JP5526531B2 - Spinning cooling device and melt spinning method - Google Patents

Spinning cooling device and melt spinning method Download PDF

Info

Publication number
JP5526531B2
JP5526531B2 JP2008302274A JP2008302274A JP5526531B2 JP 5526531 B2 JP5526531 B2 JP 5526531B2 JP 2008302274 A JP2008302274 A JP 2008302274A JP 2008302274 A JP2008302274 A JP 2008302274A JP 5526531 B2 JP5526531 B2 JP 5526531B2
Authority
JP
Japan
Prior art keywords
airflow
yarn
air flow
path
airflow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008302274A
Other languages
Japanese (ja)
Other versions
JP2009150037A (en
Inventor
祥二 船越
誠二 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008302274A priority Critical patent/JP5526531B2/en
Publication of JP2009150037A publication Critical patent/JP2009150037A/en
Application granted granted Critical
Publication of JP5526531B2 publication Critical patent/JP5526531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明は、紡糸用冷却装置および溶融紡糸方法に関する。   The present invention relates to a spinning cooling device and a melt spinning method.

従来、マルチフィラメント糸の製造において、紡糸口金から吐出された熱可塑性ポリマに対して安定して冷却を行う方法については、従来から様々な研究・開発がなされており、幾つかの装置構造にて実施されている。一般的な冷却装置としては、環状に配列された紡糸孔を有する紡糸口金から吐出された糸条に対して、糸条の走行経路の外側から内向きに気流を吹き付ける内吹き冷却装置がある。また別に、口金直下の雰囲気を積極的に加熱しつつ、上記内吹き冷却装置を用いることで、糸物性の品質を向上させ、糸条の生産性を向上させる冷却装置がある。   Conventionally, in the production of multifilament yarns, various researches and developments have been made on the method of stably cooling the thermoplastic polymer discharged from the spinneret. It has been implemented. As a general cooling device, there is an internal blow cooling device that blows an air flow inward from the outside of a yarn traveling path to a yarn discharged from a spinneret having spinning holes arranged in an annular shape. In addition, there is a cooling device that improves the quality of yarn properties and improves the productivity of yarn by using the inner blow cooling device while actively heating the atmosphere directly under the base.

例えば、図15で示したような溶融紡糸冷却装置が特許文献1で開示されている。図15は、特許文献1の紡糸用環状冷却装置の概略縦断面図である。図中、1は紡糸口金、4は集束ガイド、22は糸条、43は冷却筒、44は加熱筒をそれぞれ表す。以下、各図面において、説明済みの図に対応する部材が存在する場合は、同じ参照符号を用いて説明を省略することがある。特許文献1は、上下2段の冷却筒43、加熱筒44より構成され、紡糸口金1面に近い側の冷却筒43により紡出された糸条22を冷却し、出口側に近い加熱筒44により糸条22を焼き戻す、2段熱処理を実施する溶融紡糸用熱処理装置が提案されている。この手法を用いると、紡出された糸条22を冷却用気流で急冷した後、加熱用気流を用いて焼き戻し作用を与えることで、急冷による糸の分子配向歪みを取り除くことができ、糸条の機械強度を向上すると共に、品質を均一にすることができると記載されている。   For example, Patent Document 1 discloses a melt spinning cooling device as shown in FIG. FIG. 15 is a schematic longitudinal sectional view of the spinning annular cooling device of Patent Document 1. As shown in FIG. In the figure, 1 is a spinneret, 4 is a converging guide, 22 is a yarn, 43 is a cooling cylinder, and 44 is a heating cylinder. Hereinafter, in each drawing, when a member corresponding to the already-explained drawing exists, the description may be omitted by using the same reference numerals. Patent Document 1 is composed of two upper and lower cooling cylinders 43 and a heating cylinder 44, which cools the yarn 22 spun by the cooling cylinder 43 on the side close to the spinneret 1 surface and heats the heating cylinder 44 near the outlet side. Has proposed a heat treatment apparatus for melt spinning that performs two-stage heat treatment for tempering the yarn 22 by the above method. When this method is used, the spun yarn 22 is quenched with a cooling air flow and then subjected to a tempering operation using a heating air flow, thereby removing the molecular orientation distortion of the yarn due to the rapid cooling. It is described that the mechanical strength of the strip can be improved and the quality can be made uniform.

しかしながら、本発明者らの知見によれば、冷却用気流による急冷した後、加熱用気流を用いた焼き戻し作用を適正に行ったとしても、加熱用気流に円周方向風温斑が存在すれば、糸条間において、分子配向歪みに差が発生する。特に、本発明者らの知見によると、加熱筒44は、下方から加熱用気流を供給し、その供給側の反対側の上方から排気する機構であることから、加熱用気流は下方より上方に流れるのに対して、加熱筒44内では、糸条により起因された随伴流が上方より下方に流れるため、加熱用気流と随伴流が衝突し、気流乱れによる温度斑が発生し、糸物性は悪化する場合がある。よって、加熱筒44内に流入した加熱用気流に対して明細書記載の構成では、円周方向風温均一性を得るには不十分である場合がある。   However, according to the knowledge of the present inventors, even if the tempering operation using the heating airflow is appropriately performed after quenching with the cooling airflow, circumferential air temperature spots are present in the heating airflow. For example, a difference in molecular orientation strain occurs between the yarns. In particular, according to the knowledge of the present inventors, the heating cylinder 44 is a mechanism for supplying a heating airflow from below and exhausting from the upper side opposite to the supply side. On the other hand, in the heating cylinder 44, the accompanying flow caused by the yarn flows downward from above, so that the heating airflow and the accompanying flow collide, and temperature spots are generated due to airflow turbulence. It may get worse. Therefore, the configuration described in the specification for the heating airflow flowing into the heating cylinder 44 may not be sufficient to obtain circumferential air temperature uniformity.

また、図9に示したような紡糸用冷却装置が特許文献2で開示されている。図9は、特許文献2の紡糸用環状冷却装置の概略縦断面図である。図中、2は冷却風吹付け装置、3は熱風吹付け装置、8は整流フィルタ、22は糸条をそれぞれ表す。この紡糸用冷却装置は、2段の気流吹付け装置から構成されている。特許文献2には、紡糸口金1の直下10cm以内の領域において、紡糸口金1から紡出された糸条22の引取速度(m/分)、糸条本数(本)に応じて、特定の風量(NL/分)、及び糸走行方向に特定の風温範囲となる気流を吹付ける極細繊維の製造方法が提案されている。また、同文献には、上段部の熱風吹付け装置3からの吹出風量を、下段部の冷却風吹付け装置2の吐出し風量よりも少なく、且つ熱風吹付け装置3の吐出風温を、冷却風吹付け装置2の吐出風温より高くする極細繊維の製造方法が提案されている。これらの手法を用いると、口金孔23から吐出された糸条22の内外側の雰囲気温度を均一化させることで、糸条冷却を均一化し、糸条間に発生する張力差、随伴流差が低減でき、その結果、糸切れを抑制し、更には糸揺れによる融着・ドローレゾナンス発生を抑制できると記載されている。更に、糸走行方向において、特定の風温分布を形成することで、急激な細化変形を抑制しつつ、適度な冷却を行なうことで、高品位の極細繊維を製造することができると記載されている。   Further, Patent Document 2 discloses a spinning cooling device as shown in FIG. FIG. 9 is a schematic longitudinal sectional view of the spinning annular cooling device of Patent Document 2. In the figure, 2 is a cooling air spraying device, 3 is a hot air spraying device, 8 is a rectifying filter, and 22 is a yarn. This spinning cooling device is composed of a two-stage airflow spraying device. Patent Document 2 discloses a specific air volume in an area within 10 cm immediately below the spinneret 1 according to the take-up speed (m / min) of the yarn 22 spun from the spinneret 1 and the number of yarns (lines) (NL / min), and a method for producing an ultrafine fiber that blows an airflow having a specific air temperature range in the yarn traveling direction has been proposed. Further, the document discloses that the amount of air blown from the hot air blowing device 3 in the upper stage is smaller than the amount of air discharged from the cooling air blowing device 2 in the lower stage and the discharge air temperature of the hot air blowing device 3 is cooled. There has been proposed a method for producing ultrafine fibers that is higher than the discharge air temperature of the air blowing device 2. When these methods are used, the temperature of the inside and outside of the yarn 22 discharged from the cap hole 23 is made uniform, so that the yarn cooling is made uniform, and the tension difference and the accompanying flow difference generated between the yarns are reduced. It is described that, as a result, yarn breakage can be suppressed, and further, occurrence of fusion and draw resonance due to yarn swinging can be suppressed. Furthermore, it is described that, by forming a specific air temperature distribution in the yarn traveling direction, it is possible to manufacture high-quality ultrafine fibers by performing appropriate cooling while suppressing rapid thinning deformation. ing.

しかしながら、本発明者らの知見によると、特許文献2の明細書に記載された方法は、糸条22の内外側の雰囲気温度を均一化する手段として、口金孔23の配列を規定しているのみであり、また、糸走行方向に雰囲気温度分布を規定しているのみであり、明細書に記載されている通りに熱風を吹き付けたとしても、熱風吹付け装置3より吹き出される気流に円周方向温度差が生じると、円周方向の糸条間において張力差、随伴流差が発生し、結局は糸切れ、更に糸揺れにより融着にて、糸物性が悪化する場合がある。
また、同文献の明細書には、紡糸口金1の直下の雰囲気温度は記載されているが、均一な高風温気流の供給手段、保温手段、吹出し手段が明記されてない。また、実施例には、ある測定点における温度変動が±1℃と記載されているが、糸走行方向に1点の温度変動値であり、円周方向の風温については明細書中に何ら記載されていない。
However, according to the knowledge of the present inventors, the method described in the specification of Patent Document 2 defines the arrangement of the nozzle holes 23 as a means for equalizing the atmospheric temperature inside and outside the yarn 22. In addition, the atmospheric temperature distribution is only defined in the yarn traveling direction, and even if hot air is blown as described in the specification, the air flow blown out from the hot air blowing device 3 is When the circumferential temperature difference occurs, a tension difference and an accompanying flow difference occur between the yarns in the circumferential direction, and eventually the yarn physical properties may be deteriorated by fusing due to yarn breakage and yarn sway.
In the specification of this document, the ambient temperature immediately below the spinneret 1 is described, but the uniform high air temperature air supply means, the heat retaining means, and the blowing means are not specified. Further, in the examples, the temperature fluctuation at a certain measurement point is described as ± 1 ° C., but this is a temperature fluctuation value at one point in the yarn traveling direction, and the wind temperature in the circumferential direction is not described in the specification. Not listed.

また、特許文献2と類似した装置構成を持つ紡糸用冷却装置が特許文献3に開示されている。同文献には、図9に示した様に、紡糸口金1の直下より熱風吹付け装置3、冷却風吹付け装置2を連続して設け、紡糸口金1から糸走行方向に向かい単糸繊度(デニールあるいはdtex)に応じて、特定の区間において、雰囲気温度T(℃)を205≦T≦245とする繊維の製造方法が提案されている。この手法を用いると、原理は十分に解明されていないが、ドローレゾナンス現象の発生を抑え、糸切れを減少させ、更には、繊維の均斉度を向上できると記載されている。   A spinning cooling device having an apparatus configuration similar to that of Patent Document 2 is disclosed in Patent Document 3. In this document, as shown in FIG. 9, a hot air spraying device 3 and a cooling air spraying device 2 are provided continuously from directly below the spinneret 1, and the single yarn fineness (denier) from the spinneret 1 toward the yarn running direction. Alternatively, according to dtex), a fiber manufacturing method in which the ambient temperature T (° C.) is set to 205 ≦ T ≦ 245 in a specific section has been proposed. Although the principle has not been fully elucidated using this technique, it is described that the occurrence of a draw resonance phenomenon can be suppressed, yarn breakage can be reduced, and further, the fiber uniformity can be improved.

しかしながら、本発明者らの知見によると、特許文献3の明細書に記載された方法では、糸走行方向に雰囲気温度分布を規定しているのみであり、明細書に記載されている通りに熱風を吹き付けたとしても、熱風吹付け装置3より吹き出される気流に円周方向温度差が生じると、円周方向の糸条間において張力差、随伴流差が発生し、結局は糸切れ、更に糸揺れにより融着にて、糸物性が悪化する場合がある。また、本発明者らの知見によると、明細書に記載されている雰囲気温度範囲が最大40℃(245−205=40℃)と大きく、円周方向風温を何ら制約できるものでは無く、また、特許文献2と同様に、円周方向風温斑が発生する場合がある。更に、本発明者らの知見によると、特許文献3に記載の実施例の加熱風量が1L/分と極めて小さく、糸随伴流に見合った加熱風量を供給するためには、明らかに不足する。これは、単糸繊度0.28デニール(0.31dtex)、巻取速度2000m/分、フィラメント数240本のマルチフィラメント糸において、未延伸糸のウースター斑が1.5%未満という、極めて大きな太さ斑の良否判定基準として使用している点からも明かであり、ウースター斑[H]0.5%以下といった高い糸の太さ斑要求レベルには達成できない場合がある。よって、熱風吹付け装置3に流入した気流に対して、特許文献3の明細書に記載された構成では、円周方向風速均一性を得るには不十分である場合がある。   However, according to the knowledge of the present inventors, the method described in the specification of Patent Document 3 only defines the atmospheric temperature distribution in the yarn traveling direction, and hot air as described in the specification. Even if a circumferential temperature difference occurs in the air flow blown out from the hot air blowing device 3, a tension difference and an accompanying flow difference occur between the yarns in the circumferential direction. The yarn physical properties may be deteriorated by fusing due to yarn swing. Further, according to the knowledge of the present inventors, the atmospheric temperature range described in the specification is as large as 40 ° C. (245−205 = 40 ° C.), and the circumferential air temperature cannot be restricted at all. Similarly to Patent Document 2, circumferential wind temperature spots may occur. Furthermore, according to the knowledge of the present inventors, the amount of heating air in the example described in Patent Document 3 is as extremely small as 1 L / min, and it is clearly insufficient to supply the amount of heating air commensurate with the yarn accompanying flow. This is because the multifilament yarn having a single yarn fineness of 0.28 denier (0.31 dtex), a winding speed of 2000 m / min, and a filament number of 240 has an extremely large woofer spot of less than 1.5%. It is clear from the fact that it is used as a quality judgment criterion for variegation, and it may not be possible to achieve a high thread thickness requirement level such as Wooster variability [H] 0.5% or less. Therefore, the configuration described in the specification of Patent Document 3 with respect to the airflow flowing into the hot air blowing device 3 may not be sufficient to obtain circumferential wind speed uniformity.

また、特許文献2、特許文献3と類似した装置構成を持つ紡糸用冷却装置が特許文献4で開示されている。同文献に開示された装置の構成は、図9に示した構成と同様である。また、同文献には、5000m/分以上にて糸条を巻取るに際して、紡糸口金1の直下に配列された長さ5〜20cmの熱風吹付け装置3より温度200〜500℃の気流を風速0.05〜0.8m/秒で糸条22に吹き付け、次いで、熱風吹付け装置3直下に配列された冷却風吹付け装置2により冷風を吹き付けるポリエステル繊維の高速紡糸方法が提案されている。これら手法を用いると、上方の熱風吹付け装置3より加熱気体を供給することで、糸条随伴流発生に伴う上昇気流、及び冷却風吹付け装置2から供給された冷却風が直接加熱領域に流入することを抑止し、加熱領域の雰囲気温度変動を小さくできると記載されている。その結果、糸切れ、糸揺れを抑制し、均斉度の優れたポリエステル繊維、極細マルチフィラメントを安定して製造できると記載されている。   Further, Patent Document 4 discloses a spinning cooling device having an apparatus configuration similar to that of Patent Documents 2 and 3. The configuration of the apparatus disclosed in this document is the same as the configuration shown in FIG. Further, in this document, when winding a yarn at a speed of 5000 m / min or more, an air flow having a temperature of 200 to 500 ° C. is blown from a hot air spraying device 3 having a length of 5 to 20 cm arranged immediately below the spinneret 1. A high-speed spinning method for polyester fibers, in which 0.05 to 0.8 m / second is sprayed onto the yarn 22 and then cold air is blown by the cooling air blowing device 2 arranged immediately below the hot air blowing device 3, has been proposed. When these methods are used, the heated air is supplied from the upper hot air blowing device 3 so that the ascending air flow accompanying the yarn accompanying flow generation and the cooling air supplied from the cooling air blowing device 2 directly flow into the heating region. It is described that it is possible to suppress the variation of the ambient temperature in the heating region. As a result, it is described that it is possible to stably produce polyester fibers and ultrafine multifilaments with excellent uniformity while suppressing yarn breakage and yarn sway.

しかしながら、本発明者らの知見によると、特許文献2、特許文献3と同様に、糸条走行方向に気流供給を適正に行ったとしても、熱風吹付け装置3から吹き出す気流の円周方向風温不均一が存在すれば、糸条随伴流が発生する箇所が異なる。つまりは、糸走行方向に垂直方向の同心円状断面において随伴流のバランスが崩れて、気流の乱れによる糸条間の接触・融着が発生し、糸物性斑が悪化する。特許文献4の明細書に記載された装置構成では、高風温の気流を外部から供給し、熱風吹付け装置3にて円周方向に均一な風温を吹き付けることが明記されておらず、実現性が乏しい。そこで本発明者らの知見によると、加熱筒の保温材を強化すると装置本体が大型化し、多錘型の紡糸設備では生産性、操業性が好ましくない問題が生じる場合がある。更には、特許文献4の実施例として、単糸繊度2.08デニール(2.31dtex)、フィラメント数36のマルチフィラメント、紡糸速度5500m/分において、達成可能なウースタ斑レベル(0.3〜0.41)であり、例えば1.0デニール(1.11dtex)以下と言った極細マルチフィラメントには適用できない場合がある。   However, according to the knowledge of the present inventors, even in the case where the air flow is properly supplied in the yarn traveling direction, as in Patent Document 2 and Patent Document 3, the circumferential direction wind of the air flow blown out from the hot air spraying device 3 If temperature non-uniformity exists, the location where the yarn accompanying flow occurs is different. In other words, the balance of the accompanying flow is lost in a concentric cross section perpendicular to the yarn traveling direction, and contact and fusion between the yarns due to the turbulence of the air flow occurs, and the yarn physical properties are deteriorated. In the apparatus configuration described in the specification of Patent Document 4, it is not specified that a high air temperature air flow is supplied from the outside, and a uniform air temperature is blown in the circumferential direction by the hot air spraying device 3, Feasibility is poor. Therefore, according to the knowledge of the present inventors, if the heat insulating material of the heating cylinder is strengthened, the apparatus main body becomes large, and there are cases where productivity and operability are not preferable in a multi-spindle type spinning facility. Further, as an example of Patent Document 4, a Wuster spot level (0.3 to 0) that can be achieved at a single yarn fineness of 2.08 denier (2.31 dtex), a multifilament with 36 filaments, and a spinning speed of 5500 m / min. .41), for example, may not be applicable to ultrafine multifilaments of 1.0 denier (1.11 dtex) or less.

また、図10に示したような紡糸用冷却装置が特許文献5で開示されている。図中の24は送風機、25はガス温度調整機を示す。同文献には、気流の温度、若しくは温度と風量を、紡糸口金1直下の上流側から下流側にかけて、段階的あるいは連続的に強くし、排気用の送風機24を中間部の1箇所に設けて排気する紡糸用冷却装置が提案されている。その手段として、冷却ゾーンを2段に区分分けし、区分毎に冷却を制御する方法、他の手段として、気流通路に電熱線26ピッチを下流側に向かって密となるように配置し、電熱線26により気流を加熱したのち吹き付ける方法、また他の手段として、気流通路を下流側に向かって次第に狭くなるように形成するか、圧力損失が下流側に向かって次第に増すよう形成して、吹き出し風量を下流に向かって減少させる方法がある。これら手段を用いると、紡出された糸条22は、下流側では弱く冷却され、糸表面と内部の温度差を小さくした状態で延伸する事で、弾性率、引張強度などの糸物性が向上し、糸切れを抑制でき、上流側では強く冷却することで、固化を促進し、糸条同士の接触、融着を抑制できると記載されている。   Further, Patent Document 5 discloses a spinning cooling device as shown in FIG. In the figure, 24 indicates a blower, and 25 indicates a gas temperature adjuster. In this document, the temperature of the air current, or the temperature and the air volume, is increased stepwise or continuously from the upstream side immediately below the spinneret 1 to the downstream side, and an exhaust fan 24 is provided at one location in the middle part. An exhaust spinning cooling device has been proposed. As a means for this, the cooling zone is divided into two stages and cooling is controlled for each section. As another means, the pitch of the heating wire 26 is arranged in the airflow passage so as to become dense toward the downstream side, As another method, the air flow is heated after being heated by the heat wire 26 and then blown. Alternatively, the air flow passage is formed so as to be gradually narrowed toward the downstream side, or the pressure loss is formed so as to be gradually increased toward the downstream side. There is a method of decreasing the air volume toward the downstream. When these means are used, the spun yarn 22 is weakly cooled on the downstream side, and the yarn physical properties such as elastic modulus and tensile strength are improved by stretching in a state where the temperature difference between the yarn surface and the inside is reduced. However, it is described that yarn breakage can be suppressed, and solidification is promoted by cooling strongly on the upstream side, and contact and fusion between yarns can be suppressed.

しかしながら、本発明者らの知見によると、糸条走行方向に気流供給を適正に行ったとしても、各冷却ゾーンから吹き出す気流の円周方向風温不均一が存在すれば、糸走行方向に垂直方向の同心円状断面において延伸差が発生し、糸物性が悪化する場合がある。   However, according to the knowledge of the present inventors, even if the air flow is properly supplied in the yarn traveling direction, if there is non-uniform circumferential air temperature of the air flow blown out from each cooling zone, it is perpendicular to the yarn traveling direction. In the concentric cross section of the direction, a difference in stretching occurs, and the yarn physical properties may deteriorate.

