性:
36錘紡糸で、24時間の紡糸を行い、この間の糸切れ回数評価を実施し、「1回未満」を◎、「1回以上2回未満」を○、「2回以上3回未満」を△、「3回以上」を×として評価した。
(6)気流供給風量:
紡糸用環状冷却装置への気流供給風量Q(m/秒)は、常温、常湿の室内において、紡糸用環状冷却装置の気流供給口1の入口にオリフィス風量計を設置し、オリフィス前後の差圧を測定して風量として求めた。
[実施例1]
熱可塑性ポリマ(ポリマ固有粘度IVを0.6〜0.7に調整)を使用し、溶融温度295℃ポリエチレンテレフタレートを紡糸口金23から単孔吐出量0.27g/分にて紡出し、本実施形態の紡糸用環状冷却装置を用いて冷却し、油剤付与装置35にて油剤付与後に2500m/分の速度で巻き取った後、延伸と仮撚加工を実施し、マルチフィラメント糸を製造した。その際、紡糸口金23の下面から糸条22の冷却開始位置までの距離(冷却開始距離QTD)を23mmとした。本実施形態の紡糸用環状冷却装置は、図1に示したように、第1バッファ室13、第2バッファ室12を備え、第1バッファ室13と第2バッファ室12の境界面上には、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをリング状整流部材11として配置した。第1バッファ室13の内径130mm(内壁面16と一致)、第1バッファ室13の外径170mm、第2バッファ室12の外径170mm、第2バッファ室12の内径109.6mm(整流フィルタ5の外径と一致)とし、第2バッファ室12には、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをチューブ状にした円筒状整流部材10(内径126mm/外径129mm)を配置した。また、整流フィルタ5は、セルロースリボン(材質:紙)を螺旋状に巻いて、熱硬化性樹脂(フェノール樹脂)を含浸後、加熱硬化させた多孔性部材(内径97mm、外径109.6mm、高さ200mm、孔径40μm、紡糸方向に直角方向から下向きに15度傾斜)を使用した。
Strong elongation product = strength (cN / dtex) × (elongation (%)) 1/2
(3) Airflow blowout wind speed:
As for the blowing speed of the air current, an anemo master anemometer (Nippon Kanomax Co., Ltd .: MODEL6004 (trade name)) or Cambridge Accusense anemometer (Degree Controls Inc .: UAS1100PC (trade name)) is used at room temperature and normal humidity. Using, the probe of the anemometer was installed in a gap of 5 mm to 10 mm from the inner peripheral surface of the rectifying filter 5 toward the center and measured.
(4) Circumferential wind velocity unevenness, circumferential wind velocity non-uniformity:
Circumferential wind velocity spots are the airflow blown air velocity at the rectifying filter 5 in a room temperature / humidity room, with the airflow supply port 1 being 0 degrees in the circumferential direction, 8 points in 45 degree increments, the yarn traveling direction 3 points, 8 points x 3 points = 24 points from the top of the rectifying filter 5 as 10 mm position, 30 mm position and 50 mm position (Equation [1] to [3] below), and the circumference at each height position The average value of the directional wind speed values of 8 points is calculated (the following [4] equation), the variation rate with the measured value is obtained at each height position (the following [5] equation), and the total variation rate (ΔV 10i , ΔV 30i) , ΔV 50i : i = 0 to 315, 45 degrees).
[1] Wind speed at a position 10 mm from the upper end of the rectifying filter 5; V 10i (i = 0 to 315, 45 degrees)
[2] Wind speed at 30 mm position from the upper end of the rectifying filter 5; V 30i (i = 0 to 315, 45 degrees)
[3] Wind speed 50 mm from the upper end of the rectifying filter 5; V 50i (i = 0 to 315, 45 degrees)
[4] Average wind speed at positions 10, 30, and 50 mm from the upper end of the rectifying filter 5:
V 10ave = (Sum (V 10i )) / 8
V 30ave = (Sum (V 30i )) / 8
V 50ave = (Sum (V 50i )) / 8 (i = 0 to 315, 45 degrees)
[5] Wind speed fluctuation rate from the average wind speed at positions 10, 30, and 50 mm from the upper end of the rectifying filter 5;
ΔV 10i = (V 10i −V 10ave ) / V 10ave
ΔV 30i = (V 30j −V 30ave ) / V 30ave
ΔV 50i = (V 50j −V 50ave ) / V 50ave (i = 0 to 315, 45 degrees)
(5) Spinnability:
Execute spinning for 36 hours with 36 spindles, and evaluate the number of breaks during this period. ◎ "less than 1" is ◎, "1 to less than 2" is ◯, "2 to less than 3" Δ, “3 times or more” was evaluated as x.
(6) Airflow supply air volume:
The air flow rate Q (m 3 / sec) to the spinning annular cooling device is set at an inlet air flow meter 1 at the inlet of the air flow feeding port 1 of the spinning annular cooling device in a room at normal temperature and humidity. The differential pressure was measured and obtained as the air volume.
[Example 1]
Using thermoplastic polymer (adjusted polymer intrinsic viscosity IV to 0.6-0.7), melt 295 ° C polyethylene terephthalate from spinneret 23 at a single hole discharge rate of 0.27g / min. It cooled using the cyclic | annular cooling apparatus for spinning of a form, and after winding oil agent at the speed | rate of 2500 m / min after oil agent provision with the oil agent provision apparatus 35, extending | stretching and false twisting were implemented and the multifilament yarn was manufactured. At that time, the distance from the lower surface of the spinneret 23 to the cooling start position of the yarn 22 (cooling start distance QTD) was 23 mm. As shown in FIG. 1, the annular cooling device for spinning of the present embodiment includes a first buffer chamber 13 and a second buffer chamber 12, and on the boundary surface between the first buffer chamber 13 and the second buffer chamber 12. A punching metal having an aperture ratio of 40.3% (hole diameter 2 mm, pitch 3 mm, staggered arrangement, plate thickness 1.5 mm) was arranged as the ring-shaped rectifying member 11. The first buffer chamber 13 has an inner diameter of 130 mm (matches the inner wall surface 16), the first buffer chamber 13 has an outer diameter of 170 mm, the second buffer chamber 12 has an outer diameter of 170 mm, and the second buffer chamber 12 has an inner diameter of 109.6 mm (the rectifying filter 5). A cylindrical rectifying member in which a punching metal having an aperture ratio of 40.3% (hole diameter 2 mm, pitch 3 mm, staggered arrangement, plate thickness 1.5 mm) is formed in a tube shape in the second buffer chamber 12. 10 (inner diameter 126 mm / outer diameter 129 mm) was disposed. The rectifying filter 5 is a porous member (inner diameter of 97 mm, outer diameter of 109.6 mm, outer diameter of 109.6 mm, spirally wound with a cellulose ribbon (material: paper), impregnated with a thermosetting resin (phenol resin), and then heat-cured. The height was 200 mm, the hole diameter was 40 μm, and the spinning direction was inclined from a right angle to a downward direction by 15 degrees).

