JP2010047880A - Apparatus and method for producing filament yarn - Google Patents

Apparatus and method for producing filament yarn Download PDF

Info

Publication number
JP2010047880A
JP2010047880A JP2008215059A JP2008215059A JP2010047880A JP 2010047880 A JP2010047880 A JP 2010047880A JP 2008215059 A JP2008215059 A JP 2008215059A JP 2008215059 A JP2008215059 A JP 2008215059A JP 2010047880 A JP2010047880 A JP 2010047880A
Authority
JP
Japan
Prior art keywords
filament yarn
yarn
traveling path
airflow
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008215059A
Other languages
Japanese (ja)
Inventor
Seiji Mizukami
誠二 水上
Shoji Funakoshi
祥二 船越
Masakazu Kodera
将一 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008215059A priority Critical patent/JP2010047880A/en
Publication of JP2010047880A publication Critical patent/JP2010047880A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method by which a filament yarn having excellent quality, in particular such as strength and elongation or elongation or strength, uniformity such as yarn thickness unevenness or quality unevenness, and grade such as fluff is produced with good productivity and general-purpose properties. <P>SOLUTION: The apparatus for producing the filament yarn includes at least a spinneret for spinning a molten thermoplastic polymer as the filament yarn and a cooling means provided with an air stream blowing surface having a circular cross-sectional shape in the direction perpendicular to the running path direction of the filament yarn, surrounding the running path of the filament yarn from the outer peripheral side, blowing an air stream inward from the outer peripheral side of the running path of the filament yarn, and cooling the filament yarn. In the apparatus for producing the filament yarn, the cross-sectional shape of the air stream blowing surface in the direction perpendicular to the running path direction of the filament yarn in the cooling means is disposed so as to gradually reduce from the upstream side to the downstream side in the running path direction of the filament yarn. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フィラメント糸の製造装置および製造方法に関する。   The present invention relates to a filament yarn manufacturing apparatus and manufacturing method.

ポリエステルやポリアミド等の熱可塑性ポリマーから構成されるフィラメント糸は、一般に溶融紡糸、即ち、スピンブロックに配設される紡糸パックに供給された溶融した熱可塑性ポリマーを、紡糸パックに装備された紡糸口金からフィラメント糸として紡出し、気流等により冷却、固化させた後、必要に応じ集束や油剤付与等を施して、ローラー等で一旦引き取り、更に必要に応じ加熱ローラー等で延伸や熱処理等を行った後、巻き取る等の過程を経て製造される。なお、上記した延伸や熱処理等は、紡糸口金から紡出されたフィラメント糸を、気流等により冷却、固化させた後に、加熱チューブ等を通過させて行う場合や、一旦引き取り、巻き取った後に別工程で行う場合もある。また、紡糸口金から紡出されたフィラメント糸を、加熱筒等に通過させて徐冷させた後に、気流等により冷却、固化させる場合もある。また、フィラメント糸の冷却は、一般に冷却手段からフィラメント糸に気流を吹き付けることにより行われ、平面状の気流吹き出し面を設けて、円形の紡糸口金から紡出されるフィラメント糸に一方向の気流を吹き付けて冷却する冷却手段(以下、この冷却手段をユニフロ冷却手段と呼ぶこととする)、フィラメント糸の各単糸を紡出する吐出孔を、紡糸口金中心を中心として紡糸口金に円周状に配列し、更に円筒状の気流吹き出し面を設けて、フィラメント糸を、フィラメント糸の走行経路の内周側から外向き、あるいはフィラメント糸の走行経路の外周側から内向きに、気流を吹き付けて冷却する冷却手段(以下、フィラメント糸の走行経路の内周側から外向きに気流を吹き付けてフィラメント糸を冷却する冷却手段を、外吹き円筒状冷却手段、また、フィラメント糸の走行経路の外周側から内向きに気流を吹き付けてフィラメント糸を冷却する冷却手段を内吹き円筒状冷却手段と呼ぶこととする)等が知られている。なお、ユニフロ冷却手段では、フィラメント糸の各単糸の内、気流吹き出し面に近い側の単糸は充分冷却されるが、遠い側の単糸は充分に冷却され難く、冷却をフィラメント糸の各単糸に対して均一に行うことが難しく、特に多フィラメント化等を行うと、冷却斑や糸揺れ等が発生し、糸の太さ斑等が極めて悪化する問題等があるのに対し、外吹き円筒状冷却手段や内吹き円筒状冷却手段では、フィラメント糸の走行経路の内周側あるいは外周側からの気流で、全円周にわたってフィラメント糸を冷却できるので、フィラメント糸の各単糸を均一に冷却し易く、冷却斑や糸揺れ等の抑制が期待できる冷却手段であると考えられる。また、本発明者らの知見によれば、特に、内吹き円筒状冷却手段は、外吹き円筒状冷却手段に対し、円筒状の気流吹き出し面から吹き出された気流がフィラメント糸の走行経路の内周側に向かうにつれて流路の縮小により増速され易いため、冷却能力が比較的高く、多品種対応等の汎用性にも優れる。また、フィラメント糸の走行経路の外周側に気流吹き出し面を配設するため、フィラメント糸は現場雰囲気の乱れ等の影響を受け難い。そのため、本発明者らの知見によれば、内吹き円筒状冷却手段は、均一冷却、冷却能力、汎用性等に優れたポテンシャルの高い冷却手段と考えられる。なお、本明細書において、固化とは、熱可塑性ポリマーから構成されるフィラメント糸やその各単糸がガラス転移温度以下となった状態を示すものとする。   Filament yarns composed of thermoplastic polymers such as polyester and polyamide are generally melt-spun, that is, a spinneret equipped with a spin pack and a molten thermoplastic polymer supplied to a spin pack disposed in a spin block. After spinning as filament yarn, cooling and solidifying with air current etc., bundling and applying oil agent etc. were performed as necessary, once taken up with a roller etc., further stretched and heat treated etc. with a heating roller etc. if necessary After that, it is manufactured through a process such as winding. The above-described drawing, heat treatment, and the like may be performed when the filament yarn spun from the spinneret is cooled and solidified by an air current or the like and then passed through a heating tube or the like. It may be performed in a process. In some cases, the filament yarn spun from the spinneret is allowed to pass through a heating cylinder or the like and gradually cooled, and then cooled and solidified by an air current or the like. In addition, cooling of the filament yarn is generally performed by blowing an air flow from the cooling means to the filament yarn, and a flat air flow blowing surface is provided to blow a one-way air flow to the filament yarn spun from the circular spinneret. Cooling means (hereinafter referred to as the “uniflo cooling means”) for cooling by cooling, and the discharge holes for spinning each filament yarn are arranged circumferentially around the spinneret center. Further, a cylindrical airflow blowing surface is provided to cool the filament yarn by blowing an airflow outward from the inner peripheral side of the filament yarn traveling path or inward from the outer peripheral side of the filament yarn traveling path. Cooling means (hereinafter referred to as cooling means for cooling the filament yarn by blowing an air flow outward from the inner peripheral side of the filament yarn traveling path is referred to as an outer blown cylindrical cooling. Means, by blowing an air flow will be referred to as the inner blown cylindrical cooling means a cooling means for cooling the filament yarn), and the like inwardly from the outer peripheral side of the travel path of the filament yarn. In the Uniflo cooling means, among the single yarns of the filament yarn, the single yarn on the side close to the air flow blowing surface is sufficiently cooled, but the single yarn on the far side is not sufficiently cooled, and cooling is performed for each filament yarn. Although it is difficult to uniformly apply to a single yarn, especially when multifilaments are used, there are problems such as occurrence of cooling spots and yarn shaking, and the thickness of the yarn is extremely deteriorated. In the blown cylindrical cooling means and the inner blown cylindrical cooling means, the filament yarn can be cooled over the entire circumference with the airflow from the inner or outer peripheral side of the filament yarn travel path, so that each filament yarn can be uniformly distributed. It is considered that this is a cooling means that can be easily cooled and can be expected to suppress cooling spots and yarn wobbling. Further, according to the knowledge of the present inventors, in particular, the inner blown cylindrical cooling means has an air flow blown out from the cylindrical air flow blowing surface in the filament yarn traveling path with respect to the outer blown cylindrical cooling means. Since it is easy to increase the speed by shrinking the flow path toward the circumferential side, the cooling capacity is relatively high, and the versatility for dealing with various types is excellent. In addition, since the airflow blowing surface is disposed on the outer peripheral side of the filament yarn traveling path, the filament yarn is not easily affected by the disturbance of the field atmosphere. Therefore, according to the knowledge of the present inventors, the inner blow cylindrical cooling means is considered to be a cooling means with high potential that is excellent in uniform cooling, cooling capacity, versatility, and the like. In this specification, solidification refers to a state in which the filament yarn composed of a thermoplastic polymer and each single yarn thereof are below the glass transition temperature.

紡出から固化までのフィラメント糸の挙動を更に詳しく述べると、紡糸口金から紡出されたフィラメント糸の各単糸は、各単糸と各単糸廻りの気流との間の熱交換による冷却の作用や、各単糸と各単糸廻りの気流との間の摩擦に基づく抵抗等による張力の作用を受ける等して、固化するまで、各単糸の走行方向に垂直な方向の断面の断面積を縮小させつつ、走行速度を増加し続ける。なお、フィラメント糸の冷却等に用いられる気流には空気流を用いることが多いため、上記した各単糸と各単糸廻りの気流との間の摩擦に基づく抵抗を以下、空気抵抗と呼ぶこととする。   To describe the behavior of the filament yarn from spinning to solidification in more detail, each filament yarn spun from the spinneret is cooled by heat exchange between each filament and the airflow around each filament. The cross-section in the direction perpendicular to the running direction of each single yarn until solidification occurs due to the action and the action of tension, etc. based on the friction between each single yarn and the airflow around each single yarn. Continue to increase the running speed while reducing the area. In addition, since an air flow is often used for the airflow used for cooling the filament yarn, the resistance based on the friction between each single yarn and the airflow around each single yarn is hereinafter referred to as air resistance. And

ここで、紡出してから一旦ほぼ固化するまでにフィラメント糸の各単糸に働く張力をそのほぼ固化する位置での各単糸の走行方向に垂直な方向の断面の断面積で除して求められる応力と、フィラメント糸の各単糸の分子配向度の代表値である複屈折率との間には、密接な相関関係があることが一般に知られている。即ち、この応力が大きくなると、フィラメント糸の各単糸の分子配向度が高くなり、紡出させ一旦固化させて引き取ったフィラメント糸の強度と伸度を掛け合わせた強伸度や特に伸度等の品質が低くなり易く、逆に、この応力が小さくなると、フィラメント糸の各単糸の分子配向度が低く抑制されて、紡出させ一旦固化させて引き取ったフィラメント糸の強度と伸度を掛け合わせた強伸度や特に伸度等の品質が高くなり易いことが知られている。   Here, the tension acting on each single yarn of the filament yarn from spinning until it is almost solidified is obtained by dividing by the cross-sectional area of the cross section in the direction perpendicular to the running direction of each single yarn at the position where the filament yarn is almost solidified. It is generally known that there is a close correlation between the generated stress and the birefringence, which is a representative value of the degree of molecular orientation of each single yarn of the filament yarn. That is, when this stress increases, the degree of molecular orientation of each single yarn of the filament yarn increases, and the strength and elongation obtained by multiplying the strength and elongation of the filament yarn that has been spun, temporarily solidified, and taken off, etc. On the contrary, when this stress is reduced, the degree of molecular orientation of each single yarn of the filament yarn is suppressed to a low level, and the strength and elongation of the filament yarn that has been spun, solidified, and taken off are multiplied. It is known that the combined strength, particularly the quality such as elongation, tends to be high.

紡出させ一旦固化させて引き取ったフィラメント糸の強伸度や伸度等が低くなると、総じてフィラメント糸の強度も低くなり易く、また、このフィラメント糸を同工程あるいは別工程で延伸させて得た延伸後のフィラメント糸の強伸度や伸度、強度等の品質も低くなり易い。即ち、紡出させ一旦固化させて引き取ったフィラメント糸の強伸度や伸度が低くなると、延伸後のフィラメント糸の伸度を高く維持する狙いで延伸倍率を低くすると、延伸後のフィラメント糸において充分な強度を得難くなり、逆に、延伸後のフィラメント糸の強度を高く維持する狙いで延伸倍率を高くすると、延伸後のフィラメント糸において充分な伸度を得難くなる。このため、紡出させ一旦固化させて引き取ったフィラメント糸の強伸度や伸度等が低くなると、フィラメント糸自体は勿論、フィラメント糸から製造されるテキスタイル等の高次加工製品の丈夫さ等が悪化する問題がある。また、毛羽や糸切れが発生し易くなり、フィラメント糸の製造工程は勿論のこと、高次加工製品の製造工程の生産性も悪化する問題もある。   When the filament yarn that has been spun and solidified and taken off has a low strength, elongation, etc., the filament yarn tends to have a low strength as a whole. Quality such as strong elongation, elongation, and strength of the filament yarn after drawing tends to be low. That is, if the filament yarn that has been spun and solidified and pulled down has a low strength or elongation, the filament yarn after drawing is reduced in order to maintain a high elongation of the filament yarn after drawing. It becomes difficult to obtain sufficient strength, and conversely, if the draw ratio is increased for the purpose of maintaining high strength of the filament yarn after drawing, it is difficult to obtain sufficient elongation in the drawn filament yarn. For this reason, when the strength, elongation, etc. of the filament yarn that has been spun and once solidified and taken down become low, the filament yarn itself as well as the robustness of high-order processed products such as textiles produced from the filament yarn, etc. There is a problem that gets worse. In addition, fluff and yarn breakage are likely to occur, and there is a problem that productivity of a manufacturing process of a high-order processed product is deteriorated as well as a manufacturing process of a filament yarn.

そこで、この応力を抑制すべく、従来から様々な視点で数多くの提案が行われている。中でも重要な提案の一つに、フィラメント糸の各単糸に働く空気抵抗を抑制し、この空気抵抗による張力の増大を抑制することで、応力を抑制する手法がある。なお、本発明者らの知見によれば、溶融紡糸の分野では、特に生産性向上を目的に紡糸速度の高速化が盛んに進められてきた経緯があり、高速化に伴って強伸度や伸度、強度等が低下することを抑制する狙い、あるいは高速化しても強伸度や伸度、強度等を高速化しない場合と同等に維持する等の狙いで、高速化に伴って大きく増大する空気抵抗に注目が集まっていた背景があると考える。ここで、紡糸速度とは、フィラメント糸が紡糸口金から紡出されて初めて固化した際の糸速度、あるいはフィラメント糸がローラー等で初めて引き取られる際の糸速度を示すものとする。   In order to suppress this stress, many proposals have been made from various viewpoints. One of the most important proposals is a method of suppressing stress by suppressing the air resistance acting on each single yarn of the filament yarn and suppressing the increase in tension due to the air resistance. In addition, according to the knowledge of the present inventors, in the field of melt spinning, there is a background that the spinning speed has been actively promoted especially for the purpose of improving productivity. Greatly increases with increasing speed, with the aim of suppressing the decrease in elongation, strength, etc., or maintaining the same level of strength, elongation, strength, etc. even when the speed is increased. I think there is a background that attracted attention to the air resistance. Here, the spinning speed indicates a yarn speed when the filament yarn is solidified for the first time after being spun from the spinneret, or a yarn speed when the filament yarn is first taken up by a roller or the like.

この手法を用いた提案として、例えば、特許文献1の提案が挙げられる。特許文献1では、紡糸口金(紡糸ノズル)中の加熱された熱可塑性ポリマー(溶融重合体)から少なくとも500m/分の表面速度で駆動されているロールへ至る経路において熱可塑性ポリマーから構成されるフィラメント糸(重合体の連続フィラメント)を紡糸する溶融紡糸法であって、気流(冷却ガス)が、前記紡糸口金下の領域で吐出直後の溶融したフィラメント糸(溶融フィラメント)に導入され、前記フィラメント糸と気流とが前記領域から、フィラメント糸が冷却する過程でフィラメント糸を包囲する限られた寸法の管状部を一緒に通過し、さらに、前記管状部の最上部が前記紡糸口金面の下80cmより短い距離に配置され、前記管状部の寸法と位置および気流(ガス)の量は、気流が加速されるが前記フィラメント糸の速度より低速で管状部から出るように、制御される方法等が提案されている。また、特許文献1中の図2には、特許文献1に提案の方法を実践するための装置の一実施形態中の一部断面の概略立面図が図示されており、この図について概略のみを記すと、フィラメント糸を吐出する紡糸口金下の領域に、気流(加圧冷却ガス)を導入する円筒状の気流吹き出し面(円筒状クエンチスクリーンシステム)、また、円筒状の気流吹き出し面の下部に円筒状の気流吹き出し面と等しい内径の短い管状部、テーパーのついた部分、より狭い内径の管状部が順に配置された図が図示されている。なお、上記特許文献1の説明において、括弧内に特許文献1中での語句表記を参考までに付記したが、以下の特許文献1に関する説明においては、括弧外の語句で表記する。即ち、紡糸ノズルを紡糸口金、溶融重合体を熱可塑性ポリマー、重合体の連続フィラメントを熱可塑性ポリマーから構成されるフィラメント糸、冷却ガスあるいはガスあるいは加圧冷却ガスを気流、溶融フィラメントを溶融したフィラメント糸、フィラメントをフィラメント糸、円筒状クエンチスクリーンシステムを円筒状の気流吹き出し面と表記する。また、この特許文献1には、円筒状の気流吹き出し面から導入された気流は、紡糸口金下の円筒状の気流吹き出し面の領域から出るために、紡糸口金下の円筒状の気流吹き出し面の領域よりも断面積の小さい管状部に入らねばならず、管状部に入り通過するにつれて加速されなければならないとの記載がある。なお、本発明者らの知見によれば、この様に気流を加速することで、フィラメント糸と気流との間の相対速度を小さくし、フィラメント糸に働く空気抵抗、また、空気抵抗による張力の増大を抑制して、紡糸速度の高速化に伴って起こりがちな伸度の低下等を抑制するのが狙いと考えられる。また、特許文献1には、円筒状の気流吹き出し面から導入された気流は、紡糸口金下の円筒状の気流吹き出し面の領域から出るために、紡糸口金下の円筒状の気流吹き出し面の領域よりも断面積の小さい管状部に入らねばならず、管状部に入り通過するにつれて加速されるため、フィラメント糸を構成する各単糸の配列の内部、即ち内側に入るよう強制され、そのことでフィラメント糸に対する気流の冷却効果が向上するとの記載もある。   As a proposal using this method, for example, the proposal of Patent Document 1 can be cited. In Patent Document 1, a filament composed of a thermoplastic polymer in a path from a heated thermoplastic polymer (melt polymer) in a spinneret (spinning nozzle) to a roll driven at a surface speed of at least 500 m / min. A melt spinning method for spinning a yarn (a continuous filament of a polymer), wherein an air flow (cooling gas) is introduced into a melted filament yarn (melted filament) immediately after being discharged in a region under the spinneret, and the filament yarn And air flow from the region together through a tubular portion of a limited size surrounding the filament yarn as the filament yarn cools, and the uppermost portion of the tubular portion is more than 80 cm below the spinneret surface. Placed at a short distance, the size and position of the tubular part and the amount of airflow (gas) is the speed of the filament yarn, although the airflow is accelerated Ri to exit from the tubular portion at a low speed, such as a controlled manner has been proposed. Further, FIG. 2 in Patent Document 1 shows a schematic elevation view of a partial cross section in an embodiment of an apparatus for practicing the method proposed in Patent Document 1, and only the outline of this figure is shown. The cylindrical airflow blowing surface (cylindrical quench screen system) that introduces airflow (pressurized cooling gas) into the area below the spinneret that discharges the filament yarn, and the lower part of the cylindrical airflow blowing surface FIG. 1 is a diagram in which a tubular portion having a short inner diameter equal to a cylindrical airflow blowing surface, a tapered portion, and a tubular portion having a narrower inner diameter are sequentially arranged. In addition, in the description of Patent Document 1, the wording in Patent Document 1 is added in parentheses for reference, but in the following description of Patent Document 1, it is written in words outside the parentheses. That is, a spinning nozzle as a spinneret, a molten polymer as a thermoplastic polymer, a continuous filament of polymer as a filament yarn composed of a thermoplastic polymer, a cooling gas or gas or pressurized cooling gas as an air stream, and a filament obtained by melting a molten filament The yarn and filament are referred to as a filament yarn, and the cylindrical quench screen system is referred to as a cylindrical airflow blowing surface. Further, in Patent Document 1, the airflow introduced from the cylindrical airflow blowing surface exits from the region of the cylindrical airflow blowing surface below the spinneret, so that the cylindrical airflow blowing surface below the spinneret There is a statement that it must enter a tubular section with a smaller cross-sectional area than the region and must be accelerated as it enters and passes through the tubular section. According to the knowledge of the present inventors, by accelerating the airflow in this way, the relative speed between the filament yarn and the airflow is reduced, the air resistance acting on the filament yarn, and the tension due to the air resistance It is considered that the aim is to suppress the increase and to suppress the decrease in elongation, etc., which tends to occur as the spinning speed increases. Further, in Patent Document 1, since the airflow introduced from the cylindrical airflow blowing surface exits from the area of the cylindrical airflow blowing surface below the spinneret, the area of the cylindrical airflow blowing surface below the spinneret Must enter a tubular section with a smaller cross-sectional area and is accelerated as it enters and passes through the tubular section, forcing it to enter the inside, i.e., inside, of each single yarn array comprising the filament yarn, thereby There is also a description that the cooling effect of the airflow on the filament yarn is improved.