特に、本発明者らの知見によれば、特許文献5の実施例において、気流通路に電熱線26を周回させて、その電熱線26ピッチを下流に向かって密とし、気流を直接加熱させる手法を用いているが、気流通路上に電熱線26を直接配置することで流路断面積を制約し、気流風速を増減させているため、気流が電熱線26から得られる熱量に差が発生し、円周方向風温斑を悪化させる場合がある。更に、流路断面積の不均一により気流乱れや、微小渦が発生するために、円周方向風速斑が悪化し、円周方向風温斑を悪化させる場合がある。更には、気流通路に電熱線を設けることは、気流通路のシール性が困難となること、また電熱線26のメンテナンス性が悪くなることから、操業性悪化の問題が発生する場合がある。   In particular, according to the knowledge of the present inventors, in the embodiment of Patent Document 5, the heating wire 26 is circulated in the airflow passage, the pitch of the heating wire 26 is made dense toward the downstream, and the airflow is directly heated. However, because the heating wire 26 is directly placed on the airflow passage to restrict the cross-sectional area of the flow path, and the airflow wind speed is increased or decreased, there is a difference in the amount of heat generated by the airflow from the heating wire 26. , Circumferential wind temperature spots may be exacerbated. Furthermore, since the air flow turbulence and micro vortices are generated due to the non-uniformity of the flow path cross-sectional area, the circumferential wind velocity spots may deteriorate and the circumferential wind temperature spots may deteriorate. Furthermore, providing a heating wire in the airflow passage may make it difficult to seal the airflow passage, and may deteriorate the maintainability of the heating wire 26, which may cause a problem of deterioration in operability.

また、現在までに紡糸用冷却装置の吹き出し気流の円周方向風速斑均一化について究明したものとして、図16に示したような紡糸用冷却装置が特許文献6に、また、図17で示したような紡糸用冷却装置が特許文献7に開示されている。図中の、7は邪魔板、5は第1気体室、6は第2気体室、12は有孔板を示す。特許文献6の紡糸用冷却装置では、気流導入管20において、邪魔板7を構成することで、一旦気流を邪魔板7に衝突させて、風速斑を低減させ、円周方向の風速均一化を得ることができると記載されている。   In addition, as a result of investigating the uniform wind speed variation in the circumferential direction of the blown air flow of the spinning cooling device, a spinning cooling device as shown in FIG. 16 is shown in Patent Document 6 and FIG. Such a spinning cooling device is disclosed in Patent Document 7. In the figure, 7 is a baffle plate, 5 is a first gas chamber, 6 is a second gas chamber, and 12 is a perforated plate. In the spinning cooling device of Patent Document 6, the baffle plate 7 is configured in the airflow introduction pipe 20 to temporarily collide the airflow against the baffle plate 7 to reduce wind speed spots and to make the wind speed uniform in the circumferential direction. It can be obtained.

また、特許文献7の紡糸用冷却装置では、第1気体室5、第2気体室6の二つの気体室を設け、その境界面上に有孔板12を設け、有孔板12に気流を通過させることで気流乱れを低減させ、円周方向の風速均一化を得ることができると記載されている。
しかしながら、上記の各々に装置構成には、円周方向の風温均一化は明言されていない。本発明者らの知見によれば、例えば、均一な風温の気流を気流導入管20より供給したとしても、紡糸用冷却装置全体を完全に保温することは難しく、放熱を無視できないため、必ずしも円周方向の風温均一性を達成できる訳では無い。特に、本発明者らの知見によると、糸条冷却において、糸の熱交換に重要である糸と気流の熱伝達率の主を決定しているのは、均一な気流風速では無く、均一な気流風温である。また、本発明者らの知見によると、ポリエチレンテレフタレートやポリアミドと言った汎用的ポリマに対しては、常温空気にて均一気流風速を糸条に与えることで、良好な糸太さ斑、タフネスが得られるが、共重合ポリマに対しては、常温気流に均一気流風速を与えるだけでは、タフネスが低下する問題がある。そのため、単糸繊度0.1〜1.6dtex、フィラメント数が2000以下の極細マルチフィラメントを製造するに関して、気流の円周方向風温不均一が起因の糸条接触・融着が発生しやすく、糸揺れ等が発生し、糸の太さ斑や強度・伸度等の品質が極めて悪化し、更には、毛羽・糸切れが頻発し、製糸安定性等が劣化したり、紡糸すらできない等、多くの問題があった。
特公昭38−12364号公報 特開昭55−67007号公報 特開昭61−47817号公報 特開平4−41711号公報 特許第2674656号公報 特開昭60−126309号公報 特開昭48−33113号公報
Further, in the spinning cooling device of Patent Document 7, two gas chambers, a first gas chamber 5 and a second gas chamber 6, are provided, a perforated plate 12 is provided on the boundary surface, and airflow is supplied to the perforated plate 12. It is described that the air flow turbulence can be reduced and the uniform wind speed in the circumferential direction can be obtained by passing the air through.
However, in each of the above device configurations, the uniform air temperature in the circumferential direction is not clearly stated. According to the knowledge of the present inventors, for example, even if an air flow having a uniform air temperature is supplied from the air flow introduction pipe 20, it is difficult to completely keep the entire spinning cooling device, and heat dissipation cannot be ignored. The air temperature uniformity in the circumferential direction cannot be achieved. In particular, according to the knowledge of the present inventors, in the yarn cooling, it is not the uniform air flow velocity but the uniform air flow rate that determines the main heat transfer coefficient between the yarn and the air flow, which is important for the heat exchange of the yarn. The airflow temperature. In addition, according to the knowledge of the present inventors, for general-purpose polymers such as polyethylene terephthalate and polyamide, by giving a uniform airflow wind speed to the yarn at room temperature air, good thread thickness unevenness and toughness can be obtained. Although it can be obtained, the copolymer polymer has a problem that the toughness is lowered only by giving a uniform air velocity to the room temperature air flow. Therefore, with respect to producing an ultrafine multifilament having a single yarn fineness of 0.1 to 1.6 dtex and a filament number of 2000 or less, yarn contact / fusion due to uneven air temperature in the circumferential direction of the airflow is likely to occur, Such as yarn swaying, thread thickness unevenness and quality such as strength and elongation are extremely deteriorated.Further, fluff and thread breakage occur frequently, and the stability of yarn production deteriorates, and even spinning is not possible. There were many problems.
Japanese Patent Publication No. 38-12364 Japanese Patent Laid-Open No. 55-67007 JP 61-47817 A JP-A-4-41711 Japanese Patent No. 2,674,656 JP 60-126309 A JP-A-48-33113

本発明の目的は、気流の円周方向風温均一性に優れ、糸揺れによる糸条の接触・融着が無く、糸条の太さ斑や強度・伸度等の品質良好な糸条を得るために顕著な効果を発揮する紡糸用冷却装置および溶融紡糸方法を提供することにある。   The object of the present invention is to provide a yarn having excellent quality such as thickness variation, strength, elongation, etc., excellent in the circumferential air temperature uniformity of the airflow, without contact or fusion of the yarn due to yarn swinging. It is an object of the present invention to provide a spinning cooling device and a melt spinning method that exhibit remarkable effects.

上記目的を達成するために、熱可塑性ポリマを溶融紡出して得られた糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化する紡糸用環状冷却装置であって、気流導入管と、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する気流通路と、該気流通路の外側に配設されたヒータ発熱部を有する外壁部材と、前記気流通路の内側に前記糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ整流フィルタと、該整流フィルタの外側を包囲するように配設された円筒状整流部材とを有し、該円筒状整流部材が、以下の式を満足することを特徴とする紡糸用環状冷却装置が提供される。
0.25≦(D 2H −D 2I )/(D 2O −D 2I )≦0.75
但し、D 2H :円筒状整流部材の内径(m)、
2O :気流通路、または第2気流通路の外径(m)、
2I :整流フィルタの外径(m)を示す。
In order to achieve the above object, an spinning cooling apparatus for cooling and solidifying by blowing an air flow inward from the outside of a running path of a yarn obtained by melt spinning a thermoplastic polymer, comprising: an air flow introduction pipe; An airflow passage having an annular flow path that communicates with the airflow introduction pipe and surrounds the outside of the travel path of the yarn, and a heater heat generating portion disposed outside the airflow passage. An outer wall member, a rectifying filter having a flow path that is disposed inside the air flow passage so as to surround the outside of the yarn traveling path, and blows out an air flow inward, and surrounds the outside of the rectifying filter. possess a disposed a cylindrical rectification member, said cylindrical rectifying member is provided spinning annular cooling apparatus characterized by satisfying the following expression.
0.25 ≦ (D 2H −D 2I ) / (D 2O −D 2I ) ≦ 0.75
However, D2H : Inner diameter (m) of cylindrical rectifying member,
D 2O : the outer diameter (m) of the airflow passage or the second airflow passage,
D 2I : indicates the outer diameter (m) of the rectifying filter.

また、本発明の好ましい形態によれば、前記気流通路の上流に位置し前記糸条の走行経路の外側を包囲し前記気流通路の環状の流路の上流端全面を覆うように配設されたリング状整流部材を有する紡糸用環状冷却装置が提供される。   Further, according to a preferred embodiment of the present invention, it is located upstream of the air flow passage, surrounds the outside of the yarn travel path, and is disposed so as to cover the entire upstream end of the annular flow passage of the air flow passage. An annular cooling device for spinning having a ring-shaped rectifying member is provided.

また、本発明の好ましい形態によれば、前記気流通路が、糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1気流通路と、該第1気流通路の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記第1気流通路の前記糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路から構成されている紡糸用環状冷却装置が提供される。   According to a preferred embodiment of the present invention, the air flow passage has a first air flow passage having an annular flow passage disposed so as to surround the outside of the yarn traveling path, and the first air flow passage. A cross-sectional area smaller than the flow path cross-sectional area in a cross section perpendicular to the thread travel path of the first airflow passage, having an annular flow path disposed so as to surround the outside of the travel path of the yarn downstream. There is provided an annular cooling device for spinning composed of a second airflow passage having an area.

また、本発明の好ましい形態によれば、前記第1気流通路の断面積、及び前記第2気流通路の断面積が、以下の式を満足する紡糸用環状冷却装置が提供される。   Moreover, according to the preferable form of this invention, the cyclic | annular cooling device for spinning in which the cross-sectional area of the said 1st airflow path and the cross-sectional area of the said 2nd airflow path satisfy | fill the following formula | equation is provided.

0.05≦A2MIN/A1MAX≦0.5
但し、A2MIN:第2気流通路の最小断面積(m)、
1MAX:第1気流通路の最大断面積(m)を示す。
0.05 ≦ A 2MIN / A 1MAX ≦ 0.5
Where A 2MIN : the minimum cross-sectional area (m 2 ) of the second airflow path,
A 1MAX : Indicates the maximum cross-sectional area (m 2 ) of the first airflow passage.

また、本発明の別の形態によれば、熱可塑性ポリマを溶融紡出して得られた糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化する紡糸用環状冷却装置であって、気流導入管と、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1気流通路と、該第1気流通路の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記第1気流通路の前記糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路と、該第2気流通路の外側に配設されたヒータ発熱部を有する外壁部材と、前記第2気流通路、及び前記第1気流通路の内側に前記糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ整流フィルタとを有する紡糸用環状冷却装置が提供される。   Further, according to another aspect of the present invention, there is provided an annular cooling device for spinning, which is cooled and solidified by blowing an air flow inward from the outside of a running path of a yarn obtained by melt spinning a thermoplastic polymer, An air flow introduction pipe, a first air flow passage having an annular flow passage communicating with the air flow introduction pipe and surrounding the outside of the traveling path of the yarn, and the downstream of the first air flow passage. An annular flow path disposed so as to surround the outside of the yarn travel path, and having a cross-sectional area smaller than a flow path cross-sectional area in a cross section perpendicular to the thread travel path of the first airflow passage. A second airflow passage, an outer wall member having a heater heat generating portion disposed outside the second airflow passage, the second airflow passage, and the yarn traveling path inside the first airflow passage. Rectification flow with a flow path that is arranged so as to surround the outside and blows airflow inward. Spinning annular cooling device and a motor is provided.

また、本発明の好ましい形態によれば、前記第1気流通路の上流に位置し前記糸条の走行経路の外側を包囲し前記第1気流通路の環状の流路の上流端全面を覆うように配設されたリング状整流部材を有する紡糸用環状冷却装置が提供される。   Further, according to a preferred embodiment of the present invention, it is located upstream of the first air flow passage, surrounds the outside of the yarn travel route, and covers the entire upstream end of the annular flow passage of the first air flow passage. An annular cooling device for spinning having a ring-shaped rectifying member disposed is provided.

また、本発明の好ましい形態によれば、前記第1気流通路の断面積、及び前記第2気流通路の断面積が、以下の式を満足する紡糸用環状冷却装置が提供される。   Moreover, according to the preferable form of this invention, the cyclic | annular cooling device for spinning in which the cross-sectional area of the said 1st airflow path and the cross-sectional area of the said 2nd airflow path satisfy | fill the following formula | equation is provided.

0.05≦A2MIN/A1MAX≦0.5
但し、A2MIN:第2気流通路の最小断面積(m)、
1MAX:第1気流通路の最大断面積(m)を示す。
0.05 ≦ A 2MIN / A 1MAX ≦ 0.5
Where A 2MIN : the minimum cross-sectional area (m 2 ) of the second airflow path,
A 1MAX : Indicates the maximum cross-sectional area (m 2 ) of the first airflow passage.

また、本発明の好ましい形態によれば、環状の前記気流通路の仮想中心から半径方向に放射状に延びる線に沿い、かつ、糸条の走行方向に渡って、前記気流通路内に仕切板を有する紡糸用環状冷却装置が提供される。   Moreover, according to the preferable form of this invention, it has a partition plate in the said airflow path along the line radially extended from the virtual center of the said cyclic | annular airflow path, and across the running direction of a thread | yarn. An annular cooling device for spinning is provided.

また、本発明の好ましい形態によれば、環状の前記第1気流通路の仮想中心から半径方向に放射状に延びる線に沿い、かつ、糸条の走行方向に渡って、前記第1気流通路および/または前記第2気流通路内に仕切板を有する紡糸用環状冷却装置が提供される。   According to a preferred embodiment of the present invention, the first air flow path and / or along the line extending radially from the virtual center of the annular first air flow path in the radial direction and over the running direction of the yarn. Alternatively, an annular cooling device for spinning having a partition plate in the second airflow passage is provided.

また、本発明の別の形態によれば、紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化させるに際し、気流導入管より導かれた気流を、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する気流通路まで導き、その後、気流通路の外側に配設されたヒータ発熱部を有する外壁部材により気流を加熱しつつ、前記気流通路の前記糸条の走行経路に垂直な各断面において前記整流フィルタの外側を包囲するように配設された円筒状整流部材に気流を導き、その後、前記気流通路の内側に前記糸条の走行経路の外側を包囲するように配設された環状の整流フィルタより気流を内向きに吹き出す溶融紡糸方法が提供される。   Further, according to another aspect of the present invention, when the thermoplastic polymer is melt-spun from the spinneret and airflow is blown inward from the outside of the running path of the spun yarn to cool and solidify, The air flow thus guided is led to an air flow passage having an annular flow passage which is communicated with the air flow introduction pipe and is disposed so as to surround the outside of the traveling path of the yarn, and is then arranged outside the air flow passage. Cylindrical rectification arranged so as to surround the outside of the rectifying filter in each cross section perpendicular to the yarn traveling path of the airflow passage while heating the airflow by an outer wall member having a heater heating portion provided A melt spinning method is provided in which an airflow is guided to a member, and then an airflow is blown inward from an annular rectifying filter disposed inside the airflow passage so as to surround the outside of the traveling path of the yarn.

また、本発明の別の形態によれば、紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化させるに際し、気流導入管より導かれた気流を、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1気流通路まで導き、その後、該第1気流通路の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記第1気流通路の前記糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路まで導き、その後、該第2気流通路の外側に配設されたヒータ発熱部を有する外壁部材により気流を加熱しつつ、前記第2気流通路、及び前記第1気流通路の内側に前記糸条の走行経路の外側を包囲するように配設された環状の整流フィルタより気流を内向きに吹き出す溶融紡糸方法が提供される。   Further, according to another aspect of the present invention, when the thermoplastic polymer is melt-spun from the spinneret and airflow is blown inward from the outside of the running path of the spun yarn to cool and solidify, The air flow thus guided is guided to the first air flow passage having an annular flow path which is arranged to communicate with the air flow introduction pipe and surround the outside of the traveling path of the yarn, and then the first air flow From the flow path cross-sectional area in the cross section perpendicular to the thread travel path of the first airflow path, which has an annular flow path disposed so as to surround the outside of the travel path of the yarn downstream of the path The second airflow passage, which is guided to the second airflow passage having a small cross-sectional area, and then heated by an outer wall member having a heater heating portion disposed outside the second airflow passage, 1 Wrap the outside of the yarn travel path inside the airflow path Arranged molten spinning process for blowing out the air flow inwardly from the rectifier filter ring to is provided.

本発明において、「気流通路」とは、糸条の走行経路の外側を包囲するように配設され、整流フィルタとヒータ発熱部を有する外壁部材とに挟まれた環状の流路をいう。   In the present invention, the “air flow passage” refers to an annular flow passage that is disposed so as to surround the outer side of the yarn traveling path and is sandwiched between an rectifying filter and an outer wall member having a heater heating portion.

本発明において、「気流通路の外側に配設されたヒータ発熱部を有する外壁部材」とは、糸条の走行経路の外側を包囲するように配設され、気流通路の外壁面を構成し、ヒータ発熱部を有する外壁部材をいう。その場合、「外壁部材」は、ヒータ発熱部と外壁部材の一体成型部材が好ましいが、外壁部材の内部にヒータ発熱部が内蔵されていてもよく、外壁部材の外周にヒータ発熱部が配設されていてもよい。   In the present invention, "the outer wall member having a heater heating portion disposed outside the airflow passage" is disposed so as to surround the outer side of the yarn traveling path, and constitutes the outer wall surface of the airflow passage, An outer wall member having a heater heating portion. In this case, the “outer wall member” is preferably an integrally molded member of the heater heating part and the outer wall member, but the heater heating part may be built in the outer wall member, and the heater heating part is disposed on the outer periphery of the outer wall member. May be.

本発明において、「第2気流通路」とは、糸条の走行経路の外側を包囲するように配設され、整流フィルタとヒータ発熱部を有する外壁部材とに挟まれた環状の流路をいう。   In the present invention, the “second airflow passage” refers to an annular flow passage which is disposed so as to surround the outside of the yarn traveling path and is sandwiched between the rectifying filter and the outer wall member having the heater heating portion. .

本発明において、「第2気流通路の外側に配設されたヒータ発熱部を有する外壁部材」とは、糸条の走行経路の外側を包囲するように配設され、第2気流通路の外壁面を構成し、ヒータ発熱部を有する外壁部材をいう。その場合、「外壁部材」は、ヒータ発熱部と外壁部材の一体成型部材が好ましいが、外壁部材の内部にヒータ発熱部が内蔵されていてもよく、外壁部材の外周にヒータ発熱部が配設されていてもよい。   In the present invention, the “outer wall member having a heater heating portion disposed outside the second airflow passage” is disposed so as to surround the outer side of the yarn traveling path, and the outer wall surface of the second airflow passage. And an outer wall member having a heater heat generating portion. In this case, the “outer wall member” is preferably an integrally molded member of the heater heating part and the outer wall member, but the heater heating part may be built in the outer wall member, and the heater heating part is disposed on the outer periphery of the outer wall member. May be.

本発明において、「第1気流通路の下流」とは、第1気流通路に沿って気流の流れる方向の下流をいう。   In the present invention, “downstream of the first airflow passage” refers to the downstream of the airflow direction along the first airflow passage.

本発明において、「第2気流通路の最小断面積」とは、第2気流通路の糸条の走行経路に垂直な断面における最小断面積をいう。   In the present invention, the “minimum cross-sectional area of the second airflow passage” refers to the minimum cross-sectional area in a cross section perpendicular to the yarn traveling path of the second airflow passage.

本発明において、「第1気流通路の最大断面積」とは、第2気流通路の糸条の走行経路に垂直な断面における最大断面積をいう。   In the present invention, the “maximum cross-sectional area of the first air flow passage” refers to the maximum cross-sectional area in a cross section perpendicular to the yarn traveling path of the second air flow passage.

本発明において、「円筒状整流部材の内径」とは、円筒状整流部材の走行経路に垂直な断面における内径をいう。   In the present invention, the “inner diameter of the cylindrical rectifying member” refers to an inner diameter in a cross section perpendicular to the travel path of the cylindrical rectifying member.

本発明において、「気流通路、または第2気流通路の外径」とは、気流通路、または第2気流通路の糸条の走行経路に垂直な断面における外径をいう。   In the present invention, the “outer diameter of the airflow passage or the second airflow passage” means an outer diameter in a cross section perpendicular to the traveling path of the yarn in the airflow passage or the second airflow passage.

本発明において、「整流フィルタの外径」とは、整流フィルタの走行経路に垂直な断面における外径をいう。本発明において、「糸条の走行経路」とは、上方の紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条が下方にて巻き取られる主たる経路をいう。ここで、「上方」とは、紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条が巻き取られる主たる糸条の走行方向において、紡糸口金に近い側をいい、糸条に巻き取られる側を「下方」という。   In the present invention, the “outer diameter of the rectifying filter” refers to the outer diameter in a cross section perpendicular to the travel path of the rectifying filter. In the present invention, the “yarn traveling route” refers to a main route through which a thermoplastic polymer is melt-spun from an upper spinneret and the spun yarn is wound downward. Here, “upward” means the side close to the spinneret in the traveling direction of the main yarn from which the thermoplastic polymer is melt-spun from the spinneret and the spun yarn is wound, and is wound around the yarn. The side to be taken is called “downward”.

本発明の紡糸用環状冷却装置および溶融紡糸方法によれば、上述したように、紡糸用環状冷却装置から吹き出す気流の円周方向風温均一性に優れることで、糸条の接触・融着が無く、糸の太さ斑や強度・伸度等の品質に極めて優れたマルチフィラメント糸を、製糸性、操業性良く得ることができる。   According to the spinning annular cooling device and the melt spinning method of the present invention, as described above, the circumferential air temperature uniformity of the airflow blown from the spinning annular cooling device is excellent, so that the yarn can be contacted and fused. In addition, a multifilament yarn that is extremely excellent in quality such as unevenness of yarn thickness, strength, and elongation can be obtained with good yarn production and operability.