上記の紡糸用環状冷却装置を用いて、56dtex、144本のフィラメント糸、1糸条のポリエステル極細繊維を製造した。このとき、整流フィルタ5から供給空気風量43.7m/時間、常温20℃の気流を吹き出した結果、円周方向風速斑は、4.0%となった。その際、気流としては空気を用いた。また、紡糸口金23の口金直径110mm、紡糸孔配置は2列環状配置で外径PCDが86mm、内径PCDが76mmとした。表1に記載のとおり、紡糸の際の製糸性は最良な結果、および得られた極細繊維のウースター斑は良好な結果を得た。 56 dtex, 144 filament yarns, and 1 polyester extra-fine fiber were produced using the above-mentioned spinning annular cooling device. At this time, as a result of blowing an air flow at a normal temperature of 20 ° C. from the rectifying filter 5, a circumferential air velocity spot of 4.0% was 43.7 m 3 / hour. At that time, air was used as the airflow. The spinneret 23 has a base diameter of 110 mm, a spinning hole arrangement in a two-row annular arrangement, an outer diameter PCD of 86 mm, and an inner diameter PCD of 76 mm. As shown in Table 1, the best results were obtained for the spinning performance during spinning, and the Worcester spots of the obtained ultrafine fibers gave good results.

Figure 2008231607
Figure 2008231607

[実施例2]
実施例1と繊度を等しく、糸条数を増加させた実施例として、実施例2を説明する。実施例1と同じ紡糸用環状冷却装置を用いて、56dtex、288本のフィラメント糸、2糸条(1糸条当たり144本のフィラメント糸)のポリエステル極細繊維を製造した。このとき、整流フィルタ5から供給空気風量61.3m/時間、常温20℃の空気を吹き出した結果、円周方向風速斑は4.0%となった。また、紡糸口金23の口金直径110mm、紡糸孔配置は3列環状群配置で、最外径PCDが86mm、PCD72mm、最内径PCDが58mm、1導入口あたり4吐出孔とした。表1に記載のとおり、紡糸の際の製糸性は良好な結果、および得られた極細繊維のウースター斑は良好な結果を得た。
[実施例3、実施例4]
実施例3では、リング状整流部材11を気流供給口上端26から上方に向かって、第1バッファ室13の正味バッファ流路長58.5mmの位置に配置し、実施例4では、気流供給口上端26からから上方に向かって、第1バッファ室13の正味バッファ流路長4.5mmに配置することで、リング状整流部材位置11が影響を及ぼす円周方向風速分布斑、ウースター斑改善効果を確認した。そこで上記紡糸用環状冷却装置を用いて、33dtex、144本のフィラメント糸、2糸条(1糸条当たり72本のフィラメント糸)のポリエステル極細繊維を製造した。このとき、整流フィルタ5から供給空気風量49.9m/時間の常温20度の空気を吹き出した結果、円周方向風速斑は、実施例3にて2.6%、実施例4にて7.9%となった。また、紡糸口金23の口金直径110mm、紡糸孔配置は2列環状配置で外径PCDが86mm、内径PCDが76mmとした。紡糸の際の製糸性、および得られた極細繊維のウースター斑は表1に記載のとおり、いずれも良好な結果を得た。特に、実施例3では、リング状整流部材11を気流供給口上端26から上方に向かって、第1バッファ室13の正味バッファ流路長58.5mmに配置させることで、第1バッファ室13のバッファ空間を広げ、その結果、円周方向風速斑が最良となり、ウースター斑の良化に繋がった。
[実施例5、実施例6]
次に、実施例4と同じ紡糸口金23の孔配向、同じ紡糸用環状冷却装置の構成であり、単糸繊度が大きな実施例として、実施例5を説明する。84dtex、144本のフィラメント糸、1糸条のポリエステル極細繊維を製造した。このとき、整流フィルタ5から供給空気風量61.3m/時間、常温20℃の空気を吹き出した結果、円周方向風速斑は7.5%となった。紡糸の際の製糸性、および得られた繊維のウースター斑は表1に記載のとおり、良好な結果を得た。また、実施例4と同じ紡糸口金23の孔配向、同じ紡糸用環状冷却装置の構成であり、更に単糸繊度が大きな実施例として、実施例6を説明する。167dtex、72本のフィラメント糸、1糸条のポリエステル繊維を製造した。このとき、整流フィルタ5から供給空気風量53.2m/時間、常温20℃の空気を吹き出した結果、円周方向風速斑は、7.2%となった。表1に記載のとおり、紡糸の際の製糸性は最良な結果、および得られた繊維のウースター斑は良好な結果を得た。
[実施例7]
円筒状整流部材が影響を及ぼす円周方向風速分布斑、ウースター斑改善効果を確認した。実施例7では、実施例1で用いた紡糸用環状冷却装置の円筒状整流部材10を除外した形態として100dtex、144本のフィラメント糸、2糸条(1糸条当たり72本のフィラメント糸)のポリエステル繊維を製造した。このとき、整流フィルタ5から供給空気風量40.6m/時間の空気を吹き出した結果、円周方向風速斑は6.6%となった。また、紡糸口金23の口金直径100mm、紡糸孔配置は2列環状配置で、外径側から外径PCD76mm、内径PCD72mmとした。表1に記載のとおり、紡糸の際の製糸性は最良な結果、および得られた繊維のウースター斑は良好な結果を得た。
[比較例1]
実施例1にて使用した紡糸用環状冷却装置構造において、第1バッファ室13の内径130mm(内壁面16と一致)、第1バッファ室13の外径136mm、第2バッファ室12の外径136mm、第2バッファ室12の内径130mm(整流フィルタ5の外径と一致)とし、且つリング状整流部材11を気流供給口上端26から上方に向かって、第1バッファ室13の正味バッファ流路長0mm位置に配置し、第2バッファ室12の円筒状整流部材10を取り除いた紡糸用環状冷却装置を比較例1に用いた。その他は、実施例1と同等の紡糸条件により、熱可塑性ポリマを紡糸口金23より溶融紡糸し、油剤付与装置35にて油剤付与後に巻き取り、延伸と仮撚加工を実施することにより、56dtex、144本のフィラメント糸、1糸条のポリエステル極細繊維を製造した。その際、円周方向風速斑は11.7%と悪化した。結果、表1に記載のとおり、紡糸の際には糸切れが多発し製糸性は悪く、得られた極細繊維のウースター斑も悪化した。
[比較例2]
クロスフロータイプの紡糸用冷却装置を用いて、実施例6と同等の繊維(66dtex、144本のフィラメント糸、1糸条)を得た。表1に記載のとおり、紡糸の際には糸切れが数回発止し製糸性は悪く、得られた繊維のウースター斑は不良であった。
[比較例3]
比較例2と同様に、クロスフロータイプの紡糸用冷却装置を用いて、実施例5と同等の繊維(84dtex、144本のフィラメント糸、1糸条)を得た。表1に記載のとおり、得られた繊維のウースター斑は比較的良好であったが、紡糸の際には糸切れが数回発止し製糸性は悪化した。
[Example 2]