しかしながら、本発明者らの知見によれば、特許文献1の提案では、次の様な問題がある。先ず、第1に、特許文献1中の図2の図示から、円筒状の気流吹き出し面が配設されている領域において、引き込みロールに向かってフィラメント糸が集束されるに伴い、フィラメント糸の走行経路方向に垂直な方向のフィラメント糸と円筒状の気流吹き出し面との距離が、フィラメント糸の走行経路方向の上流側から下流側に向かって、徐々に大きくなる様に配設されているため、円筒状の気流吹き出し面が配設されている領域において、フィラメント糸の走行経路方向の上流側から下流側に向かって、フィラメント糸の各単糸廻りの気流が円筒状の気流吹き出し面から導入される気流により徐々に整流化され難くなり、乱れ易くなる他、フィラメント糸を構成する各単糸の配列の内側に気流吹き出し面から導入された気流が徐々に入り難くなり、フィラメント糸を構成する各単糸の配列の内側と外側で冷却斑が発生し易い問題がある。従って、先ず、この円筒状の気流吹き出し面の領域において、気流乱れ等による糸揺れや冷却斑等で、フィラメント糸の糸の太さ斑や品質斑等の均斉性が悪化したり、その斑が欠陥となって、フィラメント糸の強度や伸度等の品質が低下したりする等の問題がある。なお、上記の通り、円筒状の気流吹き出し面から導入された気流は、フィラメント糸の走行経路方向の上流側から下流側に向かって、フィラメント糸を構成する各単糸の配列の内側に徐々に入り難くなるため、それに従って気流吹き出し面から導入された気流の多くは、フィラメント糸を構成する各単糸の配列の内側に貫入することなく、特にフィラメント糸の配列内側の単糸に対して徐々に余りフィラメント糸の冷却に寄与することなく、フィラメント糸の走行経路方向の上流側から下流側に向かって、フィラメント糸や流路抵抗等の影響を受けて徐々に乱れつつ、円筒状の気流吹き出し面の領域から、円筒状の気流吹き出し面と等しい内径の短い管状部およびテーパーのついた部分および断面積の小さい管状部の領域へと流入する。   However, according to the knowledge of the present inventors, the proposal of Patent Document 1 has the following problems. First, from the illustration of FIG. 2 in Patent Document 1, the filament yarn travels as the filament yarn converges toward the drawing roll in the region where the cylindrical airflow blowing surface is disposed. Since the distance between the filament yarn in the direction perpendicular to the path direction and the cylindrical airflow blowing surface is arranged so as to gradually increase from the upstream side to the downstream side in the traveling path direction of the filament yarn, In the region where the cylindrical airflow blowing surface is disposed, the airflow around each single yarn of the filament yarn is introduced from the cylindrical airflow blowing surface from the upstream side to the downstream side in the traveling direction of the filament yarn. It becomes difficult to be rectified gradually by the airflow, and the airflow introduced from the airflow blowing surface inside the array of single yarns constituting the filament yarn is difficult to enter gradually. Becomes, cooled plaques inside and outside of the sequence of each single yarn constituting the filament yarn is liable problem occurs. Therefore, first, in the area of the cylindrical airflow blowing surface, the uniformity of the yarn thickness variation and quality unevenness of the filament yarn is deteriorated due to yarn fluctuations or cooling spots due to airflow turbulence, etc. There is a problem that the quality such as strength and elongation of the filament yarn is deteriorated due to defects. As described above, the airflow introduced from the cylindrical airflow blowing surface gradually increases from the upstream side to the downstream side in the traveling path direction of the filament yarn, inside the arrangement of the single yarns constituting the filament yarn. Therefore, most of the airflow introduced from the airflow blowing surface accordingly does not penetrate inside the array of single yarns constituting the filament yarn, and gradually gradually, especially with respect to the single yarn inside the filament yarn array. The cylindrical air flow is gradually disturbed by the influence of the filament yarn and flow path resistance from the upstream side to the downstream side in the traveling direction of the filament yarn without contributing to the cooling of the filament yarn. From the area of the surface, it flows into the tubular part having a short inner diameter, a tapered part and a tubular part having a small cross-sectional area equal to the cylindrical air blowing face.

そして、第2に、円筒状の気流吹き出し面の領域から、円筒状の気流吹き出し面と等しい内径の短い管状部およびテーパーのついた部分および断面積の小さい管状部の領域へ、上記の通り乱れた状態で流入する気流は、更に円筒状の気流吹き出し面と等しい内径の短い管状部やテーパーのついた部分や断面積の小さい管状部等の流路抵抗等の影響を受けて乱れつつ、急激に加速されるため、益々乱れ易い等の問題がある。また、テーパーのついた部分や断面積の小さい管状部等において、上記の通り乱れた状態で、気流が、急激にフィラメント糸を構成する各単糸の配列の内側に入る様に強制されるため、大きな糸揺れ等が発生し易い等の問題がある。従って、この円筒状の気流吹き出し面と等しい内径の短い管状部およびテーパーのついた部分および断面積の小さい管状部の領域において、大きく気流が乱れて、大きな糸揺れ等が発生する等して、糸の太さ斑等の均斉性等が大きく悪化する問題がある。   Secondly, from the region of the cylindrical airflow blowing surface to the region of the tubular portion having a short inner diameter and a tapered portion equal to the cylindrical airflow blowing surface, and the tubular portion having a small cross-sectional area, as described above. The airflow that flows in the turbulent state is further turbulent under the influence of the flow resistance of the tubular part with a short inner diameter equal to the cylindrical airflow blowing surface, the tapered part, the tubular part with a small cross-sectional area, etc. However, there is a problem that it is more likely to be disturbed. In addition, in a tapered portion or a tubular portion having a small cross-sectional area, the air current is forced to enter the inside of each single yarn constituting the filament yarn in the turbulent state as described above. There is a problem that large yarn swings easily occur. Therefore, in the region of the tubular portion having a short inner diameter equal to the cylindrical airflow blowing surface and the tapered portion and the tubular portion having a small cross-sectional area, the airflow is greatly turbulent, and a large yarn swaying occurs. There is a problem that the uniformity of the thread thickness unevenness greatly deteriorates.

また、本発明者らの知見によれば、特許文献1では、フィラメント糸の各単糸に固化までに働く空気抵抗を抑制、空気抵抗による張力の増大を抑制することで、応力を抑制する狙いから、フィラメント糸の各単糸の固化は、円筒状の気流吹き出し面から導入された気流が大きく加速されるテーパーのついた部分や断面積の小さい管状部等において行われる、あるいは行われることを意図していると考えられる。なぜならば、テーパーのついた部分や断面積の小さい管状部よりもフィラメント糸の走行経路方向の上流側でフィラメント糸の各単糸が固化すると、テーパーのついた部分や断面積の小さい管状部において大きく加速される気流により、固化までに働く空気抵抗を充分に抑制することが難しいためである。なお、特許文献1には、フィラメント糸は断面積の小さい管状部を出る前にすでに硬化していることが好ましいとの記載がある。このため、未固化の溶融状態にあるフィラメント糸が、テーパーのついた部分や断面積の小さい管状部等において、上記した様な大きな気流乱れや大きな糸揺れ等に晒されて、フィラメント糸の単糸と単糸とが溶融状態で接触したり、溶融状態の単糸がテーパーのついた部分や断面積の小さい管状部等の壁面に接触したりする等して単糸に傷等ができて欠陥となり、フィラメント糸の強度や伸度等の品質が大きく低下したり、毛羽が発生してフィラメント糸の品位が悪化したり、あるいは、糸切れが発生して生産性が劣化したりする等の問題もある。また、テーパーのついた部分や断面積の小さい管状部等での大きな糸揺れが、フィラメント糸の走行経路方向の上流側の円筒状の気流吹き出し面の領域を走行するフィラメント糸にも伝播して、テーパーのついた部分や断面積の小さい管状部等を走行するフィラメント糸よりも更に高温で、溶融状態にある円筒状の気流吹き出し面の領域を走行するフィラメント糸において、同様に単糸間で接触が発生する等して、フィラメント糸強度や伸度等の品質が大きく低下する等の問題もある。なお、本発明者らの知見によれば、この溶融状態にある単糸の接触の問題は、上記した様に円筒状の気流吹き出し面の領域において、フィラメント糸を構成する各単糸の配列の内側に、円筒状の気流吹き出し面から導入された気流が徐々に入り難くなり、特にフィラメント糸を構成する各単糸の配列内側の単糸が気流吹き出し面から導入される気流により冷却され難くなる点、また、円筒状の気流吹き出し面と等しい内径の短い管状部およびテーパーのついた部分および断面積の小さい管状部の領域におけるフィラメント糸の冷却が、この領域よりもフィラメント糸の走行経路方向の上流側の円筒状の気流吹き出し面から導入されて既にフィラメント糸と熱交換が行われはじめている気流により行われる点、等によっても助長されていると考える。   Further, according to the knowledge of the present inventors, Patent Document 1 aims to suppress the stress by suppressing the air resistance acting on each single yarn of the filament yarn until solidification and suppressing the increase in tension due to the air resistance. Therefore, solidification of each single yarn of the filament yarn is performed or performed in a tapered portion where the airflow introduced from the cylindrical airflow blowing surface is greatly accelerated, a tubular portion having a small cross-sectional area, or the like. Probably intended. This is because when each single yarn of the filament yarn is solidified on the upstream side in the traveling direction of the filament yarn from the tapered portion or the tubular portion having a small sectional area, the tapered portion or the tubular portion having a small sectional area is solidified. This is because it is difficult to sufficiently suppress the air resistance acting until solidification due to the greatly accelerated airflow. Patent Document 1 describes that the filament yarn is preferably already cured before exiting the tubular section having a small cross-sectional area. For this reason, filament yarn in an unsolidified molten state is exposed to large air current turbulence and large yarn sway as described above in a tapered portion or a tubular portion having a small cross-sectional area, and the filament yarn is simply The yarn and the single yarn may be in contact with each other in the molten state, or the single yarn in the molten state may come into contact with the wall surface such as a tapered portion or a tubular portion having a small cross-sectional area. It becomes a defect, the quality of the filament yarn such as strength and elongation is greatly reduced, fluff is generated and the quality of the filament yarn is deteriorated, or the yarn breakage occurs and the productivity is deteriorated. There is also a problem. In addition, large yarn swaying at a tapered portion or a tubular section with a small cross-sectional area is also propagated to the filament yarn traveling in the region of the cylindrical airflow blowing surface upstream in the traveling direction of the filament yarn. In the filament yarn that travels in the region of the cylindrical airflow blowing surface that is in a molten state at a higher temperature than the filament yarn that travels in a tapered portion or a tubular section having a small cross-sectional area, similarly, between the single yarns There is also a problem that the quality such as the filament yarn strength and the elongation greatly deteriorates due to the occurrence of contact. According to the knowledge of the present inventors, the problem of the contact of the single yarn in the melted state is that the arrangement of the single yarns constituting the filament yarn in the region of the cylindrical airflow blowing surface as described above. The airflow introduced from the cylindrical airflow blowing surface gradually becomes difficult to enter inside, and in particular, the single yarn inside the array of single yarns constituting the filament yarn is difficult to be cooled by the airflow introduced from the airflow blowing surface. The cooling of the filament yarn in the region of the tubular portion having a short inner diameter equal to that of the cylindrical airflow blowing surface, the tapered portion, and the tubular portion having a small cross-sectional area is more effective in the traveling direction of the filament yarn than this region. It is thought that it is also promoted by the fact that it is introduced by the air flow that has already been introduced from the upstream cylindrical air flow blowing surface and heat exchange with the filament yarn has started. That.

従って、本発明者らの知見によれば、特許文献1の提案では、上記した様な問題、例えば、大きな気流乱れや大きな糸揺れが発生する等して、フィラメント糸の糸の太さ斑等の均斉性が悪化したり、溶融状態の単糸の接触等で強度や伸度等のフィラメント糸の品質が低下したりする等の問題があり、問題があった。   Therefore, according to the knowledge of the present inventors, in the proposal of Patent Document 1, problems such as those described above, for example, large air current turbulence and large yarn swaying occur, and so on. There is a problem that the uniformity of the yarn deteriorates and the quality of the filament yarn such as strength and elongation decreases due to contact of the melted single yarn.

また、特許文献2では、特許文献2中の第1図に、本発明者らの知見によれば、特許文献1中の図2とほぼ同様な構成を有する図が図示されている。即ち、本発明者らの知見によれば、特許文献2中の第1図には、概略のみを記すと、フィラメント糸(糸条)を吐出する紡糸口金のフィラメント糸の走行経路方向の下流側に、フィラメント糸の走行経路方向の上流側から下流側に向かって、加熱筒、断熱板、円筒状の気流吹き出し面(吹出口)、案内筒、縮小径部が順に配置された図が図示されており、また、この図において、案内筒は、そのフィラメント糸の走行経路方向の上流側が円筒状の気流吹き出し面とほぼ同等の内径を有する形状、下流側がテーパー状に縮小する形状で図示されている。なお、上記特許文献2の説明において、括弧内に特許文献1中での語句表記を参考までに付記したが、以下の特許文献2に関する説明においては、括弧外の語句で表記する。上記した様に、この特許文献2中の第1図の図示から、本発明者らの知見によれば、特許文献2で言う案内筒が、特許文献1で言う円筒状の気流吹き出し面と等しい内径の短い管状部とテーパーのついた部分を合わせた部分、また、特許文献2で言う縮小径部が、特許文献1で言う断面積の小さい管状部に相当すると考えられ、この点において、特許文献2中の第1図の構成と特許文献1中の図2の構成はほぼ同様と考えられる。また、本発明者らの知見によれば、特許文献2には明確な空気抵抗に関するメカニズム等の記載はないが、上記の通り、特許文献2中の第1図の構成と特許文献1中の図2の構成がほぼ同様と考えられるため、特許文献1で意図されている様な空気抵抗の抑制を、特許文献2においても意図することが可能と考えられる。なお、詳細には特許文献2と特許文献1は、特許文献1の表現で言えば、紡糸口金面から断面積の小さい管状部の最上部までの距離等が異なる。   Further, in Patent Document 2, FIG. 1 in Patent Document 2 shows a diagram having substantially the same configuration as FIG. 2 in Patent Document 1 according to the knowledge of the present inventors. That is, according to the knowledge of the present inventors, in FIG. 1 in Patent Document 2, the outline of the spinneret for discharging the filament yarn (yarn) is shown downstream in the traveling path direction of the filament yarn. FIG. 1 illustrates a drawing in which a heating cylinder, a heat insulating plate, a cylindrical airflow blowing surface (blowout port), a guide cylinder, and a reduced diameter portion are arranged in this order from the upstream side to the downstream side in the traveling path direction of the filament yarn. Further, in this figure, the guide cylinder is illustrated in a shape in which the upstream side in the traveling path direction of the filament yarn has an inner diameter substantially equal to the cylindrical airflow blowing surface, and the downstream side is reduced in a tapered shape. Yes. In the description of Patent Document 2, the wording in Patent Document 1 is added in parentheses for reference, but in the following description of Patent Document 2, it is written in words outside the parentheses. As described above, from the illustration of FIG. 1 in Patent Document 2, according to the knowledge of the present inventors, the guide tube referred to in Patent Document 2 is equal to the cylindrical airflow blowing surface referred to in Patent Document 1. It is considered that the portion where the tubular portion having a short inner diameter and the tapered portion are combined, and the reduced diameter portion referred to in Patent Document 2 corresponds to the tubular portion having a small cross-sectional area referred to in Patent Document 1, and in this respect, the patent The configuration of FIG. 1 in Document 2 and the configuration of FIG. 2 in Patent Document 1 are considered to be substantially the same. Further, according to the knowledge of the present inventors, Patent Document 2 does not include a clear mechanism regarding air resistance, but as described above, the configuration of FIG. 1 in Patent Document 2 and Patent Document 1 Since the configuration of FIG. 2 is considered to be almost the same, it is considered that the suppression of air resistance as intended in Patent Document 1 can also be intended in Patent Document 2. In detail, Patent Document 2 and Patent Document 1 are different from each other in terms of the expression of Patent Document 1, such as the distance from the spinneret surface to the top of the tubular portion having a small cross-sectional area.

しかしながら、本発明者らの知見によれば、特許文献2中の第1図の構成と特許文献1中の図2の構成はほぼ同様と考えられ、特許文献2においても、上記した特許文献1と同様な問題があった。   However, according to the knowledge of the present inventors, the configuration of FIG. 1 in Patent Document 2 and the configuration of FIG. 2 in Patent Document 1 are considered to be substantially the same. There was a similar problem.

また、本発明者らの知見によれば、特許文献1で言うテーパーのついた部分の一部や、テーパーのついた部分と断面積の小さい管状部との間、あるいは断面積の小さい管状部の一部等から、気流吹き出し面から導入される気流以外の気流を導入する提案が幾つか提案されている(特許文献3〜6)。例えば、本発明者らの知見によれば、特許文献3では、特許文献1で言う断面積の小さい管状部に相当する紡糸チューブの上端を開放し、紡糸チューブに繋がる負圧発生装置により室内空気を紡糸チューブの上端から導入すること、フィラメント糸が紡糸チューブ内面に接触する危険性を減少させるために、特許文献1で言うテーパーのついた部分に相当するマウスピース(特許文献3では漏斗とも記載あり)と紡糸チューブとの間に空気噴射手段を設け、紡糸チューブの内面に沿って空気ジェットを紡糸チューブ軸方向に噴射しても良いこと等が記載されている。また、特許文献3中の図3には、特許文献3の提案を実現するための装置の模式図が図示されている。   In addition, according to the knowledge of the present inventors, a part of the tapered portion referred to in Patent Document 1, a portion between the tapered portion and a tubular portion having a small cross-sectional area, or a tubular portion having a small cross-sectional area. Some proposals for introducing an airflow other than the airflow introduced from the airflow blowing surface have been proposed (Patent Documents 3 to 6). For example, according to the knowledge of the present inventors, in Patent Document 3, the upper end of a spinning tube corresponding to a tubular portion having a small cross-sectional area as referred to in Patent Document 1 is opened, and indoor air is generated by a negative pressure generator connected to the spinning tube. In order to reduce the risk of the filament yarn coming into contact with the inner surface of the spinning tube, the mouthpiece corresponding to the tapered portion referred to in Patent Document 1 (also described as a funnel in Patent Document 3) And air spinning means may be provided between the spinning tube and the spinning tube, and an air jet may be jetted in the spinning tube axial direction along the inner surface of the spinning tube. FIG. 3 in Patent Document 3 shows a schematic diagram of an apparatus for realizing the proposal of Patent Document 3.

しかしながら、本発明者らの知見によれば、特許文献3中の図3における、マウスピースを含むマウスピースよりフィラメント糸の走行経路方向の上流側の、フィラメント糸に相当するフィラメントの廻りの構成は、円筒状の気流吹き出し面に相当する第1の穿孔シリンダや特許文献1で言うテーパーのついた部分に相当するマウスピース等の図示もあり、詳細には多少異なるが、特許文献1中の図2の構成とほぼ同様と考えられる。そのため、上記した、特にテーパーのついた部分を含むテーパーのついた部分よりフィラメント糸の走行経路方向の上流側の領域に関する特許文献1の問題が同様にあった。また、本発明者らの知見によれば、特許文献3の記載や図示等から、第1の穿孔シリンダや紡糸チューブの上端から導入される気流は、特に温度等が管理されていない室内空気から形成されると考えられる。そのため、室内空気の温度斑や温度変動等が外乱となって、フィラメント糸の糸の太さ斑や品質斑等の均斉性等が悪化する問題もあった。また、本発明者らの知見によれば、紡糸チューブの上端から導入される気流は、特許文献3中の図3の図示等から負圧発生装置に最も近い気流導入部が紡糸チューブの上端であることもあって、断面積の小さい紡糸チューブの上端に一気に急速に導入されるため、糸揺れ等を助長する問題もあった。また、本発明者らの知見によれば、マウスピースと紡糸チューブとの間に空気噴射装置を設けて空気ジェットを導入する場合も、断面積の小さい紡糸チューブの上端に一気に急速に導入されるため、同様に糸揺れ等を助長する問題があった。また、本発明者らの知見によれば、紡糸チューブの上端から導入された気流とマウスピースから流入する気流が一気に急速に衝突、合流して、糸揺れ等を助長する等の問題もあった。   However, according to the knowledge of the present inventors, the configuration around the filament corresponding to the filament yarn on the upstream side in the traveling path direction of the filament yarn from the mouthpiece including the mouthpiece in FIG. In addition, there are illustrations of a first perforated cylinder corresponding to a cylindrical airflow blowing surface, a mouthpiece corresponding to a tapered portion as described in Patent Document 1, and the like. The configuration of 2 is considered to be almost the same. For this reason, the above-described problem of Patent Document 1 relating to the upstream region in the traveling path direction of the filament yarn from the tapered portion including the tapered portion in particular is also the same. Further, according to the knowledge of the present inventors, the airflow introduced from the upper end of the first perforation cylinder or the spinning tube is from indoor air whose temperature is not particularly controlled from the description or illustration of Patent Document 3. It is thought that it is formed. For this reason, there is a problem that temperature unevenness of the indoor air, temperature fluctuation, and the like become disturbances, and the uniformity of the thickness and quality unevenness of the filament yarn deteriorates. Further, according to the knowledge of the present inventors, the airflow introduced from the upper end of the spinning tube is such that the airflow introduction portion closest to the negative pressure generating device is the upper end of the spinning tube as shown in FIG. In some cases, the yarn is rapidly introduced into the upper end of the spinning tube having a small cross-sectional area. Moreover, according to the knowledge of the present inventors, even when an air jet is provided between the mouthpiece and the spinning tube and an air jet is introduced, the air jet is rapidly introduced into the upper end of the spinning tube having a small cross-sectional area. For this reason, there is a problem of promoting thread wobble and the like. Further, according to the knowledge of the present inventors, there was a problem that the airflow introduced from the upper end of the spinning tube and the airflow flowing in from the mouthpiece collided rapidly and merged to promote yarn shaking and the like. .