以下、図面を参照しながら、本発明の紡糸用冷却装置および溶融紡糸方法の最良の実施形態について詳細に説明する。図1は、本発明の第1の実施形態に用いられる紡糸用環状冷却装置100の概略縦断面図であり、図2は、図1のA−A矢視図であり、図4、図5、図6は、本発明の第1の実施形態に用いられる紡糸用環状冷却装置100の他の好ましい形態の概略縦断面図であり、図11は、本発明の第1の実施形態に用いられる溶融紡糸装置の概略縦断面図である。   Hereinafter, the best embodiment of the cooling device for spinning and the melt spinning method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an annular cooling device 100 for spinning used in the first embodiment of the present invention, and FIG. 2 is a view taken along the line AA in FIG. FIG. 6 is a schematic longitudinal sectional view of another preferred embodiment of the spinning annular cooling device 100 used in the first embodiment of the present invention, and FIG. 11 is used in the first embodiment of the present invention. It is a schematic longitudinal cross-sectional view of a melt spinning apparatus.

本発明の第1の実施形態に用いられる溶融紡糸装置は、図11に示すように、紡糸口金1、本発明の紡糸用環状冷却装置100、油剤付与装置35、交絡付与装置40、引取ローラ36、37、巻取装置38から構成される。図11において、紡糸口金1より紡出された糸条22は、本発明の紡糸用環状冷却装置100から吹き出される気流で冷却され、油剤付与装置35で油剤を付与された後、引取ローラ36、37で巻き取られ、巻取装置38でパッケージ39として巻き取られる。本発明の第1の実施形態に用いられる紡糸用環状冷却装置100は、図1に示すように、気流導入管20と、気流導入管20から連結した気流供給口29と、その気流供給口29に横方向から連結され、糸条の走行経路の外側を包囲するように配設され、気流通路外壁面16と内壁面17、及び気流通路外壁面16と整流フィルタ8との挟まれた環状の流路を有する気流通路9と、その気流通路9の外周を構成する外壁面18に配設されたヒータ発熱部15と、その気流通路9を同心円内外に仕切る円筒状整流部材13と、その円筒状整流部材13の内側に糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ環状の整流フィルタ8から構成される。その場合、気流通路9において、整流フィルタ8の下方に位置し、糸条の走行経路に垂直な断面に対して、環状流路の全面を覆うように配設されたリング状整流部材14が構成されていてもよい。   As shown in FIG. 11, the melt spinning apparatus used in the first embodiment of the present invention includes a spinneret 1, an annular cooling apparatus 100 for spinning according to the present invention, an oil application apparatus 35, an entanglement application apparatus 40, and a take-up roller 36. , 37 and a winding device 38. In FIG. 11, the yarn 22 spun from the spinneret 1 is cooled by an air current blown from the spinning annular cooling device 100 of the present invention, and after the oil agent is applied by the oil agent applying device 35, the take-up roller 36. , 37 and is wound as a package 39 by the winding device 38. As shown in FIG. 1, an annular cooling device 100 for spinning used in the first embodiment of the present invention includes an air flow introduction pipe 20, an air flow supply port 29 connected from the air flow introduction pipe 20, and the air flow supply opening 29. Are connected so as to surround the outside of the yarn travel path, and are arranged in an annular shape sandwiched between the airflow passage outer wall surface 16 and the inner wall surface 17 and between the airflow passage outer wall surface 16 and the rectifying filter 8. An airflow passage 9 having a flow path, a heater heat generating portion 15 disposed on an outer wall surface 18 constituting the outer periphery of the airflow passage 9, a cylindrical rectifying member 13 that partitions the airflow passage 9 into and out of concentric circles, and a cylinder thereof An annular rectifying filter 8 having a flow path which is disposed inside the straight rectifying member 13 so as to surround the outside of the yarn traveling path and which blows out airflow inwardly. In that case, in the airflow passage 9, a ring-shaped rectifying member 14 is provided which is positioned below the rectifying filter 8 and is disposed so as to cover the entire surface of the annular flow path with respect to a cross section perpendicular to the yarn traveling path. May be.

また、図4に示すように、ヒータ発熱部15が、外壁面18の上方1部分のみを覆う形態でもよい。ここで、図12は、第1の実施形態に用いられる紡糸用冷却装置から吹き出される気流の温度T(℃)と、整流フィルタ8上端からの距離L(mm)の関係を図示したものである。図4に示すような構成の場合には、図12のc線に示すように、整流フィルタ8から吹き出される気流の風温は、整流フィルタ8の上端のみが高温となり、下方に従い急激に風温が低下する分布となる。また、図5に示すように、ヒータ発熱部15が、外壁面18の下方1部分のみを覆う形態でもよい。その場合には、図12のb線に示すように、整流フィルタ8から吹き出される気流の風温は、整流フィルタ8の上端から下方に従いなだらかに下降する風温分布となる。また、本発明の第2の実施形態でも、上記で述べたのと同様に、気流風温を得ることができる。そこで、糸の強伸度等の品質を向上させるためには、徐冷効果が高いb線のような風温分布が好ましく、また、糸条22の接触、融着を低減させるためにはc線のような風温分布が好ましく、いずれも熱可塑性ポリマや熱可塑性ポリマから構成されるマルチフィラメント糸等の特徴、求める品質等により、ヒータ発熱部15の高さ、及び配置位置を任意に設定すれば良い。また、図6に示すように、ヒータ発熱部15が2段以上の多段構成の形態でもよく、その際に、ヒータ発熱部15の発熱容量を各段にて変化させてもよい。   Further, as shown in FIG. 4, the heater heat generating portion 15 may cover only the upper part of the outer wall surface 18. Here, FIG. 12 illustrates the relationship between the temperature T (° C.) of the air flow blown from the spinning cooling device used in the first embodiment and the distance L (mm) from the upper end of the rectifying filter 8. is there. In the case of the configuration shown in FIG. 4, as shown by line c in FIG. 12, the air temperature of the airflow blown from the rectifying filter 8 is high only at the upper end of the rectifying filter 8, and the The distribution decreases in temperature. Further, as shown in FIG. 5, the heater heat generating portion 15 may cover only the lower part of the outer wall surface 18. In that case, as shown by line b in FIG. 12, the air temperature of the airflow blown out from the rectifying filter 8 has an air temperature distribution that gently decreases from the upper end of the rectifying filter 8 downward. Also in the second embodiment of the present invention, the airflow temperature can be obtained in the same manner as described above. Therefore, in order to improve the quality such as the strength and elongation of the yarn, an air temperature distribution like the b line having a high slow cooling effect is preferable, and in order to reduce contact and fusion of the yarn 22, c Air temperature distribution like a line is preferable, and the height and arrangement position of the heater heat generating part 15 are arbitrarily set according to the characteristics, desired quality, etc. of the thermoplastic polymer and the multifilament yarn made of thermoplastic polymer. Just do it. Moreover, as shown in FIG. 6, the heater heat generating part 15 may have a multi-stage configuration with two or more stages, and the heat generation capacity of the heater heat generating part 15 may be changed at each stage.

また、図3は、本発明の第2の実施形態に用いられる紡糸用環状冷却装置100の概略断面図であり、図7、図8は、第2の実施形態に用いられる紡糸用環状冷却装置100の他の好ましい形態の概略縦断面図である。第2の実施形態に用いられる紡糸用環状冷却装置100は、図3に示すように、気流導入管20と、気流導入管20から連結した気流供給口29と、その気流供給口29に横方向から連結され、糸条の走行経路の外側を包囲するように配設され、第1気流通路外壁面30と内壁面17、及び第1気流通路外壁面30と整流フィルタ8とに挟まれた環状の流路を有する第1気流通路10と、その第1気流通路10の下流に位置し、第2気流通路外壁面31と整流フィルタ8との挟まれた環状の流路を有し、第1気流通路10の糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路11と、その第2気流通路11の外周を構成する外壁面18に配設されたヒータ発熱部15と、その第1気流通路10、及び第2気流通路11の内側に糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ環状の整流フィルタ8から構成される。その場合、第1気流通路10において、整流フィルタ8の下方に位置し、糸条の走行経路に垂直な断面に対して、環状流路の全面を覆うように配設されたリング状整流部材14が構成されていてもよく、また、第1気流通路10、及び第2気流通路11の一部を同心円内外に仕切るように配設された円筒状整流部材13が構成されていてもよい。   FIG. 3 is a schematic cross-sectional view of the spinning annular cooling device 100 used in the second embodiment of the present invention, and FIGS. 7 and 8 show the spinning annular cooling device used in the second embodiment. It is a schematic longitudinal cross-sectional view of 100 another preferable form. As shown in FIG. 3, an annular cooling device 100 for spinning used in the second embodiment includes an air flow introduction pipe 20, an air flow supply port 29 connected from the air flow introduction pipe 20, and a lateral direction to the air flow supply opening 29. Are connected to each other and are arranged so as to surround the outside of the yarn traveling path, and are sandwiched between the first airflow passage outer wall surface 30 and the inner wall surface 17, and the first airflow passage outer wall surface 30 and the rectifying filter 8. A first air flow path 10 having a flow path of the first air flow path, an annular flow path positioned downstream of the first air flow path 10 and sandwiched between the second air flow path outer wall surface 31 and the rectifying filter 8, and The airflow passage 10 is disposed on the second airflow passage 11 having a cross-sectional area smaller than the flow passage cross-sectional area in the cross section perpendicular to the yarn traveling path, and the outer wall surface 18 constituting the outer periphery of the second airflow passage 11. Heater heating portion 15, its first air flow passage 10, and second Composed of an annular rectifying filter 8 having a flow passage for blowing out is disposed so as to surround the outer travel path of the yarn inside the flow passage 11 airflow inwardly. In that case, in the first airflow passage 10, a ring-shaped rectifying member 14 that is located below the rectifying filter 8 and is disposed so as to cover the entire surface of the annular flow path with respect to a cross section perpendicular to the yarn traveling path. Further, a cylindrical rectifying member 13 disposed so as to partition a part of the first air flow passage 10 and the second air flow passage 11 into and out of the concentric circles may be formed.

また、図7に示すように、第1気流通路10の外周を構成する外壁面18にヒータ発熱部15が配置されつつ、その上方に位置する第2気流通路11の外周を構成する外壁面18にもヒータ発熱部15が構成された形態でもよい。その場合、第1気流通路10の配設されたヒータ発熱部15により、気流の予備加熱を行い、第2気流通路11に配設されたヒータ発熱部15により、本加熱を行うことで、2段階加熱より高風温の気流を吹き出すことが可能となる。また、図8に示すように、第1気流通路10と第2気流通路11との間に助走区間32を設けて、第1気流通路10の糸条の走行経路に垂直な流路断面積が、助走区間32に渡り連続的に減少し、第2気流通路11と連結する構成の形態でもよい。あるいは第1気流通路10の糸条の走行経路に垂直な流路断面積が、助走区間32に渡り複数回の段階的に減少し、第2気流通路11と連結する構成の形態でもよい。助走区間32を設けることで、急激な流路縮小を抑制することで、過剰な圧力損失を低減することができる。また、図18は、本発明の第1の実施形態に用いられる紡糸用環状冷却装置100の他の好ましい形態の概略縦断面図であり、図19は、図18のB−B矢視図である。図19に示すように、気流通路9の仮想中心から半径方向に放射状に延びる線に沿い、かつ、糸条の走行方向に渡って、仕切板45を配置し、気流通路9を円周方向に複数個の隔室に区分する構造であってもよい。その場合には、仕切板45は、気流通路9を糸条の走行方向の全長に渡って配設されていても良いが、気流通路9の途中位置までに配設されてもよい。特に、仕切板45が糸条の走行方向の全長に渡って配設することで、仕切板45にて区切られた隔室間を行き来する気流が無くなり、円周方向へ気流を抑制できることから、整流フィルタ8から吹き出される気流の円周方向風速均一性を向上させることができる。更には、ヒータ発熱部15から気流通路外壁面16を通して、仕切板45が加熱され、気流通路9を通過する気流を加熱するためのフィンの役割となり、その結果、整流フィルタ8から吹き出される気流の風温を効率よく上昇させることができる。更には、仕切板45を通じて円筒状整流部材13に熱伝導されることより、円筒状整流部材13を通過する気流が加熱され、整流フィルタ8から吹き出される気流の風温を更に効率よく上昇させることができる。また、気流通路9の仮想中心から半径方向に放射状に配置された仕切板45により、気流通路9を円周方向に4等分でもよく、12等分でもよく、特に等分数は限定しない。仕切板45の枚数を多く、気流通路9を区分する等分数が多いほど、気流が通過する加熱壁面の表面積が増えることから、整流フィルタ8から吹き出される気流の風温を効率的に上昇させることができる。また、仕切板45は、平板であるのが好ましいが、多孔性部材であってもよい。また、図19に示す実施形態のように、仕切板45が、整流フィルタ8の外周面から気流通路外壁面16までの全区間にて放射状に延設することにより、整流フィルタ8の外周面に至る気流流路9を完全に区分けしてもよいが、また、円筒状整流部材13の外周面から気流通路外壁面16までの部分区間にて放射状に延設することにより、円筒状整流部材8の外周面に至る気流流路9を区分けしてもよい。   In addition, as shown in FIG. 7, the heater heat generating portion 15 is disposed on the outer wall surface 18 that forms the outer periphery of the first airflow passage 10, and the outer wall surface 18 that forms the outer periphery of the second airflow passage 11 positioned above the heater heat generating portion 15. Alternatively, the heater heat generating portion 15 may be configured. In that case, preheating of the airflow is performed by the heater heating unit 15 provided with the first airflow passage 10, and main heating is performed by the heater heating unit 15 provided in the second airflow passage 11, thereby 2 It becomes possible to blow out an air flow having a higher air temperature than the step heating. Further, as shown in FIG. 8, a running section 32 is provided between the first airflow passage 10 and the second airflow passage 11, and the flow passage cross-sectional area perpendicular to the yarn traveling route of the first airflow passage 10 is provided. The configuration may be such that it continuously decreases over the run-up section 32 and is connected to the second airflow passage 11. Alternatively, a configuration in which the flow passage cross-sectional area perpendicular to the yarn traveling path of the first airflow passage 10 decreases stepwise over the run-up section 32 and is connected to the second airflow passage 11 may be employed. By providing the run-up section 32, excessive pressure loss can be reduced by suppressing rapid flow path reduction. FIG. 18 is a schematic longitudinal sectional view of another preferred embodiment of the spinning annular cooling device 100 used in the first embodiment of the present invention, and FIG. 19 is a view taken along the line BB in FIG. is there. As shown in FIG. 19, a partition plate 45 is arranged along a line extending radially from the virtual center of the airflow passage 9 in the radial direction and over the running direction of the yarn, and the airflow passage 9 is arranged in the circumferential direction. The structure divided into a plurality of compartments may be used. In that case, the partition plate 45 may be disposed over the entire length of the airflow passage 9 in the traveling direction of the yarn, or may be disposed up to a midpoint of the airflow passage 9. In particular, since the partition plate 45 is disposed over the entire length in the running direction of the yarn, there is no air flow between the compartments partitioned by the partition plate 45, and the air flow can be suppressed in the circumferential direction. The circumferential wind speed uniformity of the airflow blown out from the rectifying filter 8 can be improved. Further, the partition plate 45 is heated from the heater heat generating part 15 through the air flow passage outer wall surface 16 to serve as fins for heating the air flow passing through the air flow passage 9, and as a result, the air flow blown out from the rectifying filter 8. The air temperature can be increased efficiently. Furthermore, heat conduction to the cylindrical rectifying member 13 through the partition plate 45 heats the airflow passing through the cylindrical rectifying member 13, thereby increasing the air temperature of the airflow blown from the rectifying filter 8 more efficiently. be able to. Further, the airflow passage 9 may be divided into four equal parts or 12 equal parts in the circumferential direction by the partition plates 45 arranged radially in the radial direction from the virtual center of the airflow passage 9, and the number of equal parts is not particularly limited. As the number of partition plates 45 increases and the number of equal divisions dividing the airflow passage 9 increases, the surface area of the heating wall surface through which the airflow passes increases, so that the air temperature of the airflow blown from the rectifying filter 8 is efficiently increased. be able to. The partition plate 45 is preferably a flat plate, but may be a porous member. Further, as in the embodiment shown in FIG. 19, the partition plate 45 extends radially in the entire section from the outer peripheral surface of the rectifying filter 8 to the airflow passage outer wall surface 16, thereby forming the outer peripheral surface of the rectifying filter 8. The air flow path 9 to be reached may be completely divided, but the cylindrical flow straightening member 8 may be formed by extending radially in the partial section from the outer peripheral surface of the cylindrical flow straightening member 13 to the air flow passage outer wall surface 16. The air flow channel 9 reaching the outer peripheral surface of the gas may be divided.

また、本発明に第1の実施形態と同様に、本発明の第2の実施形態に用いられる紡糸用環状冷却装置100の第1気流通路10、および/または第2気流通路11に、仕切板45が配設されていてもよい。   Similarly to the first embodiment of the present invention, the partition plate is provided in the first air flow passage 10 and / or the second air flow passage 11 of the spinning annular cooling device 100 used in the second embodiment of the present invention. 45 may be provided.

次に、図1に示した本発明の第1の実施形態と、図3に示した本発明の第2の実施形態の紡糸用環状冷却装置100に共通した各部材、各部材の形状について詳細に説明する。   Next, each member common to the first embodiment of the present invention shown in FIG. 1 and the annular cooling device 100 for spinning of the second embodiment of the present invention shown in FIG. Explained.

ここで、側面流路断面形状(気流通路9は、本発明の第1の実施形態、第1気流通路10、第2気流通路11は、本発明の第2の実施形態を示す。)は、長方形であることに限定されず、台形、三角形、五角形、多角形または半円形、半楕円形であってもよく、糸条の走行経路に垂直な断面における形状が二重円形状であれば、特に形状を限定しない。但し、この場合には、ヒータ発熱部15を、糸条の走行経路に垂直な流路断面積が上方に向かって等しい位置に配置することで、気流を一旦整流させた後に、ヒータ発熱部15にて気流を加熱するのが良い。   Here, the side surface cross-sectional shape (the airflow passage 9 shows the first embodiment of the present invention, the first airflow passage 10 and the second airflow passage 11 show the second embodiment of the present invention), It is not limited to being rectangular, but may be trapezoidal, triangular, pentagonal, polygonal or semicircular, semielliptical, and if the shape in the cross section perpendicular to the running path of the yarn is a double circle, The shape is not particularly limited. However, in this case, the heater heat generating portion 15 is disposed at a position where the flow passage cross-sectional area perpendicular to the yarn traveling path is equal to the upper side so that the air flow is once rectified, and then the heater heat generating portion 15 It is better to heat the airflow at

次に、ヒータ発熱部15は、フレキシブルリボンヒータを気流通路9(本発明の第1の実施形態)、または第2気流通路11(本発明の第2の実施形態)の外壁面18に巻き付けても良いが、その際、巻き付けが不均等にならないようするのが良い。また、汎用バンドヒータを外壁面18に装着してもよく、アルミ鋳込みヒータを装着してもよく、リングヒータを装着してもよく、発熱部を有するものであれば、ヒータの種類は特に問わない。また、外壁面18とヒータ発熱部15が一体成形型であっても良い。また、ヒータ発熱部15の外側に保温材を装着することで、放熱を抑制するのが好ましい。ここで重要なことは、ヒータ発熱部15を外壁面18に装着することで、気流通路9(本発明の第1の実施形態)、または第2気流通路11(本発明の第2の実施形態)を通過する気流を乱さずに、外壁面18を通じて均一な熱量を気流に与えることができることである。また、ヒータ発熱部15は、外壁面18の外径90mm〜300mm範囲内に設置するのが好ましく、ヒータ発熱部15の高さとして10〜300mm範囲内に、更に好ましくは50〜150mmの範囲内に設置するのが好適である。更に、ヒータ発熱部15の発熱容量は、ワット密度0.5〜5.0W/cm範囲とするのが好ましく、更には1.0〜3.5W/cm範囲とするのが好適である。ワット密度5.0W/cm以上と極端に大きくすると、熱応答性に優れるが、その反面、耐久性が低下するために長期間使用には適さなくなる。また、ワット密度0.5W/cm以下と小さ過ぎると、ヒータ容量が不足し、適切な気流の吹き出し風温まで上昇しない。 Next, the heater heat generating portion 15 winds the flexible ribbon heater around the outer wall surface 18 of the airflow passage 9 (first embodiment of the present invention) or the second airflow passage 11 (second embodiment of the present invention). However, it is better to avoid uneven winding. A general-purpose band heater may be attached to the outer wall surface 18, an aluminum cast heater may be attached, a ring heater may be attached, and the type of heater is not particularly limited as long as it has a heat generating part. Absent. Further, the outer wall surface 18 and the heater heat generating part 15 may be an integral mold. Moreover, it is preferable to suppress heat dissipation by attaching a heat insulating material to the outside of the heater heat generating portion 15. What is important here is that the heater heat generating portion 15 is attached to the outer wall surface 18 so that the air flow passage 9 (first embodiment of the present invention) or the second air flow passage 11 (second embodiment of the present invention). ) Through the outer wall surface 18 without disturbing the airflow passing through the airflow). In addition, the heater heat generating portion 15 is preferably installed within an outer diameter range of 90 mm to 300 mm of the outer wall surface 18, and the heater heat generating portion 15 has a height within a range of 10 to 300 mm, more preferably within a range of 50 to 150 mm. It is preferable to install it in Furthermore, the heat generation capacity of the heater heating section 15 is preferably in the range of watt density of 0.5 to 5.0 W / cm 2 , more preferably in the range of 1.0 to 3.5 W / cm 2. . If the watt density is extremely large, such as 5.0 W / cm 2 or more, the thermal responsiveness is excellent, but on the other hand, the durability is lowered, so that it is not suitable for long-term use. On the other hand, if the watt density is too small, such as 0.5 W / cm 2 , the heater capacity is insufficient, and the air temperature does not rise to an appropriate air blowing temperature.