Example 2 will be described as an example in which the fineness is equal to Example 1 and the number of yarns is increased. Using the same spinning annular cooling device as in Example 1, 56 dtex, 288 filament yarns, and two yarns (144 filament yarns per yarn) were produced. At this time, as a result of blowing air from the rectifying filter 5 at a supply air volume of 61.3 m 3 / hour and a room temperature of 20 ° C., the circumferential wind speed spot was 4.0%. Further, the diameter of the spinneret 23 is 110 mm, the spinning holes are arranged in a three-row annular group, the outermost diameter PCD is 86 mm, the PCD 72 mm, the innermost diameter PCD is 58 mm, and four discharge holes per introduction port. As shown in Table 1, a good result was obtained for the spinning performance during spinning, and a good result was obtained for the Worcester patches of the obtained ultrafine fibers.
[Example 3, Example 4]
In the third embodiment, the ring-shaped rectifying member 11 is disposed at a position where the net buffer flow path length of the first buffer chamber 13 is 58.5 mm from the upper end 26 of the air flow supply port, and in the fourth embodiment, the air flow supply port is provided. Circumferential wind speed distribution spots and Worcester spot improvement effects that the ring-shaped rectifying member position 11 has an influence by arranging the net buffer flow path length of 4.5 mm in the first buffer chamber 13 from the upper end 26 upward. It was confirmed. Therefore, using the above-mentioned spinning cooling apparatus for spinning, polyester microfibers of 33 dtex, 144 filament yarns, 2 yarns (72 filament yarns per yarn) were produced. At this time, as a result of blowing air at a normal temperature of 20 degrees with a supply air volume of 49.9 m 3 / hour from the rectifying filter 5, the circumferential wind speed spots were 2.6% in Example 3 and 7 in Example 4. It was 9%. The spinneret 23 has a base diameter of 110 mm, a spinning hole arrangement in a two-row annular arrangement, an outer diameter PCD of 86 mm, and an inner diameter PCD of 76 mm. As shown in Table 1, good results were obtained with respect to the spinnability during spinning and the Worcester spots of the obtained ultrafine fibers. In particular, in the third embodiment, the ring-shaped rectifying member 11 is disposed at the net buffer flow path length of 58.5 mm of the first buffer chamber 13 upward from the air flow supply port upper end 26, so that the first buffer chamber 13 The buffer space was expanded, and as a result, circumferential wind speed spots became the best, leading to better Wooster spots.
[Example 5, Example 6]
Next, Example 5 will be described as an example in which the hole orientation of the spinneret 23 is the same as in Example 4 and the configuration of the same annular cooling device for spinning and the single yarn fineness is large. 84 dtex, 144 filament yarns and 1 yarn polyester ultrafine fiber were produced. At this time, as a result of blowing air having a supply air volume of 61.3 m 3 / hour and a room temperature of 20 ° C. from the rectifying filter 5, the circumferential wind speed spot was 7.5%. As shown in Table 1, good results were obtained with respect to spinning performance during spinning and Worcester spots of the obtained fibers. In addition, Example 6 will be described as an example in which the hole orientation of the spinneret 23 is the same as that of Example 4, the configuration is the same as the annular cooling device for spinning, and the single yarn fineness is large. 167 dtex, 72 filament yarns, 1 yarn polyester fiber were produced. At this time, as a result of blowing air at an air flow rate of 53.2 m 3 / hour and normal temperature of 20 ° C. from the rectifying filter 5, the circumferential wind speed spot was 7.2%. As shown in Table 1, the best results were obtained with respect to the spinning performance during spinning, and the Worcester spots of the obtained fibers gave good results.