また、本発明者らの知見によれば、特許文献4では、特許文献1で言うテーパーのついた部分に相当するコンデンサの壁面に複数の入口開口を設けて、付加的な冷却のための気流を導入すること、また、その付加的な冷却のための気流を吸い込み作用や吹き付け作用によって生ぜしめること等が記載されている。また、本発明者らの知見によれば、特許文献4中の図1〜図4には、特許文献4中の記載等から、具体例として2つの入口開口が、コンデンサのフィラメント糸の走行経路方向の下流側に、コンデンサの円周に沿って対称的に配置された図が図示されており、更に特許文献4中の図4では、この2つの入口開口が送風機と接続されるリング室に接続されている図が図示されている。   Further, according to the knowledge of the present inventors, in Patent Document 4, a plurality of inlet openings are provided in the wall surface of the capacitor corresponding to the tapered portion referred to in Patent Document 1, and air flow for additional cooling is provided. And introducing an air flow for additional cooling by suction or spraying. Further, according to the knowledge of the present inventors, in FIG. 1 to FIG. 4 in Patent Document 4, from the description in Patent Document 4, etc., as a specific example, two inlet openings are travel paths of the filament yarn of the capacitor. FIG. 4 in Patent Document 4 shows a diagram in which the two inlet openings are connected to a blower in the ring chamber connected downstream of the direction. A connected diagram is shown.

しかしながら、本発明者らの知見によれば、特許文献4中の図1〜図4における、入口開口よりもフィラメント糸の走行経路方向の上流側の、フィラメント糸に相当するフィラメントの廻りの構成は、円筒状の気流吹き出し面に相当するガス透過性の側壁や、特許文献1で言うテーパーのついた部分に相当するコンデンサ等の図示もあり、詳細には多少異なるが、特許文献1中の図2の構成とほぼ同様と考えられる。そのため、上記した、特にテーパーのついた部分を含むテーパーのついた部分よりフィラメント糸の走行経路方向の上流側の領域に関する特許文献1の問題が同様にあった。また、本発明者らの知見によれば、入口開口から吸い込みあるいは吹き付け作用によって導入される気流は、コンデンサに導入されて直ぐに特許文献1で言う断面積の小さい管状部に相当する加速区間に一気に急速に導入されるため、糸揺れ等を助長する問題もあった。また、本発明者らの知見によれば、入口開口から導入された気流とコンデンサから流入する気流が一気に急速に衝突、合流して、糸揺れ等を助長する等の問題もあった。   However, according to the knowledge of the present inventors, in FIG. 1 to FIG. 4 in Patent Document 4, the configuration around the filament corresponding to the filament yarn is upstream of the entrance opening in the filament yarn traveling path direction. In addition, there are illustrations of a gas permeable side wall corresponding to a cylindrical airflow blowing surface, a capacitor corresponding to a tapered portion referred to in Patent Document 1, and the like. The configuration of 2 is considered to be almost the same. For this reason, the above-described problem of Patent Document 1 relating to the upstream region in the traveling path direction of the filament yarn from the tapered portion including the tapered portion in particular is also the same. Further, according to the knowledge of the present inventors, the airflow introduced by suction or blowing action from the inlet opening is immediately introduced into the condenser and immediately into the acceleration section corresponding to the tubular portion having a small cross-sectional area as described in Patent Document 1. Since it was introduced rapidly, there was also a problem that promoted yarn shaking. Further, according to the knowledge of the present inventors, there was a problem that the airflow introduced from the inlet opening and the airflow flowing in from the condenser collided and merged at a stretch to promote yarn swaying.

また、本発明者らの知見によれば、特許文献5では、特許文献1で言う断面積の小さい管状部に相当する導入管の小径部を包囲して設けられ、導入管の小径部の周囲から空気を噴射する噴射管を設けること、また、その噴射管には噴射管内に噴射される空気流を整流する整流部と噴射口が形成されていること、また、整流部には複数枚の環状仕切板が導入管の長手軸心に平行な状態に嵌装されており、整流された空気流が導入管に長手軸心に平行に流れるようにしていること、また、整流部の空気流の整流方向が導入管の長手軸心と平行であること等が記載されている。また、特許文献5中の図4等に、特許文献5の提案の実施例の構成を示す断面図等が図示されている。   Further, according to the knowledge of the present inventors, in Patent Document 5, a small-diameter portion of the introduction pipe corresponding to the tubular portion having a small cross-sectional area referred to in Patent Document 1 is provided so as to surround the small-diameter portion of the introduction pipe. An injection pipe for injecting air from the pipe, and a rectification part and an injection port for rectifying the air flow injected into the injection pipe are formed in the injection pipe, and a plurality of sheets are provided in the rectification part. The annular partition plate is fitted in a state parallel to the longitudinal axis of the introduction pipe so that the rectified air flow flows parallel to the longitudinal axis of the introduction pipe, and the air flow of the rectification unit The rectification direction is parallel to the longitudinal axis of the introduction pipe. Further, in FIG. 4 and the like in Patent Document 5, a cross-sectional view and the like showing the configuration of the embodiment proposed in Patent Document 5 is shown.

しかしながら、本発明者らの知見によれば、特許文献5中の図4における、導入管の小径部を含む導入管の小径部よりもフィラメント糸の走行経路方向の上流側の、フィラメント糸に相当する糸条の廻りの構成は、円筒状の気流吹き出し面に相当する空気整流体の内面や、特許文献1で言うテーパーのついた部分や断面積の小さい管状部に相当するテーパーや小径部を有する導入管等の図示もあり、詳細には多少異なるが、特許文献1中の図2の構成とほぼ同様と考えられる。そのため、上記した、特にテーパーのついた部分を含むテーパーのついた部分よりフィラメント糸の走行経路方向の上流側の領域に関する特許文献1の問題が同様にあった。また、本発明者らの知見によれば、特許文献5の記載や図示等から、空気整流体から導入される気流は、特に温度等が管理されていない室内空気から形成されると考えられる。そのため、室内空気の温度斑等が外乱となって、フィラメント糸の糸の太さ斑や品質斑等の均斉性等が悪化する問題もあった。   However, according to the knowledge of the present inventors, it corresponds to the filament yarn upstream in the traveling direction of the filament yarn from the small diameter portion of the introduction tube including the small diameter portion of the introduction tube in FIG. The structure around the yarn is that the inner surface of the air rectifying body corresponding to the cylindrical airflow blowing surface, the tapered portion referred to in Patent Document 1, and the taper and small diameter portion corresponding to the tubular portion having a small cross-sectional area. There are also illustrations of the introduction pipe and the like, which are somewhat different in detail, but are considered to be substantially the same as the configuration of FIG. For this reason, the above-described problem of Patent Document 1 relating to the upstream region in the traveling path direction of the filament yarn from the tapered portion including the tapered portion in particular is also the same. Further, according to the knowledge of the present inventors, it is considered from the description and illustration of Patent Document 5 that the airflow introduced from the air rectifier is formed from room air whose temperature is not particularly controlled. For this reason, there is a problem that temperature unevenness of the indoor air becomes a disturbance and uniformity of the filament yarn thickness unevenness and quality unevenness deteriorates.

また、本発明者らの知見によれば、特許文献6では、特許文献6中の図4に関する記載において、特許文献1で言うテーパーのついた部分に相当する円錐形の管のフィラメント糸の走行経路方向の下流側で、フィラメント糸に相当する繊維に2番目の急冷用気体流れを導入すること等が記載されており、特許文献6中の図4には、2番目の急冷用気体流れが通る2番目の円柱形スクリーンや、2番目の急冷用気体流れが2番目の円柱形スクリーンに次いで通る特許文献1で言うテーパーのついた部分に相当する円錐形の管と2番目の管に挟まれた流路等が図示されている。また、本発明者らの知見によれば、特許文献6中の図4に関する記載には、特許文献1で言うテーパーのついた部分に相当する円錐形の管の内径は、特許文献6中の図4に示す様に連続的に小さくなっていてもあるいは最初は前以て決めておいた長さに渡って小さくなった後に実質的に一定の内径のままであっても良いこと等も記載されている。   Further, according to the knowledge of the present inventors, in Patent Document 6, in the description relating to FIG. 4 in Patent Document 6, traveling of filament yarn of a conical tube corresponding to the tapered portion referred to in Patent Document 1 is performed. It is described that the second quenching gas flow is introduced into the fiber corresponding to the filament yarn on the downstream side in the path direction, and FIG. 4 in Patent Document 6 shows the second quenching gas flow. The second cylindrical screen that passes through, and the second quenching gas flow that follows the second cylindrical screen is sandwiched between the conical tube and the second tube that correspond to the tapered portion in Patent Document 1 The illustrated flow path and the like are illustrated. Further, according to the knowledge of the present inventors, in the description related to FIG. 4 in Patent Document 6, the inner diameter of the conical tube corresponding to the tapered portion described in Patent Document 1 is the same as that in Patent Document 6. As shown in FIG. 4, it is also possible that the diameter may be continuously reduced or may remain at a substantially constant inner diameter after being reduced over a predetermined length at first. Has been.

しかしながら、本発明者らの知見によれば、特許文献6中の図4における、円錐形の管を含む円錐形の管よりもフィラメント糸の走行経路方向の上流側の、繊維の廻りの構成は、円筒状の気流吹き出し面に相当する第1の円柱形スクリーンや、特許文献1で言うテーパーのついた部分や断面積の小さい管状部に相当する円錐形の管等の図示もあり、詳細には多少異なるが、特許文献1中の図2の構成とほぼ同様と考えられる。そのため、上記した、特にテーパーのついた部分を含むテーパーのついた部分よりフィラメント糸の走行経路方向の上流側の領域に関する特許文献1の問題が同様にあった。また、本発明者らの知見によれば、2番目の急冷用気体流れは、2番目の円柱形スクリーンを通った後に、円錐形の管と2番目の管に挟まれた流路を通って繊維に導入されるため、円錐形の管と2番目の管に挟まれた流路の抵抗等の影響を受けて乱れ易い等の問題もあった。   However, according to the knowledge of the present inventors, the configuration around the fiber on the upstream side in the traveling path direction of the filament yarn from the conical tube including the conical tube in FIG. There are also illustrations of a first cylindrical screen corresponding to a cylindrical airflow blowing surface, a tapered portion referred to in Patent Document 1, and a conical tube corresponding to a tubular section having a small cross-sectional area, etc. Is somewhat different, but is considered to be substantially the same as the configuration of FIG. For this reason, the above-described problem of Patent Document 1 relating to the upstream region in the traveling path direction of the filament yarn from the tapered portion including the tapered portion in particular is also the same. Further, according to the knowledge of the present inventors, the second quenching gas flow passes through the flow path sandwiched between the conical tube and the second tube after passing through the second cylindrical screen. Since it is introduced into the fiber, there is a problem that it is easily disturbed by the influence of the resistance of the flow path sandwiched between the conical tube and the second tube.

また、本発明者らの知見によれば、例えば、内吹き円筒状冷却手段の円筒状の気流吹き出し面から吹き出される気流の流速、流量を全体的に大きくすることで、円筒状の気流吹き出し面で囲まれる領域において、気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きくし、フィラメント糸と気流との間の相対速度を小さくして、フィラメント糸に働く空気抵抗、また、空気抵抗による張力の増大を抑制することが考えられる。   Further, according to the knowledge of the present inventors, for example, by increasing the overall flow velocity and flow rate of the airflow blown from the cylindrical airflow blowing surface of the inner blowing cylindrical cooling means, the cylindrical airflow blowing In the area surrounded by the surface, the airflow acting on the filament yarn is increased by increasing the flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn of the airflow, and decreasing the relative velocity between the filament yarn and the airflow. It is conceivable to suppress an increase in tension due to resistance and air resistance.

しかしながら、円筒状の気流吹き出し面から吹き出される気流の流速、流量を単純に全体的に大きくすることで、特許文献1で言うテーパーのついた部分や断面積の小さい管状部等と比較してフィラメント糸の走行経路方向に垂直な方向の断面の面積が大きい円筒状の気流吹き出し面で囲まれた領域における、気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、フィラメント糸に働く空気抵抗、また、空気抵抗による張力の増大を抑制するに充分な流速まで大きくするには、円筒状の気流吹き出し面から吹き出される気流の流速、流量をかなり大きくせねばならず、気流の供給等に大きなエネルギーを必要として、フィラメント糸の製造費用が増加する等の問題がある他、円筒状の気流吹き出し面から吹き出される流速、流量の大きい気流により、糸揺れが発生する等の問題もあった。   However, by simply increasing the flow velocity and flow rate of the airflow blown from the cylindrical airflow blowing surface as a whole, it is compared with a tapered portion or a tubular portion having a small cross-sectional area as described in Patent Document 1. The flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn of the airflow in the region surrounded by the cylindrical airflow blowing surface having a large cross-sectional area in the direction perpendicular to the traveling path direction of the filament yarn, In order to increase the air resistance acting on the filament yarn and the flow velocity sufficient to suppress the increase in tension due to the air resistance, the flow velocity and flow rate of the air blown from the cylindrical air blowing surface must be increased considerably. In addition to problems such as requiring large energy to supply airflow and increasing the production cost of filament yarn, it is blown out from the cylindrical airflow blowing surface. That the flow velocity, the greater air flow rate, the yarn swing was a problem such that occur.

また、本発明者らの知見によれば、特許文献7には、円筒状の気流吹き出し面(特許文献7では円筒状冷却筒の冷風吹出し面と記載)から吹き出される気流の流速、流量を、フィラメント糸の走行経路方向の上流側から下流側に向かって大きくすることを示唆する記載等が見受けられる。   Further, according to the knowledge of the present inventors, Patent Document 7 includes the flow velocity and flow rate of the air flow blown from a cylindrical air flow blowing surface (described as a cold air blowing surface of the cylindrical cooling cylinder in Patent Document 7). There is a description suggesting that the filament yarn is increased from the upstream side toward the downstream side in the traveling path direction.

しかしながら、円筒状の気流吹き出し面から吹き出される気流の流速、流量を、フィラメント糸の走行経路方向の上流側から下流側に向かって大きくすることで、円筒状の気流吹き出し面で囲まれた領域における、気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、フィラメント糸に働く空気抵抗、また、空気抵抗による張力の増大を抑制するに充分な流速まで大きくするには、円筒状の気流吹き出し面の、特にフィラメント糸の走行経路方向の下流側から吹き出される気流の流速、流量をかなり大きくする必要があり、やはり、糸揺れが発生する等の問題があった。また、上記糸揺れがフィラメント糸の走行経路方向の上流側に伝播する問題等もあった。   However, the area surrounded by the cylindrical airflow blowing surface is increased by increasing the flow velocity and flow rate of the airflow blown from the cylindrical airflow blowing surface from the upstream side to the downstream side in the filament yarn traveling path direction. In order to increase the flow velocity in the direction from the upstream side to the downstream side in the travel path direction of the filament yarn of the air flow to a flow velocity sufficient to suppress the air resistance acting on the filament yarn and the increase in tension due to the air resistance Further, it is necessary to considerably increase the flow velocity and flow rate of the airflow blown from the downstream side of the cylindrical airflow blowing surface, particularly in the traveling direction of the filament yarn, and there is a problem that yarn swaying occurs. There is also a problem that the yarn sway propagates to the upstream side in the traveling path direction of the filament yarn.

以上の様に、本発明者らの知見によれば、従来から、フィラメント糸の各単糸に働く空気抵抗を抑制し、この空気抵抗による張力の増大を抑制することで、応力を抑制することが種々検討されてきているが、上記した様な問題、例えば、糸揺れ等の問題が残されていた。   As described above, according to the knowledge of the present inventors, conventionally, the air resistance acting on each single yarn of the filament yarn is suppressed, and the increase in tension due to this air resistance is suppressed, thereby suppressing the stress. Have been studied, but problems such as those described above, such as yarn wobbling, remained.

また、近年、ニーズの多様化から、様々な改良が加えられたフィラメント糸が開発・上市されている。例えば、衣料用分野では、ソフトな風合い等を付与する狙いで単糸細繊度化・多フィラメント化、吸水・速乾性の向上や光沢感を変更する等の狙いで単糸異形断面化、また鮮明性に優れた染色の実現等の新たな機能性付与の狙いで熱可塑性ポリマーを改質する等の改良が行われている。また、産業用分野では、同様に単糸細繊度化・多フィラメント化や単糸異形断面化の他、高強度化、高弾性化や、耐候性、難燃性等の新たな機能性付与を狙った熱可塑性ポリマーの改質等の改良が行われている。更にここ数年、上記した様な機能性を複数組み合わせて付与する試みも盛んに行われ始めている。   In recent years, filament yarns with various improvements have been developed and marketed due to diversification of needs. For example, in the apparel field, the single yarn has a fine cross-section with the aim of finer and more filamentous single yarn with the aim of giving a soft texture, improved water absorption and quick drying, and the glossiness is changed. Improvements such as modification of thermoplastic polymers have been made with the aim of imparting new functionality such as realization of dyeing with excellent properties. Similarly, in the industrial field, in addition to making single yarn finer, multifilament, and single yarn irregular cross-section, new functionalities such as high strength, high elasticity, weather resistance, flame resistance, etc. Improvements such as the modification of targeted thermoplastic polymers have been made. Furthermore, in recent years, attempts have been actively made to provide a combination of the above-described functionalities.

しかしながら、上記した様な特品糸は優れた機能性を有する高機能品種である一方、溶融紡糸が極めて難しい難紡糸品種でもあり、本発明者らの知見によれば、その大きな問題の一つとして、これら難紡糸品種の多くが、紡糸口金から紡出された後、紡糸口金の近傍で急激に固化し易く、ほぼ固化するまでにフィラメント糸の各単糸に働く応力が大きくなり易い問題がある。即ち、応力が大きくなり易い結果、強伸度や伸度、あるいは強度等の品質に優れたフィラメント糸が得られ難い問題があった。例えば、フィラメント糸の各単糸を単糸細繊度化すると、各単糸は紡糸口金の近傍で固化し易く、また、フィラメント糸の各単糸を単糸異形断面化すると、各単糸の表面積や空気抵抗等が丸断面と比べて大きくなるため、やはり、各単糸は紡糸口金の近傍で固化し易い。また、熱可塑性ポリマーの改質方法の一例として、共重合が挙げられるが、一般に共重合を行うと、分子構造が乱されるため、フィラメント糸の強度・伸度等が劣化し易い。そのため、多くの場合において、熱可塑性ポリマーの溶融粘度を高くする対応が採られるが、そうすると、やはり、フィラメント糸の各単糸は、紡糸口金の近傍で固化し易い。また、熱可塑性ポリマーの中には、一般に広く活用されているポリエステルやポリアミド等と比べ、ガラス転移温度が高いものもあり、この様な特殊な熱可塑性ポリマーから構成されるフィラメント糸において、各単糸は、やはり、紡糸口金の近傍で固化し易い。更に、上記した様な機能性を複数組み合わせる場合、例えば、単糸細繊度化・多フィラメント化と単糸異形断面化、あるいは単糸細繊度化・多フィラメント化と熱可塑性ポリマーの改質を組み合わせる等の場合、フィラメント糸の各単糸は、更に紡糸口金の極めて近傍で固化し易い。   However, special yarns as described above are high-functional varieties having excellent functionality, but also difficult-to-spin varieties that are extremely difficult to melt-spin, and according to the knowledge of the present inventors, one of the major problems. Many of these difficult-spinning varieties tend to solidify rapidly in the vicinity of the spinneret after being spun from the spinneret, and the stress acting on each single yarn of the filament yarn tends to increase until it almost solidifies. is there. That is, as a result of the tendency for the stress to increase, there has been a problem that it is difficult to obtain a filament yarn excellent in quality such as high elongation, elongation, or strength. For example, if each single yarn of the filament yarn is made into a single yarn fineness, each single yarn is easily solidified in the vicinity of the spinneret, and if each single yarn of the filament yarn is made into a single yarn profile, the surface area of each single yarn Since air resistance and the like are larger than those of the round cross section, each single yarn is easily solidified in the vicinity of the spinneret. An example of a method for modifying a thermoplastic polymer is copolymerization. Generally, when copolymerization is performed, the molecular structure is disturbed, so that the strength and elongation of the filament yarn are likely to deteriorate. For this reason, in many cases, a measure to increase the melt viscosity of the thermoplastic polymer is taken, but in this case, each single yarn of the filament yarn is easily solidified in the vicinity of the spinneret. In addition, some thermoplastic polymers have higher glass transition temperatures than commonly used polyesters and polyamides, etc., and in filament yarns composed of such special thermoplastic polymers, each single unit After all, the yarn is easily solidified in the vicinity of the spinneret. Furthermore, when combining a plurality of functions as described above, for example, combining single yarn fineness / multifilament and single yarn irregular cross-section, or single yarn fineness / multifilament and modification of thermoplastic polymer In the case of the above, each single yarn of the filament yarn is further easily solidified in the very vicinity of the spinneret.