次に、本発明の第1の実施形態、第2の実施形態の円筒状整流部材13は、容易に着脱可能な構造となっており、上部支持体33、または下部支持体34、あるいは双方にガイド溝を設けて、ボルト等で固定されているが、上下支持体にて挟み込んでもよく、上部支持体33、または下部支持体34に溶接にて固定されていてもよい。   Next, the cylindrical rectifying member 13 according to the first and second embodiments of the present invention has a structure that can be easily attached and detached, and is attached to the upper support 33 or the lower support 34 or both. A guide groove is provided and fixed by a bolt or the like, but may be sandwiched between upper and lower supports, or may be fixed to the upper support 33 or the lower support 34 by welding.

その円筒状整流部材13は、多孔性部材であり、通過気流の整流効果を得るためには流路開口率が20〜60%のパンチングメタルが最も好適であるが、スリット流路を持つ積層構造体でもよく、多孔質セラミックであってもよく、金網であってもよく、ハニカム構造体であってもよい。ここで、円筒状整流部材13の整流効果とは、流路を急激縮小させた後、大きく拡幅させることにより、微小空間において微小乱れ状態を形成し、混合させて気流の風速差を均一化させることが可能となる。   The cylindrical rectifying member 13 is a porous member, and in order to obtain a rectifying effect of the passing airflow, punching metal having a channel opening ratio of 20 to 60% is most suitable, but a laminated structure having a slit channel. A body, a porous ceramic, a wire mesh, or a honeycomb structure. Here, the flow straightening effect of the cylindrical flow straightening member 13 is that the flow path is rapidly reduced and then greatly widened to form a minute turbulent state in a fine space and mixed to uniformize the wind speed difference of the airflow. It becomes possible.

さらに、その円筒状整流部材13の糸条の走行方向における長さは、整流フィルタ8全長における整流効果を得るため、整流フィルタ8と同等長さが好ましいが、もしくは、整流フィルタ8全長より長さを大きくし、整流フィルタ8を包含できる長さに設定するのがよい。また、円筒状整流部材13は、円筒径が異なる2つ以上の多段構成であってもよい。多段構成とすることで、より気流の整流効果を得ることができる。また多段構成とする利点として、流路開口率を多少大きく設定しても、単数構成の円筒状整流部材13と同等の整流効果を得ることができるため、目詰まりを抑止し、生産性、操業性向上が可能となる。   Further, the length of the cylindrical rectifying member 13 in the running direction of the yarn is preferably equal to the length of the rectifying filter 8 in order to obtain a rectifying effect in the entire length of the rectifying filter 8, or is longer than the total length of the rectifying filter 8. Is set to a length that can include the rectifying filter 8. Further, the cylindrical rectifying member 13 may have two or more multistage configurations having different cylindrical diameters. By setting it as a multistage structure, the airflow rectification effect can be obtained more. Further, as an advantage of the multi-stage configuration, even if the channel opening ratio is set to be somewhat large, the same rectification effect as that of the single-unit cylindrical rectification member 13 can be obtained, so that clogging is suppressed and productivity and operation are reduced. It becomes possible to improve the performance.

次に、本発明の第1の実施形態、第2の実施形態のリング状整流部材14は、容易に着脱可能な構造となっており、内壁面17、または気流通路外壁面16、または第1気流通路外壁面30、あるいは双方にガイド溝を設けて、ボルト等で固定されている。リング状整流部材14は、気流の整流効果、及び着脱等の作業性を考慮するとリング状の一体成形品であるのが好ましいが、半月板状を数枚組み合わせて、リング状にしても構造上問題は無い。また、リング状整流部材14は、多孔性部材であり、流路開口率が15〜60%のパンチングメタルを用いるのが好ましいが、多孔質セラミックであってもよく、金網であってもよく、ハニカム構造体であってもよい。また、図2に示すように、リング状整流部材14の代替として、反気流供給口42側の流路幅を狭く、気流供給口29側の流路幅を広くした気流通路9とすることで、反気流供給口42での風速の増加を抑えることで、円周方向の圧力不均衡を低減させるリング状整流部材14と同等の効果を持つ。この流路幅の調整とリング状整流部材14を併用してもよい。但し、流路幅の調整による円周方向圧力均一化、それに応じた円周方向風速均一化は、流路幅寸法に対する風速分布の影響が大きく、様々な紡糸条件に応じた最適寸法を見つけるのに十分な検討を要することもある。   Next, the ring-shaped rectifying member 14 according to the first embodiment and the second embodiment of the present invention has a structure that can be easily attached and detached, and the inner wall surface 17 or the airflow passage outer wall surface 16 or the first. Guide grooves are provided on the outer wall surface 30 of the airflow passage, or both, and are fixed with bolts or the like. The ring-shaped rectifying member 14 is preferably a ring-shaped integrally formed product in consideration of airflow rectifying effects and workability such as attachment / detachment, but it is structurally possible to combine several meniscus shapes into a ring shape. There is no problem. Further, the ring-shaped rectifying member 14 is a porous member, and it is preferable to use a punching metal having a channel opening ratio of 15 to 60%, but it may be a porous ceramic or a wire mesh, It may be a honeycomb structure. In addition, as shown in FIG. 2, as an alternative to the ring-shaped rectifying member 14, the airflow passage 9 having a narrow channel width on the anti-airflow supply port 42 side and a wide channel width on the airflow supply port 29 side is used. By suppressing the increase in the wind speed at the anti-airflow supply port 42, the effect is the same as that of the ring-shaped rectifying member 14 that reduces the pressure imbalance in the circumferential direction. The adjustment of the channel width and the ring-shaped rectifying member 14 may be used in combination. However, equalizing the circumferential pressure by adjusting the flow path width and the corresponding uniform wind speed in the circumferential direction have a large influence of the wind speed distribution on the flow path width, and find the optimum dimensions according to various spinning conditions. In some cases, sufficient consideration is required.

次に、本発明の第1の実施形態、第2の実施形態の整流フィルタ8は、気流の吹き出し口が糸条の走行経路に向かって中心方向に開口しており、かつ糸条の走行方向に直角方向から下向きに傾斜した孔が形成された多孔性部材である。この整流フィルタ8により気流は整流化され、糸走行方向に直角方向から下向きに傾斜した気流が形成される。孔の形状は、円形、台形、八角形又は六角形が採用でき、全面にわたって内径から外径に5〜20度傾斜した孔の配列である。傾斜した孔が形成された多孔性部材としては、セルロースリボンを螺旋状に巻いて熱硬化成形した多孔性部材が挙げられる。この多孔性部材は、セルロースリボン(材質:紙)に熱硬化性樹脂(フェノール樹脂)を含浸後、加熱硬化することでリボン層に隙間(孔:40μm程度の大きさ)を形成され、これらの隙間は外周側から中心に向かって均一に分布している。そして、このセルロースリボンを螺旋状に巻き付けるとき、傾斜して巻き付けることにより、隙間は中心に向かって傾斜する構造となる。また、セルロースリボンの代わりに、金属(ステンレス)製リボンに予め、微細な溝加工を施した後、螺旋状に巻いて、高温圧縮成形を施したものであってもよい。また、多孔性部材として、金属粒子、金属繊維を高温圧縮成形したものであってもよく、または外側から中心方向に向かって微細スリット溝を持つ環状リングを多層積層し、高温圧縮成形した積層構造体であってもよい。これらの多孔性部材の材質は、適度な剛性を有する紙製、木製、合成樹脂製でもよいが、耐熱性に優れる金属製が好適である。   Next, in the rectifying filter 8 of the first and second embodiments of the present invention, the air flow outlet is opened in the center direction toward the running path of the yarn, and the running direction of the yarn. It is a porous member in which a hole inclined downward from a right angle direction is formed. The airflow is rectified by the rectifying filter 8, and an airflow inclined downward from a direction perpendicular to the yarn traveling direction is formed. The shape of the hole may be a circle, trapezoid, octagon or hexagon, and is an array of holes inclined from the inner diameter to the outer diameter by 5 to 20 degrees over the entire surface. Examples of the porous member in which the inclined holes are formed include a porous member obtained by winding a cellulose ribbon in a spiral shape and thermosetting. This porous member is formed by impregnating a cellulose ribbon (material: paper) with a thermosetting resin (phenolic resin) and then heat-curing to form a gap (pore: about 40 μm) in the ribbon layer. The gaps are uniformly distributed from the outer peripheral side toward the center. And when winding this cellulose ribbon helically, it becomes a structure where a clearance gap inclines toward a center by inclining and winding. Further, instead of the cellulose ribbon, a metal (stainless steel) ribbon may be preliminarily processed with a fine groove and then spirally wound and subjected to high-temperature compression molding. Further, the porous member may be a high-temperature compression-molded metal particle or metal fiber, or a multi-layer structure in which an annular ring having fine slit grooves is formed from the outside toward the center direction, and a high-temperature compression-molded laminated structure. It may be a body. The material of these porous members may be made of paper, wood, or synthetic resin having moderate rigidity, but is preferably made of metal having excellent heat resistance.

この整流フィルタ8の糸条の走行方向における長さは、マルチフィラメント糸が最も急激に変化する最大細化変形位置を含有し、糸条の冷却固化位置を含有する長さが、糸の太さ斑抑制に好ましい形態である。気流の円周方向風温斑が悪い場合には、糸条の最大細化変形位置、および冷却固化位置の糸走行方向での差が発生する。特に冷却固化位置において著しい差が発生する分、冷却長さ、即ち整流フィルタ8長さを長尺化する必要があるが、円周方向風温斑が良好であれば、整流フィルタ8長さを適正長にすることが可能となる。よって、整流フィルタ8長さは、50〜500mmがよく、さらには100〜300mmが好適である。また、整流フィルタ8厚みは、スリット流路を通過する気流が十分に整流化できる厚みとして、1〜20mmがよく、さらには5〜10mmが好適である。   The length of the rectifying filter 8 in the running direction of the yarn includes the maximum thinning deformation position at which the multifilament yarn changes most rapidly, and the length including the cooling and solidifying position of the yarn is the thickness of the yarn. This is a preferred form for plaque suppression. When the air temperature unevenness in the circumferential direction of the air current is bad, a difference occurs in the yarn traveling direction between the maximum thinning deformation position of the yarn and the cooling and solidifying position. In particular, the cooling length, that is, the length of the rectifying filter 8 needs to be lengthened to the extent that a significant difference occurs at the cooling and solidifying position. However, if the circumferential air temperature spot is good, the length of the rectifying filter 8 is reduced. An appropriate length can be obtained. Therefore, the length of the rectifying filter 8 is preferably 50 to 500 mm, and more preferably 100 to 300 mm. Further, the thickness of the rectifying filter 8 is preferably 1 to 20 mm, more preferably 5 to 10 mm, as a thickness that can sufficiently rectify the airflow passing through the slit channel.

また、整流フィルタ8と上部支持体33、下部支持体34との接触面には、気密性を保ち、耐熱性に優れた、シリコン、“テフロン(登録商標)”製のパッキン19a、19bを取り付けるのがよい。更には、下部支持体34にバネ伸縮構造を付与し、整流フィルタ8の上下シール面に絶えず面圧を付与することで、パッキン19a、19bの熱クリープ変形、エア内圧変動、または整流フィルタ8の熱寸法変化、経時的寸法変化に対応でき、連続安定して気密性を保持できる。   Further, on the contact surface between the rectifying filter 8 and the upper support 33 and the lower support 34, packings 19a and 19b made of silicon and “Teflon (registered trademark)” that maintain airtightness and have excellent heat resistance are attached. It is good. Furthermore, by applying a spring expansion / contraction structure to the lower support 34 and constantly applying a surface pressure to the upper and lower sealing surfaces of the rectifying filter 8, thermal creep deformation of the packings 19a and 19b, air internal pressure fluctuations, or the rectifying filter 8 It can cope with thermal dimensional changes and dimensional changes over time, and can keep airtightness stably and continuously.

次に、本発明の第1の実施形態の紡糸用環状冷却装置100内での気流の流れ状態を図1、図2にて説明する。図2は、図1のA−A矢視図である。本発明の第1の実施形態の紡糸用環状冷却装置100内は、外部より気流を供給する装置構成上、環状流路を持つ気流通路9に対して、気流導入管20を横方向より連結する。図2に示すように、気流導入管20は、気流通路9に向かって放射状に開口し、流路断面積を暫増した流路とすることで、内壁面17への気流の直接衝突を低減させ、気流通路9を均圧化し、整流フィルタ8から吹き出す気流の円周方向風速斑を低減させることができる。そこで、図1に示すように、気流導入管20内において、外部より供給された気流を邪魔板7に衝突させ、一旦は風速斑を低減、均一化させた気流VAを形成する。そこで、まず気流VAが気流供給口29から流入し、反気流供給側42に至る環状の流路を円周方向に流れる気流VRと、順次、上方に方向転換しリング状整流部材14に向かう気流VUを形成する。その際、円周方向に流れる気流VRを気流VUに方向転換させ、気流VUを一旦形成した後、リング状整流部材14を通過させることで、円周方向の圧力不均衡を低減し、気流VUの円周方向風速斑を低減できる。   Next, the flow state of the air current in the spinning annular cooling device 100 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is an AA arrow view of FIG. In the spinning annular cooling device 100 according to the first embodiment of the present invention, the airflow introduction pipe 20 is connected from the lateral direction to the airflow passage 9 having an annular flow channel because of the device configuration for supplying the airflow from the outside. . As shown in FIG. 2, the airflow introduction pipe 20 is radially opened toward the airflow passage 9 to reduce the direct collision of the airflow to the inner wall surface 17 by making the flow passage cross-sectional area slightly larger. It is possible to equalize the airflow passage 9 and reduce circumferential wind speed spots of the airflow blown out from the rectifying filter 8. Therefore, as shown in FIG. 1, the airflow supplied from the outside collides with the baffle plate 7 in the airflow introduction pipe 20, and the airflow VA in which the wind speed spots are once reduced and uniformed is formed. Therefore, first, the air flow VA flows in from the air flow supply port 29 and flows in the circumferential direction through the annular flow path leading to the counter air flow supply side 42, and the air flow that sequentially turns upward and flows toward the ring-shaped rectifying member 14. VU is formed. At that time, the airflow VR flowing in the circumferential direction is changed to the airflow VU, the airflow VU is once formed, and then passed through the ring-shaped rectifying member 14, thereby reducing the circumferential pressure imbalance and the airflow VU. The circumferential wind speed spots can be reduced.

次に、リング状整流部材14を通過し、整流性を向上させた気流VUは、連続して上方に流れる気流VUを形成するのと同時に、糸状の走行経路の中心方向に流れる気流VSに分割される。そして、気流VU、及び気流VSは、外壁面18に設けられたヒータ発熱部15により加熱され、最終的に整流フィルタ8から吹き出される。その際、円筒状整流部材13は、気流VUを気流VSに方向転換させる機能を持つ。そこで、円筒状整流部材13の流路を急激縮小させた後、大きく拡幅させることにより、微小空間において微小乱れ状態を形成、混合させることで気流VSに整流効果を与え、円周方向風速斑を低減し、円周方向風温斑を低減させることができる。   Next, the airflow VU that has passed through the ring-shaped rectifying member 14 and has improved rectification properties is divided into an airflow VS that flows in the center direction of the filamentous travel path at the same time as forming an airflow VU that flows continuously upward. Is done. The air flow VU and the air flow VS are heated by the heater heat generating portion 15 provided on the outer wall surface 18 and finally blown out from the rectifying filter 8. At that time, the cylindrical rectifying member 13 has a function of changing the direction of the air flow VU to the air flow VS. Therefore, the flow path of the cylindrical rectifying member 13 is rapidly reduced, and then greatly widened, thereby forming a turbulent state in a minute space and mixing it to give a rectifying effect to the air flow VS, thereby causing circumferential wind speed spots. It is possible to reduce the circumferential wind temperature spots.

また、円筒状整流部材13のもう一つの重要な機能は、円筒状整流部材13により、円筒状整流部材13の外側を流れる気流VUを形成し、リング状整流部材14を通過した気流VUが、直接、整流フィルタ8から吹き出すことを低減し、円筒状整流部材13と気流通路外壁面16に挟まれた空間を通過する気流VUを上方まで導くことである。それにより、気流VUの風速低下を抑えることで、熱伝達率を向上させ、ヒータ発熱部15より気流VUに与えられる熱量が増加し、気流の風温アップ効果が得られる。また、整流フィルタ8より吹き出される気流を、吹き出す直前で加熱することから、必要最低限の気流のみを加熱でき、省エネにも有効である。更には、ヒータ発熱部15にて加熱された気流VUは、熱せられることで上昇気流となりつつ上方に向かい、加熱ヒータ15にて連続的、または段階的に加熱される。よって、整流フィルタ8より吹き出される気流は、必然的に上方が高温に、下方が低温となる徐冷に適した長手方向風温分布を形成できる。   Another important function of the cylindrical rectifying member 13 is that the cylindrical rectifying member 13 forms an air flow VU that flows outside the cylindrical rectifying member 13, and the air flow VU that has passed through the ring rectifying member 14 is Directly blowing out from the rectifying filter 8 is reduced, and the airflow VU passing through the space sandwiched between the cylindrical rectifying member 13 and the airflow passage outer wall surface 16 is guided upward. Thereby, by suppressing the decrease in the wind speed of the airflow VU, the heat transfer rate is improved, the amount of heat given to the airflow VU from the heater heat generating part 15 is increased, and the air temperature increase effect of the airflow is obtained. Further, since the airflow blown from the rectifying filter 8 is heated immediately before being blown out, only the minimum necessary airflow can be heated, which is also effective for energy saving. Furthermore, the air flow VU heated by the heater heat generating unit 15 is heated and becomes an upward air flow while being directed upward, and is heated continuously or stepwise by the heater 15. Therefore, the airflow blown out from the rectifying filter 8 can inevitably form a longitudinal air temperature distribution suitable for gradual cooling in which the upper part is a high temperature and the lower part is a low temperature.

次に、本発明の第2の実施形態の紡糸用環状冷却装置内100での気流の流れ状態を図3にて説明する。ここで、気流導入管20からリング状整流部材14に至るまでの流れ形態については、上記で述べた通りであり、リング状整流部材14より上方の流れ形態について詳細に説明する。第1気流通路10に配置されたリング状整流部材14を通過した気流VUは、連続して上方に流れる気流VUを形成すると同時に、糸条の走行経路の中心に流れる気流VSに分割され、整流フィルタ8から吹き出される。更に、上方に流れる気流VUは、第1気流通路10の下流に位置し、第1気流通路10の糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路11に導かれ、第2気流通路11の外側に配設されたヒータ発熱部15により加熱されて、整流フィルタ8から吹き出される。   Next, the flow state of the airflow in the spinning annular cooling device 100 of the second embodiment of the present invention will be described with reference to FIG. Here, the flow form from the airflow introduction pipe 20 to the ring-shaped rectifying member 14 is as described above, and the flow form above the ring-shaped rectifying member 14 will be described in detail. The airflow VU that has passed through the ring-shaped rectifying member 14 disposed in the first airflow passage 10 forms an airflow VU that continuously flows upward, and at the same time, is divided into an airflow VS that flows in the center of the yarn travel path and is rectified. Blow out from the filter 8. Furthermore, the airflow VU flowing upward is located downstream of the first airflow passage 10 and has a cross-sectional area smaller than the flow passage cross-sectional area in the cross section perpendicular to the yarn travel path of the first airflow passage 10. The air is guided to the passage 11, heated by the heater heat generating portion 15 disposed outside the second air flow passage 11, and blown out from the rectifying filter 8.

ここで、第1気流通路10と連結した第2気流通路11の流路断面積を減少させることで、第2気流通路11を上方に向かう気流VUを制限し、第2気流通路11の整流フィルタ8から吹き出される気流を減少させ、第1気流通路10の整流フィルタ8から吹き出される気流を増加させる。それにより、ヒータ発熱部15により加熱する気流風量を少なくし、熱効率を上げ、風温を向上することができる。更に、第2気流通路11の流路断面積を減少させる重要な効果としては、ヒータ発熱部15を小径化できるため、ヒータ発熱部15からの放熱を低減させ、外乱影響を低減できることから保温性を向上させることが可能となり、第2気流通路11の均温化を達成できる。更には、省エネにも対応できる。また、整流フィルタ8から吹き出す直前にて加熱できるため、外乱影響を受け難く、よって適正な風温の気流を吹き出すことが可能となる。その流路断面積の減少率は、第1気流通路10の最大流路断面積A1MAX(m)、第2気流通路11の最小流路断面積A2MIN(m)を以下の式(1)の範囲とすることで、気流VUの円周方向風速斑を低減し、整流フィルタ8からの円周方向風温均一化を達成できる。 Here, the flow cross-sectional area of the second airflow passage 11 connected to the first airflow passage 10 is reduced, thereby restricting the airflow VU going upward through the second airflow passage 11, and the rectification filter of the second airflow passage 11. The air flow blown out from the air flow 8 is reduced, and the air flow blown out from the rectifying filter 8 in the first air flow passage 10 is increased. Thereby, the airflow volume heated by the heater heating part 15 can be reduced, the thermal efficiency can be increased, and the air temperature can be improved. Furthermore, as an important effect of reducing the flow passage cross-sectional area of the second airflow passage 11, since the heater heat generating portion 15 can be reduced in diameter, heat radiation from the heater heat generating portion 15 can be reduced, and the influence of disturbance can be reduced. The temperature of the second airflow passage 11 can be equalized. Furthermore, it can cope with energy saving. Moreover, since it can heat immediately before blowing out from the rectification filter 8, it is hard to receive the influence of a disturbance, Therefore It becomes possible to blow out the airflow of appropriate wind temperature. The reduction rate of the cross-sectional area of the flow path is expressed by the following equation (the maximum flow-path cross-sectional area A 1MAX (m 2 ) of the first airflow passage 10 and the minimum flow-path cross-sectional area A 2MIN (m 2 ) of the second airflow passage 11. By setting it as the range of 1), the circumferential wind velocity spot of the airflow VU can be reduced, and the circumferential wind temperature uniformization from the rectification filter 8 can be achieved.