[Example 7]
The effect of improving circumferential wind speed distribution spots and Worcester spots was confirmed by the influence of the cylindrical rectifying member. In Example 7, 100 dtex, 144 filament yarns, and two yarns (72 filament yarns per yarn) are excluded from the cylindrical flow straightening member 10 of the annular cooling device for spinning used in Example 1. Polyester fibers were produced. At this time, as a result of blowing air with a supply air volume of 40.6 m 3 / hour from the rectifying filter 5, the circumferential wind speed spot was 6.6%. Further, the spinneret 23 has a base diameter of 100 mm and a spinning hole arrangement in a two-row annular arrangement with an outer diameter PCD of 76 mm and an inner diameter PCD of 72 mm from the outer diameter side. As shown in Table 1, the best results were obtained with respect to the spinning performance during spinning, and the Worcester spots of the obtained fibers gave good results.
[Comparative Example 1]
In the annular cooling device structure for spinning used in Example 1, the inner diameter of the first buffer chamber 13 is 130 mm (matches the inner wall surface 16), the outer diameter of the first buffer chamber 13 is 136 mm, and the outer diameter of the second buffer chamber 12 is 136 mm. The inner diameter of the second buffer chamber 12 is 130 mm (matches the outer diameter of the rectifying filter 5), and the ring-shaped rectifying member 11 is directed upward from the upper end 26 of the air flow supply port to the net buffer flow path length of the first buffer chamber 13. An annular cooling device for spinning, in which the cylindrical rectifying member 10 of the second buffer chamber 12 was removed at the 0 mm position, was used in Comparative Example 1. Other than that, the thermoplastic polymer was melt-spun from the spinneret 23 under the same spinning conditions as in Example 1, wound up after applying the oil agent in the oil agent application device 35, and subjected to stretching and false twisting to obtain 56 dtex, 144 filament yarns and one yarn of polyester microfiber were produced. At that time, the circumferential wind speed spot deteriorated to 11.7%. As a result, as shown in Table 1, yarn breakage occurred frequently during spinning, and the yarn-making property was poor, and the Worcester spots of the obtained ultrafine fibers were also deteriorated.
[Comparative Example 2]
Fibers equivalent to Example 6 (66 dtex, 144 filament yarns, 1 yarn) were obtained using a cross-flow type spinning cooling device. As shown in Table 1, the yarn breakage stopped several times during spinning, and the yarn-making property was poor, and the Worcester spots of the obtained fiber were poor.
[Comparative Example 3]
In the same manner as in Comparative Example 2, a fiber (84 dtex, 144 filament yarns, 1 yarn) equivalent to that in Example 5 was obtained using a cross-flow type spinning cooling device. As shown in Table 1, the Worcester spots of the obtained fibers were relatively good, but the yarn breakage stopped several times during spinning, and the yarn-making property deteriorated.