以上の様に、フィラメント糸の各単糸に働く応力の問題は、紡糸速度の高速化に伴って強伸度や伸度、強度等が低下することを抑制する狙い、あるいは、高速化しても強伸度や伸度、強度等を高速化しない場合と同等に維持する狙いにおいて重要なのは勿論のこと、強伸度や伸度、強度等の品質に優れた単糸細繊度化・多フィラメント化されたフィラメント糸等の高機能フィラメント糸を製造する狙いにおいても重要であり、この問題を解決することは、工業上、極めて重要な意味を有するのである。
特表2002−510754号公報 特開平3−180508号公報 特表平8−506393号公報 特開2001−81625号公報 特開2001−336023号公報 特表2003−520303号公報 特開昭61−174411号公報
As described above, the problem of stress acting on each single yarn of the filament yarn is aimed at suppressing a decrease in strength, elongation, strength, etc. as the spinning speed is increased, or even if the speed is increased. Needless to say, it is important to maintain high elongation, elongation, strength, etc. at the same level as when high speed is not achieved, and single yarn fineness / multifilament with excellent quality such as elongation, elongation, strength, etc. It is also important for the purpose of producing highly functional filament yarns such as filament yarns, and solving this problem has an extremely important industrial significance.
Japanese translation of PCT publication No. 2002-510754 Japanese Patent Laid-Open No. 3-180508 Japanese National Patent Publication No. 8-506393 JP 2001-81625 A JP 2001-336023 A Special table 2003-520303 gazette JP-A 61-174411

本発明の目的は、上記した問題を解決し、特に、強伸度や伸度、強度等の品質や、糸の太さ斑や品質斑等の均斉性、また、毛羽等の品位に優れたフィラメント糸を、生産性、汎用性良好の下、製造する装置および方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, and in particular, excellent quality such as high elongation, elongation, strength, etc., uniformity of yarn thickness spots, quality spots, etc., and quality such as fluff. An object of the present invention is to provide an apparatus and a method for manufacturing a filament yarn with good productivity and versatility.

上記目的を達成するために、本発明は、溶融した熱可塑性ポリマーをフィラメント糸として紡出する紡糸口金と、前記フィラメント糸の走行経路方向に垂直な方向の断面形状が円形で、前記フィラメント糸の走行経路を外周側から包囲し、前記フィラメント糸の走行経路の外周側から内向きに気流を吹き付けてフィラメント糸を冷却する気流吹き出し面を設けた冷却手段とを少なくとも有するフィラメント糸の製造装置であって、前記冷却手段の前記気流吹き出し面の前記フィラメント糸の走行経路方向に垂直な方向の断面形状を、前記フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することを特徴とするフィラメント糸の製造装置を提供する。   In order to achieve the above object, the present invention provides a spinneret for spinning a molten thermoplastic polymer as a filament yarn, and a circular cross-sectional shape in a direction perpendicular to the traveling path direction of the filament yarn. The filament yarn manufacturing apparatus includes at least cooling means that surrounds the travel path from the outer peripheral side and has an airflow blowing surface that blows an air flow inwardly from the outer peripheral side of the filament yarn travel path to cool the filament yarn. Thus, the cross-sectional shape of the airflow blowing surface of the cooling means in a direction perpendicular to the filament yarn travel path direction is gradually reduced from the upstream side to the downstream side in the filament yarn travel path direction. An apparatus for producing a filament yarn is provided.

また、本発明は、上記のフィラメント糸の製造装置を用い、熱可塑性ポリマーを溶融紡糸し、フィラメント糸を製造することを特徴とするフィラメント糸の製造方法を提供する。   The present invention also provides a method for producing a filament yarn, characterized in that the filament yarn is produced by melt spinning a thermoplastic polymer using the filament yarn production apparatus described above.

本発明によれば、特に、強伸度や伸度、強度等の品質や、糸の太さ斑や品質斑等の均斉性、毛羽等の品位に優れたフィラメント糸を、生産性、汎用性良好の下、製造することができる。   According to the present invention, filament yarn excellent in quality such as high elongation, elongation, strength, etc., uniformity of yarn thickness spots, quality spots, etc., and quality such as fluff, productivity, versatility Can be manufactured under good conditions.

以下、本発明の最良の実施形態の一例について、図面を参照しながら詳細を説明する。   Hereinafter, an example of the best embodiment of the present invention will be described in detail with reference to the drawings.

図1は本実施形態の一実施例に係る好ましい溶融紡糸の構成の一例を模式的に例示した縦断面の概略図である。図1において、1は紡糸口金、2は紡糸パック、3はスピンブロック、4は冷却手段、5は気流吹き出し部の気流が吹き出されるフィラメント糸側の面であり、フィラメント糸をフィラメント糸の走行経路の外周側から包囲する様に設けられた気流吹き出し面、6は気流吹き出し部(図中でフィラメント糸の走行経路方向に垂直な方向の線により塗り潰された部分)、7は気流室、8は気流供給口、9は気流吹き出し面から吹き出される気流、10はフィラメント糸、11は糸油剤付与・集束・ガイド・案内等の手段、12は糸引取手段、13は糸巻取手段である。また、Dは、フィラメント糸の走行経路方向のある位置における気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径である。なお、以下、このフィラメント糸の走行経路方向のある位置における気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径を、フィラメント糸の走行経路方向のある位置における気流吹き出し面の内径、あるいは単に気流吹き出し面の内径と呼ぶこととする。また、QTDは、フィラメント糸を紡出する紡糸口金のフィラメント糸の走行経路方向の下流側の、フィラメント糸の走行経路方向に垂直な方向の面(以下、これを紡糸口金の下面と呼ぶこととする)から冷却手段の気流吹き出し面のフィラメント糸の走行経路方向の上流側の上端(以下、これを気流吹き出し面の上端と呼ぶこととする)までの距離である。なお、以下、この紡糸口金の下面から冷却手段の気流吹き出し面の上端までの距離を冷却開始距離、また、冷却手段の気流吹き出し面の上端の紡糸口金の下面からの位置を冷却開始位置と呼ぶこととする。   FIG. 1 is a schematic cross-sectional view schematically illustrating an example of a preferred melt spinning configuration according to an example of the present embodiment. In FIG. 1, 1 is a spinneret, 2 is a spin pack, 3 is a spin block, 4 is a cooling means, 5 is a surface on the side of the filament yarn from which the airflow of the airflow blowing portion is blown out, and the filament yarn runs through the filament yarn. An airflow blowing surface provided so as to be surrounded from the outer periphery side of the path, 6 is an airflow blowing part (portion filled with a line perpendicular to the traveling direction of the filament yarn in the drawing), 7 is an airflow chamber, 8 Is an airflow supply port, 9 is an airflow blown from the airflow blowing surface, 10 is a filament yarn, 11 is a means for applying a thread oil agent, converging, guiding and guiding, 12 is a thread take-up means, and 13 is a thread winding means. Further, D is an inner diameter in a direction perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface at a position in the traveling path direction of the filament yarn. Hereinafter, the inner diameter of the airflow blowing surface at a position in the filament yarn traveling path direction perpendicular to the filament yarn traveling path direction is referred to as the inner diameter of the airflow blowing surface at a position in the filament yarn traveling path direction, or It is simply called the inner diameter of the airflow blowing surface. QTD is a surface in a direction perpendicular to the traveling path direction of the filament yarn on the downstream side of the traveling path direction of the filament yarn of the spinneret for spinning the filament yarn (hereinafter referred to as the lower surface of the spinning nozzle). To the upper end on the upstream side in the direction of travel of the filament yarn on the airflow blowing surface of the cooling means (hereinafter referred to as the upper end of the airflow blowing surface). Hereinafter, the distance from the lower surface of the spinneret to the upper end of the airflow blowing surface of the cooling means is referred to as a cooling start distance, and the position of the upper end of the airflow blowing surface of the cooling means from the lower surface of the spinneret is referred to as a cooling start position. I will do it.

図1において、フィラメント糸10は、紡糸口金1から紡出され、気流供給口8、気流室7、気流吹き出し部6を経て、気流吹き出し面5から吹き出された気流9により冷却されて、固化した後、糸油剤付与・集束・ガイド・案内等の手段11、糸引取手段12を経て、糸巻取手段13により巻き取られる。また、巻き取られたフィラメント糸10は、この後、必要に応じ、図示しない別工程において延伸や熱処理等が施される。   In FIG. 1, a filament yarn 10 is spun from a spinneret 1 and is cooled and solidified by an airflow 9 blown from an airflow blowing surface 5 through an airflow supply port 8, an airflow chamber 7, and an airflow blowing portion 6. Thereafter, the yarn is taken up by the yarn winding means 13 after passing through the means 11 for applying the thread oil agent, converging, guiding, guiding and the like and the thread take-up means 12. In addition, the wound filament yarn 10 is then subjected to stretching, heat treatment, and the like in other steps (not shown) as necessary.

なお、図1において、フィラメント糸を構成する熱可塑性ポリマーを供給する押出機やポンプ、フィルター、配管等や、紡糸口金に穿設、配列される吐出孔等の図示をしていないが、無論、設けられても良い。また、紡糸パックを加熱・保温する紡糸パック加熱器や断熱部材、保温部材等や、気流を供給するファンやブロワ等の気流発生手段、気流配管、気流フィルター、気流の成分や温度、湿度、流速、流量、流れ方向等やそれらの分布等の気流調整手段等の図示をしていないが、設けられても良い。また、一般に溶融紡糸において、現場雰囲気等の乱れ等の影響を防止する等の狙いから、紡糸パック、スピンブロック、冷却手段や、徐冷等の目的で設けられる加熱装置や加熱筒、保温筒等の周辺でシールが行われる場合が多いが、これも図1では図示をしていないが、行われても良い。   In FIG. 1, an extruder, a pump, a filter, a pipe, and the like that supply the thermoplastic polymer that constitutes the filament yarn, and the discharge holes that are drilled and arranged in the spinneret are not shown. It may be provided. In addition, spinning pack heaters, heat insulation members, heat insulation members, etc. that heat and heat the spin pack, air flow generating means such as fans and blowers that supply air flow, air flow piping, air flow filters, air flow components and temperature, humidity, flow rate Although air flow adjusting means such as the flow rate, the flow direction, and the distribution thereof are not shown, they may be provided. Also, in general, for the purpose of preventing the influence of turbulence etc. in the field atmosphere in melt spinning, spinning packs, spin blocks, cooling means, heating devices provided for the purpose of slow cooling, heating cylinders, heat insulation cylinders, etc. Although there are many cases where sealing is performed in the vicinity of this, this is not shown in FIG. 1 but may be performed.

また、図1において、図示されていない断熱部材や保温部材、加熱部材や冷却部材、加熱手段や冷却手段、温度等の計測手段、加熱装置や加熱筒、保温筒等や、糸交絡手段、加熱ローラーや加熱チューブ等の糸加熱手段、糸加湿手段、糸リラックス手段、糸道ダクト、延伸ローラー等の糸延伸手段、サクションガン等の糸吸引手段、フィラメント糸を気流で送り出す糸送出手段、コンベヤ等の糸搬送手段、冷却手段を移動させる移動手段等や、あるいはフィラメント糸から発生するモノマー等による紡糸口金の下面の汚れを抑制する狙いで希ガス、窒素等の不活性気体やスチーム、空気、水分を含む空気等を紡糸口金の下面近傍に供給するモノマー抑制手段や、モノマー等を吸引除去するモノマー吸引手段等が単数あるいは複数あるいは複数種設けられても良い。また、更に、ユニフロ冷却手段、内吹き円筒状冷却手段、外吹き円筒状冷却手段等の冷却手段や、言わば、ユニフロ冷却手段、内吹き円筒状冷却手段、外吹き円筒状冷却手段等の冷却手段を気流吹き出しではなく、気流吸引に用いた様な吸引手段等が単数あるいは複数あるいは複数種設けられても良い。   In addition, in FIG. 1, a heat insulating member, a heat retaining member, a heating member, a cooling member, a heating device, a cooling device, a temperature measuring device, a heating device, a heating tube, a heat retaining tube, etc., a yarn entanglement device, a heating device, etc. Yarn heating means such as rollers and heating tubes, yarn humidification means, yarn relaxation means, yarn path ducts, yarn drawing means such as drawing rollers, yarn suction means such as suction guns, yarn sending means for sending filament yarns by airflow, conveyors, etc. Inactive gas such as noble gas, nitrogen, steam, air, moisture, etc. for the purpose of suppressing dirt on the lower surface of the spinneret due to monomers generated from filament yarn, etc. Monomer suppression means for supplying air etc. near the lower surface of the spinneret and monomer suction means for sucking and removing monomers etc. It may be provided. Further, cooling means such as uniflow cooling means, inner blown cylindrical cooling means, outer blown cylindrical cooling means, and so on, cooling means such as uniflow cooling means, inner blown cylindrical cooling means, outer blown cylindrical cooling means, etc. Instead of airflow blowing, one or a plurality of suctioning means or the like as used for airflow suction may be provided.

では、本実施形態の第1の重要な実施形態について説明する。本実施形態の第1の重要な実施形態は、例えば、図1に示す様に、溶融した熱可塑性ポリマーをフィラメント糸として紡出する紡糸口金と、前記フィラメント糸の走行経路方向に垂直な方向の断面形状が円形で、前記フィラメント糸の走行経路を外周側から包囲し、前記フィラメント糸の走行経路の外周側から内向きに気流を吹き付けてフィラメント糸を冷却する気流吹き出し面を設けた冷却手段とを少なくとも有するフィラメント糸の製造装置であって、前記冷却手段の前記気流吹き出し面の前記フィラメント糸の走行経路方向に垂直な方向の断面形状を、前記フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することを特徴とするフィラメント糸の製造装置である。なお、以下、本実施形態の第1の重要な実施形態や、本実施形態の第1の重要な実施形態に関連する形態等の説明等で、本実施形態の第1の重要な実施形態において、“冷却手段の気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設すること”を、“冷却手段の気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径(気流吹き出し面の内径D)を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設すること”と、主に称する。また、本実施形態において、フィラメント糸の走行経路方向とは、フィラメント糸やその各単糸の大局的な走行方向を示し、例えば、図1で言えば、図中の上から下に向かう方向を示す。また、フィラメント糸の走行経路方向の上流側、下流側とは、例えば、図1で言えば、フィラメント糸の走行経路方向の上流側が図中の上方向側、フィラメント糸の走行経路方向の下流側が図中の下方向側を示す。また、フィラメント糸やその各単糸の走行方向とは、フィラメント糸やその各単糸の実際の走行方向や糸道等から予測される走行方向を示し、例えば、図1で言えば、フィラメント糸やその各単糸が紡糸口金1から、糸油剤付与・集束・ガイド・案内等の手段11に向かって、斜め下方向に走行しているが、例えば、その様な方向を示す。更に、各単糸の走行経路とは、各単糸の具体的な走行経路、例えば、各単糸の糸道等を示す。また、本実施形態において、「フィラメント糸の走行経路の最外周面」とは、フィラメント糸の走行経路からみて最外周を走行するフィラメント糸の単糸の走行経路を通り、フィラメント糸の走行経路を外周側から囲う面を示すものとする。また、「フィラメント糸の走行経路の最内周面」とは、フィラメント糸の走行経路からみて最内周を走行するフィラメント糸の単糸の走行経路を通り、フィラメント糸の走行経路を内周側から囲う面を示すものとする。なお、例えば、一つの紡糸口金から紡出される単糸数が単数の場合、フィラメント糸の走行経路の最外周面と最内周面は同一であり、フィラメント糸の単糸の走行経路を通り、紡糸口金の下面の中心を通るフィラメント糸の走行経路方向の直線を外周側から囲う面を示すものとする。また、例えば、一つの紡糸口金から紡出される単糸数が単数の場合で、フィラメント糸の単糸の走行経路が、紡糸口金の下面の中心を通るフィラメント糸の走行経路方向の直線と重なる場合、フィラメント糸の走行経路の最外周面は、紡糸口金から紡出されるフィラメント糸の単糸の外表面と同一とし、また、フィラメント糸の走行経路の最内周面はないものとする。   Now, a first important embodiment of the present embodiment will be described. A first important embodiment of the present embodiment is, for example, as shown in FIG. 1, a spinneret for spinning a molten thermoplastic polymer as a filament yarn, and a direction perpendicular to the traveling path direction of the filament yarn. A cooling means having a circular cross-sectional shape, surrounding the filament yarn traveling path from the outer peripheral side, and providing an air flow blowing surface for blowing the air flow inward from the outer peripheral side of the filament yarn traveling path to cool the filament yarn; A filament yarn manufacturing apparatus having at least a cross-sectional shape perpendicular to the filament yarn traveling path direction of the airflow blowing surface of the cooling means from an upstream side to a downstream side of the filament yarn traveling path direction. An apparatus for producing a filament yarn, wherein the filament yarn is arranged so as to become gradually smaller toward the center. In the following, in the first important embodiment of the present embodiment, in the description of the first important embodiment of the present embodiment, the form related to the first important embodiment of the present embodiment, etc. , “Arranging the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface of the cooling means so as to gradually decrease from the upstream side to the downstream side in the traveling path direction of the filament yarn” “The inner diameter (inner diameter D of the airflow blowing surface) in the direction perpendicular to the filament yarn traveling path direction on the airflow blowing surface of the cooling means is gradually decreased from the upstream side to the downstream side in the filament yarn traveling path direction. It is mainly referred to as “arranging in such a manner. Further, in the present embodiment, the traveling direction of the filament yarn indicates the global traveling direction of the filament yarn and each single yarn thereof. For example, in FIG. Show. Further, for example, in FIG. 1, the upstream side in the traveling path direction of the filament yarn is the upstream side in the traveling path direction of the filament yarn, and the downstream side in the traveling path direction of the filament yarn is in the drawing. The lower side in the figure is shown. The traveling direction of the filament yarn and each single yarn indicates the traveling direction predicted from the actual traveling direction and yarn path of the filament yarn and each single yarn. For example, in FIG. In addition, the single yarns run obliquely downward from the spinneret 1 toward the means 11 for applying the thread oil agent, converging, guiding, guiding, and the like. For example, such directions are shown. Furthermore, the traveling path of each single yarn indicates a specific traveling path of each single yarn, for example, a yarn path of each single yarn. In the present embodiment, the “outermost peripheral surface of the filament yarn traveling path” refers to the filament yarn traveling path through the filament yarn single traveling path that travels on the outermost periphery as viewed from the filament yarn traveling path. The surface enclosing from the outer peripheral side shall be shown. The “innermost circumferential surface of the filament yarn traveling path” refers to the filament yarn traveling path on the inner circumferential side through the traveling path of a single filament yarn traveling on the innermost circumference as viewed from the filament yarn traveling path. The surface enclosed by For example, when the number of single yarns spun from a single spinneret is one, the outermost circumferential surface and the innermost circumferential surface of the filament yarn traveling path are the same, and the filament yarn passes through the single yarn traveling path to perform spinning. A surface surrounding the straight line in the traveling path direction of the filament yarn passing through the center of the lower surface of the base from the outer peripheral side is shown. Also, for example, when the number of single yarns spun from one spinneret is single, and the traveling path of the filament yarn single yarn overlaps with the straight line in the traveling path direction of the filament yarn passing through the center of the lower surface of the spinneret, It is assumed that the outermost peripheral surface of the filament yarn traveling path is the same as the outer surface of the single filament yarn spun from the spinneret, and there is no innermost circumferential surface of the filament yarn traveling path.