0.05≦A2MIN/A1MAX≦0.5 ・・・(1)
ここで、A2MIN/A1MAX≦0.05の場合には、第2気流通路11への流路絞りが過大となることで、気流VUの円周方向風速斑が発生し、ヒータ発熱部15から気流VUに与える熱量に差が生じ、整流フィルタ8から吹き出される気流の円周方向風温斑が発生する。0.5≦A2MIN/A1MAXの場合には、第2気流通路11での気流の風速が過小すぎて、気流VUがヒータ発熱部15を通過する際に熱伝達率が小さく、熱が伝わらず十分加熱できない。更に、第1気流通路10と第2気流通路11に円筒状整流部材13を設けることで、上記と同様に、気流VSに整流効果を与え、整流フィルタ8から吹き出す気流の円周方向風速斑を低減し、円周方向風温斑を低減することができる。
0.05 ≦ A 2MIN / A 1MAX ≦ 0.5 (1)
Here, in the case of A 2MIN / A 1MAX ≦ 0.05, the flow restriction in the second air flow passage 11 becomes excessive, so that circumferential wind speed spots of the air flow VU occur, and the heater heat generating portion 15 A difference occurs in the amount of heat applied to the airflow VU from the airflow, and circumferential air temperature spots of the airflow blown out from the rectifying filter 8 are generated. In the case of 0.5 ≦ A 2MIN / A 1MAX , the air velocity of the air flow in the second air flow passage 11 is too low, and the heat transfer rate is small when the air flow VU passes through the heater heat generating portion 15, so that heat is transmitted. Cannot be heated sufficiently. Further, by providing the cylindrical rectifying member 13 in the first air flow passage 10 and the second air flow passage 11, the air flow VS has a rectifying effect as described above, and circumferential wind speed spots of the air flow blown out from the rectifying filter 8 are reduced. It is possible to reduce the circumferential wind temperature spots.

次に、整流フィルタ8から吹き出す気流に円周方向風温斑均一化を達成するためには、円筒状整流部材13の内側に配置され、整流フィルタ8に挟まれた空間と、円筒状整流部材13の外側に配置され、気流通路外壁面16(本発明の第1の実施形態)に挟まれ空間、または第2気流通路外壁面31(本発明の第2の実施形態)に挟まれ空間との体積比が重要である。そこで、円筒状整流部材13の内径D2H(m)、気流通路9(本発明の第1の実施形態)、または第2気流通路11(本発明の第2の実施形態)の外径D2O(m)、整流フィルタ8の外径D2I(m)を以下の式(2)の範囲とすることで、整流フィルタ8より吹き出す気流の円周方向風速、円周方向風温均一化を達成できる。 Next, in order to achieve uniform circumferential air temperature variation in the airflow blown from the rectifying filter 8, a space disposed inside the cylindrical rectifying member 13 and sandwiched between the rectifying filters 8, and the cylindrical rectifying member 13, the space sandwiched between the airflow passage outer wall surface 16 (the first embodiment of the present invention) or the space sandwiched between the second airflow passage outer wall surface 31 (the second embodiment of the present invention) and The volume ratio is important. Therefore, the inner diameter D 2H (m) of the cylindrical rectifying member 13, the outer diameter D 2O of the airflow passage 9 (first embodiment of the present invention), or the second airflow passage 11 (second embodiment of the present invention). ( M ) By setting the outer diameter D 2I (m) of the rectifying filter 8 within the range of the following equation (2), the circumferential wind speed and the circumferential air temperature of the airflow blown from the rectifying filter 8 are made uniform. it can.

0.25≦(D2H−D2I)/(D2O−D2I)≦0.75 ・・・(2)
そこで、(D2H−D2I)/(D2O−D2I)≦0.25の場合には、整流フィルタ8と円筒状整流部材13との間隙が極小化することで、気流VSが円筒状整流部材13を通過後に拡幅ができなり、円筒状整流部材13通過後に、噴流として整流フィルタ8に流入するために、円周方向風速斑が悪化する。また、0.75≦(D2H−D2I)/(D2O−D2I)の場合には、円筒状整流部材13と気流通路外壁面16(本発明の第1の実施形態)、または第2気流通路外壁面31(本発明の第2の実施形態)の流路が狭小化することで、円筒状整流部材13の外周側を流れる気流VUの円周方向風速斑が発生し、ヒータ発熱部15から気流VUに与える熱量に差が生じ、整流フィルタ8から吹き出される気流の円周方向風温斑が発生する。
0.25 ≦ (D 2H −D 2I ) / (D 2 O− D 2I ) ≦ 0.75 (2)
Therefore, in the case of (D 2H −D 2I ) / (D 2O −D 2I ) ≦ 0.25, the gap between the rectifying filter 8 and the cylindrical rectifying member 13 is minimized, so that the air flow VS is cylindrical. After passing through the rectifying member 13, widening is possible, and after passing through the cylindrical rectifying member 13, it flows into the rectifying filter 8 as a jet, so that circumferential wind speed spots are deteriorated. In the case of 0.75 ≦ (D 2H −D 2I ) / (D 2O −D 2I ), the cylindrical rectifying member 13 and the airflow passage outer wall surface 16 (the first embodiment of the present invention) or the first 2 The flow path of the outer wall 31 of the airflow passage (second embodiment of the present invention) is narrowed, so that circumferential wind speed spots of the airflow VU flowing on the outer peripheral side of the cylindrical rectifying member 13 are generated and the heater generates heat. A difference is generated in the amount of heat applied to the airflow VU from the section 15, and circumferential wind temperature spots of the airflow blown out from the rectifying filter 8 are generated.

よって、本発明の紡糸用環状冷却装置100において、整流フィルタ8から吹き出される気流に円周方向風温斑としては、整流フィルタ8の各高さにおいて50%以下(±25%以下)、特に糸条の徐冷に重要となるから整流フィルタ8の上端から下方に向かって50mmの範囲においては、30%以下を達成することができる。   Therefore, in the annular cooling device 100 for spinning of the present invention, the circumferential air temperature spot in the airflow blown out from the rectifying filter 8 is 50% or less (± 25% or less) at each height of the rectifying filter 8, particularly Since it is important for slow cooling of the yarn, 30% or less can be achieved in the range of 50 mm downward from the upper end of the rectifying filter 8.

また、本発明の環状冷却装置は、上記で述べた単錘型に限定されず、図13のように多錘型の環状冷却装置においても適用できる。その場合には、一定間隔に配列された整流フィルタ8の外周に、気流を下方から流入するようにした円筒状の気流通路外壁面16を形成することで気流通路9とし、その気流通路9を同心円内外に仕切る円筒状整流部材13を設け、気流通路9の外壁面18にヒータ発熱部15を設けることで気流を加熱する構成となる。   Further, the annular cooling device of the present invention is not limited to the single spindle type described above, but can be applied to a multi-cylinder type annular cooling device as shown in FIG. In that case, a cylindrical airflow passage outer wall surface 16 is formed on the outer periphery of the rectifying filters 8 arranged at regular intervals so as to allow airflow to flow from below, thereby forming an airflow passage 9. A cylindrical rectifying member 13 for partitioning into and out of the concentric circle is provided, and a heater heating unit 15 is provided on the outer wall surface 18 of the airflow passage 9 to heat the airflow.

次に、本発明の第1の実施形態、第2の実施形態の整流フィルタ8より内向きに吹き出す気流の流れ形態が及ぼす糸条冷却について図14を用いて説明する。図14は、本発明の紡糸用環状冷却装置100から吹き出された気流の流れ形態を示した模式図である。単糸繊度が0.1〜1.6dtex以下、フィラメント数2000本以下のマルチフィラメント糸22を紡糸する場合、糸条の細化、固化に伴い糸随伴流VZが発生し、糸条走行方向に多量の気流が流れるため、紡糸口金1の直下近傍において、空気が不足する一種の真空状態となり、この不足空気を補うために、紡糸口金1中心部では上昇気流VVが発生する。そこで、本発明の紡糸用環状冷却装置100では、紡糸口金1面から整流フィルタ8上端の気流の吹き付け開始距離(以降を冷却開始距離QTDと呼ぶ)を短くし、更に、この糸随伴流VZに見合った気流を整流フィルタ8から供給することで、良好な糸斑のマルチフィラメント糸22を得ることができる。更に、整流フィルタ8より加熱気流を供給することで、糸条22の細化、固化挙動を遅延させること、つまりは徐冷が可能となる。ここで言う徐冷とは、糸条22の変形速度を低減することで、高伸度化を達成し、細化挙動における応力集中を抑制することで、高強度化を達成することができる。更に加えて、徐冷により強度、及び伸度を向上すると共に、その後に冷却を強化することで、糸条22の接触、融着を回避することができる。   Next, the yarn cooling effected by the flow form of the airflow blown inward from the rectifying filter 8 according to the first and second embodiments of the present invention will be described with reference to FIG. FIG. 14 is a schematic view showing the flow form of the airflow blown out from the spinning annular cooling device 100 of the present invention. When the multifilament yarn 22 having a single yarn fineness of 0.1 to 1.6 dtex or less and a filament number of 2000 or less is spun, a yarn accompanying flow VZ is generated along with the thinning and solidification of the yarn, and in the running direction of the yarn. Since a large amount of airflow flows, a vacuum state in which the air is insufficient is formed in the vicinity immediately below the spinneret 1, and ascending airflow VV is generated at the center of the spinneret 1 in order to compensate for the insufficient air. Therefore, in the annular cooling device 100 for spinning of the present invention, the air blow start distance (hereinafter referred to as the cooling start distance QTD) from the spinneret 1 surface to the upper end of the rectifying filter 8 is shortened, and further, the yarn associated flow VZ is reduced. By supplying an appropriate air flow from the rectifying filter 8, a multifilament yarn 22 having good yarn spots can be obtained. Furthermore, by supplying a heated air flow from the rectifying filter 8, the thinning and solidification behavior of the yarn 22 can be delayed, that is, it can be gradually cooled. The slow cooling mentioned here means that high elongation can be achieved by reducing the deformation speed of the yarn 22, and high stress can be achieved by suppressing stress concentration in the thinning behavior. In addition, the strength and elongation can be improved by gradual cooling, and then the cooling and strengthening can be avoided thereafter to avoid contact and fusion of the yarn 22.

更には、整流フィルタ8から吹き出す気流の円周方向風速斑、円周方向風温斑が小さく、且つ上記のように糸条22の冷却固化に適切な風量を付与できることから、上昇気流VZの円周方向風速斑が低減されるため、紡糸口金1の表面温度斑が解消し、繊度斑を低減できる。また、紡糸口金1の表面温度斑が解消されることにより、冷却開始距離QTDが更に短縮できるため、マルチフィラメント糸22を製造する際の製糸性が安定し、糸物性斑良好な糸条が得られる。ここで重要なのは、紡糸口金1直下において高温雰囲気を与えることと、本発明の紡糸用環状冷却装置100のように高温気流を吹き出すこととは、紡糸口金1直下の気流の流れ形態が大きく異なることである。紡糸口金1直下において、紡出された糸条22の細化、固化挙動により随伴流VZが発生する。これは、高温雰囲気下においても、細化挙動の遅延により糸随伴流VZ発生が幾分低減されるが、発生した糸随伴流VZにより口金直下が減圧されるため、給排気バランスより上昇気流VVが必ず発生する。この上昇気流VVは、低温度の冷却風であるため、雰囲気温度斑を発生させる。それに対して、本発明の紡糸用環状冷却装置100は、紡糸口金1直下では、絶えず整流フィルタ8から高温気流を吹き出すため、糸随伴流VZにて不足する空気を補うことができる。また、高温気流を吹き出すことで、紡糸口金1直下の雰囲気温度を向上させ、紡糸口金1面を間接的に加熱し、紡糸性を安定させることができる。   Furthermore, since the circumferential wind velocity spots and circumferential wind temperature spots of the airflow blown out from the rectifying filter 8 are small, and an appropriate air volume can be provided for cooling and solidifying the yarn 22 as described above, the circle of the rising airflow VZ Since circumferential wind velocity spots are reduced, surface temperature spots on the spinneret 1 are eliminated, and fineness spots can be reduced. Further, since the surface temperature unevenness of the spinneret 1 is eliminated, the cooling start distance QTD can be further shortened, so that the yarn-making property when the multifilament yarn 22 is manufactured is stabilized, and a yarn having good yarn physical property unevenness is obtained. It is done. What is important here is that the flow form of the airflow immediately below the spinneret 1 is greatly different from that of giving a high-temperature atmosphere just below the spinneret 1 and blowing out the high-temperature airflow as in the annular cooling device 100 for spinning of the present invention. It is. An accompanying flow VZ is generated immediately below the spinneret 1 due to the thinning and solidification behavior of the spun yarn 22. This is because, even under a high temperature atmosphere, the generation of the yarn accompanying flow VZ is somewhat reduced due to the delay of the thinning behavior, but the pressure immediately below the base is reduced by the generated yarn accompanying flow VZ, so that the rising air flow VV is higher than the supply / exhaust balance. Always occurs. Since this updraft VV is a low-temperature cooling air, it generates atmospheric temperature spots. On the other hand, the annular cooling device 100 for spinning of the present invention continuously blows out the high-temperature air flow from the rectifying filter 8 immediately below the spinneret 1, so that the air deficient in the yarn accompanying flow VZ can be compensated. Further, by blowing out the high temperature air flow, the atmosphere temperature just below the spinneret 1 can be improved, and the spinneret 1 surface can be indirectly heated to stabilize the spinnability.

本発明は、極めて汎用性の高い発明であり、紡糸用冷却装置、および溶融紡糸方法によって得られる全てのマルチフィラメント糸に好適である。従って、マルチフィラメント糸を構成する熱可塑性ポリマにより特に限られるものではない。例えば、本発明に好適なマルチフィラメント糸を構成する熱可塑性ポリマの一例を挙げれば、ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン、ポリエチレン、ポリプロピレン等々が挙げられる。   The present invention is an extremely versatile invention and is suitable for all multifilament yarns obtained by a spinning cooling device and a melt spinning method. Therefore, it is not particularly limited by the thermoplastic polymer constituting the multifilament yarn. For example, polyesters, polyamides, polyphenylene sulfides, polyolefins, polyethylenes, polypropylenes, etc. can be cited as examples of thermoplastic polymers constituting the multifilament yarns suitable for the present invention.

本発明に好適なポリエステルの一例を挙げれば、例えば、ジカルボン酸またはそのエステル形成性誘導体およびジオールまたはそのエステル形成性誘導体から合成される熱可塑性ポリマで、繊維、フィルム、ボトル等の成形品として用いることができるものが挙げられる。ポリエステルの具体的な一例を挙げれば、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレート、ポリテトラメチレンテレフタレート、ポリエチレン−2、6−ナフタレンジカルボキシレート、ポリエチレン−1、2−ビス(2−クロロフェノキシ)エタン−4、4’−ジカルボキシレート等々が挙げられる。上記において、ポリエチレンテレフタレートが最も汎用的であるが、本発明は、ポリエチレンテレフタレートまたは主としてエチレンテレフタレート単位を含むポリエステル共重合体にも好適である。また、製糸安定性等を損なわない範囲で、各種のエステル形成性誘導体が共重合されていても良い。例えば、鮮明性に優れた染色が可能なポリエステルカチオン可染糸においては、一般的にソジウムソルホネート基を有するエステル形成性誘導体を、製糸安定性等を損なわない範囲で、10モル%以下共重合されるが、その様なものでも良い。   An example of a polyester suitable for the present invention is a thermoplastic polymer synthesized from, for example, a dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof, and used as a molded article such as a fiber, a film, or a bottle. Can be mentioned. Specific examples of polyesters include, for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid, polyethylene naphthalate, polybutylene naphthalate, polypropylene terephthalate, polytetramethylene terephthalate, polyethylene-2, 6- Naphthalenedicarboxylate, polyethylene-1,2-bis (2-chlorophenoxy) ethane-4,4'-dicarboxylate, and the like. In the above, polyethylene terephthalate is the most versatile, but the present invention is also suitable for polyethylene terephthalate or polyester copolymers mainly containing ethylene terephthalate units. In addition, various ester-forming derivatives may be copolymerized within a range that does not impair the spinning stability. For example, in a polyester cation dyeable yarn capable of being dyed with excellent sharpness, an ester-forming derivative having a sodium sulfonate group is generally 10 mol% or less as long as the yarn-making stability is not impaired. Although copolymerized, such a thing may be sufficient.

本発明に好適なポリアミドの一例を挙げれば、例えば、ナイロン6、ナイロン66等々が挙げられる。本発明は、ナイロン6、ナイロン66にも好適である。   Examples of polyamides suitable for the present invention include nylon 6, nylon 66, and the like. The present invention is also suitable for nylon 6 and nylon 66.

また、本発明は、可塑剤を含有したセルロースエステル系熱可塑性ポリマにも好適である。セルロースエステルとは、セルロースの水酸基がエステル結合によって封鎖されているものを言い、具体例としては、例えば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレートなどカルボン酸とのエステル結合を有するものであっても良く、乳酸、グリコール酸、ヒドロキシ酸などオキシルカルボン酸あるいはそれらの重合体とのエステル結合を有するものであっても良く、カプロラクトン、プロピオラクトン、バレロラクトン、ピバロラクトンなどの環状エステルあるいはそれらの重合体とのエステルとなっているものであっても良く、更にはこれらの混合エステルとなっているものであっても良い。これらセルロースは、可塑剤を含有していても良く、可塑剤の具体例としては、例えば、比較的低分子量のものとしては、ジメチルフタレート、ジエチルフタレート、ジヘキシルフタレート、ジオクチルフタレート、ジメトキシエチルフタレート、エチルフタリルエチルグルコート、ブチルフタリルブチルグリコートなどのフタル酸エステル類、テトラオクチルピロメリテート、トリオクチルトリメリテートなどの芳香族多価カルボン酸エステル類、ジブチルアジペート、ジオクチルアジペート、ジブチルセバケート、ジオクチルセバケート、ジエチルアゼテート、ジブチルアゼテート、ジオクチルアゼテートなどの脂肪族多価カルボン酸エステル類、グリセリントリアセテート、ジグリセリンテトラアセテートなどの多価アルコールの低級脂肪酸エステル類、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリクレジルホスフェートなどのリン酸エステル類などを挙げることができる。また、可塑剤の具体例としては、例えば、比較的高分子量のものとしては、ポリエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネートなどのグリコールと二塩基酸とからなる脂肪族ポリエステル類、ポリ乳酸、ポリグリコール酸などのオキシカルボン酸からなる脂肪族ポリエステル類、ポリカプロラクトン、ポリプロピオラクトン、ポリバレロラクトンなどのラクトンからなる脂肪族ポリエステル類、ポリビニルピロリドンなどのビニルポリマ類などが挙げられる。可塑剤は、これらを単独、あるいは併用して使用することができる。   The present invention is also suitable for a cellulose ester-based thermoplastic polymer containing a plasticizer. Cellulose ester refers to those in which the hydroxyl group of cellulose is blocked by an ester bond, and specific examples include esters with carboxylic acids such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate. It may have a bond, may have an ester bond with oxylcarboxylic acid such as lactic acid, glycolic acid, hydroxy acid or a polymer thereof, caprolactone, propiolactone, valerolactone, pivalolactone, etc. It may be a cyclic ester or an ester thereof with a polymer thereof, or a mixed ester thereof. These celluloses may contain a plasticizer. Specific examples of the plasticizer include, for example, those having a relatively low molecular weight such as dimethyl phthalate, diethyl phthalate, dihexyl phthalate, dioctyl phthalate, dimethoxyethyl phthalate, ethyl Phthalic acid esters such as phthalyl ethyl glucoat, butyl phthalyl butyl glycate, aromatic polyvalent carboxylic acid esters such as tetraoctyl pyromellitate, trioctyl trimellitate, dibutyl adipate, dioctyl adipate, dibutyl sebacate , Aliphatic polycarboxylic acid esters such as dioctyl sebacate, diethyl azate, dibutyl azate, dioctyl azate, etc., lower polyhydric alcohols such as glycerin triacetate and diglycerin tetraacetate Fatty acid esters include triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, phosphoric acid esters such as tricresyl phosphate and the like. Specific examples of the plasticizer include, for example, aliphatic polyesters composed of glycol and dibasic acid such as polyethylene adipate, polybutylene adipate, polyethylene succinate, polybutylene succinate, and the like having a relatively high molecular weight. And aliphatic polyesters composed of oxycarboxylic acids such as polylactic acid and polyglycolic acid, aliphatic polyesters composed of lactones such as polycaprolactone, polypropiolactone and polyvalerolactone, and vinyl polymers such as polyvinylpyrrolidone. These plasticizers can be used alone or in combination.

更に、上記した熱可塑性ポリマに、製糸安定性等を損なわない範囲で、二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤が含有されていても良く、共重合が含まれても良い。   Furthermore, in the above-mentioned thermoplastic polymer, within a range not impairing the yarn production stability, matting agent such as titanium dioxide, silicon oxide, kaolin, anti-coloring agent, stabilizer, antioxidant, deodorant, flame retardant, Various functional particles such as yarn friction reducing agents, color pigments, surface modifiers, and additives such as organic compounds may be contained, and copolymerization may be included.

また、本発明に用いられる熱可塑性ポリマは、単一成分で構成しても、複数成分で構成してもよく、複数成分の場合には、例えば、芯鞘、サイドバイサイド等の構成が挙げられる。また、マルチフィラメント糸の断面形状は、丸、三角、扁平等の異形状や中空であってもよい。   In addition, the thermoplastic polymer used in the present invention may be composed of a single component or a plurality of components. In the case of a plurality of components, examples of the configuration include a core sheath and a side-by-side configuration. In addition, the cross-sectional shape of the multifilament yarn may be an irregular shape such as a circle, a triangle, a flat shape, or a hollow shape.