本発明は、衣料用極細マルチフィラメント糸の紡糸用環状冷却装置に限らず、産業用ナイロン糸用の紡糸用環状冷却装置や、産業用テトロン糸用の紡糸用環状冷却装置などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention is not limited to an annular cooling device for spinning ultrafine multifilament yarn for clothing, but also applied to an annular cooling device for spinning for industrial nylon yarn, an annular cooling device for spinning for industrial tetron yarn, etc. However, the application range is not limited to these.

本発明の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for preferable embodiment of this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の別の好ましい実施形態に用いられる紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cyclic | annular cooling device for spinning used for another preferable embodiment of this invention. 本発明の好ましい実施形態に用いられる紡糸用環状冷却装置から吹き出された気流の流れ形態を示した模式図である。It is the schematic diagram which showed the flow form of the airflow which blown off from the cyclic | annular cooling device for spinning used for preferable embodiment of this invention. 従来の紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional annular cooling device for spinning. 図5のB−B矢視図である。It is a BB arrow line view of FIG. 従来の紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional annular cooling device for spinning. 図7のC−C矢視図である。It is CC arrow line view of FIG. 従来の紡糸用環状冷却装置の円筒部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylindrical part of the conventional annular cooling device for spinning. 図9の円筒部の展開図である。FIG. 10 is a development view of the cylindrical portion of FIG. 9. 図9の円筒部の展開図である。FIG. 10 is a development view of the cylindrical portion of FIG. 9. 従来の紡糸用環状冷却装置の円筒部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylindrical part of the conventional annular cooling device for spinning. 従来の紡糸用環状冷却装置の概略横断面図である。It is a schematic cross-sectional view of a conventional annular cooling device for spinning. 従来の紡糸用環状冷却装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional annular cooling device for spinning. 本発明の好ましい実施形態に用いられる溶融紡糸装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the melt spinning apparatus used for preferable embodiment of this invention.