本実施形態の第1の重要な実施形態では、冷却手段に、均一冷却、冷却能力、汎用性等に優れたポテンシャルの高い内吹き円筒状冷却手段と同様に、フィラメント糸の走行経路方向に垂直な方向の断面形状が円形で、フィラメント糸の走行経路を外周側から包囲し、フィラメント糸の走行経路の外周側から内向きに気流を吹き付けて冷却する気流吹き出し面を設けた冷却手段を採用し、更に、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することで、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きく、また、フィラメント糸の各単糸と気流との間の相対速度を小さくできるので、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を抑制でき、応力を抑制することができる。また、同時に、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することで、一般にその製造工程において、紡糸口金から紡出され、気流等により冷却、固化された後、糸油剤付与・集束・ガイド・案内等の手段でその各単糸が集束されることの多いフィラメント糸に対し、その各単糸がフィラメント糸の走行経路方向の上流側から下流側に集束されるのに合わせて、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、冷却手段の気流吹き出し面を、フィラメント糸の走行経路の最外周面に近接させ易く、冷却手段の気流吹き出し面から吹き出された気流で、フィラメント糸の走行経路の内周側の各単糸を含めて、フィラメント糸の各単糸廻りの気流を整流化し易くできるので、気流乱れや冷却斑、また、気流乱れ等による糸揺れ等を抑制することができる。このため、フィラメント糸の強伸度や伸度、強度等の品質向上と同時に、フィラメント糸の糸の太さ斑や品質斑等の均斉性向上や毛羽等の品位の向上、更には生産性の向上等も図ることができる。   In the first important embodiment of the present embodiment, the cooling means is perpendicular to the traveling path direction of the filament yarn, as is the case with the highly blown cylindrical cooling means with high potential excellent in uniform cooling, cooling capacity, versatility, etc. The cooling means is provided with an air flow blowing surface that has a circular cross-sectional shape in a certain direction, surrounds the filament yarn travel path from the outer periphery side, and blows and cools the air flow inward from the outer periphery side of the filament yarn travel path. Furthermore, the inner diameter of the airflow blowing surface of the cooling means is disposed so as to gradually decrease from the upstream side to the downstream side of the filament yarn traveling path direction, so that it is surrounded by the airflow blowing surface of the cooling means. In the region, the flow velocity in the direction from the upstream side to the downstream side of the filament yarn traveling path direction can be increased, and the relative speed between each filament yarn and the air flow can be reduced. Since, it is possible to suppress the increase in tension caused by air resistance and the air resistance acting on each single yarn of filament yarns, it is possible to suppress the stress. At the same time, by arranging the inner diameter of the airflow blowing surface of the cooling means so as to gradually decrease from the upstream side to the downstream side in the traveling path direction of the filament yarn, generally in the manufacturing process, from the spinneret. Each filament yarn is a filament yarn that is spun, cooled and solidified by an air current, etc., and then each filament yarn is often bundled by means such as applying a thread oil agent, bundling, guiding, guiding, etc. The air flow of the cooling means in the direction perpendicular to the traveling path direction of the filament yarn from the upstream side to the downstream side in the traveling path direction of the filament yarn in accordance with the convergence from the upstream side to the downstream side in the traveling path direction It is easy to bring the surface close to the outermost peripheral surface of the filament yarn traveling path, and each unit on the inner peripheral side of the filament yarn traveling path is an air current blown from the air blowing surface of the cooling means. Including, since each single yarn around the air flow of the filament yarn can easily rectified air flow disturbance or cooling plaques also, it is possible to suppress yarn swaying due airflow turbulence or the like. For this reason, the quality of filament yarn is improved, such as the strength, elongation, and strength of the filament yarn, as well as the uniformity of the thickness and quality of the filament yarn, the quality of the fluff, etc. Improvements can also be achieved.

では、本実施形態の第1の重要な実施形態の特長や効果等について詳細を説明する。第1に、本実施形態の第1の重要な実施形態では、内吹き円筒状冷却手段と同様に、フィラメント糸の走行経路方向に垂直な方向の断面形状が円形で、フィラメント糸の走行経路を外周側から包囲し、フィラメント糸の走行経路の外周側から内向きに気流を吹き付けて冷却する気流吹き出し面を設けた冷却手段を採用する。このため、本実施形態の第1の重要な実施形態では、フィラメント糸の走行経路の外周側から内向きの気流で、全円周にわたってフィラメント糸を冷却することで、フィラメント糸の各単糸を均一に冷却し易い。結果、本実施形態の第1の重要な実施形態は、常法、例えば、ユニフロ冷却手段に対して、冷却斑や糸揺れ等を抑制することができ、フィラメント糸の糸の太さ斑や品質斑等の均斉性を向上させることができる。また、本実施形態の第1の重要な実施形態では、気流吹き出し面から吹き出された気流がフィラメント糸の走行経路の内周側に向かうにつれて流路の縮小により増速され易い。結果、本実施形態の第1の重要な実施形態は、冷却能力が比較的高く、多品種対応等の汎用性にも優れる。更に、本実施形態の第1の重要な実施形態では、フィラメント糸の走行経路の外周側を包囲する様に気流吹き出し面が設けられる。結果、本実施形態の第1の重要な実施形態は、フィラメント糸への現場雰囲気の乱れ等の影響を抑制することができ、フィラメント糸の糸の太さ斑や品質斑等の均斉性等を更に向上させることができる。従って、本実施形態の第1の重要な実施形態は、均一冷却、冷却能力、汎用性等に優れる。また、本実施形態の第1の重要な実施形態では、フィラメント糸の各単糸を均一に冷却し易いので、多フィラメント化されたフィラメント糸に対しても、無論、有効であり、常法、例えば、ユニフロ冷却手段に対して、冷却斑や糸揺れ等を抑制することができ、フィラメント糸の糸の太さ斑や品質斑等の均斉性を向上させることができる。   Now, details of features and effects of the first important embodiment of the present embodiment will be described. First, in the first important embodiment of the present embodiment, the cross-sectional shape in a direction perpendicular to the traveling path direction of the filament yarn is circular, and the traveling path of the filament thread is set like the inner blow cylindrical cooling means. Cooling means provided with an airflow blowing surface that surrounds from the outer peripheral side and blows and cools the airflow inward from the outer peripheral side of the filament yarn traveling path. For this reason, in the first important embodiment of the present embodiment, each filament yarn is cooled by cooling the filament yarn over the entire circumference with an inward airflow from the outer circumference side of the filament yarn traveling path. Easy to cool uniformly. As a result, the first important embodiment of the present embodiment is capable of suppressing cooling spots, yarn fluctuations, etc. with respect to a conventional method, for example, Uniflo cooling means, and the thickness unevenness and quality of filament yarn. The uniformity of spots and the like can be improved. Further, in the first important embodiment of the present embodiment, the airflow blown from the airflow blowing surface is easily increased by the reduction of the flow path as it goes toward the inner peripheral side of the filament yarn traveling path. As a result, the first important embodiment of the present embodiment has a relatively high cooling capacity and is excellent in versatility such as compatibility with various types. Furthermore, in the first important embodiment of the present embodiment, the air flow blowing surface is provided so as to surround the outer peripheral side of the traveling path of the filament yarn. As a result, the first important embodiment of the present embodiment can suppress the influence of the disturbance of the field atmosphere on the filament yarn and the like, and the uniformity of the filament yarn thickness unevenness and quality unevenness etc. Further improvement can be achieved. Therefore, the first important embodiment of the present embodiment is excellent in uniform cooling, cooling capacity, versatility, and the like. Further, in the first important embodiment of the present embodiment, each single yarn of the filament yarn can be easily cooled uniformly, so that it is of course effective for multifilament filament yarns. For example, it is possible to suppress cooling spots and yarn fluctuations with respect to the Uniflo cooling means, and to improve uniformity of the thickness and quality spots of the filament yarn.

第2に、本実施形態の第1の重要な実施形態では、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する。このため、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を小さく、また、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きくでき、フィラメント糸の各単糸と気流との間の相対速度を小さくすることができる。また、気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設するので、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さく、また、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくでき、紡糸口金から紡出されて固化するまでフィラメント糸の走行経路方向の下流側に向かって細化変形や糸速度の増速が継続されるフィラメント糸の各単糸に合わせて、フィラメント糸の各単糸と気流との間の相対速度を小さくすることができる。結果、本実施形態の第1の重要な実施形態は、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を抑制、応力を抑制することができ、フィラメント糸の強伸度や伸度、強度等の品質を向上させることができる。また、本実施形態の第1の重要な実施形態は、特に冷却等の作用を受けて、フィラメント糸の各単糸が細化し易く、また、各単糸の糸速度が増加し易い気流吹き出し面に囲まれた領域において、その気流吹き出し面の内径自体を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することで、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きく、また、フィラメント糸の各単糸と気流との間の相対速度を小さくするので、特に、フィラメント糸の各単糸の変形挙動に合わせて、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大、応力を効果的に充分に抑制し易いという特長も有している。   Secondly, in the first important embodiment of the present embodiment, the inner diameter of the airflow blowing surface of the cooling means is arranged so as to gradually decrease from the upstream side to the downstream side in the traveling direction of the filament yarn. To do. For this reason, the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means is reduced, and the airflow filament in the region surrounded by the airflow blowing surface of the cooling means The flow velocity in the direction from the upstream side to the downstream side in the yarn traveling path direction can be increased, and the relative speed between each single yarn of the filament yarn and the airflow can be reduced. Further, since the inner diameter of the air flow blowing surface is arranged so as to gradually decrease from the upstream side to the downstream side in the filament yarn traveling path direction, the filament yarn in the region surrounded by the air flow blowing surface of the cooling means is arranged. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction is gradually reduced from the upstream side to the downstream side in the traveling direction of the filament yarn, and the filament yarn of the airflow in the region surrounded by the airflow blowing surface of the cooling means The flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn can be gradually increased from the upstream side to the downstream side in the traveling path direction of the filament yarn, and the filament yarn travels until it is spun from the spinneret and solidified. Between each single yarn of the filament yarn and the air flow in accordance with each single yarn of the filament yarn that continues to be refined and increased in yarn speed toward the downstream side in the path direction. It is possible to reduce the relative speed. As a result, in the first important embodiment of the present embodiment, the air resistance acting on each single yarn of the filament yarn and the increase in tension due to this air resistance can be suppressed and the stress can be suppressed. Quality such as elongation and strength can be improved. In addition, the first important embodiment of the present embodiment is an airflow blowout surface in which each single yarn of the filament yarn is likely to be thinned and the yarn speed of each single yarn is likely to increase, particularly under the action of cooling or the like. In the region surrounded by the air flow blowing surface of the cooling means, the inner diameter itself of the air flow blowing surface is arranged so as to gradually decrease from the upstream side to the downstream side in the traveling direction of the filament yarn. Since the flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn of the air current in the enclosed region is increased, and the relative speed between each single yarn of the filament yarn and the air flow is reduced, In accordance with the deformation behavior of each single yarn of the filament yarn, the air resistance acting on each single yarn of the filament yarn, the increase in tension due to this air resistance, and the feature that the stress can be effectively sufficiently suppressed are also provided.

また、第3に、本実施形態の第1の重要な実施形態では、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することで、一般にその製造工程において、紡糸口金から紡出され、気流等により冷却、固化された後、糸油剤付与・集束・ガイド・案内等の手段でその各単糸が集束されることの多いフィラメント糸に対し、その各単糸がフィラメント糸の走行経路方向の上流側から下流側に集束されるのに合わせて、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、冷却手段の気流吹き出し面を、フィラメント糸の走行経路の最外周面に近接させ易くできるので、フィラメント糸の各単糸廻りの気流を、冷却手段の気流吹き出し面から吹き出された気流で整流化し易くでき、各単糸廻りの気流の乱れを抑制することができる。また、冷却手段の気流吹き出し面をフィラメント糸の走行経路の最外周面に近接させ易くできるので、冷却手段の気流吹き出し面から吹き出された気流を、フィラメント糸の走行経路の内周側に導入し易くでき、フィラメント糸の走行経路の外周側の各単糸と内周側の各単糸との間で冷却斑を抑制することができる。更に、冷却手段の気流吹き出し面をフィラメント糸の走行経路の最外周面に近接させつつ、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくして、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きく、徐々に加速させるので、冷却手段の気流吹き出し面に囲まれた領域の気流をフィラメント糸の走行経路方向の上流側から下流側に向かって加速される過程で乱れ難くでき、また、冷却手段の気流吹き出し面から吹き出された気流を、整流された状態で、フィラメント糸の走行経路の内周側に導入し易くでき、糸揺れ等を抑制することができる。結果、本実施形態の第1の重要な実施形態は、気流乱れや冷却斑、また、気流乱れ等による糸揺れ等を抑制することができ、フィラメント糸の糸の太さ斑や品質斑等の均斉性を向上させることができる。また、均斉性を向上させることができ、また、糸揺れ等も抑制できることから、斑や単糸の傷等による欠陥を抑制でき、フィラメント糸の強伸度や伸度、強度等の品質を更に向上させることができる他、毛羽や糸切れ等を抑制でき、フィラメント糸の品位や生産性等も向上させることができる。   Thirdly, in the first important embodiment of the present embodiment, the inner diameter of the airflow blowing surface of the cooling means is gradually decreased from the upstream side to the downstream side in the traveling path direction of the filament yarn. In general, in the manufacturing process, the single yarn is spun from the spinneret, cooled and solidified by an air flow, etc., and then each single yarn is converged by means such as applying a thread oil agent, converging, guiding and guiding. In many filament yarns, each filament yarn is converged from the upstream side to the downstream side in the traveling direction of the filament yarn, and the filament yarn extends from the upstream side to the downstream side in the traveling direction of the filament yarn. The airflow blowing surface of the cooling means can be easily brought close to the outermost peripheral surface of the filament yarn traveling path in a direction perpendicular to the traveling path direction of the filament yarn. Can easily rectified by airflow blown out from the blowing airflow surface means, the disturbance of each single yarn around the airflow can be suppressed. In addition, since the airflow blowing surface of the cooling means can be easily brought close to the outermost peripheral surface of the filament yarn traveling path, the airflow blown from the airflow blowing surface of the cooling means is introduced to the inner circumferential side of the filament yarn traveling path. Cooling spots can be suppressed between each single yarn on the outer peripheral side and each single yarn on the inner peripheral side of the traveling path of the filament yarn. Further, the cross-sectional area of the cross section in a direction perpendicular to the direction of the filament yarn traveling path in the region surrounded by the air flow blowing surface of the cooling means while bringing the air blowing surface of the cooling means close to the outermost peripheral surface of the filament yarn traveling path. Is gradually decreased from the upstream side in the traveling path direction of the filament yarn toward the downstream side, and from the upstream side in the traveling path direction of the filament yarn of the airflow in the region surrounded by the airflow blowing surface of the cooling means. The flow velocity in the direction is gradually increased from the upstream side to the downstream side in the filament yarn traveling path direction, and is gradually accelerated. Therefore, the air flow in the region surrounded by the air flow blowing surface of the cooling means is increased in the filament yarn traveling path direction. In the process of being accelerated from the upstream side toward the downstream side, it is difficult to disturb, and the airflow blown from the airflow blowing surface of the cooling means is rectified, Can easily introduced into the inner peripheral side of Iramento yarn travel path, it is possible to suppress yarn swaying like. As a result, the first important embodiment of the present embodiment can suppress airflow turbulence, cooling spots, yarn fluctuations due to airflow turbulence, etc. The uniformity can be improved. In addition, uniformity can be improved, and yarn wobble can be suppressed, so defects due to spots and single yarn scratches can be suppressed, and the filament yarn can be further improved in quality such as strength, elongation and strength. In addition to the improvement, fluff and yarn breakage can be suppressed, and the quality and productivity of the filament yarn can be improved.

更に、第4に、本実施形態の第1の重要な実施形態では、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することで、冷却手段の気流吹き出し面の領域から、フィラメント糸の各単糸廻りの気流を整流化しつつ、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を抑制、応力を抑制するので、従来の技術、例えば、特許文献1等よりも、フィラメント糸の走行経路方向のより上流側から、フィラメント糸の各単糸が急激に細化、糸速度が急激に増加して、空気抵抗等により張力や応力が急激に増大し易く、また、気流の乱れ等の影響を受け易く、気流の乱れ等の影響を受けて乱れ易い、繊細で、敏感な、フィラメント糸の走行経路方向の上流側の領域を捉えて、より効果的に、フィラメント糸の各単糸廻りの気流を充分に整流化しつつ、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を充分に抑制、応力を充分に抑制させ易い。従って、本実施形態の第1の重要な実施形態は、従来の技術よりも、より効果的に、フィラメント糸の糸の太さ斑や品質斑等の均斉性を維持あるいは更に向上させつつ、フィラメント糸の強伸度や伸度、強度等の品質を更に向上させ易いという特長も有している。また、本実施形態の第1の重要な実施形態は、フィラメント糸の走行経路方向のより上流側から、より効果的に、フィラメント糸の各単糸廻りの気流を整流化しつつ、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を抑制、応力を抑制し易いので、紡糸口金から紡出された後、紡糸口金の近傍で急激に固化し易く、ほぼ固化するまでにフィラメント糸の各単糸に働く応力が大きくなり易い、単糸細繊度化・多フィラメント化されたフィラメント糸や単糸異形断面化されたフィラメント糸、あるいは熱可塑性ポリマーが改質されたフィラメント糸やガラス転移温度が高い等の特殊な熱可塑性ポリマーから構成されるフィラメント糸等の高機能フィラメント糸に対しても極めて有効であるという特長をも有している。   Furthermore, fourthly, in the first important embodiment of the present embodiment, the inner diameter of the airflow blowing surface of the cooling means is gradually decreased from the upstream side to the downstream side in the traveling direction of the filament yarn. By arranging the air flow around each single yarn of the filament yarn from the area of the airflow blowing surface of the cooling means, the air resistance acting on each single yarn of the filament yarn and the increase in tension due to this air resistance are suppressed. Since the stress is suppressed, each single yarn of the filament yarn is abruptly thinned and the yarn speed is rapidly increased from the upstream side in the traveling direction of the filament yarn, compared to the conventional technique, for example, Patent Document 1 and the like. Therefore, the tension and stress are likely to increase rapidly due to air resistance, etc., and are easily affected by air flow turbulence, etc. Direction of travel path Capturing the area on the flow side, effectively rectifying the airflow around each single yarn of the filament yarn, while sufficiently increasing the air resistance acting on each single yarn of the filament yarn and the increase in tension due to this air resistance It is easy to suppress and suppress stress sufficiently. Therefore, the first important embodiment of the present embodiment is more effective than the conventional technique, while maintaining or further improving the uniformity of the thickness variation and quality variation of the filament yarn. It also has a feature that it is easy to further improve the quality of the yarn, such as the strength, elongation, and strength. Further, the first important embodiment of the present embodiment is more effective in rectifying the air flow around each single yarn of the filament yarn from the upstream side in the traveling path direction of the filament yarn, The air resistance acting on the single yarn and the increase in tension due to this air resistance are suppressed and the stress is easily suppressed. Single yarn finer and multifilament filament yarns, filament yarns with irregular cross-section, or filament yarns or glass with modified thermoplastic polymer that tend to increase the stress acting on each single yarn of the yarn It also has a feature that it is extremely effective for highly functional filament yarns such as filament yarns composed of special thermoplastic polymers having a high transition temperature.

では、本実施形態の第1の重要な実施形態の特長や効果等について、更に3点程、説明する。第5に、本実施形態の第1の重要な実施形態では、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設し、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さく、また、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくすることで、フィラメント糸の各単糸と気流との間の相対速度を小さくして、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を抑制、応力を抑制する。このため、本実施形態の第1の重要な実施形態では、従来の技術、例えば、特許文献1等よりも、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、気流吹き出し面から吹き出されるより小さい流量の気流で、大きくさせ易い。また、本実施形態の第1の重要な実施形態では、従来の技術、例えば、特許文献1等よりも、フィラメント糸の走行経路方向のより上流側で、冷却手段の気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、気流吹き出し面から吹き出されるより小さい流量の気流で、大きくさせ易い。従って、本実施形態の第1の重要な実施形態は、従来の技術よりも、より小さい流量の気流で、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大、応力を充分に抑制でき、また、気流の供給等に必要なエネルギーを小さくできるので省エネ効果がある他、フィラメント糸の製造費用を削減させることができるという特長も有している。
第6に、本実施形態の第1の重要な実施形態では、冷却手段の気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する。このため、気流吹き出し面の内径が小さくなり易く、また、フィラメント糸の走行経路方向の下流側で気流吹き出し面の内径が小さくなるので、例えば、図1等において7で示す冷却手段の気流室を大きくし易い。従って、本実施形態の第1の重要な実施形態は、気流室で気流を均圧化、均一化させ易く、例えば、気流吹き出し面から吹き出される気流のフィラメント糸の走行経路を囲う円周方向の流速分布を均一化させ易いので、フィラメント糸の各単糸を円周方向に更に均一に冷却し易く、フィラメント糸の糸の太さ斑や品質斑等の均斉性等を更に向上させることができるという特長も有している。なお、本実施形態の第1の重要な実施形態において、気流室を大きくし易いことは、図1等の図示から容易に理解することができる。また、本実施形態の第1の重要な実施形態は、気流室を大きくし易いので、気流室に気流を均圧化、均一化させる手段、例えば、圧損部材等を配設し易く、この点からも、気流吹き出し面から吹き出される気流のフィラメント糸の走行経路を囲う円周方向の流速分布を均一化させ易いので、フィラメント糸の各単糸を円周方向に更に均一に冷却し易く、フィラメント糸の糸の太さ斑や品質斑等の均斉性等を更に向上させることができる。
Now, the features and effects of the first important embodiment of the present embodiment will be further described in about three points. Fifth, in the first important embodiment of the present embodiment, the inner diameter of the airflow blowing surface of the cooling means is arranged so as to gradually decrease from the upstream side to the downstream side in the traveling direction of the filament yarn. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means is gradually decreased from the upstream side to the downstream side in the traveling path direction of the filament yarn, In the region surrounded by the airflow blowing surface of the cooling means, the flow velocity of the airflow in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn is gradually increased from the upstream side in the traveling direction of the filament yarn toward the downstream side. By increasing the size, the relative speed between each single yarn of the filament yarn and the air flow is reduced to suppress the air resistance acting on each single yarn of the filament yarn and the increase in tension due to this air resistance, To suppress the force. For this reason, in the first important embodiment of the present embodiment, the flow path direction of the filament yarn of the airflow in the region surrounded by the airflow blowing surface of the cooling means is higher than that of the conventional technique, for example, Patent Document 1 or the like. It is easy to increase the flow velocity in the direction from the upstream side to the downstream side with a smaller airflow that is blown out from the airflow blowing surface. Further, in the first important embodiment of the present embodiment, it is surrounded by the air flow blowing surface of the cooling means on the upstream side in the traveling path direction of the filament yarn, compared to the conventional technique, for example, Patent Document 1 and the like. It is easy to increase the flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn of the airflow in the region with a smaller airflow blown from the airflow blowing surface. Therefore, the first important embodiment of the present embodiment has sufficient air resistance acting on each single yarn of the filament yarn, increase in tension due to this air resistance, and sufficient stress with a smaller airflow than in the prior art. In addition to being able to reduce energy required for supplying airflow, etc., there is an energy saving effect, and the manufacturing cost of the filament yarn can be reduced.
Sixth, in the first important embodiment of the present embodiment, the inner diameter of the airflow blowing surface of the cooling means is disposed so as to gradually decrease from the upstream side to the downstream side in the traveling direction of the filament yarn. To do. For this reason, the inner diameter of the airflow blowing surface tends to be small, and the inner diameter of the airflow blowing surface becomes small on the downstream side of the filament yarn traveling path direction. For example, the airflow chamber of the cooling means indicated by 7 in FIG. Easy to enlarge. Therefore, the first important embodiment of the present embodiment is easy to equalize and equalize the airflow in the airflow chamber, for example, the circumferential direction surrounding the traveling path of the filament yarn of the airflow blown from the airflow blowing surface It is easy to uniform the flow velocity distribution of each filament yarn, so that each filament yarn can be cooled more uniformly in the circumferential direction, and the uniformity of the filament yarn thickness unevenness and quality unevenness can be further improved. It also has the feature that it can. In the first important embodiment of the present embodiment, it can be easily understood from the illustration of FIG. In addition, the first important embodiment of the present embodiment is easy to enlarge the air flow chamber, so it is easy to dispose a means for equalizing and equalizing the air flow in the air flow chamber, such as a pressure loss member. Since it is easy to uniform the flow velocity distribution in the circumferential direction surrounding the traveling path of the filament yarn of the airflow blown out from the airflow blowing surface, it is easy to cool each filament yarn of the filament yarn more uniformly in the circumferential direction, It is possible to further improve the uniformity of the thickness and quality spots of the filament yarn.