本発明は、極めて汎用性の高い発明であり、紡糸用冷却装置、および溶融紡糸方法によって得られる全てのマルチフィラメント糸に好適である。従って、マルチフィラメント糸の単糸繊度により特に限られるものではない。例えば、延伸前または延伸されずに巻き取られた際の単糸繊度、あるいは延伸または延伸・仮撚後の単糸繊度が、0.1〜10デシテックスの範囲であっても良い。また、延伸または延伸・仮撚後の単糸繊度が、0.1〜3.2デシテックスあるいは0.2〜3.2デシテックスの範囲であっても良い。更に、延伸または延伸・仮撚後の単糸繊度が、0.1〜3.1デシテックス、あるいは0.1〜3.0デシテックス、あるいは0.1〜2.9デシテックス、あるいは0.1〜2.8デシテックス、あるいは0.1〜2.7デシテックス、あるいは0.1〜2.6デシテックス、あるいは0.1〜2.5デシテックス、あるいは0.1〜2.4デシテックス、あるいは0.1〜2.3デシテックス、あるいは0.1〜2.2デシテックス、あるいは0.1〜2.1デシテックス、あるいは0.1〜2.0デシテックス、あるいは0.1〜1.9デシテックス、あるいは0.1〜1.8デシテックス、あるいは0.1〜1.7デシテックス、あるいは0.1〜1.6デシテックスの範囲であっても良い。単糸繊度が小さければ小さいほど、従来の技術との差異が明確となる。
本発明は、極めて汎用性の高い発明であり、紡糸用冷却装置、および溶融紡糸方法によって得られる全てのマルチフィラメント糸に好適である。従って、マルチフィラメント糸の単糸数により特に限られるものではない。例えば、マルチフィラメント糸の単糸数が、30〜2000本あるいは50〜2000本の範囲であっても良い。また、マルチフィラメント糸の単糸数が、30〜1900本の範囲であっても良い。更に、マルチフィラメント糸の単糸数が、30〜1800本、あるいは30〜1700本、あるいは30〜1600本、あるいは30〜1500本、あるいは30〜1400本、あるいは30〜1300本、あるいは30〜1200本、あるいは30〜1100本、あるいは30〜1000本、あるいは30〜900本、あるいは30〜800本、あるいは30〜700本、あるいは30〜600本の範囲であっても良い。マルチフィラメント糸の単糸数が多ければ多いほど、従来の技術との差異が明確となる。
The present invention is an extremely versatile invention and is suitable for all multifilament yarns obtained by a spinning cooling device and a melt spinning method. Therefore, it is not particularly limited by the single yarn fineness of the multifilament yarn. For example, the single yarn fineness before drawing or when wound without being drawn, or the single yarn fineness after drawing or drawing / false twisting may be in the range of 0.1 to 10 dtex. Further, the single yarn fineness after drawing or drawing / false twisting may be in the range of 0.1 to 3.2 dtex or 0.2 to 3.2 dtex. Furthermore, the single yarn fineness after drawing or drawing / false twist is 0.1 to 3.1 dtex, or 0.1 to 3.0 dtex, or 0.1 to 2.9 dtex, or 0.1 to 2 .8 dtex, alternatively 0.1-2.7 dtex, alternatively 0.1-2.6 dtex, alternatively 0.1-2.5 dtex, alternatively 0.1-2.4 dtex, alternatively 0.1-2 .3 dtex, or 0.1-2.2 dtex, alternatively 0.1-2.1 dtex, alternatively 0.1-2.0 dtex, alternatively 0.1-1.9 dtex, or 0.1-1 It may be in the range of .8 dtex, or 0.1 to 1.7 dtex, or 0.1 to 1.6 dtex. The smaller the single yarn fineness, the clearer the difference from the prior art.
The present invention is an extremely versatile invention and is suitable for all multifilament yarns obtained by a spinning cooling device and a melt spinning method. Therefore, it is not particularly limited by the number of single filaments of the multifilament yarn. For example, the number of single filaments of the multifilament yarn may be in the range of 30 to 2000 or 50 to 2000. The number of single filaments of the multifilament yarn may be in the range of 30 to 1900. Further, the number of single filaments of the multifilament yarn is 30 to 1800, alternatively 30 to 1700, alternatively 30 to 1600, alternatively 30 to 1500, alternatively 30 to 1400, alternatively 30 to 1300, alternatively 30 to 1200. Or 30 to 1100, alternatively 30 to 1000, alternatively 30 to 900, alternatively 30 to 800, alternatively 30 to 700, alternatively 30 to 600. The greater the number of single filaments of the multifilament yarn, the clearer the difference from the prior art.

実施例中に使用した各特性値は以下の測定方法により求めた。
(1)糸太さ斑、ウースター斑[H]:
ZELLWEGER USTER社製 USTER TESTER UT−4を使用し、糸速100m/分、供給張力1/30g/dtex、ツイスタ回転数8000rpmで5分間測定し、HInertで評価したウースター斑[H]が、「0.4未満」を◎、「0.4以上0.6未満」を○、「0.6以上1.0未満」を×として糸太さ斑として評価した。
(2)強度・伸度・強伸度積、タフネス
ORIENTEC社のTENSILON RTC−1210Aを用い、製造された糸条(マルチフィラメント糸)より任意に切り出した試長200mmを、引張速度200mm/分で測定した強度・伸度を、次式より求めた強伸度積に対して、「20未満」を×、「20以上30未満」を○、「30以上」を◎とし、タフネスとして評価した。
Each characteristic value used in the examples was determined by the following measurement method.
(1) Thread thickness spots, Wooster spots [H]:
Using a USTER TESTER UT-4 manufactured by ZELLWEGER USTER, Wooster spots [H] measured with a thread speed of 100 m / min, a supply tension of 1/30 g / dtex, a twister rotation speed of 8000 rpm for 5 minutes, and evaluated by HInert were “0”. .. less than .4 ”,“ 0.4 or more and less than 0.6 ”as“ ◯ ”, and“ 0.6 or more and less than 1.0 ”as x.
(2) Strength / Elongation / Strong Elongation Product, Toughness Using a TENSILON RTC-1210A manufactured by ORIENTEC, a test length of 200 mm arbitrarily cut from the manufactured yarn (multifilament yarn) was pulled at a pulling speed of 200 mm / min. The measured strength / elongation was evaluated as toughness with “less than 20” as x, “20 or more but less than 30” as ◯, and “30 or more” as ◎ with respect to the product of strong elongation obtained from the following formula.

強伸度積=強度(cN/dtex)×(伸度(%))1/2
(3)気流の吹き出し風速:
気流の吹き出し風速は、常温・常湿下において、アネモマスター風速計(日本カノマックス株式会社:MODEL6004)、またはケンブリッジアキュセンス風速計(デグリーコントロールズインク社:UAS1100PC)を用いて、風速計のプローブを整流フィルタ8内周面から中心に向かって5mm〜10mmの間隙に設置し、測定したものを言う。
(4)円周方向風速斑、円周方向風速不均一:
円周方向風速斑とは、常温・常湿の室内において、整流フィルタ8での気流の吹き出し風速として、円周方向に気流供給口29を0度とし、45度刻みに8点、糸走行方向に整流フィルタ8の上端より10mm位置、30mm位置、50mm位置として3箇所、8点×3箇所=24点を測定し、(下記[1]〜[3]式)、各高さ位置において円周方向風速値8点の平均値を算出し(下記[4]式)、各高さ位置において測定値との変動率を求め(下記[5]式)、その全変動率(ΔV10i、ΔV30i、ΔV50i:i=0〜315、45度)の標準偏差を求めたものをいう。
[1]整流フィルタ8の上端より10mm位置の風速;V10i(i=0〜315、45度)
[2]整流フィルタ8の上端より30mm位置の風速;V30i(i=0〜315、45度)
[3]整流フィルタ8の上端より50mm位置の風速;V50i(i=0〜315、45度)
[4]整流フィルタ8の上端より10、30、50mm位置の風速平均値:
10ave=(Sum(V10i))/8
30ave=(Sum(V30i))/8
50ave=(Sum(V50i))/8 (i=0〜315、45度)
[5]整流フィルタ8の上端より10、30、50mm位置における風速平均値からの風速変動率;
ΔV10i=(V10i−V10ave)/V10ave
ΔV30i=(V30j−V30ave)/V30ave
ΔV50i=(V50j−V50ave)/V50ave(i=0〜315、45度)
(5)製糸性:
36錘紡糸で、24時間の紡糸を行い、この間の糸切れ回数評価を実施し、「1回未満」を◎、「1回以上2回未満」を○、「2回以上3回未満」を△、「3回以上」を×として評価した。
(6)気流供給風量:
紡糸冷却装置への気流供給風量Q(m/秒)は、常温、常湿の室内において、紡糸用冷却装置の気流供給口29の入口にオリフィス風量計を設置し、オリフィス前後の差圧を測定して風量として求めた。
(7)整流フィルタ8からの吹き出される気流の長手方向風速分布とは、整流フィルタ8外周から中心方向に吹き出される気流の風速として、円周方向には、気流供給口29を0度とし、45度刻み毎に8点、糸走行方向(整流フィルタ8高さ方向)には、整流フィルタ8上端から0mm、10mm、30mm、50mm、100mm、150mm、200mm、250mm、300mm(整流フィルタ8全長が300mm以上の場合、0〜50mmまでは0mm、10mm、30mm、50mm位置、50mm以降は50mm間隔にて測定)の8箇所、8点×8箇所=64点を測定し、各々整流フィルタ8高さにおける平均値を求めたもの。
(8)気流の吹き出し風温:
気流の吹き出し風温は、K型熱電対、または温度測定センサのプローブを整流フィルタ8内周面から中心に向かって5mm〜10mmの間隙に設置し、風温変動率が1℃/分以内となった場合に測定したものを言う。
(9)円周方向風温斑:
整流フィルタ8からの吹き出し風温として、円周方向に気流供給口29を0度とし、45度刻みに8点、糸走行方向に整流フィルタ8の上端より0mm、10mm、30mm、50mm、100mm、150mm、200mm、250mm、300mm(整流フィルタ8全長が300mm以上の場合、0〜50mmまでは0mm、10mm、30mm、50mm位置、50mm以降は50mm間隔にて測定)の各高さにおいて、最大風温Tmax、最小風温Tmin、平均風温Taveを求め、下記式より算出された値である。
円周方向風温斑(%)=(最大風温Tmax−最小風温Tmin)/平均風温Tave×100
(10)極限粘度[η]
オルソクロロフェノールを溶媒として25℃で測定した。
[実施例1]
金属スルホネート基を含有するイソフタル酸ジメチルをジカルボン酸成分に対し3.0wt%、PEGを1.0wt%共重合し、極限粘度[η]が0.70で、艶消し剤として酸化チタンを0.30wt%含有するポリエチレンテレフタレートを紡糸口金1から単孔吐出量0.15g/分にて紡出し、本発明の第2の実施形態の紡糸用環状冷却装置100を用いて冷却し、油剤付与装置35にて油剤付与後に2175m/分の速度で巻き取り、マルチフィラメント糸を製造した。その際、紡糸口金1下面から整流フィルタ8上端までの距離(冷却開始距離QTD)を26.5mmとした。紡糸用環状冷却装置100は、図3に示したように、第1気流通路10、第2気流通路11を備え、その第1気流通路10において、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをリング状整流部材14として配置した。第1気流通路10の外径170mm、内径110mm(整流フィルタ8の外径と一致)、また第2気流通路11の外径137mm(第2気流通路外壁面31と一致)、内径110mm(整流フィルタ8の外径と一致)とし、第1気流通路10のリング状整流部材14下流側、及び第2気流通路11には、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをチューブ状にした円筒状整流部材13(内径126mm/外径129mm)を配置した。また、整流フィルタ8は、微細な溝加工を施した金属製リボン(材質:SUS304)を螺旋状に巻いて、高温圧縮成型させた多孔性部材(内径97mm、外径110mm、高さ300mm紡糸方向に直角方向から下向きに15度傾斜)を使用した。また、ヒータ発熱部15として、第2気流通路11の外壁面18(外径140mm)に、内径140mm、整流フィルタ8を上端に下方に向かって高さ70mmと100mmの2段構成とし、各段のワット密度3.0W/cmのバンドヒータを設け、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。
Strong elongation product = strength (cN / dtex) × (elongation (%)) 1/2
(3) Airflow blowout wind speed:
The airflow blowing air velocity is measured at room temperature and normal humidity using an anemometer master anemometer (Nippon Kanomax Co., Ltd .: MODEL6004) or Cambridge Accusens anemometer (Degree Controls Inc .: UAS1100PC). This is the one measured by installing in a gap of 5 mm to 10 mm from the inner peripheral surface of the rectifying filter 8 toward the center.
(4) Circumferential wind velocity unevenness, circumferential wind velocity non-uniformity:
Circumferential wind velocity spots are the airflow blown air velocity at the rectifying filter 8 in a room of normal temperature and humidity, with the airflow supply port 29 being 0 degrees in the circumferential direction, 8 points in 45 degree increments, the yarn traveling direction 3 points, 8 points x 3 points = 24 points from the upper end of the rectifying filter 8 as 10 mm position, 30 mm position, 50 mm position (the following [1] to [3] formulas), and the circumference at each height position The average value of the directional wind speed values of 8 points is calculated (the following [4] equation), the variation rate with the measured value is obtained at each height position (the following [5] equation), and the total variation rate (ΔV 10i , ΔV 30i). , ΔV 50i : i = 0 to 315, 45 degrees).
[1] Wind speed at 10 mm position from the upper end of the rectifying filter 8; V 10i (i = 0 to 315, 45 degrees)
[2] Wind speed at 30 mm position from the upper end of the rectifying filter 8; V 30i (i = 0 to 315, 45 degrees)
[3] Wind speed at 50 mm position from the upper end of the rectifying filter 8; V 50i (i = 0 to 315, 45 degrees)
[4] Average wind speed at positions 10, 30, and 50 mm from the upper end of the rectifying filter 8:
V 10ave = (Sum (V 10i )) / 8
V 30ave = (Sum (V 30i )) / 8
V 50ave = (Sum (V 50i )) / 8 (i = 0 to 315, 45 degrees)
[5] The wind speed fluctuation rate from the wind speed average value at positions 10, 30, and 50 mm from the upper end of the rectifying filter 8;
ΔV 10i = (V 10i −V 10ave ) / V 10ave
ΔV 30i = (V 30j −V 30ave ) / V 30ave
ΔV 50i = (V 50j −V 50ave ) / V 50ave (i = 0 to 315, 45 degrees)
(5) Spinnability:
Execute spinning for 36 hours with 36 spindles, and evaluate the number of breaks during this period. ◎ "less than 1" is ◎, "1 to less than 2" is ◯, "2 to less than 3" Δ, “3 times or more” was evaluated as x.
(6) Airflow supply air volume:
The airflow supply airflow rate Q (m 3 / sec) to the spinning cooling device is set at the inlet of the airflow supply port 29 of the spinning cooling device in a room at normal temperature and humidity, and the differential pressure before and after the orifice is calculated. Measured and calculated as air volume.
(7) The longitudinal wind speed distribution of the air flow blown from the rectifying filter 8 is the wind speed of the air flow blown from the outer periphery of the rectifying filter 8 toward the center, and the air flow supply port 29 is set to 0 degree in the circumferential direction. 8 points every 45 degrees, 0 mm, 10 mm, 30 mm, 50 mm, 100 mm, 150 mm, 200 mm, 250 mm, 300 mm from the upper end of the rectifying filter 8 in the yarn traveling direction (height direction of the rectifying filter 8) Measured at 8 points, 8 points x 8 points = 64 points at 0 mm, 0 mm, 10 mm, 30 mm, 50 mm position, 50 mm and later at 50 mm intervals), and each rectifier filter 8 height What calculated the average value.
(8) Airflow blowout air temperature:
The airflow temperature of the airflow is such that a K-type thermocouple or a temperature measurement sensor probe is installed in the gap of 5 mm to 10 mm from the inner peripheral surface of the rectifying filter 8 toward the center, and the air temperature fluctuation rate is within 1 ° C./min. Say what you measure when you become.
(9) Circumferential wind temperature spots:
As the blowout air temperature from the rectifying filter 8, the air flow supply port 29 is set to 0 degree in the circumferential direction, 8 points in 45 degree increments, and 0 mm, 10 mm, 30 mm, 50 mm, 100 mm from the upper end of the rectifying filter 8 in the yarn running direction. Maximum air temperature at each height of 150 mm, 200 mm, 250 mm, 300 mm (when the total length of the rectifying filter 8 is 300 mm or more, 0 to 50 mm is measured at 0 mm, 10 mm, 30 mm, 50 mm positions, and 50 mm and later at 50 mm intervals) Tmax, the minimum air temperature Tmin, and the average air temperature Tave are obtained and calculated from the following formula.
Circumferential wind temperature spot (%) = (maximum wind temperature Tmax−minimum wind temperature Tmin) / average wind temperature Tave × 100
(10) Intrinsic viscosity [η]
Measurement was performed at 25 ° C. using orthochlorophenol as a solvent.
[Example 1]
Copolymerization of dimethyl isophthalate containing a metal sulfonate group with 3.0 wt% and 1.0 wt% of PEG with respect to the dicarboxylic acid component has an intrinsic viscosity [η] of 0.70, and titanium oxide as a matting agent is 0.00. Polyethylene terephthalate containing 30 wt% is spun from the spinneret 1 at a single hole discharge rate of 0.15 g / min, cooled by using the spinning annular cooling device 100 of the second embodiment of the present invention, and the oil agent applying device 35. After applying the oil agent, the multifilament yarn was manufactured by winding at a speed of 2175 m / min. At that time, the distance from the lower surface of the spinneret 1 to the upper end of the rectifying filter 8 (cooling start distance QTD) was set to 26.5 mm. As shown in FIG. 3, the spinning annular cooling device 100 includes a first air flow passage 10 and a second air flow passage 11, and the opening ratio 40.3% (hole diameter 2 mm, pitch 3 mm) in the first air flow passage 10. Punching metal having a staggered arrangement and a plate thickness of 1.5 mm was arranged as the ring-shaped rectifying member 14. The outer diameter of the first airflow passage 10 is 170 mm, the inner diameter is 110 mm (matches the outer diameter of the rectifying filter 8), the outer diameter of the second airflow passage 11 is 137 mm (matches the outer wall surface 31 of the second airflow passage), and the inner diameter is 110 mm (rectifying filter). 8) and the second airflow passage 11 on the downstream side of the ring-shaped rectifying member 14 and the second airflow passage 11, the aperture ratio is 40.3% (hole diameter 2mm, pitch 3mm, staggered arrangement, plate thickness). A cylindrical rectifying member 13 (inner diameter 126 mm / outer diameter 129 mm) in which a 1.5 mm) punching metal was formed in a tube shape was disposed. The rectifying filter 8 is a porous member (inner diameter of 97 mm, outer diameter of 110 mm, height of 300 mm) in which a metal ribbon (material: SUS304) with fine grooves is spirally wound and compression-molded at a high temperature. Was inclined 15 degrees downward from a right angle direction). Further, the heater heat generating portion 15 has a two-stage configuration with an inner wall surface 140 (outer diameter 140 mm) of the second airflow passage 11 having an inner diameter of 140 mm and a rectifying filter 8 at the upper end and a height of 70 mm and 100 mm. A band heater having a watt density of 3.0 W / cm 2 was provided, and the surface temperature of the band heater heating part was controlled by a temperature control panel so as to be 300 ° C.

上記の紡糸用環状冷却装置100を用いて、33dtex、144本のフィラメント糸、2糸条のポリエステル極細繊維を製造した。このとき、気流導入管20から供給風量49.9m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は180℃、円周方向風温斑は8.5%となった。その際、気流としては空気を用いた。表1に記載のとおり、紡糸の際の製糸性は最良な結果、および得られた極細繊維のウースター斑は最良、タフネスは良好な結果を得た。 Using the spinning cooling device 100 for spinning, 33 dtex, 144 filament yarns and 2 yarns of polyester ultrafine fibers were produced. At this time, as a result of supplying an air flow of 49.9 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 180 ° C., and the circumferential air temperature spot is 8 It was 5%. At that time, air was used as the airflow. As shown in Table 1, the best results were obtained for spinning, and the Worcester spots of the obtained ultrafine fibers were the best, and the toughness was good.

Figure 0005526531
Figure 0005526531

[実施例2]
実施例1と同等のポリエチレンテレフタレート、同等の繊度で紡糸し、本発明の第1の実施形態の紡糸用環状冷却装置100を用いた実施例として、実施例2を説明する。なお、実施例2は参考例である。紡糸用環状冷却装置100として、図1に示したように、気流通路9を備え、気流通路9の外径137mm(気流通路外壁面16と一致)、内径110mm(整流フィルタ8の外径と一致)とした。また、リング状整流部材14は、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルを気流通路9に配置し、円筒状整流部材13は、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをチューブ状(内径126mm/外径129mm)にしたものを気流通路9に配置した。また、整流フィルタ8は実施例1と同等寸法、同等仕様のものを配置し、ヒータ発熱部15は、実施例1と同等仕様のバンドヒータを整流フィルタ8上端から下方に向かって高さ70mmと100mmの2段構成に配置し、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。
[Example 2]
Example 2 will be described as an example in which the polyethylene terephthalate equivalent to Example 1 was spun with the same fineness, and the spinning annular cooling device 100 of the first embodiment of the present invention was used. In addition, Example 2 is a reference example. As shown in FIG. 1, the spinning cooling device 100 for spinning includes an airflow passage 9, an outer diameter of the airflow passage 9 is 137 mm (matches the outer wall surface 16 of the airflow passage), and an inner diameter is 110 mm (matches the outer diameter of the rectifying filter 8). ). The ring-shaped rectifying member 14 has a punching metal having an aperture ratio of 40.3% (hole diameter 2 mm, pitch 3 mm, staggered arrangement, plate thickness 1.5 mm) disposed in the airflow passage 9, and the cylindrical rectifying member 13 has an opening. A punching metal having a rate of 40.3% (hole diameter 2 mm, pitch 3 mm, staggered arrangement, plate thickness 1.5 mm) in a tube shape (inner diameter 126 mm / outer diameter 129 mm) was disposed in the airflow passage 9. Further, the rectifying filter 8 has the same dimensions and the same specifications as those of the first embodiment, and the heater heat generating part 15 has a band heater having the same specifications as that of the first embodiment and has a height of 70 mm from the upper end of the rectifying filter 8 downward. It was arranged in a two-stage configuration of 100 mm, and was controlled by a temperature control panel so that the surface temperature of the band heater heating part was 300 ° C.