符号の説明Explanation of symbols

1 気流供給口
2 反気流供給側
3 円筒外壁面
4 パンチングプレート
5 整流フィルタ
6 よどみ点
7 邪魔板
8 バッファ室
9 冷却筒開口部
10 円筒整流部材
11 リング状整流部材
12 第2バッファ室
13 第1バッファ室
14 第1バッファ室外壁面
15 第2バッファ室外壁面
16 内壁面
17 上部支持体
18 下部支持体
19a 19b パッキン
20 気流導入管
21 偏芯リング
22 糸条(マルチフィラメント糸)
23 紡糸口金
24 紡糸パック
25 スピンブロック
26 気流供給口上端
27 布(フェルト状)
28 多孔質円筒
29 ノズル孔
30 多孔質円筒フィルタ(濾過抵抗の低いフィルタ)
31 不織布、又は濾過抵抗の高い紙フィルタ
32 第2気体室
33 第1気体室
34 有孔板
35 油剤付与装置
36 37 引取ローラ
38 巻取装置
39 パッケージ
40 効絡付与装置
VA 気流供給口において、風速斑を低減、均一化された気流
VR 円筒外壁面に沿って、空気供給口から反気流供給口へ周り込む気流
VU バッファ室の上部に流れる気流
VS 糸走行方向に垂直方向における同心円状中心方向に流れる気流
VZ 糸随伴流
VV 上昇気流
QTD 冷却開始距離
DESCRIPTION OF SYMBOLS 1 Airflow supply port 2 Anti-airflow supply side 3 Cylindrical outer wall surface 4 Punching plate 5 Rectification filter 6 Stagnation point 7 Baffle plate 8 Buffer chamber 9 Cooling cylinder opening 10 Cylindrical rectification member 11 Ring-shaped rectification member 12 2nd buffer chamber 13 1st Buffer chamber 14 First buffer chamber outer wall surface 15 Second buffer chamber outer wall surface 16 Inner wall surface 17 Upper support 18 Lower support 19a 19b Packing 20 Airflow introduction pipe 21 Eccentric ring 22 Thread (multifilament yarn)
23 Spinneret 24 Spin pack 25 Spin block 26 Upper end of air flow supply port 27 Cloth (felt shape)
28 Porous cylinder 29 Nozzle hole 30 Porous cylindrical filter (filter with low filtration resistance)
31 Nonwoven fabric or paper filter with high filtration resistance 32 2nd gas chamber 33 1st gas chamber 34 Perforated plate 35 Oil agent applicator 36 37 Take-up roller 38 Winding device 39 Package 40 Effect applicator VA At the airflow supply port, wind speed Spots with reduced and uniform airflow VR Airflow that flows from the air supply port to the anti-airflow supply port along the cylindrical outer wall surface VU Airflow that flows in the upper part of the buffer chamber VS Concentric center direction perpendicular to the yarn running direction Flowing air flow VZ Yarn accompanying flow VV Updraft QTD Cooling start distance

Claims (5)