第7に、本実施形態の第1の重要な実施形態では、上記した様に、気流吹き出し面の内径が小さくなり易く、また、フィラメント糸の走行経路方向の下流側で気流吹き出し面の内径が小さくなる。従って、本実施形態の第1の重要な実施形態は、それに合わせて、冷却手段のフィラメント糸の走行経路方向に垂直な方向の外径を小さくすることで、冷却手段をコンパクト化し易いので、小スペースで多数のフィラメント糸を紡出させ易く、また、小スペースで多数のフィラメント糸を紡出させる様な溶融紡糸方法、あるいは溶融紡糸装置等(例えば、紡糸口金や紡糸パック等が配設されるピッチが短い)に対応し易い等の特徴も有している。   Seventh, in the first important embodiment of the present embodiment, as described above, the inner diameter of the airflow blowing surface is likely to be small, and the inner diameter of the airflow blowing surface is downstream in the traveling direction of the filament yarn. Get smaller. Therefore, according to the first important embodiment of the present embodiment, the cooling means can be made compact by reducing the outer diameter in the direction perpendicular to the traveling path direction of the filament yarn of the cooling means. It is easy to spin a large number of filament yarns in a space, and a melt spinning method or a melt spinning apparatus that spins a large number of filament yarns in a small space (for example, a spinneret or a spin pack is provided). It also has features such as being easy to cope with (short pitch).

本実施形態は冷却手段の気流吹き出し面の内径Dを、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する形態(冷却手段の気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する形態)により、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、また、冷却手段の気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする形態により、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な徐々に小さくする形態に本実施形態は好適である。例えば、製糸安定性等を損なわない範囲で、気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって連続的に、あるいは段階的に徐々に小さくしても良く、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする過程において、フィラメント糸の走行経路方向の上流側から下流側に向かって、気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を徐々に小さくする程度、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって、気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を徐々に小さくする縮小率を部分的に異なる様にしても本実施形態は好適である。また、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、例えば、気流吹き出し面の内径D気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって段階的に徐々に小さくする際に、気流吹き出し面や気流吹き出し部の一部、あるいはある気流吹き出し面とある気流吹き出し面の間や、ある気流吹き出し部とある気流吹き出し部の間に、非吹き出し部が設けられても良い。また、上記非吹き出し部は特に限られず、例えば、ある気流吹き出し面とある気流吹き出し面、あるいは、ある気流吹き出し部とある気流吹き出し部を接続する部材やシール等を行う部材として利用されても良く、また、非吹き出し部のフィラメント糸の走行経路を囲う内側面は特に限られず、例えば、気流吹き出し面に準じた形状であっても良い。気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする形態は、特に限られないが、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする過程において、フィラメント糸の走行経路方向の上流側から下流側に向かって、気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を徐々に小さくする縮小率を、フィラメント糸の走行経路方向の上流側で大きくすることが好ましい。フィラメント糸の各単糸が急激に細化、糸速度が急激に増加して、空気抵抗等により張力や応力が急激に増大し易く、また、気流の乱れ等の影響を受け易く、気流の乱れ等の影響を受けて乱れ易い、繊細で、敏感な、フィラメント糸の走行経路方向の上流側の領域に対応して、より効果的に、フィラメント糸の各単糸廻りの気流を充分に整流化しつつ、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を充分に抑制、応力を充分に抑制させ易いためである。なお、この形態は、紡糸口金から紡出された後、紡糸口金の近傍で急激に固化し易く、ほぼ固化するまでにフィラメント糸の各単糸に働く応力が大きくなり易い、単糸細繊度化・多フィラメント化されたフィラメント糸や単糸異形断面化されたフィラメント糸、あるいは熱可塑性ポリマーが改質されたフィラメント糸やガラス転移温度が高い等の特殊な熱可塑性ポリマーから構成されるフィラメント糸等の高機能フィラメント糸に対して、特に極めて有効である。また、フィラメント糸の各単糸が、フィラメント糸の走行経路方向の下流側の領域において、急激に細化し難く、また、糸速度も急激に増加し難いことから、上記気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする縮小率を、急激に細化し、糸速度が急激に増加し易いフィラメント糸の走行経路方向の上流側では大きくし、急激に細化し難く、糸速度が急激に増加し難いフィラメント糸の走行経路方向の下流側では小さくしても良い。即ち、上記気流吹き出し面の内径Dや気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする縮小率を、フィラメント糸の走行経路方向の上流側では大きくし、他方、フィラメント糸の走行経路方向の下流側では小さくしても良い。   In the present embodiment, the inner diameter D of the airflow blowing surface of the cooling means is disposed so as to gradually decrease from the upstream side to the downstream side of the filament yarn traveling path direction (filament yarn on the airflow blowing surface of the cooling means). The cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn is arranged so as to gradually decrease from the upstream side to the downstream side in the traveling path direction of the filament yarn). As long as the important embodiment and the second important embodiment of the present embodiment to be described later are satisfied, the present invention is not particularly limited, and is perpendicular to the traveling direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means. The first important embodiment of the present embodiment described later and the following will be described later by gradually reducing the cross-sectional area of the cross-section in the direction from the upstream side to the downstream side in the traveling direction of the filament yarn. In the range that satisfies the second important embodiment of the present embodiment, not particularly limited as the present embodiment to various gradually reduced to form is preferred. For example, the cross-sectional area of the cross section in the direction perpendicular to the filament yarn traveling path direction in the region surrounded by the air flow blowing surface and the inner diameter D of the air flow blowing surface within a range not impairing the yarn production stability, etc. The filament may be gradually reduced from the upstream side to the downstream side in the direction, or gradually in steps, or in the process of gradually decreasing from the upstream side to the downstream side in the filament yarn traveling path direction, the filament From the upstream side to the downstream side in the yarn traveling path direction, the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the inner diameter D of the airflow blowing surface and the region surrounded by the airflow blowing surface is gradually reduced. Or the diameter of the air flow blowing surface and the area surrounded by the air flow blowing surface from the upstream side to the downstream side in the traveling direction of the filament yarn. Even if the reduction ratio gradually reducing the cross-sectional area of the cross section in the direction perpendicular to the travel path direction of the reinforcement yarns to partially different as the present embodiment is preferred. Moreover, in the range which satisfies the 1st important embodiment of this embodiment mentioned above and the 2nd important embodiment of this embodiment mentioned later, it was surrounded by the internal diameter D airflow blowing surface of the airflow blowing surface, for example When gradually reducing the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region from the upstream side to the downstream side in the traveling path direction of the filament yarn, A non-blow-out part may be provided between a part of a part, or between a certain airflow blowing surface and a certain airflow blowing surface, or between a certain airflow blowing part and a certain airflow blowing part. In addition, the non-blowing part is not particularly limited, and may be used as, for example, a member that connects a certain air blowing part and a certain air blowing part, or a member that connects a certain air blowing part and a certain air blowing part, or a member that performs a seal or the like. Further, the inner side surface surrounding the traveling path of the filament yarn in the non-blowing part is not particularly limited, and may be, for example, a shape according to the air flow blowing surface. The cross-sectional area of the cross section perpendicular to the traveling path direction of the filament yarn in the region surrounded by the inner diameter D of the airflow blowing surface and the airflow blowing surface is gradually increased from the upstream side to the downstream side in the traveling path direction of the filament yarn. The mode of reducing is not particularly limited, but in the process of gradually decreasing from the upstream side in the filament yarn traveling path direction toward the downstream side, the air flow from the upstream side in the filament yarn traveling path direction toward the downstream side The reduction ratio for gradually reducing the cross-sectional area of the section perpendicular to the traveling path direction of the filament yarn in the area surrounded by the inner diameter D of the blowing surface and the airflow blowing surface is increased on the upstream side in the traveling path direction of the filament yarn. It is preferable to do. Each single yarn of the filament yarn is abruptly thinned, the yarn speed is rapidly increased, tension and stress are likely to increase rapidly due to air resistance, etc., and are also easily affected by airflow turbulence, etc. The air flow around each single yarn of the filament yarn is fully rectified more effectively, corresponding to the delicate and sensitive upstream region in the filament yarn traveling path direction, which is easily disturbed by On the other hand, the air resistance acting on each single yarn of the filament yarn and the increase in tension due to this air resistance are sufficiently suppressed, and the stress is easily suppressed sufficiently. This form is easy to solidify rapidly in the vicinity of the spinneret after being spun from the spinneret, and the stress acting on each single yarn of the filament yarn is likely to increase until it is almost solidified. -Filament yarns made into multifilaments, single yarns with irregular cross-sections, filament yarns modified with thermoplastic polymers, filament yarns composed of special thermoplastic polymers such as high glass transition temperature, etc. This is particularly effective for high-performance filament yarns. Further, since each single yarn of the filament yarn is difficult to sharply reduce in the downstream region of the filament yarn in the traveling path direction, and the yarn speed is also difficult to increase rapidly, The reduction rate for gradually reducing the cross-sectional area of the section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the air flow blowing surface from the upstream side to the downstream side in the traveling path direction of the filament thread is drastically reduced. The filament speed is increased on the upstream side in the traveling path direction of the filament yarn, where the yarn speed is likely to increase rapidly. May be. That is, the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the inner diameter D of the air flow blowing surface and the air flow blowing surface is directed from the upstream side to the downstream side in the filament path direction The reduction rate that is gradually decreased may be increased on the upstream side in the traveling path direction of the filament yarn, and may be decreased on the downstream side in the traveling path direction of the filament yarn.

本実施形態は冷却手段の気流吹き出し面の内径Dを、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する形態(冷却手段の気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する形態)により、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な徐々に小さくする形態に本実施形態は好適である。冷却手段の気流吹き出し面の内径Dを、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する形態は、特に限られないが、好ましくは、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、冷却手段の気流吹き出し面が、フィラメント糸の走行経路の最外周面に近接する様に、冷却手段の気流吹き出し面の内径Dを、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設すると良い。これは、第1に、上記した様に、気流吹き出し面をフィラメント糸の走行経路の最外周面に近接する様にすると、気流吹き出し面から吹き出された気流でフィラメント糸の各単糸廻りの気流を整流化し易くできるためである。また、第2に、気流吹き出し面をフィラメント糸の走行経路の最外周面に近接する様にすると、気流吹き出し面等とフィラメント糸の走行経路の最外周面との間の流路が狭くなり、気流吹き出し面の特にフィラメント糸の走行経路方向の上流側から吹き出された気流が、この流路を通って、紡糸口金の下面の近傍領域に、フィラメント糸の走行経路方向の下流側から上流側に向かって上昇、流入し難くなり、この上昇流により、フィラメント糸の走行経路の外周側の各単糸が内周側の各単糸に対して、フィラメント糸の走行経路方向のより上流側から強く冷却され易くなること、また、これにより発生する冷却斑や、糸揺れ等の問題を発生し難くできる等の理由からである。   In this embodiment, the inner diameter D of the airflow blowing surface of the cooling means is arranged so as to gradually decrease from the upstream side to the downstream side in the filament yarn traveling path direction (filament yarn on the airflow blowing surface of the cooling means). The cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn is arranged so as to gradually decrease from the upstream side to the downstream side in the traveling path direction of the filament yarn). The present embodiment is not particularly limited as long as the important embodiment and the second important embodiment of the present embodiment described later are satisfied, and this embodiment is suitable for various gradually decreasing forms. The form in which the inner diameter D of the airflow blowing surface of the cooling means is gradually reduced from the upstream side to the downstream side in the traveling direction of the filament yarn is not particularly limited. From the upstream side to the downstream side of the travel path direction, the air flow of the cooling means is such that the airflow blowing surface of the cooling means is close to the outermost peripheral surface of the travel path of the filament yarn in the direction perpendicular to the travel path direction of the filament yarn. The inner diameter D of the blowout surface is preferably arranged so as to be gradually reduced from the upstream side toward the downstream side in the filament yarn traveling path direction. First, as described above, when the air flow blowing surface is brought close to the outermost peripheral surface of the filament yarn traveling path, the air flow around each single yarn of the filament yarn is blown by the air flow blown from the air flow blowing surface. This is because it can be easily rectified. Second, when the airflow blowing surface is brought close to the outermost peripheral surface of the filament yarn traveling path, the flow path between the airflow blowing surface and the outermost peripheral surface of the filament yarn traveling path becomes narrow, The airflow blown from the upstream side of the airflow blowing surface, particularly in the filament yarn traveling path direction, passes through this flow path to the region near the lower surface of the spinneret, from the downstream side in the filament yarn traveling path direction to the upstream side. As a result of this upward flow, each single yarn on the outer peripheral side of the filament yarn travel path is stronger than each single yarn on the inner peripheral side from the upstream side of the filament yarn travel path direction. This is because it is easy to be cooled, and it is difficult to cause problems such as cooling spots and yarn wobbling.

本実施形態は冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離の形態により、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な形態に本実施形態は好適である。冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離は、特に限られないが、好ましくは、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、気流吹き出し面とフィラメント糸の走行経路の最外周面が充分近接する様に設けると良い。フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、冷却手段の気流吹き出し面が、フィラメント糸の走行経路の最外周面に近接する様にすると、上記の通り、気流吹き出し面から吹き出された気流でフィラメント糸の各単糸廻りの気流を整流化し易くできる等の理由からである。また、冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離は、特に限られないが、更に好ましくは、フィラメント糸の走行経路方向の上流側から下流側にわたって、例えば、数mmから十数mm程度の範囲の距離にすると良い。また、冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離は、特に限られず、例えば、冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離を、フィラメント糸の走行経路方向の上流側から下流側にわたって、例えば、数mmから十数mm程度の範囲の距離とした上で、冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離を、フィラメント糸の走行経路方向の上流側から下流側に向かって殆ど変化させない、あるいは一定としても良く、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって漸増あるいは漸減させても良く、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって増加と減少が単数あるいは複数あるいは複数種ある様にしても良い。また、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増、漸減、あるいは増加、減少を連続的に、あるいは段階的に行っても良く、あるいは、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増、漸減、あるいは増加、減少させる過程において、漸増、漸減、あるいは増加、減少の程度を部分的に変化させても良い。なお、常法、例えば、内吹き円筒状冷却手段では、気流吹き出し面が円筒状であり、フィラメント糸の走行経路方向の上流側から下流側に向かって、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径が変化しないので、一般にその製造工程において、紡糸口金から紡出され、気流等により冷却、固化された後、糸油剤付与・集束・ガイド・案内等の手段でその各単糸が集束されることの多いフィラメント糸に対し、その各単糸がフィラメント糸の走行経路方向の上流側から下流側に集束されるのに合わせて、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、冷却手段の気流吹き出し面を、フィラメント糸の走行経路の最外周面に近接させ難く、寧ろ、フィラメント糸の走行経路方向の上流側から下流側に向かって、冷却手段の気流吹き出し面が、フィラメント糸の走行経路の最外周面から、フィラメント糸の走行経路方向に垂直な方向に遠ざかり易い結果、冷却手段の気流吹き出し面とフィラメント糸の走行経路の最外周面との間のフィラメント糸の走行経路方向に垂直な方向の距離が、フィラメント糸の走行経路方向の上流側から下流側に向かって、十数mmより大きく、あるいは数十mm程度、あるいはそれ以上となり易く、フィラメント糸の走行経路方向の上流側から下流側に向かって、気流吹き出し面から吹き出された気流でフィラメント糸の各単糸廻りの気流を整流化し難くなる等の問題がある。   This embodiment is the first important feature of this embodiment described above, depending on the form of the distance in the direction perpendicular to the direction of the filament yarn travel path between the airflow blowing surface of the cooling means and the outermost peripheral surface of the filament yarn travel path. The present embodiment is not particularly limited as long as the present embodiment and the second important embodiment of the present embodiment described later are satisfied, and the present embodiment is suitable for various forms. The distance in the direction perpendicular to the traveling path direction of the filament yarn between the airflow blowing surface of the cooling means and the outermost peripheral surface of the traveling path of the filament yarn is not particularly limited, but is preferably in the traveling path direction of the filament yarn. From the upstream side to the downstream side, it is preferable that the air flow blowing surface and the outermost peripheral surface of the filament yarn traveling path are provided in a direction perpendicular to the filament yarn traveling path direction. When the airflow blowing surface of the cooling means is close to the outermost peripheral surface of the filament yarn traveling path in a direction perpendicular to the filament yarn traveling path direction from the upstream side to the downstream side in the filament yarn traveling path direction, This is because, as described above, the airflow around the single yarn of the filament yarn can be easily rectified by the airflow blown from the airflow blowing surface. Further, the distance in the direction perpendicular to the traveling path direction of the filament yarn between the air flow blowing surface of the cooling means and the outermost peripheral surface of the traveling path of the filament yarn is not particularly limited, but more preferably the traveling of the filament thread. For example, the distance may be in the range of several millimeters to several tens of millimeters from the upstream side to the downstream side in the path direction. Further, the distance in the direction perpendicular to the filament yarn traveling path direction between the air blowing surface of the cooling means and the outermost peripheral surface of the filament yarn traveling path is not particularly limited. The distance in the direction perpendicular to the traveling path direction of the filament yarn from the outermost peripheral surface of the traveling path of the yarn is, for example, about several mm to several tens of mm from the upstream side to the downstream side in the traveling path direction of the filament yarn. The distance in the direction perpendicular to the filament yarn travel path direction between the airflow blowing surface of the cooling means and the outermost peripheral surface of the filament yarn travel path is defined as the upstream of the filament yarn travel path direction. Almost no change from the side to the downstream side, or it may be constant, or there is a gradual increase from the upstream side to the downstream side in the direction of the filament yarn travel path. May is is gradually decreased, or increases and decreases toward the downstream side from the upstream side of the travel path direction of the filament yarns may be as certain singular or plural, or more. Further, the filament yarn may be gradually increased, gradually decreased, increased, or decreased from the upstream side in the traveling path direction in the continuous or stepwise manner, or the upstream side in the traveling path direction of the filament yarn. In the process of gradually increasing, gradually decreasing, increasing or decreasing from the downstream side, the degree of gradual increase, gradual decrease, increase or decrease may be partially changed. Incidentally, in an ordinary method, for example, in an internally blown cylindrical cooling means, the airflow blowing surface is cylindrical, and the filament yarn traveling path direction on the airflow blowing surface is directed from the upstream side to the downstream side in the filament yarn traveling path direction. Since the inner diameter in the direction perpendicular to the inner diameter does not change, in general in the production process, after spinning from the spinneret, cooling and solidifying by airflow, etc., each unit is applied by means such as applying thread oil, converging, guiding, guiding, etc. For filament yarns that are often bundled, each single yarn is bundled from the upstream side in the filament yarn traveling path direction to the downstream side, and the filament yarn traveling path direction from the upstream side to the downstream side. It is difficult to bring the airflow blowing surface of the cooling means close to the outermost peripheral surface of the filament yarn traveling path in a direction perpendicular to the filament yarn traveling path direction. As a result, the airflow blowing surface of the cooling means tends to move away from the outermost peripheral surface of the filament yarn traveling path in the direction perpendicular to the filament yarn traveling path direction from the upstream side to the downstream side in the traveling path direction of the yarn thread. The distance in the direction perpendicular to the traveling path direction of the filament yarn between the airflow blowing surface of the cooling means and the outermost peripheral surface of the traveling path of the filament yarn is from the upstream side to the downstream side in the traveling path direction of the filament yarn. Around 10 mm or more, or about several tens of mm or more, and each filament yarn around the single yarn by the air flow blown from the air flow blowing surface from the upstream side toward the downstream side in the filament yarn traveling path direction There are problems such as difficulty in rectifying the airflow.