上記の紡糸用環状冷却装置100を用いて、33dtex、144本のフィラメント糸、2糸条の極細繊維を製造した。このとき、気流導入管20から供給風量49.9m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は180℃、円周方向風温斑は8.2%となった。表1に記載のとおり、紡糸の際の製糸性は最良な結果、および得られた極細繊維のウースター斑は最良、タフネスは良好な結果を得た。
[実施例3、実施例4、実施例5]
次に、実施例2と同じ紡糸用環状冷却装置100の構成であり、同等のポリエチレンテレフタレート、単糸繊度が異なる実施例として、実施例3、実施例4、実施例5を説明する。なお、これら実施例3、実施例4および実施例5は参考例である。実施例3にて、56dtex、144本のフィラメント糸、1糸条の極細繊維を、実施例4にて、66dtex、144本のフィラメント糸、1糸条の極細繊維を、実施例5にて、84dtex、144本のフィラメント糸、1糸条の極細繊維を製造した。その際、紡糸口金1から吐出する単孔吐出量を実施例3では0.39g/分、実施例4では0.46g/分、実施例5では0.59g/分とした。表1に記載のとおり、最も単糸繊度の小さな実施例3において、ウースタ斑が良好な結果、それ以外の実施例4、実施例5において製糸性、繊維のウースタ斑、タフネスは最良な結果を得た。
[実施例6]
実施例1と同等のポリエチレンテレフタレートで紡糸し、本発明の第2の実施形態の紡糸用環状冷却装置100の他の好ましい形態の実施例として、実施例6を説明する。第1気流通路10の糸条走行方向に垂直な断面における流路断面積と、第2気流通路11の糸条走行方向に垂直な断面における流路断面積の比、及び円筒状整流部材13の円周方向風温斑へ及ぼす影響を確認した。実施例6で用いた紡糸用環状冷却装置100は、実施例1にて述べた通り、同等の構成において、円筒状整流部材13を取り除いた構成とした。第1気流通路10の外径177mm、内径110mm(整流フィルタ8の外径と一致)とし、また第2気流通路11の外径116mm(第2気流通路外壁面31と一致)、内径110mm(整流フィルタ8の外径と一致)とした。また、ヒータ発熱部15として、第2気流通路11の外壁面18(外径119mm)に、整流フィルタ8を上端に下方に向かって内径119mm、高さ50mm×3個=150mmの3段構成、各段のワット密度3.0W/cmのバンドヒータを設け、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。
Using the above spinning cooling apparatus 100 for spinning, 33 dtex, 144 filament yarns, and two filaments of ultrafine fibers were produced. At this time, as a result of supplying an air flow of 49.9 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 180 ° C., and the circumferential air temperature spot is 8 It was 2%. As shown in Table 1, the best results were obtained for spinning, and the Worcester spots of the obtained ultrafine fibers were the best, and the toughness was good.
[Example 3, Example 4, Example 5]
Next, Example 3, Example 4, and Example 5 are demonstrated as an Example with the same structure of the cyclic | annular cooling apparatus 100 for spinning as Example 2, and equivalent polyethylene terephthalate and a single yarn fineness differing. In addition, these Example 3, Example 4, and Example 5 are reference examples. In Example 3, 56 dtex, 144 filament yarns, 1 filament ultrafine fiber in Example 4, 66 dtex, 144 filament yarns, 1 filament ultrafine fiber in Example 5, 84 dtex, 144 filament yarns, 1 yarn extra fine fiber were produced. At that time, the single-hole discharge rate discharged from the spinneret 1 was 0.39 g / min in Example 3, 0.46 g / min in Example 4, and 0.59 g / min in Example 5. As shown in Table 1, in Example 3 where the single yarn fineness was the smallest, Wooster spots were good results, and in Examples 4 and 5 other than that, the best results were obtained for yarn production, fiber Wooster spots and toughness. Obtained.
[Example 6]
Example 6 will be described as an example of another preferred embodiment of the spinning annular cooling device 100 according to the second embodiment of the present invention, which is spun with polyethylene terephthalate equivalent to Example 1. The ratio of the flow path cross-sectional area in the cross section perpendicular to the yarn running direction of the first air flow passage 10 to the cross section of the flow path cross section in the cross section perpendicular to the yarn running direction of the second air flow path 11, and the cylindrical rectifying member 13 The influence on the circumferential wind spot was confirmed. As described in the first embodiment, the spinning annular cooling device 100 used in the sixth embodiment has the same configuration except that the cylindrical rectifying member 13 is removed. The first airflow passage 10 has an outer diameter of 177 mm and an inner diameter of 110 mm (matches the outer diameter of the rectifying filter 8), and the second airflow passage 11 has an outer diameter of 116 mm (matches with the second airflow passage outer wall surface 31) and an inner diameter of 110 mm (rectification) The outer diameter of the filter 8). Further, as the heater heating section 15, the outer wall surface 18 (outer diameter 119 mm) of the second airflow passage 11 has a three-stage configuration with an inner diameter of 119 mm and a height of 50 mm × 3 pieces = 150 mm with the rectifying filter 8 facing downward at the upper end. Each stage was provided with a band heater with a watt density of 3.0 W / cm 2 , and the surface temperature of the band heater heating part was controlled with a temperature control panel so as to be 300 ° C.

上記の紡糸用環状冷却装置100を用いて、56dtex、96本のフィラメント糸、2糸条の極細繊維を製造した。その際、紡糸口金1から吐出する単孔吐出量を0.48g/分とした。このとき、気流導入管20から供給風量43.7m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は200℃、円周方向風温斑は15.9%となった。実施例6では、円筒状整流部材13が無く、整流効果が得られないために、円周方向風温斑は若干悪化傾向となり、また、第2気流通路11に流路幅を減少させることで、ヒータ発熱部15からの受熱効率が向上し、整流フィルタ8上端より吹き出す気流の風温が高くなる傾向が得られた。表1に記載のとおり、紡糸の際の製糸性は最良な結果、および得られた極細繊維のウースター斑は最良、タフネスは良好な結果を得た。
[実施例7]
次に、以下の式のパラメータ範囲の下限を超えた場合の糸斑、及びタフネス影響を実施例7にて説明する。
Using the spinning cooling device 100 for spinning, 56 dtex, 96 filament yarns, and two filaments of ultrafine fibers were produced. At that time, the single hole discharge amount discharged from the spinneret 1 was 0.48 g / min. At this time, as a result of supplying an air flow of 43.7 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 200 ° C., and the circumferential air temperature spot is 15 It was 9%. In Example 6, since there is no cylindrical rectification member 13 and a rectification effect cannot be obtained, the circumferential wind temperature spots tend to be slightly worsened, and the flow width of the second airflow passage 11 is reduced. The heat receiving efficiency from the heater heat generating part 15 was improved, and the air temperature of the airflow blown out from the upper end of the rectifying filter 8 tended to be high. As shown in Table 1, the best results were obtained for spinning, and the Worcester spots of the obtained ultrafine fibers were the best, and the toughness was good.
[Example 7]
Next, Example 7 explains the yarn unevenness and the toughness effect when the lower limit of the parameter range of the following expression is exceeded.

0.05≦A2MIN/A1MAX≦0.5
但し、A2MIN:第2気流通路の最小断面積(m)、A1MAX:第1気流通路の最大断面積(m)を示す。
0.05 ≦ A 2MIN / A 1MAX ≦ 0.5
However, A 2MIN: minimum cross-sectional area of the second air flow passage (m 2), A 1MAX: indicates the maximum cross-sectional area of the first air flow passage (m 2).

実施例7で用いた紡糸用環状冷却装置100は、第2気流通路11の外径114.3mm(第2気流通路外壁面31と一致)、内径110mm(整流フィルタ8の外径と一致)とし、円筒状整流部材13を取り除いた構成とした。その他は、実施例1と同じ装置構成とし、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。このとき、気流導入管20から供給風量43.7m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は210℃、円周方向風温斑は16.3%となった。実施例7では、円筒状整流部材13が無く、整流効果が得られないために、円周方向風温斑は若干ながら悪化傾向となり、また、第2気流通路11の流路幅が更に減少することで、ヒータ発熱部15からの受熱効率が向上し、整流フィルタ8上端より吹き出す気流の風温が上昇する結果となった。表2に記載のとおり、実施例1と比較して、ウースタ斑[H]は悪化傾向を示したが、強伸度積は向上し、紡糸の際の製糸性は良好な結果、および得られた極細繊維のウースター斑、タフネスは良好な結果を得た。 The spinning annular cooling device 100 used in Example 7 has an outer diameter of 114.3 mm (matching with the second airflow passage outer wall surface 31) and an inner diameter of 110 mm (matching with the outer diameter of the rectifying filter 8). The cylindrical rectifying member 13 was removed. The rest of the configuration was the same as in Example 1, and the temperature was controlled by a temperature control panel so that the surface temperature of the band heater heating part was 300 ° C. At this time, as a result of supplying an air flow of 43.7 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 210 ° C., and the circumferential air temperature spot is 16 It was 3%. In Example 7, since there is no cylindrical rectifying member 13 and the rectifying effect cannot be obtained, the circumferential wind temperature spots tend to be slightly worsened, and the flow width of the second airflow passage 11 is further reduced. As a result, the heat receiving efficiency from the heater heat generating portion 15 is improved, and the air temperature of the airflow blown out from the upper end of the rectifying filter 8 is increased. As shown in Table 2, compared to Example 1, Wooster spots [H] showed a tendency to deteriorate, but the product of strong elongation was improved and the spinning performance during spinning was good. Good results were obtained with Worcester spots and toughness of the fine fibers.

Figure 0005526531
Figure 0005526531

[実施例8、実施例9]
次に、以下の式のパラメータ範囲の上限域、上限を越えた場合での糸斑、及びタフネス影響を実施例8、実施例9にて説明する。
[Example 8, Example 9]
Next, the upper limit area of the parameter range of the following expression, the yarn unevenness when the upper limit is exceeded, and the effect of toughness will be described in Embodiments 8 and 9.

0.05≦A2MIN/A1MAX≦0.5
但し、A2MIN:第2気流通路の最小断面積(m)、A1MAX:第1気流通路の最大断面積(m)を示す。
0.05 ≦ A 2MIN / A 1MAX ≦ 0.5
However, A 2MIN: minimum cross-sectional area of the second air flow passage (m 2), A 1MAX: indicates the maximum cross-sectional area of the first air flow passage (m 2).

実施例8で用いた紡糸用環状冷却装置100は、第2気流通路11の外径144mm(第2気流通路外壁面31と一致)、内径110mm(整流フィルタ8の外径と一致)とし、その他は、実施例1と同じ装置構成とし、また、実施例9では、第2気流通路11の外径154mm(第2気流通路外壁面31と一致)、内径110mm(整流フィルタ8の外径と一致)とし、その他は、実施例1と同じ装置構成とし、実施例8、実施例9共に、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。このとき、気流導入管20から供給風量43.7m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は、実施例8では180℃、円周方向風温斑は8.4%となり、実施例9では170℃、円周方向風温斑は8.9%となった。表2に記載のとおり、第1気流通路10の糸条走行方向に垂直な断面における流路断面積と、第2気流通路11の糸条走行方向に垂直な断面における流路断面積の比率が大きい程、整流フィルタ8の上端から吹き出す気流の風温が低下することより、強伸度積が低下するが、紡糸の際の製糸性は良好な結果、および得られた極細繊維のウースター斑、タフネスは良好な結果を得た。
[実施例10、実施例11
次に、以下の式のパラメータ下限域での糸斑、タフネス変化を実施例10にて、パラメータ上限域での糸斑、タフネス影響を実施例11にて説明する。
The spinning annular cooling device 100 used in Example 8 has an outer diameter 144 mm (matching with the second airflow passage outer wall surface 31), an inner diameter 110 mm (matching with the outer diameter of the rectifying filter 8) of the second airflow passage 11, and others. Is the same apparatus configuration as that of the first embodiment, and in the ninth embodiment, the outer diameter of the second airflow passage 11 is 154 mm (matches the outer wall surface 31 of the second airflow passage), and the inner diameter is 110 mm (matches the outer diameter of the rectifying filter 8). Other than that, the apparatus configuration was the same as in Example 1. In both Examples 8 and 9, the surface temperature of the band heater heating portion was controlled by the temperature control panel so as to be 300 ° C. At this time, as a result of supplying an airflow of 43.7 m 3 / hour and normal temperature of 20 ° C. from the airflow introduction pipe 20, the air temperature of the airflow blown out from the upper end of the rectifying filter 8 is 180 ° C. in the circumferential direction in Example 8. The wind spot was 8.4%, and in Example 9, the wind spot was 170 ° C. and the circumferential wind spot was 8.9%. As shown in Table 2, the ratio of the channel cross-sectional area in the cross section perpendicular to the yarn running direction of the first airflow passage 10 and the flow path cross-sectional area in the cross section perpendicular to the yarn running direction of the second airflow passage 11 is The larger the value, the lower the air temperature of the airflow blown from the upper end of the rectifying filter 8, so that the product of high elongation decreases. However, the spinning performance during spinning is good, and the obtained Worcester spots of the ultrafine fiber, Toughness gave good results.
[Actual施例10, Example 11]
Next, the yarn unevenness in the parameter limit range of the following formula, in the toughness change real施例10 will be described yarn plaques parameter limit range, the toughness effects in Example 11.

0.25≦(D2H−D2I)/(D2O−D2I)≦0.75
但し、D2H:円筒状整流部材の内径(m)、D2O:気流通路、または第2気流通路の外径(m)、D2I:整流フィルタの外径(m)を示す。
0.25 ≦ (D 2H −D 2I ) / (D 2O −D 2I ) ≦ 0.75
However, D2H : The inside diameter (m) of a cylindrical rectification member, D2O : The outer diameter (m) of an airflow path or a 2nd airflow path, D2I : The outer diameter (m) of a rectification filter is shown.

その際、円筒状整流部材13は、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをチューブ状にしたものであり、実施例10では、内径119mm(外径122mm)にて配置し、実施例11では、内径129mm(外径132mm)にて配置し、その他の装置構成は、実施例1と同じとなるようにした。また、実施例10、実施例11、共に、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。このとき、気流導入管20から供給風量43.7m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は、実施例10では180℃、円周方向風温斑は14.4%となり、実施例11では200℃、円周方向風温斑は15.9%となった。表2の記載のとおり、円筒状整流部材13の内径と整流フィルタ8の外周面に挟まれた流路の間隙距離と、第2気流通路外壁面31と整流フィルタ8の外周面に挟まれた流路の間隙距離との比率が大きい方が、円筒状整流部材13の外周面と第2気流通路外壁面31との流路幅が狭くなり、ヒータ発熱部15からの受熱効率が向上することから、整流フィルタ8の上端から吹き出す気流の風温が上昇し、その結果、強伸度積が増加する結果を得た。また、実施例10、実施例11においては、紡糸の際の製糸性は最良な結果、および得られた極細繊維のウースター斑、タフネスは良好な結果を得た。
[実施例12
次に、第2の実施形態の紡糸用環状冷却装置100に仕切板45を配設した場合における糸斑、及びタフネス影響を実施例12にて説明する。実施例10と同じ紡糸用環状冷却装置100に加えて、第1気流通路10、第2気流通路11にて仕切板45を、糸条の走行方向に渡って12等配となるように放射状に配置し、バンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。このとき、気流導入管20から供給風量43.7m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は、190℃、円周方向風温斑は12.3%となった。仕切板45が加熱フィンの役割となり、気流の風温が上昇し、また、環状流路を円周方向に区分けすることで、円周方向への気流を制限し、円周方向風速、風温斑が抑制されることから、紡糸の際の製糸性は最良な結果、および得られた極細繊維のウースター斑、タフネスは良好な結果を得た。
[比較例1]
実施例1にて使用した紡糸用環状冷却装置100の構造において、円筒状整流部材13、ヒータ発熱部15を取り除いた紡糸用環状冷却装置を比較例1に用いた。その他は、実施例1と同等のポリエチレンテレフタレート、同等の紡糸条件により極細繊維を得た。このとき、気流導入管20から供給風量49.9m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は25℃、円周方向風温斑は16.5%となった。結果、表1に記載のとおり、紡糸の際の製糸性は良好、得られた極細繊維のウースター斑も良好であったが、タフネスが悪化した。
[比較例2]
次に、比較例1にて使用した紡糸用環状冷却装置100の構造において、円筒状整流部材13を取り除き、第1気流通路10の糸条走行方向に垂直な断面における流路断面積A1MAXと、第2気流通路11の糸条走行方向に垂直な断面における流路断面積2MINの比を0.04とした紡糸用環状冷却装置を比較例2に用いた。その他は、実施例1と同等のポリエチレンテレフタレート、同等の紡糸条件により極細繊維を得た。このとき、気流導入管20から供給風量49.9m/時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は210℃、円周方向風温斑は21.3%と悪化した。結果、表1に記載のとおり、紡糸の際の製糸性は良好、得られた極細繊維のタフネスも良好であったが、ウースタ斑が悪化した。
[比較例3]
クロスフロータイプの紡糸用冷却装置を用いて、実施例4と同等のポリエチレンテレフタレート、同等の繊維(66dtex、144本のフィラメント糸、1糸条)を得た。表1に記載のとおり、紡糸の際には糸切れが数回発止し製糸性は悪く、得られた繊維のウースター斑は不良であった。
[比較例4]
比較例3と同様に、クロスフロータイプの紡糸用冷却装置を用いて、実施例5と同等のポリエチレンテレフタレート、同等の繊維(84dtex、144本のフィラメント糸、1糸条)を得た。表1に記載のとおり、得られた繊維のウースター斑は比較的良好であったが、紡糸の際には糸切れが数回発止し製糸性は悪化した。
[比較例5]
実施例1にて使用した紡糸用環状冷却装置100の構造において、円筒状整流部材13は、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをチューブ状にしたものであり、内径113mm(外径116mm)にて配置し、その他の装置構成は、実施例1と同じとなるようにした。また、実施例10、11と同様にバンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。このとき、気流導入管20から供給風量43.7m /時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は、170℃、円周方向風温斑は23.2%となった。結果、表2に記載のとおり、間隙比率が小さくなると、気流が円筒状整流部材13を通過後に拡幅ができなくなり、円周方向風速、風温斑が悪化し、得られた極細繊維のウースター斑が悪化する傾向を得た。
[比較例6]
比較例5にて使用した紡糸用環状冷却装置100の構造において、円筒状整流部材13は、開口率40.3%(孔径2mm、ピッチ3mm、千鳥配置、板厚1.5mm)のパンチングメタルをチューブ状にしたものであり、内径132mm(外径135mm)にて配置し、その他の装置構成は、実施例1と同じとなるようにした。また、比較例5と同様にバンドヒータ発熱部の表面温度を300℃となるように、温度制御盤にて制御した。このとき、気流導入管20から供給風量43.7m /時間、常温20℃の気流を供給した結果、整流フィルタ8の上端から吹き出す気流の風温は、210℃、円周方向風温斑は20.7%となった。結果、表2に記載のとおり、間隙比率が大きくなると、円筒状整流部材13の外周面と第2気流通路外壁面31との流路幅が狭小化することで、気流の風速斑が発生し、円周方向風温斑が悪化し、得られた極細繊維のウースター斑が悪化する傾向を得た。
At that time, the cylindrical rectifying member 13, the aperture ratio 40.3% (pore size 2 mm, pitch 3 mm, the staggered arrangement, the thickness 1.5 mm) punched metal is obtained by the tubular, the actual施例10, place in inside diameter 119 mm (outer diameter 122 mm), in example 11, was placed at the inner diameter 129 mm (outer diameter 132 mm), another device configuration of its was made to be the same as in example 1. Further, actual施例10, Example 11, the co, as the surface temperature of the band heater heat generating portion becomes 300 ° C., it was controlled at a temperature control panel. At this time, the supply air volume 43.7m 3 / time from the airflow inlet pipe 20, as a result of supplying the normal temperature 20 ° C. in a stream of air temperature of the air blown out from the upper end of the rectifying filter 8, the actual施例10 180 ° C., the circumferential direction wind Yutakamadara stood 14.4%, 200 ° C. in example 11, the circumferential wind Yutakamadara was Tsu Do 15.9%. As described in Table 2, the gap between the inner diameter of the cylindrical rectifying member 13 and the flow path sandwiched between the outer peripheral surfaces of the rectifying filter 8, and the second airflow passage outer wall surface 31 and the outer peripheral surface of the rectifying filter 8 The larger the ratio with the gap distance of the flow path, the narrower the width of the flow path between the outer peripheral surface of the cylindrical rectifying member 13 and the outer wall surface 31 of the second airflow passage, and the heat receiving efficiency from the heater heat generating part 15 is improved. Thus, the wind temperature of the air flow blown out from the upper end of the rectifying filter 8 rose, and as a result, the result of increasing the strength elongation product was obtained . Also, Example 10, in Example 11, spinnability upon spinning the best results, and Worcester plaques obtained ultrafine fibers, toughness and good results were obtained.
[Example 12 ]
Next, Example 12 describes the yarn unevenness and the toughness effect when the partition plate 45 is disposed in the spinning annular cooling device 100 of the second embodiment. In addition to the same annular cooling device 100 for spinning as in the tenth embodiment, the partition plates 45 are radially arranged in the first airflow passage 10 and the second airflow passage 11 so as to be 12 evenly in the running direction of the yarn. The temperature was controlled by a temperature control panel so that the surface temperature of the band heater heating part was 300 ° C. At this time, as a result of supplying an air flow of 43.7 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 190 ° C., and the circumferential wind temperature spot is It was 12.3%. The partition plate 45 serves as a heating fin, and the air temperature of the airflow rises. Further, by dividing the annular channel in the circumferential direction, the airflow in the circumferential direction is restricted, and the wind speed and air temperature in the circumferential direction are limited. Since the spots were suppressed, the best results were obtained for the spinning performance during spinning, and the wooster spots and toughness of the obtained ultrafine fibers were satisfactory.
[Comparative Example 1]
In the structure of the spinning annular cooling device 100 used in Example 1, the spinning annular cooling device in which the cylindrical rectifying member 13 and the heater heating portion 15 were removed was used in Comparative Example 1. In other respects, polyethylene terephthalate equivalent to Example 1 and ultrafine fibers were obtained under the same spinning conditions. At this time, as a result of supplying the air flow of 49.9 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 25 ° C., and the circumferential air temperature spot is 16 It was 5%. As a result, as shown in Table 1, the spinning performance during spinning was good and the Worcester spots of the obtained ultrafine fibers were good, but the toughness deteriorated.
[Comparative Example 2]
Next, in the structure of the annular cooling device 100 for spinning used in Comparative Example 1, the cylindrical rectifying member 13 is removed, and the flow path cross-sectional area A 1MAX in the cross section perpendicular to the yarn traveling direction of the first airflow passage 10 is An annular cooling device for spinning in which the ratio of the flow passage cross-sectional area 2MIN in the cross section perpendicular to the yarn running direction of the second airflow passage 11 was 0.04 was used in Comparative Example 2. In other respects, polyethylene terephthalate equivalent to Example 1 and ultrafine fibers were obtained under the same spinning conditions. At this time, as a result of supplying the air flow of 49.9 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 210 ° C., and the circumferential air temperature spot is 21 It worsened to 3%. As a result, as shown in Table 1, the spinning performance during spinning was good and the toughness of the obtained ultrafine fibers was good, but the Wooster spots were deteriorated.
[Comparative Example 3]
Polyethylene terephthalate equivalent to Example 4 and equivalent fibers (66 dtex, 144 filament yarns, one yarn) were obtained using a cross flow type spinning cooling device. As shown in Table 1, the yarn breakage stopped several times during spinning, and the yarn-making property was poor, and the Worcester spots of the obtained fiber were poor.
[Comparative Example 4]
In the same manner as in Comparative Example 3, a polyethylene terephthalate equivalent to Example 5 and equivalent fibers (84 dtex, 144 filament yarns, one yarn) were obtained using a cross-flow type cooling device for spinning. As shown in Table 1, the Worcester spots of the obtained fibers were relatively good, but the yarn breakage stopped several times during spinning, and the yarn-making property deteriorated.
[Comparative Example 5]
In the structure of the spinning annular cooling device 100 used in Example 1, the cylindrical rectifying member 13 is made of a punching metal having an aperture ratio of 40.3% (hole diameter 2 mm, pitch 3 mm, staggered arrangement, plate thickness 1.5 mm). It was in a tube shape and was arranged with an inner diameter of 113 mm (outer diameter of 116 mm), and the other device configuration was the same as in Example 1. Further, similarly to Examples 10 and 11, the temperature was controlled by the temperature control panel so that the surface temperature of the band heater heating portion was 300 ° C. At this time, as a result of supplying an air flow of 43.7 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 170 ° C., and the circumferential air temperature spot is It became 23.2%. As a result, as shown in Table 2, when the gap ratio is small, the air current cannot be widened after passing through the cylindrical rectifying member 13, the circumferential wind speed and wind spot are deteriorated, and the Worcester spot of the obtained ultrafine fiber is obtained. Got a tendency to get worse.
[Comparative Example 6]
In the structure of the annular cooling device 100 for spinning used in Comparative Example 5, the cylindrical rectifying member 13 is made of a punching metal having an aperture ratio of 40.3% (hole diameter 2 mm, pitch 3 mm, staggered arrangement, plate thickness 1.5 mm). It was in a tube shape and was arranged with an inner diameter of 132 mm (outer diameter of 135 mm), and the other device configuration was the same as in Example 1. Further, similarly to Comparative Example 5, the temperature of the band heater heating part was controlled by the temperature control panel so that the surface temperature would be 300 ° C. At this time, as a result of supplying an air flow of 43.7 m 3 / hour and normal temperature of 20 ° C. from the air flow introduction pipe 20, the air temperature of the air flow blown from the upper end of the rectifying filter 8 is 210 ° C., and the circumferential wind temperature spot is It became 20.7%. As a result, as shown in Table 2, when the gap ratio is increased, the flow path width between the outer peripheral surface of the cylindrical rectifying member 13 and the second airflow passage outer wall surface 31 is narrowed. In addition, the circumferential wind temperature spots deteriorated, and the Worcester spots of the obtained ultrafine fibers were deteriorated.