熱可塑性ポリマを溶融紡出して得られた糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化する紡糸用環状冷却装置であって、気流導入管と、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1バッファ室と、該第1バッファ室の環状の流路の下流に位置し前記糸条の走行経路の外側を包囲し前記第1バッファ室の環状の流路の下流端全面を覆うように配設されたリング状整流部材と、該リング状整流部材の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記リング状整流部材の前記第1バッファ室側の前記糸条の走行経路に垂直な断面における流路断面積より大きい断面積を備えた第2バッファ室と、該第2バッファ室の内側に前記糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ環状の整流フィルタとを有することを特徴とする紡糸用環状冷却装置。 An annular cooling device for spinning, in which an airflow is blown inward from the outside of a running path of a yarn obtained by melt spinning a thermoplastic polymer to cool and solidify the airflow introduction pipe, and communicated with the airflow introduction pipe A first buffer chamber having an annular flow path disposed so as to surround the outside of the travel path of the yarn; and the travel path of the yarn located downstream of the annular flow path of the first buffer chamber. A ring-shaped rectifying member disposed so as to surround the entire downstream end of the annular flow path of the first buffer chamber, and an outer side of the yarn traveling path downstream of the ring-shaped rectifying member. An annular flow path disposed so as to surround the cross-sectional area larger than the flow path cross-sectional area in a cross section perpendicular to the traveling path of the yarn on the first buffer chamber side of the ring-shaped rectifying member. A second buffer chamber, and the yarn running inside the second buffer chamber. Spinning annular cooling apparatus characterized by having an annular rectifying filter with a flow passage for blowing the airflow is arranged to surround the outer road inwardly. 前記第1バッファ室の正味バッファ流路長は3mm以上80mm以下であることを特徴とする請求項1に記載の紡糸用環状冷却装置。 2. The annular cooling device for spinning according to claim 1, wherein a net buffer flow path length of the first buffer chamber is 3 mm or more and 80 mm or less. 前記第2バッファ室各部の寸法が、以下の式を満足することを特徴とする請求項1または2に記載の紡糸用環状冷却装置。
0.09≦D2OUT≦0.3 (m)
2INN/D2OUT≦0.95
但し、D2OUT:第2バッファ室の外径(m)、D2INN:第2バッファ室の内径(m)を示す。
The annular cooling device for spinning according to claim 1 or 2, wherein dimensions of each part of the second buffer chamber satisfy the following expression.
0.09 ≦ D 2OUT ≦ 0.3 (m)
D 2INN / D 2OUT ≦ 0.95
Here, D 2OUT represents the outer diameter (m) of the second buffer chamber, and D 2INN represents the inner diameter (m) of the second buffer chamber.
前記第2バッファ室内において、前記第2バッファ室の前記糸条の走行経路に垂直な各断面において前記整流フィルタの外側を包囲するように配設され、前記リング状整流部材から前記整流フィルタに至るすべての気流を整流する円筒状整流部材を有することを特徴とする請求項1から3のいずれかに記載の紡糸用環状冷却装置。 In the second buffer chamber, the second buffer chamber is disposed so as to surround the outside of the rectifying filter in each cross section perpendicular to the traveling path of the yarn in the second buffer chamber, and extends from the ring-shaped rectifying member to the rectifying filter. The annular cooling device for spinning according to any one of claims 1 to 3, further comprising a cylindrical rectifying member that rectifies all airflows. 紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化させるに際し、気流導入管より導かれた気流を、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1バッファ室まで導き、その後、該第1バッファ室の環状の流路の下流に位置し前記糸条の走行経路の外側を包囲し前記第1バッファ室の環状の流路の下流端全面を覆うように配設されたリング状整流部材を通過させ、その後、該リング状整流部材の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記リング状整流部材の前記第1バッファ室側の前記糸条の走行経路に垂直な断面における流路断面積より大きい断面積を備えた第2バッファ室まで導き、その後、該第2バッファ室の内側に前記糸条の走行経路の外側を包囲するように配設された環状の整流フィルタより気流を内向きに吹き出すことを特徴とする溶融紡糸方法。 When the thermoplastic polymer is melt-spun from the spinneret and airflow is blown inward from the outside of the running path of the spun yarn to cool and solidify, the airflow introduced from the airflow introduction pipe is sent to the airflow introduction pipe. It leads to a first buffer chamber having an annular flow path arranged so as to surround the outside of the travel path of the yarn, and then is located downstream of the annular flow path of the first buffer chamber. A ring-shaped rectifying member that surrounds the outside of the yarn travel path and is disposed so as to cover the entire downstream end of the annular flow path of the first buffer chamber is allowed to pass, and thereafter, downstream of the ring-shaped rectifying member. A flow path in a cross section perpendicular to the travel path of the yarn on the first buffer chamber side of the ring-shaped rectifying member, having an annular flow path arranged so as to surround the outside of the travel path of the yarn Second buffer chamber having a cross-sectional area larger than the cross-sectional area In guidance, then melt spinning method characterized by blowing the air flow from the rectifier filter disposed annular so as to surround the outer running path of the yarn inside the second buffer chamber inwardly.
JP2007072386A 2007-03-20 2007-03-20 Annular cooling apparatus for spinning and melt-spinning method Pending JP2008231607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072386A JP2008231607A (en) 2007-03-20 2007-03-20 Annular cooling apparatus for spinning and melt-spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072386A JP2008231607A (en) 2007-03-20 2007-03-20 Annular cooling apparatus for spinning and melt-spinning method

Publications (1)

Publication Number Publication Date
JP2008231607A true JP2008231607A (en) 2008-10-02

Family

ID=39904752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072386A Pending JP2008231607A (en) 2007-03-20 2007-03-20 Annular cooling apparatus for spinning and melt-spinning method

Country Status (1)