本実施形態は気流吹き出し部の気流が吹き出されるフィラメント糸側の面であり、フィラメント糸の走行経路方向に垂直な方向の断面形状が円形で、フィラメント糸の走行経路を外周側から包囲し、フィラメント糸の走行経路の外周側から内向きに気流を吹き付けてフィラメント糸を冷却する気流吹き出し面5により、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られない。上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、様々な気流吹き出し面に好適であり、気流吹き出し面の個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。なお、本実施形態の第1の重要な実施形態の通り、冷却手段の気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状は円形が良い。フィラメント糸の各単糸を、フィラメント糸の走行経路を囲う円周方向に、均一に冷却し易く、また、フィラメント糸の各単糸に、円周方向に、均一に気流を供給し易い等の理由からである。従って、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状は円形が好ましいが特に限られず、例えば、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形を極端に逸脱しない範囲で楕円や多角形形状、あるいはそれに近い形状であっても本実施形態は好適である。なお、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形を極端に逸脱しない範囲で楕円や多角形形状、あるいはそれに近い形状である場合、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径である気流吹き出し面の内径には、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面の内接円あるいは外接円の直径が適用される。また、本実施形態は、冷却手段の気流吹き出し面のフィラメント糸の走行経路方向の長さにより特に限られず、様々な形態に本実施形態は好適である。冷却手段の気流吹き出し面のフィラメント糸の走行経路方向の長さは特に限られないが、好ましくは、フィラメント糸の各単糸がほぼ固化あるいは固化するまでを充分網羅できる長さとするのが良い。言い換えれば、冷却手段の気流吹き出し面のフィラメント糸の走行経路方向の下流側の下端(以下、この気流吹き出し面のフィラメント糸の走行経路方向の下流側の下端を、気流吹き出し面の下端と呼ぶこととする)を、フィラメント糸の各単糸がほぼ固化あるいは固化する位置よりも、フィラメント糸の走行経路方向の下流側に配設する様にすると良い。紡糸口金から紡出されたフィラメント糸の各単糸の細化変形や糸速度の増速は、フィラメント糸の走行経路方向の下流側に向かって、固化するまで継続される。また、紡出してから一旦ほぼ固化するまでにフィラメント糸の各単糸に働く張力をそのほぼ固化する位置での各単糸の走行方向に垂直な方向の断面の断面積で除して求められる応力と、フィラメント糸の各単糸の分子配向度の代表値である複屈折率との間には、密接な相関関係があることが一般に知られている。つまり、冷却手段の気流吹き出し面の下端を、フィラメント糸の各単糸がほぼ固化あるいは固化する位置よりも、フィラメント糸の走行経路方向の下流側に設け、フィラメント糸の各単糸がほぼ固化あるいは固化する位置を捉えて、気流吹き出し面を配設することで、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大、応力をより確実に抑制し、フィラメント糸の強伸度や伸度、強度等の品質をより確実に向上させる狙いである。また、気流吹き出し面が単数あるいは複数あるいは複数種の気流吹き出し面から構成されても好適であり、また、単数あるいは複数あるいは複数種の気流吹き出し面が冷却手段に設けられても好適であり、また、単数あるいは複数あるいは複数種の紡糸口金あるいは紡糸パックに対し、単数あるいは複数あるいは複数種の気流吹き出し面が設けられても本実施形態は好適である。   This embodiment is the filament yarn side surface from which the airflow of the airflow blowing portion is blown out, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn is circular, and surrounds the traveling path of the filament yarn from the outer peripheral side, The first important embodiment of the present embodiment described above and the second embodiment of the present embodiment to be described later are provided by the air flow blowing surface 5 for blowing the air flow inward from the outer peripheral side of the filament yarn traveling path to cool the filament yarn. The present invention is not particularly limited as long as important embodiments are satisfied. As long as the first important embodiment of the present embodiment described above and the second important embodiment of the present embodiment to be described later are satisfied, it is suitable for various air flow blowing surfaces, and the number and outer shape of the air flow blowing surfaces. It is not particularly limited by shape, external dimensions, mounting position / orientation, surface shape, surface finish, surface treatment, structure, member configuration, material, and the like. As in the first important embodiment of the present embodiment, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface of the cooling means is preferably circular. Each filament yarn is easy to cool uniformly in the circumferential direction surrounding the filament yarn travel path, and easy to supply air current to each filament yarn evenly in the circumferential direction. For reasons. Accordingly, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface is preferably circular, but is not particularly limited. For example, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface is circular. This embodiment is suitable even if it is an ellipse, a polygonal shape, or a shape close to it without departing from the extreme. If the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface is an ellipse, polygonal shape, or a shape close to it within a range that does not deviate extremely from the circle, the traveling of the filament yarn on the airflow blowing surface The diameter of the inscribed circle or circumscribed circle in the cross section perpendicular to the traveling path direction of the filament yarn on the airflow blowing surface is applied to the inner diameter of the airflow blowing surface which is the inner diameter in the direction perpendicular to the path direction. In addition, the present embodiment is not particularly limited by the length of the filament yarn on the airflow blowing surface of the cooling means in the traveling path direction, and the present embodiment is suitable for various forms. The length of the airflow blowing surface of the cooling means in the traveling path direction of the filament yarn is not particularly limited, but it is preferable that the length be sufficient to cover until each filament yarn is substantially solidified or solidified. In other words, the lower end on the downstream side in the traveling path direction of the filament yarn on the airflow blowing surface of the cooling means (hereinafter, the lower end on the downstream side in the traveling path direction of the filament yarn on the airflow blowing surface is referred to as the lower end of the airflow blowing surface. Is preferably arranged on the downstream side of the filament yarn traveling path direction from the position where each single yarn of the filament yarn is substantially solidified or solidified. The thinning deformation and the increase in the yarn speed of each single yarn of the filament yarn spun from the spinneret are continued toward the downstream side in the traveling path direction of the filament yarn until the filament yarn is solidified. Also, it is obtained by dividing the tension acting on each single yarn of the filament yarn from spinning until it is almost solidified by the cross-sectional area of the cross section in the direction perpendicular to the running direction of each single yarn at the position where it is almost solidified. It is generally known that there is a close correlation between the stress and the birefringence which is a representative value of the degree of molecular orientation of each single yarn of the filament yarn. That is, the lower end of the airflow blowing surface of the cooling means is provided on the downstream side of the filament yarn in the traveling path direction from the position where each filament yarn is substantially solidified or solidified, and each filament yarn is substantially solidified or solidified. By capturing the solidification position and arranging the air flow blowing surface, the air resistance acting on each filament yarn, the increase in tension due to this air resistance, the stress is more reliably suppressed, and the filament yarn's strong elongation It aims to improve quality such as elongation and strength more reliably. Further, it is preferable that the air flow blowing surface is composed of one or a plurality of or a plurality of types of air flow blowing surfaces, and it is also preferable that one, a plurality of or a plurality of types of air flow blowing surfaces are provided in the cooling means, The present embodiment is suitable even if a single, a plurality, or a plurality of types of spinnerets or spin packs are provided with a single, a plurality, or a plurality of types of air flow blowing surfaces.

本実施形態は気流吹き出し部6により、上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られない。上記した本実施形態の第1の重要な実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、様々な気流吹き出し部に好適であり、気流吹き出し部の個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。なお、気流吹き出し部の気流が吹き出されるフィラメント糸側の面である気流吹き出し面の内径をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設する形態や、気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の断面形状等の形態に関する好ましい形態については、上記した通りである。気流吹き出し部の気流吹き出し面以外の面の外形形状は特に限られず、また、気流吹き出し部の気流が供給される気流吹き出し面の対向面の形状は特に限られない。例えば、気流吹き出し面の対向面のフィラメント糸の走行経路方向に垂直な方向の内径は、特に限られず、フィラメント糸の走行経路方向の上流側から下流側に向かって殆ど変化しなくても良く、また、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増あるいは漸減しても良く、また、フィラメント糸の走行経路方向の上流側から下流側に向かって増加と減少が単数あるいは複数あるいは複数種あっても良い。また、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増、漸減、あるいは増加、減少が連続的に、あるいは段階的に行われても良く、あるいは、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増、漸減、あるいは増加、減少する過程において、漸増、漸減、あるいは増加、減少の程度が部分的に変化しても良い。なお、気流吹き出し部のフィラメント糸の走行経路方向に垂直な方向の厚みや、気流吹き出し部の圧損についても、上記気流吹き出し面の対向面のフィラメント糸の走行経路方向に垂直な方向の内径に関する記載が同様に当て嵌まる。また、気流吹き出し面の対向面のフィラメント糸の走行経路方向に垂直な方向の内径は特に限られず、例えば、図1等において7で示す冷却手段の気流室を更に大きくして気流室で気流を更に均圧化、均一化し易くし、気流吹き出し面から吹き出される気流のフィラメント糸の走行経路を囲う円周方向の流速分布を更に均一化することで、フィラメント糸の糸の太さ斑や品質斑等の均斉性等を更に向上させること等を狙って、気流吹き出し面の内径と同様に、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設しても良い。また、気流吹き出し部のフィラメント糸の走行経路方向に垂直な方向の厚みや、気流吹き出し部の圧損は特に限られない。例えば、本実施形態では、気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設し、気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、特に、フィラメント糸の走行経路方向の下流側において、フィラメント糸の各単糸と気流との間の相対速度を充分小さくするに足る流速まで大きくし易い。そこで、省エネやフィラメント糸の製造費用を削減させること等を狙って、気流吹き出し面から吹き出される気流のフィラメント糸の走行経路方向の流速分布が、フィラメント糸の走行経路方向の上流側から下流側に向かって漸減する分布となる様に、気流吹き出し部のフィラメント糸の走行経路方向に垂直な方向の厚みや気流吹き出し部の圧損を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくなる様に配設しても良い。また、気流吹き出し面の対向面のフィラメント糸の走行経路方向に垂直な方向の断面形状は特に限られない。例えば、円形を多少逸脱した形状であっても本実施形態は好適である。なお、特に限られないが、気流吹き出し面の対向面のフィラメント糸の走行経路方向に垂直な方向の断面形状は、円形が好ましい。気流吹き出し面から吹き出される気流に対し、フィラメント糸の走行経路を囲う円周方向に、均一に圧損を与え易く、また、フィラメント糸の各単糸を、円周方向に、均一に冷却し易く、更に、フィラメント糸の各単糸に、円周方向に、均一に気流を供給し易い等の理由からである。また、気流吹き出し部のフィラメント糸の走行経路方向に垂直な方向の断面形状が、部分的に異なる形状であっても本実施形態は好適であり、異なる部分が単数あるいは複数あるいは複数種あっても好適である。また、気流吹き出し部のフィラメント糸の走行経路方向に垂直な方向の断面形状が、フィラメント糸の走行経路方向に沿って、単数あるいは複数あるいは複数種変化しても本実施形態は好適である。また、気流吹き出し部の部材は特に限られず、穴やオリフィス、スリット等から構成される部材や、金網、パンチングメタル、ハニカム等の整流格子、粒子や繊維、板等から構成される多孔部材、不織布、繊維等を織ったり編んだりして構成される多孔部材、多孔を有する多孔質部材、セルロースのシートやリング、リボン等を積層して構成される多孔部材、スリット状の溝を有する金属シートや薄板、リング、リボン等を積層して構成される多孔部材、金属粒子や金属繊維等を積層して構成される多孔部材、金属線状体や金属リボン等を巻き付けて構成される多孔部材等やこれらに近い部材であっても好適であり、あるいは単数あるいは複数あるいは複数種の部材から構成されても本実施形態は好適である。気流吹き出し部は、特に限られないが、好ましくは、気流吹き出し面から吹き出される気流を整流化し易い、気流整流部材から構成されると良い。なお、気流整流部材としては、上記した様な部材が一例として挙げられる。また、気流吹き出し部の材質は特に限られず、アルミ、銅、青銅、真鍮、鉄、炭素鋼、ボンデ鋼、ステンレス、ステンレス合金、タングステン、タングステン合金等の金属や、セメント、合成樹脂、天然樹脂、繊維、化学繊維、天然繊維、紙、木材、セルロース、セラミック、カーボン等であっても好適であり、単数あるいは複数あるいは複数種の材質から構成されても本実施形態は好適である。また、断熱部材や保温部材、加熱部材、冷却部材、加熱手段、冷却手段、温度等の計測手段等が設けられても本実施形態には好適である。また、気流吹き出し部が単数あるいは複数あるいは複数種の気流吹き出し部から構成されても好適であり、また、単数あるいは複数あるいは複数種の気流吹き出し部が冷却手段に設けられても好適であり、また、単数あるいは複数あるいは複数種の紡糸口金あるいは紡糸パックに対し、単数あるいは複数あるいは複数種の気流吹き出し部が設けられても本実施形態は好適である。   The present embodiment is not particularly limited by the air flow blowing unit 6 as long as the first important embodiment of the present embodiment described above and the second important embodiment of the present embodiment described later are satisfied. As long as the first important embodiment of the present embodiment described above and the second important embodiment of the present embodiment to be described later are satisfied, it is suitable for various air flow blowing portions, the number of air flow blowing portions, the outer shape It is not particularly limited by shape, external dimensions, mounting position / orientation, surface shape, surface finish, surface treatment, structure, member configuration, material, and the like. In addition, the configuration in which the inner diameter of the airflow blowing surface, which is the surface on the filament yarn side from which the airflow of the airflow blowing portion is blown out, gradually decreases from the upstream side to the downstream side in the filament yarn traveling path direction, The preferred form relating to the form such as the cross-sectional shape in the direction perpendicular to the direction of travel of the filament yarn on the airflow blowing surface is as described above. The outer shape of the surface other than the airflow blowing surface of the airflow blowing portion is not particularly limited, and the shape of the surface facing the airflow blowing surface to which the airflow of the airflow blowing portion is supplied is not particularly limited. For example, the inner diameter in the direction perpendicular to the traveling path direction of the filament yarn on the surface facing the airflow blowing surface is not particularly limited, and may hardly change from the upstream side to the downstream side in the traveling path direction of the filament yarn, Further, the filament yarn may be gradually increased or decreased from the upstream side in the traveling path direction toward the downstream side, and the increase or decrease in the filament thread traveling direction from the upstream side to the downstream side may be singular or plural or There may be multiple types. Further, the increase, decrease, increase, or decrease gradually from the upstream side in the filament yarn traveling path direction toward the downstream side may be performed continuously or stepwise, or upstream in the filament yarn traveling path direction. In the process of gradual increase, gradual decrease, increase or decrease from the side toward the downstream side, the degree of gradual increase, gradual decrease, increase or decrease may partially change. In addition, regarding the thickness in the direction perpendicular to the traveling path direction of the filament yarn at the airflow blowing portion and the pressure loss of the airflow blowing portion, the description about the inner diameter in the direction perpendicular to the traveling path direction of the filament yarn on the opposite surface of the airflow blowing surface. The same applies. Further, the inner diameter in the direction perpendicular to the traveling path direction of the filament yarn on the surface opposite to the air flow blowing surface is not particularly limited. For example, the air flow chamber of the cooling means indicated by 7 in FIG. Furthermore, it is easy to equalize and equalize the pressure, and the flow velocity distribution in the circumferential direction surrounding the traveling path of the filament yarn of the airflow blown out from the airflow blowing surface is further uniformed, so that the thickness variation and quality of the filament yarn Aiming to further improve the uniformity of spots, etc., like the inner diameter of the air flow blowing surface, arrange so that the filament yarn gradually decreases from the upstream side to the downstream side in the traveling path direction. Also good. Further, the thickness in the direction perpendicular to the traveling path direction of the filament yarn at the airflow blowing portion and the pressure loss of the airflow blowing portion are not particularly limited. For example, in the present embodiment, the inner diameter of the airflow blowing surface is arranged so as to gradually decrease from the upstream side to the downstream side in the filament yarn traveling path direction, and the airflow in the region surrounded by the airflow blowing surface Reduce the flow velocity in the direction from the upstream side to the downstream side in the traveling direction of the filament yarn, particularly the relative speed between each single yarn of the filament yarn and the airflow, particularly in the downstream side in the traveling route direction of the filament yarn. It is easy to increase the flow rate to a sufficient level. Therefore, the flow velocity distribution in the traveling path direction of the filament yarn of the airflow blown out from the airflow blowing surface is from the upstream side to the downstream side in the traveling path direction of the filament yarn, aiming at energy saving and reducing the manufacturing cost of the filament yarn. The thickness in the direction perpendicular to the traveling path direction of the filament yarn in the airflow blowing portion and the pressure loss of the airflow blowing portion from the upstream side in the traveling direction of the filament yarn to the downstream side so that the distribution gradually decreases toward the You may arrange | position so that it may become large gradually. Moreover, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the surface facing the airflow blowing surface is not particularly limited. For example, this embodiment is suitable even if the shape is slightly deviated from a circle. Although not particularly limited, the cross-sectional shape in the direction perpendicular to the traveling direction of the filament yarn on the surface facing the airflow blowing surface is preferably circular. The airflow blown out from the airflow blowing surface is easy to apply pressure loss uniformly in the circumferential direction surrounding the filament yarn travel path, and each filament yarn is easy to cool uniformly in the circumferential direction. Furthermore, it is because it is easy to supply airflow uniformly in the circumferential direction to each single yarn of the filament yarn. In addition, this embodiment is suitable even if the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn at the airflow blowing portion is partially different, and this embodiment is suitable, even if there are one or a plurality of different portions. Is preferred. In addition, this embodiment is suitable even if the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn at the airflow blowing portion changes by one or a plurality or a plurality of types along the traveling path direction of the filament yarn. In addition, the member of the airflow blowing portion is not particularly limited, a member composed of holes, orifices, slits, etc., a rectifying grid such as a wire mesh, punching metal, honeycomb, etc., a porous member composed of particles, fibers, plates, etc. A porous member constituted by weaving or knitting fibers, a porous member having porosity, a porous member constituted by laminating cellulose sheets or rings, ribbons, etc., a metal sheet having slit-like grooves, Porous members constructed by laminating thin plates, rings, ribbons, etc., porous members constructed by laminating metal particles, metal fibers, etc., porous members constructed by winding metal linear bodies, metal ribbons, etc. Even if it is a member close | similar to these, even if it is comprised from a single or multiple or multiple types of member, this embodiment is suitable. The airflow blowing portion is not particularly limited, but preferably, the airflow blowing portion is preferably composed of an airflow straightening member that can easily rectify the airflow blown from the airflow blowing surface. In addition, as an airflow rectification member, the above-mentioned members are mentioned as an example. The material of the airflow blowing part is not particularly limited, and metals such as aluminum, copper, bronze, brass, iron, carbon steel, bonde steel, stainless steel, stainless alloy, tungsten, tungsten alloy, cement, synthetic resin, natural resin, Fibers, chemical fibers, natural fibers, paper, wood, cellulose, ceramics, carbon, etc. are also suitable, and this embodiment is suitable even if they are composed of a single material or a plurality of materials. Further, even if a heat insulating member, a heat retaining member, a heating member, a cooling member, a heating unit, a cooling unit, a measuring unit such as a temperature, and the like are provided, this embodiment is suitable. Further, it is preferable that the air flow blowing portion is composed of one or a plurality of or a plurality of types of air flow blowing portions, and it is also preferable that the air flow blowing portion is provided in the cooling means. Even if a single, a plurality, or a plurality of types of air blowout portions are provided for a single, a plurality, or a plurality of types of spinneret or spin pack, this embodiment is suitable.