本発明は、衣料用極細マルチフィラメント糸の紡糸用冷却装置に限らず、産業用ナイロン糸用の紡糸用冷却装置や、産業用テトロン糸用の紡糸用冷却装置などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention is not limited to a spinning cooling device for spinning ultrafine multifilament yarn for clothing, but can also be applied to a spinning cooling device for industrial nylon yarn, a spinning cooling device for industrial tetron yarn, and the like. The application range is not limited to these.

本発明の第1の実施形態に用いられる紡糸用冷却装置の概略断面図である。1 is a schematic cross-sectional view of a spinning cooling device used in a first embodiment of the present invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の第2の実施形態に用いられる紡糸用冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling device for spinning used for the 2nd Embodiment of this invention. 本発明の第1の実施形態に用いられる紡糸用冷却装置の他の好ましい形態の概略断面図である。It is a schematic sectional drawing of the other preferable form of the cooling device for spinning used for the 1st Embodiment of this invention. 本発明の第1の実施形態に用いられる紡糸用冷却装置の他の好ましい形態の概略断面図である。It is a schematic sectional drawing of the other preferable form of the cooling device for spinning used for the 1st Embodiment of this invention. 本発明の第1の実施形態に用いられる紡糸用冷却装置の他の好ましい形態の概略断面図である。It is a schematic sectional drawing of the other preferable form of the cooling device for spinning used for the 1st Embodiment of this invention. 本発明の第2の実施形態に用いられる紡糸用冷却装置の他の好ましい形態の概略断面図である。It is a schematic sectional drawing of the other preferable form of the cooling device for spinning used for the 2nd Embodiment of this invention. 本発明の第2の実施形態に用いられる紡糸用冷却装置の他の好ましい形態の概略断面図である。It is a schematic sectional drawing of the other preferable form of the cooling device for spinning used for the 2nd Embodiment of this invention. 従来例の紡糸用冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling device for spinning of a prior art example. 従来例の紡糸用冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling device for spinning of a prior art example. 本発明の第1の実施形態に用いられる溶融紡糸装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the melt spinning apparatus used for the 1st Embodiment of this invention. 本発明の第1の実施形態、または第2の実施形態に用いられる紡糸用冷却装置から吹き出される気流の温度T(℃)と、整流フィルタ上端からの距離L(mm)の関係を図示したものである。The relationship between the temperature T (° C.) of the air flow blown from the spinning cooling device used in the first embodiment or the second embodiment of the present invention and the distance L (mm) from the upper end of the rectifying filter is illustrated. Is. 本発明の第1の実施形態に用いられる多錘型紡糸用冷却装置の概略断面図である。1 is a schematic cross-sectional view of a multi-spindle spinning cooling device used in a first embodiment of the present invention. 本発明の第1の実施形態、または第2の実施形態に用いられる紡糸用環状冷却装置から吹き出された気流の流れ形態を示した模式図である。It is the schematic diagram which showed the flow form of the airflow which blown off from the cyclic | annular cooling device for spinning used for the 1st Embodiment or 2nd Embodiment of this invention. 従来例の紡糸用冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling device for spinning of a prior art example. 従来例の紡糸用冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling device for spinning of a prior art example. 従来例の紡糸用冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling device for spinning of a prior art example. 本発明の第1の実施形態に用いられる紡糸用冷却装置の他の好ましい形態の概略断面図である。It is a schematic sectional drawing of the other preferable form of the cooling device for spinning used for the 1st Embodiment of this invention. 図18のB−B矢視図である。It is a BB arrow line view of FIG.

符号の説明Explanation of symbols

1 紡糸口金
2 冷却風吹付け装置
3 熱風吹付け装置
4 集束ガイド
5 第1気体室
6 第2気体室
7 邪魔板
8 整流フィルタ
9 気流通路
10 第1気流通路
11 第2気流通路
12 有孔板
13 円筒状整流部材
14 リング状整流部材
15 ヒータ発熱部
16 気流通路外壁面
17 内壁面
18 外壁面
19a 19b パッキン
20 気流導入管
22 糸条(マルチフィラメント糸)
23 紡糸孔
24 送風機
25 ガス温度調整機
26 電熱線
27 紡糸パック
28 スピンブロック
29 気流供給口
30 第1気流通路外壁面
31 第2気流通路外壁面
32 助走区間
33 上部支持体
34 下部支持体
35 油剤付与装置
36 37 引取ローラ
38 巻取装置
39 パッケージ
40 交絡付与装置
42 反気流供給口
43 冷却筒
44 加熱筒
45 仕切板
100 紡糸用環状冷却装置
VA 気流供給口において、風速斑を低減、均一化された気流
VR 外壁面に沿って、空気供給口から反気流供給口へ周り込む気流
VU 気流通路、または第1気流通路、第2気流通路を上方に流れる気流
VS 糸走行方向に垂直方向における同心円状中心方向に流れる気流
VZ 糸随伴流
VV 上昇気流
QTD 冷却開始距離
DESCRIPTION OF SYMBOLS 1 Spinneret 2 Cooling air spraying device 3 Hot air spraying device 4 Focusing guide 5 1st gas chamber 6 2nd gas chamber 7 Baffle plate 8 Rectification filter 9 Airflow path 10 1st airflow path 11 2nd airflow path 12 Perforated plate 13 Cylindrical rectifying member 14 Ring-shaped rectifying member 15 Heater heating portion 16 Outer wall surface of airflow path 17 Inner wall surface 18 Outer wall surface 19a 19b Packing 20 Airflow introduction pipe 22 Yarn (multifilament yarn)
DESCRIPTION OF SYMBOLS 23 Spinning hole 24 Blower 25 Gas temperature regulator 26 Heating wire 27 Spin pack 28 Spin block 29 Airflow supply port 30 1st airflow path outer wall surface 31 2nd airflow path outer wall surface 32 Run-up section 33 Upper support body 34 Lower support body 35 Oil agent Giving device 36 37 Take-up roller 38 Winding device 39 Package 40 Entangling device 42 Anti-air flow supply port 43 Cooling tube 44 Heating tube 45 Partition plate 100 Annular cooling device for spinning VA In the air flow supply port, wind speed spots are reduced and uniformized. Airflow VR Flowing air flowing from the air supply port to the anti-airflow supply port along the outer wall surface VU Airflow passage, or the airflow flowing upward through the first airflow passage and the second airflow passage VS Concentric in the direction perpendicular to the yarn traveling direction Airflow flowing in the center direction VZ Yarn accompanying flow VV Upflow air QTD Cooling start distance

Claims (5)

熱可塑性ポリマを溶融紡出して得られた糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化する紡糸用環状冷却装置であって、
気流導入管と、
前記気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1気流通路と、
前記第1気流通路の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記第1気流通路の前記糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路と、
前記第2気流通路の外側、または前記1気流通路および前記第2気流通路の外側に配設されたヒータ発熱部を有する外壁部材と、
前記第1気流通路および前記第2気流通路の内側に前記糸条の走行経路の外側を包囲するように配設され気流を内向きに吹き出す流路を持つ整流フィルタと、
前記整流フィルタの外側を包囲するように配設された円筒状整流部材とを有し、該円筒状整流部材が、以下の式を満足することを特徴とする紡糸用環状冷却装置。
0.25≦(D2H−D2I)/(D2O−D2I)≦0.75
但し、D2H:円筒状整流部材の内径(m)、
2O2気流通路の外径(m)、
2I:整流フィルタの外径(m)を示す。
An annular cooling device for spinning, in which an airflow is blown inward from the outside of a running path of a yarn obtained by melt spinning a thermoplastic polymer, and solidified by cooling.
An air flow introduction pipe,
A first airflow passage having an annular flow path that is in communication with the airflow introduction pipe and is disposed so as to surround the outside of the travel path of the yarn ;
A flow in a cross section perpendicular to the yarn traveling path of the first airflow passage, having an annular flow path disposed so as to surround the outside of the yarn traveling path downstream of the first airflow passage. A second airflow passage having a cross-sectional area smaller than the road cross-sectional area ;
An outer wall member having a heater heat generating portion disposed outside the second airflow passage, or outside the first airflow passage and the second airflow passage ;
A rectifying filter having a flow path that is disposed inside the first air flow path and the second air flow path so as to surround the outside of the traveling path of the yarn and blows out the air flow inward;
Wherein and a disposed a cylindrical rectification member so as to surround the outer rectification filter, said cylindrical rectifying members, following spinning annular cooling device, characterized by satisfying the expressions.
0.25 ≦ (D 2H −D 2I ) / (D 2O −D 2I ) ≦ 0.75
However, D2H : Inner diameter (m) of cylindrical rectifying member,
D 2O : outer diameter (m) of the second airflow path,
D 2I : indicates the outer diameter (m) of the rectifying filter.
前記第1気流通路の上流に位置し前記糸条の走行経路の外側を包囲し第1気流通路の環状の流路の上流端全面を覆うように配設されたリング状整流部材を有することを特徴とする請求項1に記載の紡糸用環状冷却装置。 A ring-shaped rectifying member that is located upstream of the first airflow passage , surrounds the outside of the travel path of the yarn, and is disposed so as to cover the entire upstream end of the annular flow path of the first airflow passage ; The annular cooling device for spinning according to claim 1, characterized in that: 前記第1気流通路の断面積、及び前記第2気流通路の断面積が、以下の式を満足することを特徴とする請求項1または2に記載の紡糸用環状冷却装置。
0.05≦A2MIN/A1MAX≦0.5
但し、A2MIN:第2気流通路の最小断面積(m)、
1MAX:第1気流通路の最大断面積(m)を示す。
The annular cooling device for spinning according to claim 1 or 2 , wherein a cross-sectional area of the first airflow passage and a cross-sectional area of the second airflow passage satisfy the following expression.
0.05 ≦ A 2MIN / A 1MAX ≦ 0.5
Where A 2MIN : the minimum cross-sectional area (m 2 ) of the second airflow path,
A 1MAX : Indicates the maximum cross-sectional area (m 2 ) of the first airflow passage.
環状の前記第1気流通路の仮想中心から半径方向に放射状に延びる線に沿い、かつ、糸条の走行方向に渡って、前記第1気流通路および/または前記第2気流通路内に仕切板を有することを特徴とする請求項1または2に記載の紡糸用環状冷却装置。 A partition plate is provided in the first airflow passage and / or the second airflow passage along a line extending radially from the virtual center of the annular first airflow passage and in the running direction of the yarn. The annular cooling device for spinning according to claim 1 or 2, characterized by comprising: 紡糸口金から熱可塑性ポリマを溶融紡出し、紡出された糸条の走行経路の外側から内向きに気流を吹き付けて冷却固化させるに際し、
気流導入管より導かれた気流を、該気流導入管に連通し前記糸条の走行経路の外側を包囲するように配設された環状の流路を有する第1気流通路まで導き、
その後、前記第1気流通路の下流に前記糸条の走行経路の外側を包囲するように配設された環状の流路を有し前記第1気流通路の前記糸条の走行経路に垂直な断面における流路断面積より小さい断面積を備えた第2気流通路まで導き、
その後、前記第2気流通路の外側、または前記1気流通路および前記第2気流通路の外側に配設されたヒータ発熱部を有する外壁部材により気流を加熱しつつ、前記気流通路の前記糸条の走行経路に垂直な各断面において流フィルタの外側を包囲するように配設された以下の式を満足する円筒状整流部材に気流を導き、該整流フィルタは第1気流通路および前記第2気流通路の内側に前記糸条の走行経路の外側を包囲するように環状に配設されており、
その後、前記整流フィルタより気流を内向きに吹き出すことを特徴とする溶融紡糸方法。
0.25≦(D 2H −D 2I )/(D 2O −D 2I )≦0.75
但し、D 2H :円筒状整流部材の内径(m)、
2O :第2気流通路の外径(m)、
2I :整流フィルタの外径(m)を示す。
When the thermoplastic polymer is melt-spun from the spinneret and air is blown inward from the outside of the running path of the spun yarn to cool and solidify,
The air flow guided from the air flow introduction pipe is led to the first air flow path having an annular flow path which is arranged to communicate with the air flow introduction pipe and surround the outside of the travel path of the yarn ,
Thereafter, a cross-section perpendicular to the yarn travel path of the first airflow path has an annular flow path disposed so as to surround the outside of the travel path of the yarn downstream of the first airflow path. Leading to a second airflow passage having a smaller cross-sectional area than
After that, while heating the airflow with an outer wall member having a heater heat generating portion arranged outside the second airflow passage or outside the first airflow passage and the second airflow passage , guide the air flow in a cylindrical rectifying members satisfying the disposed the following equation so as to surround the outside of rectifier filter in each cross section perpendicular to the travel path, the rectifier filter first airflow passage and the second air flow It is annularly arranged inside the passage so as to surround the outside of the traveling path of the yarn,
Then, melt spinning method characterized by blowing the air flow inwardly from the rectifying filter.
0.25 ≦ (D 2H −D 2I ) / (D 2O −D 2I ) ≦ 0.75
However, D2H : Inner diameter (m) of cylindrical rectifying member,
D 2O : outer diameter (m) of the second airflow path,
D 2I : indicates the outer diameter (m) of the rectifying filter.
JP2008302274A 2007-11-29 2008-11-27 Spinning cooling device and melt spinning method Active JP5526531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302274A JP5526531B2 (en) 2007-11-29 2008-11-27 Spinning cooling device and melt spinning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007308294 2007-11-29
JP2007308294 2007-11-29
JP2008302274A JP5526531B2 (en) 2007-11-29 2008-11-27 Spinning cooling device and melt spinning method

Publications (2)

Publication Number Publication Date
JP2009150037A JP2009150037A (en) 2009-07-09
JP5526531B2 true JP5526531B2 (en) 2014-06-18

Family

ID=40919463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302274A Active JP5526531B2 (en) 2007-11-29 2008-11-27 Spinning cooling device and melt spinning method

Country Status (1)

Country Link
JP (1) JP5526531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862794A (en) * 2015-06-22 2015-08-26 孔幼娟 Circular blowing polyester spinning cooling device and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585469B2 (en) * 2010-01-29 2014-09-10 東レ株式会社 Synthetic fiber melt spinning equipment
JP5596422B2 (en) * 2010-06-04 2014-09-24 Tmtマシナリー株式会社 Yarn cooling device
CN102134759B (en) * 2011-05-12 2012-07-04 无锡市太极实业股份有限公司 Circular blow cooling device for producing industrial polyester filaments
CN103526312B (en) * 2013-10-18 2017-12-01 王振海 For synthesizing the air-supply arrangement of tow cooling
JP6364311B2 (en) * 2014-10-20 2018-07-25 Tmtマシナリー株式会社 Yarn cooling device
CN105040125B (en) * 2015-06-22 2017-05-31 泉州惠安长圣生物科技有限公司 Polyester circular blows cooling device and terylene spinning cooling means and dacron thread production method
DE112016003628A5 (en) * 2015-08-08 2018-05-03 Oerlikon Textile Gmbh & Co. Kg Method and apparatus for melt spinning a synthetic thread
CN113122940A (en) * 2021-03-06 2021-07-16 桐昆集团股份有限公司 Polyester black special-shaped POY fiber production equipment and production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647017Y2 (en) * 1989-07-14 1994-11-30 日本エステル株式会社 Spinning yarn cooling device
US5219582A (en) * 1991-12-06 1993-06-15 E. I. Du Pont De Nemours And Company Apparatus for quenching melt spun filaments
EP1079008A1 (en) * 1999-08-26 2001-02-28 B a r m a g AG Process and apparatus for the spinning of a multifilament yarn
JP2001200422A (en) * 2000-01-19 2001-07-27 Mitsubishi Rayon Co Ltd Cooling device for hollow fiber and method for producing hollow fiber
JP2007063689A (en) * 2005-08-30 2007-03-15 Teijin Fibers Ltd Device for cooling yarn
JP2007284857A (en) * 2006-03-22 2007-11-01 Toray Ind Inc Method for melt spinning polyester and its melt spinning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862794A (en) * 2015-06-22 2015-08-26 孔幼娟 Circular blowing polyester spinning cooling device and method

Also Published As

Publication number Publication date
JP2009150037A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5526531B2 (en) Spinning cooling device and melt spinning method
JP2008231607A (en) Annular cooling apparatus for spinning and melt-spinning method
JP2010106393A (en) Apparatus and method for producing multifilament yarn
JP2010077553A (en) Apparatus and method for producing filament yarn
US6705852B2 (en) Melt spinning apparatus
JP2007063690A (en) Device for cooling yarn
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JP2009186772A (en) Manufacturing device of plastic optical fiber, and manufacturing method thereof
JP2006241611A (en) Melt-spinning equipment of synthetic fiber
JP2015014071A (en) Line-of-thread cooling system
JP2007247121A (en) Yarn cooling device
JP5906808B2 (en) Synthetic fiber manufacturing method
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JP5585469B2 (en) Synthetic fiber melt spinning equipment
JP4904943B2 (en) Polyester fiber melt spinning equipment
JP2009097119A (en) Device for melt-spinning thermoplastic fiber
JPH1018122A (en) Melt spinning
JP4988318B2 (en) Multi-spindle melt spinning apparatus and ultrafine multifilament yarn obtained therefrom
JP2009068154A (en) Yarn cooling device
WO2001071070A1 (en) Molten yarn take-up device
JP5332253B2 (en) Filament yarn manufacturing apparatus and manufacturing method
US5182068A (en) High speed spinning process
JPH08218217A (en) Apparatus for cooling yarn
JP2011102448A (en) Apparatus and method of producing filament yarn
JP2010047880A (en) Apparatus and method for producing filament yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5526531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151