Country Link
JP (1) JP2008231607A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252260A (en) * 2010-06-04 2011-12-15 Tmt Machinery Inc Yarn cooling device
CN103774254A (en) * 2012-10-19 2014-05-07 河北达瑞化纤机械有限公司 Rectification barrel of circular air blowing device and manufacturing method thereof
EP3121312A1 (en) 2015-07-22 2017-01-25 TMT Machinery, Inc. Yarn cooler
KR102003892B1 (en) * 2018-02-12 2019-10-01 주식회사 휴비스 Fabrication Method Of Fiber For Nonwoven Fabric Binder Excellent In Workability
CN111426941A (en) * 2020-04-29 2020-07-17 深圳市联合东创科技有限公司 Optimized chip temperature resistance testing device
KR20210089768A (en) * 2018-12-21 2021-07-16 미쓰이 가가쿠 가부시키가이샤 Melt spinning apparatus and method for manufacturing non-woven fabric
CN114481342A (en) * 2020-10-24 2022-05-13 欧瑞康纺织有限及两合公司 Device for cooling freshly extruded filament bundles
CN114808232A (en) * 2022-04-29 2022-07-29 杭州惠丰化纤有限公司 Horizontal traction machine for CEY production and use method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252260A (en) * 2010-06-04 2011-12-15 Tmt Machinery Inc Yarn cooling device
CN103774254A (en) * 2012-10-19 2014-05-07 河北达瑞化纤机械有限公司 Rectification barrel of circular air blowing device and manufacturing method thereof
EP3121312A1 (en) 2015-07-22 2017-01-25 TMT Machinery, Inc. Yarn cooler
CN106367821A (en) * 2015-07-22 2017-02-01 日本Tmt机械株式会社 Yarn cooler
KR102003892B1 (en) * 2018-02-12 2019-10-01 주식회사 휴비스 Fabrication Method Of Fiber For Nonwoven Fabric Binder Excellent In Workability
KR20210089768A (en) * 2018-12-21 2021-07-16 미쓰이 가가쿠 가부시키가이샤 Melt spinning apparatus and method for manufacturing non-woven fabric
KR102524390B1 (en) 2018-12-21 2023-04-20 미쓰이 가가쿠 가부시키가이샤 Melt spinning apparatus and nonwoven fabric manufacturing method
CN111426941A (en) * 2020-04-29 2020-07-17 深圳市联合东创科技有限公司 Optimized chip temperature resistance testing device
CN111426941B (en) * 2020-04-29 2022-09-30 深圳市联合东创科技有限公司 Optimized chip temperature resistance testing device
CN114481342A (en) * 2020-10-24 2022-05-13 欧瑞康纺织有限及两合公司 Device for cooling freshly extruded filament bundles
CN114481342B (en) * 2020-10-24 2023-12-08 欧瑞康纺织有限及两合公司 Device for cooling freshly extruded filament bundles
CN114808232A (en) * 2022-04-29 2022-07-29 杭州惠丰化纤有限公司 Horizontal traction machine for CEY production and use method thereof

Similar Documents

Publication Publication Date Title
JP5526531B2 (en) Spinning cooling device and melt spinning method
JP2008231607A (en) Annular cooling apparatus for spinning and melt-spinning method
JP2010077553A (en) Apparatus and method for producing filament yarn
JP2010106393A (en) Apparatus and method for producing multifilament yarn
WO2001098564A1 (en) Melt spinning device
JP2007063690A (en) Device for cooling yarn
JP5428979B2 (en) Spin pack and method for producing filament yarn
JP4946111B2 (en) Synthetic fiber melt spinning apparatus and synthetic fiber manufacturing method
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JP2006241611A (en) Melt-spinning equipment of synthetic fiber
JP2007247121A (en) Yarn cooling device
JP5585469B2 (en) Synthetic fiber melt spinning equipment
JP5906808B2 (en) Synthetic fiber manufacturing method
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JP4725213B2 (en) Spinneret and method for producing ultrafine fiber
JP4904943B2 (en) Polyester fiber melt spinning equipment
JP4988318B2 (en) Multi-spindle melt spinning apparatus and ultrafine multifilament yarn obtained therefrom
JP2016050375A (en) Apparatus and method for producing filament yarn
JP2010077570A (en) Melt-spinning method and melt-spinning apparatus
JP2009068154A (en) Yarn cooling device
JP5332253B2 (en) Filament yarn manufacturing apparatus and manufacturing method
WO2001071070A1 (en) Molten yarn take-up device
JPH07118912A (en) Device for spinning synthetic filament
JP2011102448A (en) Apparatus and method of producing filament yarn
JP2006104600A (en) Method for producing synthetic fiber multifilament yarn and production apparatus