本実施形態はフィラメント糸の走行経路の最外周面や、フィラメント糸の走行経路の最内周面等により特に限られず、様々な形態の最外周面、最内周面に好適である。特に限られないが、好ましくは、フィラメント糸の走行経路の最外周面を、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、フィラメント糸の紡出や走行等を妨げない範囲で、気流吹き出し面5や冷却手段の上流側部材の内側面等に近接させて配設すると良い。なお、冷却手段の上流側部材とは、冷却手段のフィラメント糸の走行経路方向の上流側の部材を示し、図1で言えば、気流吹き出し面5や気流吹き出し部6よりフィラメント糸の走行経路方向の上流側の冷却手段4の部材等を示し、フィラメント糸の走行経路方向の上流側から気流吹き出し面5や気流吹き出し部6等を支持、保持あるいはシールする部材等であり、また、冷却手段の上流側部材の内側面とは、冷却手段の上流側部材のフィラメント糸の走行経路を外周側から囲う内側の面を示す。これは、上記した様に、第1に、特に、フィラメント糸の走行経路の最外周面を気流吹き出し面に近接させて配設することで、気流吹き出し面から吹き出された気流でフィラメント糸の各単糸廻りの気流を整流化し易くできるためである。また、第2に、フィラメント糸の走行経路の最外周面を気流吹き出し面等に近接させて配設することで、フィラメント糸の走行経路の最外周面と気流吹き出し面等との間の流路が狭くなり、気流吹き出し面5の特にフィラメント糸の走行経路方向の上流側から吹き出された気流が、この流路を通って、紡糸口金の下面の近傍領域に、フィラメント糸の走行経路方向の下流側から上流側に向かって上昇、流入し難くなり、この上昇流により、フィラメント糸の走行経路の外周側の各単糸が内周側の各単糸に対して、フィラメント糸の走行経路方向のより上流側から強く冷却され易くなること、また、これにより発生する冷却斑や、糸揺れ等の問題を発生し難くできる等の理由からである。また、フィラメント糸の走行経路の最内周面も、特に限られないが、上記フィラメント糸の走行経路の最外周面と同様に取り扱うと良い。これは、第1に、特にフィラメント糸の走行経路の最内周面を気流吹き出し面5等に近接させて配設することで、気流吹き出し面5からの気流でフィラメント糸の各単糸廻りの気流を整流化し易くなるためである。また、第2に、フィラメント糸の走行経路の最内周面を気流吹き出し面5等に近接させて配設することで、フィラメント糸の走行経路の外周側の各単糸と内周側の各単糸との間の冷却斑等の問題を発生し難くできるためである。更に、第3に、後述する、例えば、図2において14で示される中央部材を、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側に、言い換えれば、フィラメント糸の走行経路の最内周面の内側に、中央部材を配設し易く、また、充分な大きさで中央部材を配設し易くできる等の理由からである。   The present embodiment is not particularly limited by the outermost circumferential surface of the filament yarn traveling path, the innermost circumferential surface of the filament yarn traveling path, and the like, and is suitable for various forms of the outermost circumferential surface and the innermost circumferential surface. Although not particularly limited, it is preferable that the outermost peripheral surface of the filament yarn traveling path be spun from the upstream side of the filament yarn traveling path direction to the downstream side in a direction perpendicular to the filament yarn traveling path direction. It is preferable that the airflow blowing surface 5 and the inner side surface of the upstream member of the cooling means are arranged close to each other as long as they do not interfere with the exit or running. The upstream member of the cooling means refers to a member on the upstream side of the filament yarn traveling path direction of the cooling means. In FIG. 1, the filament yarn traveling path direction from the air flow blowing surface 5 or the air flow blowing portion 6 The members of the cooling means 4 on the upstream side of the filament yarn are members that support, hold, or seal the air flow blowing surface 5 and the air flow blowing portion 6 from the upstream side in the traveling direction of the filament yarn. The inner side surface of the upstream member refers to an inner surface that surrounds the filament yarn traveling path of the upstream member of the cooling means from the outer peripheral side. As described above, this is because, as described above, in particular, the outermost peripheral surface of the filament yarn travel path is disposed close to the airflow blowing surface, so that each filament yarn is blown by the airflow blown from the airflow blowing surface. This is because the airflow around the single yarn can be easily rectified. Second, the flow path between the outermost peripheral surface of the filament yarn traveling path and the airflow blowing surface, etc., by arranging the outermost circumferential surface of the filament yarn traveling path close to the airflow blowing surface or the like. The airflow blown out from the upstream side of the airflow blowing surface 5, particularly in the traveling direction of the filament yarn, passes through this flow path to the region near the lower surface of the spinneret and downstream in the traveling direction of the filament yarn. As a result, the single yarn on the outer peripheral side of the filament yarn traveling path is moved in the direction of the filament yarn traveling path relative to the single inner yarn. This is because it becomes easier to be strongly cooled from the upstream side, and it is difficult to cause problems such as cooling spots and yarn wobbling caused by this. The innermost circumferential surface of the filament yarn traveling path is not particularly limited, but may be handled in the same manner as the outermost circumferential surface of the filament yarn traveling path. First, in particular, the innermost peripheral surface of the filament yarn traveling path is disposed close to the airflow blowing surface 5 and the like, so that the airflow from the airflow blowing surface 5 is used to move the filament yarn around each single yarn. This is because the airflow is easily rectified. Second, the innermost peripheral surface of the filament yarn traveling path is disposed close to the airflow blowing surface 5 and the like, so that each single yarn on the outer peripheral side and each inner peripheral side of the filament yarn traveling path are arranged. This is because problems such as cooling spots between the single yarns are less likely to occur. Thirdly, for example, a center member indicated by 14 in FIG. 2, which will be described later, is located on the inner side of the filament yarn traveling path when viewed from the filament yarn traveling path direction, in other words, the innermost filament thread traveling path This is because it is easy to dispose the central member inside the peripheral surface, and it is easy to dispose the central member with a sufficient size.

本実施形態は冷却開始距離QTDにより特に限られず、様々な冷却開始距離に好適である。特に限られないが、例えば、気流吹き出し面の上端を、フィラメント糸の走行経路方向の上流側に向かって、紡糸口金の下面に近接させて配設すること等により、冷却開始距離を短縮すると、フィラメント糸の走行経路方向の更に上流側から、フィラメント糸の各単糸に働く空気抵抗を抑制したり、各単糸廻りの気流を整流化したりすること等ができるので好ましい。冷却開始距離を短縮することで、特にフィラメント糸の各単糸が急激に細化、糸速度が急激に増加して、空気抵抗等により張力や応力が急激に増大し易く、また、気流の乱れ等の影響を受け易く、気流の乱れ等の影響を受けて乱れ易い、繊細で、敏感な、フィラメント糸の走行経路方向の上流側の領域の方向に本実施形態の適用範囲が更に拡大して、フィラメント糸の走行経路方向の更に上流側から、フィラメント糸の各単糸に働く空気抵抗を抑制したり、各単糸廻りの気流を整流化したりすること等ができるためである。これは、紡糸口金から紡出された後、紡糸口金の近傍で急激に固化し易く、ほぼ固化するまでにフィラメント糸の各単糸に働く応力が大きくなり易い、単糸細繊度化・多フィラメント化されたフィラメント糸や単糸異形断面化されたフィラメント糸、あるいは熱可塑性ポリマーが改質されたフィラメント糸やガラス転移温度が高い等の特殊な熱可塑性ポリマーから構成されるフィラメント糸等の高機能フィラメント糸に対して特に有効である。また、冷却開始距離を短縮する際に、気流吹き出し面の上端やその周辺あるいは気流吹き出し面のフィラメント糸の走行経路方向の上流側から吹き出される気流に、高温の気流、例えば、ガラス転移温度前後あるいはガラス転移温度以上の高温の気流等が用いられても本実施形態は好適である。本実施形態は気流吹き出し面の上端や冷却手段の上流側部材の内側面の上端等をフィラメント糸の走行経路方向の上流側に向かって、紡糸口金の下面H3等に近接させる形態により特に限られない。本実施形態は特に限られないが、気流吹き出し面の上端や冷却手段の上流側部材の内側面の上端等をフィラメント糸の走行経路方向の上流側に向かって、紡糸口金の下面H3等に近接させるに際し、気流吹き出し面の上端、冷却手段の上流側部材の内側面の上端等、あるいは気流吹き出し部6の上端(気流吹き出し部のフィラメント糸の走行経路方向の上流側の上端)や冷却手段の上流側部材等を、紡糸口金や紡糸パック、スピンブロックやそれらの部材あるいはそれらに接続されるその他部材等に接触させても良く、また、接触させてそこでシール等を行っても良く、特に限られない。   This embodiment is not particularly limited by the cooling start distance QTD, and is suitable for various cooling start distances. Although it is not particularly limited, for example, when the cooling start distance is shortened by arranging the upper end of the airflow blowing surface close to the lower surface of the spinneret toward the upstream side in the traveling direction of the filament yarn, From the further upstream side of the filament yarn traveling path direction, air resistance acting on each single yarn of the filament yarn can be suppressed, airflow around each single yarn can be rectified, and the like. By shortening the cooling start distance, each filament yarn is particularly sharply thinned, the yarn speed is rapidly increased, and tension and stress are likely to increase rapidly due to air resistance, etc. The scope of application of this embodiment is further expanded in the direction of the upstream area of the filament yarn traveling path direction, which is susceptible to the influence of the airflow, etc. This is because air resistance acting on each single yarn of the filament yarn can be suppressed and airflow around each single yarn can be rectified from the further upstream side in the traveling path direction of the filament yarn. This is because after spinning from the spinneret, it tends to solidify rapidly in the vicinity of the spinneret, and the stress acting on each single yarn of the filament yarn tends to increase until it is almost solidified. High function, such as filament yarns made into a single filament, modified filament yarns, filament yarns modified with thermoplastic polymers, filament yarns composed of special thermoplastic polymers such as high glass transition temperature, etc. This is particularly effective for filament yarns. In addition, when shortening the cooling start distance, a high temperature air current, for example, around the glass transition temperature Alternatively, the present embodiment is suitable even when a high-temperature airflow higher than the glass transition temperature is used. This embodiment is particularly limited by the form in which the upper end of the airflow blowing surface, the upper end of the inner surface of the upstream member of the cooling means, and the like are brought close to the lower surface H3 of the spinneret toward the upstream side in the traveling direction of the filament yarn. Absent. Although this embodiment is not particularly limited, the upper end of the airflow blowing surface and the upper end of the inner surface of the upstream member of the cooling means are close to the lower surface H3 of the spinneret toward the upstream side in the filament yarn traveling path direction. The upper end of the airflow blowing surface, the upper end of the inner surface of the upstream member of the cooling means, or the upper end of the airflow blowing portion 6 (the upper end on the upstream side in the travel path of the filament yarn of the airflow blowing portion) or the cooling means The upstream member or the like may be brought into contact with a spinneret, a spin pack, a spin block, their members, or other members connected to them, or may be brought into contact and sealed there. I can't.

では、次に、本実施形態の第1の重要な実施形態の更に好ましい実施形態について説明する。本実施形態の第1の重要な実施形態の更に好ましい実施形態は、例えば、図2に示す様に、前記フィラメント糸の走行経路方向からみて前記フィラメント糸の走行経路の内側に、前記フィラメント糸の走行経路方向に延在し、外側面の前記フィラメント糸の走行経路方向に垂直な方向の断面形状が円形である中央部材を設け、前記フィラメント糸の走行経路方向において、前記冷却手段の前記気流吹き出し面に囲まれた領域の前記フィラメント糸の走行経路方向に垂直な方向の断面の断面積から、前記中央部材の前記外側面に囲まれた領域の前記フィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積が、前記フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、前記中央部材の前記外側面を配設することを特徴とする本実施形態の第1の重要な実施形態に記載のフィラメント糸の製造装置である。
ここで、図2は本実施形態の一実施例に係る好ましい溶融紡糸の構成の一例を模式的に例示した縦断面の概略図であり、図1に模式的に例示した本実施形態の一実施例に係る好ましい溶融紡糸の構成の一例に、中央部材14を適用した場合の構成の一例を模式的に例示した縦断面の概略図となっている。図2において、14は中央部材(図中でドットにより塗り潰された部分)、dはフィラメント糸の走行経路方向のある位置における中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の外径であり、これ以外の図2における各記号は図1に準ずる。以下、このフィラメント糸の走行経路方向のある位置における中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の外径を、フィラメント糸の走行経路方向のある位置における中央部材の外側面の外径、あるいは単に中央部材の外側面の外径と呼ぶこととする。また、図2において、中央部材の支持部材等の図示を省略しているが、無論、設けられても良い。なお、本実施形態の第1の重要な実施形態の更に好ましい実施形態において、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側とは、言い換えれば、フィラメント糸の走行経路の最内周面の内側を示す。
Next, a further preferred embodiment of the first important embodiment of the present embodiment will be described. A further preferred embodiment of the first important embodiment of the present embodiment is, for example, as shown in FIG. 2, in the filament yarn traveling path as viewed from the filament thread traveling path direction. A central member extending in the traveling path direction and having a circular cross-sectional shape in a direction perpendicular to the traveling path direction of the filament yarn on the outer surface is provided, and the air flow blowout of the cooling means in the traveling path direction of the filament yarn From the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the surface, in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the outer surface of the central member The cross-sectional area obtained by subtracting the cross-sectional area of the cross-section gradually decreases from the upstream side in the traveling path direction of the filament yarn toward the downstream side, so that the central member An apparatus for manufacturing a filament yarn according to the first important embodiment of the present embodiment, wherein the disposing side.
Here, FIG. 2 is a schematic diagram of a longitudinal section schematically illustrating an example of a preferred melt spinning configuration according to one example of the present embodiment, and one embodiment of the present embodiment schematically illustrated in FIG. It is the schematic of the longitudinal cross-section which illustrated typically an example of the structure at the time of applying the center member 14 to an example of the structure of the preferable melt spinning which concerns on an example. In FIG. 2, reference numeral 14 denotes a central member (portion filled with dots in the drawing), and d denotes an outer side of the filament yarn on the outer surface in a direction perpendicular to the filament yarn traveling path direction at a certain position in the filament thread traveling path direction. The other symbols in FIG. 2 are the same as those in FIG. Hereinafter, the outer diameter of the outer surface of the central member at a certain position in the traveling path direction of the filament yarn in the direction perpendicular to the traveling path direction of the filament yarn is defined as the outer diameter of the outer surface of the central member at the certain position in the traveling path direction of the filament yarn. It will be referred to as the outer diameter or simply the outer diameter of the outer surface of the central member. Moreover, in FIG. 2, although illustration of the support member of a center member is abbreviate | omitted, of course, you may provide. In a further preferred embodiment of the first important embodiment of the present embodiment, the inner side of the filament yarn traveling path as viewed from the filament yarn traveling path direction, in other words, the innermost circumference of the filament yarn traveling path. Indicates the inside of the face.

本実施形態の第1の重要な実施形態の更に好ましい実施形態の特長や効果等について詳細を説明する。第1に、本実施形態の第1の重要な実施形態の更に好ましい実施形態では、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側に、フィラメント糸の走行経路方向に延在し、外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形である中央部材を設け、フィラメント糸の走行経路方向において、冷却手段の前記気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積から、中央部材の外側面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する。このため、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、言うなれば、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を小さく、また、この冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の各単糸が走行可能な領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きくでき、フィラメント糸の各単糸と気流との間の相対速度を、本実施形態の第1の重要な実施形態よりも、更に小さくし易くすることができる。また、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくするので、この冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の各単糸が走行可能な領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくでき、紡糸口金から紡出されて固化するまでフィラメント糸の走行経路方向の下流側に向かって細化変形や糸速度の増速が継続されるフィラメント糸の各単糸に合わせて、フィラメント糸の各単糸と気流との間の相対速度を小さくすることもできる。結果、本実施形態の第1の重要な実施形態の更に好ましい実施形態は、本実施形態の第1の重要な実施形態よりも、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大、応力を更に抑制し易くすることができ、フィラメント糸の強伸度や伸度、強度等の品質を更に向上させ易いという特長を有している。   Details of the features and effects of the further preferred embodiment of the first important embodiment of the present embodiment will be described. First, in a further preferred embodiment of the first important embodiment of the present embodiment, it extends in the traveling path direction of the filament yarn inside the traveling path of the filament yarn as viewed from the traveling path direction of the filament yarn, A central member having a circular cross-sectional shape in a direction perpendicular to the traveling path direction of the filament yarn on the outer side surface is provided, and the filament yarn travels in the region surrounded by the air flow blowing surface of the cooling means in the traveling path direction of the filament yarn. The cross-sectional area obtained by subtracting the cross-sectional area in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the outer surface of the central member from the cross-sectional area in the direction perpendicular to the path direction is the traveling distance of the filament yarn. The outer surface of the central member is disposed so as to gradually decrease from the upstream side in the path direction toward the downstream side. For this reason, in the region surrounded by the airflow blowing surface of the cooling means, the region surrounded by the outer surface of the central member is subtracted from the region surrounded by the airflow blowing surface of the cooling means. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region where each single yarn can travel is small, and each filament yarn in the region surrounded by the airflow blowing surface of this cooling means travels. In the possible region, the flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn of the airflow can be increased, and the relative speed between each single yarn of the filament yarn and the airflow is set to the first speed of this embodiment. It can be made even smaller than the important embodiment. In addition, in the region surrounded by the airflow blowing surface of the cooling means, each single yarn of the filament yarn travels by subtracting the region surrounded by the outer surface of the central member from the region surrounded by the airflow blowing surface of the cooling means. Since the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the possible region is gradually decreased from the upstream side to the downstream side in the traveling path direction of the filament yarn, The flow velocity in the direction from the upstream side of the filament yarn traveling path direction to the downstream side in the region where each filament yarn of the enclosed region can travel is changed from the upstream side to the downstream side in the filament yarn traveling path direction. Can be gradually increased toward the downstream side in the traveling direction of the filament yarn until it is spun from the spinneret and solidified, and the yarn speed continues to increase. In accordance with each single yarn of filament yarn, the relative velocity between the respective single yarn and airflow filament yarn can be reduced. As a result, the more preferable embodiment of the first important embodiment of the present embodiment is more effective than the first important embodiment of the present embodiment in the air resistance acting on each single yarn of the filament yarn and the tension due to this air resistance. And the stress can be further easily suppressed, and the quality of the filament yarn, such as strong elongation, elongation, and strength, can be further improved.

また、第2に、本実施形態の第1の重要な実施形態の更に好ましい実施形態では、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側に、フィラメント糸の走行経路方向に延在し、外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形である中央部材を設ける。このため、中央部材を活用して、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする形態の、例えば、徐々に小さくする緩急の形態、あるいは、フィラメント糸の走行経路方向の上流側から下流側に向かって、上記フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を徐々に小さくする縮小率の大小やフィラメント糸の走行経路方向の上流側から下流側に向かっての縮小率の大小の分布等の、形態の幅を更に拡大することができる。従って、例えば、中央部材の外側面の外径を、中央部材のフィラメント糸の走行経路方向の上流側において、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくなる様に配設する等して、上記フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を、本実施形態の第1の重要な実施形態よりも、フィラメント糸の走行経路方向の上流側で小さくし易い。結果、本実施形態の第1の重要な実施形態の更に好ましい実施形態は、本実施形態の第1の重要な実施形態よりも、上記フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする形態の幅が広く、例えば、紡糸口金から紡出された後、紡糸口金の近傍で急激に固化し易く、ほぼ固化するまでにフィラメント糸の各単糸に働く応力が大きくなり易い、単糸細繊度化・多フィラメント化されたフィラメント糸や単糸異形断面化されたフィラメント糸、あるいは熱可塑性ポリマーが改質されたフィラメント糸やガラス転移温度が高い等の特殊な熱可塑性ポリマーから構成されるフィラメント糸等の高機能フィラメント糸等にも、更に効果的に対応して、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大、応力を充分に抑制し易く、更に効果的に、フィラメント糸の強伸度や伸度、強度等の品質を更に向上させ易いという特長も有している。   Secondly, in a further preferred embodiment of the first important embodiment of the present embodiment, the filament yarn travels in the filament yarn travel path as viewed from the filament yarn travel path direction. A central member having a circular cross-sectional shape in a direction perpendicular to the traveling path direction of the filament yarn on the outer surface is provided. For this reason, utilizing the central member, in the region surrounded by the airflow blowing surface of the cooling means, the region surrounded by the outer surface of the central member is subtracted from the region surrounded by the airflow blowing surface of the cooling means, The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region where each filament yarn can travel is gradually reduced from the upstream side to the downstream side in the traveling path direction of the filament thread. For example, a mode in which the filament yarn is gradually decreased, or perpendicular to the filament yarn traveling path direction in an area where each filament yarn can travel from the upstream side to the downstream side in the filament yarn traveling path direction. Such as the size of the reduction rate that gradually reduces the cross-sectional area of the cross-section in any direction and the distribution of the size of the reduction rate from the upstream side to the downstream side of the filament yarn traveling path direction. It is possible to further expand. Therefore, for example, the outer diameter of the outer surface of the central member is arranged so as to gradually increase from the upstream side in the traveling path direction of the filament yarn to the downstream side in the traveling path direction of the filament yarn of the central member. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region where each single yarn of the filament yarn can travel is set to be larger than the first important embodiment of the present embodiment. It is easy to make it small on the upstream side in the traveling direction of the filament yarn. As a result, a more preferable embodiment of the first important embodiment of the present embodiment is more preferable than the first important embodiment of the present embodiment in the filament yarn in the region where each filament yarn can run. The cross-sectional area in the direction perpendicular to the traveling path direction is gradually reduced from the upstream side to the downstream side in the traveling path direction of the filament yarn. For example, after spinning from a spinneret, spinning is performed. It is easy to solidify rapidly in the vicinity of the base, and the stress acting on each single yarn of the filament yarn is likely to increase until it is almost solidified. High-function filament yarn such as filament yarn, filament yarn modified with thermoplastic polymer, or filament yarn composed of special thermoplastic polymer such as high glass transition temperature In addition, the air resistance acting on each single yarn of the filament yarn, the increase in tension due to this air resistance, the stress can be sufficiently suppressed, and the filament yarn's strong elongation and It also has the feature that quality such as elongation and strength can be further improved.

更に、第3に、本実施形態の第1の重要な実施形態の更に好ましい実施形態では、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を小さくでき、本実施形態の第1の重要な実施形態よりも、気流吹き出し面から吹き出されるより小さい流量の気流で、上記フィラメント糸の各単糸が走行可能な領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きく、また、フィラメント糸の各単糸と気流との間の相対速度を小さくし易い。また、本実施形態の第1の重要な実施形態よりも、フィラメント糸の走行経路方向のより上流側で、上記フィラメント糸の各単糸が走行可能な領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、気流吹き出し面から吹き出されるより小さい流量の気流で、大きくし易い。結果、本実施形態の第1の重要な実施形態の更に好ましい実施形態は、本実施形態の第1の重要な実施形態よりも、更に小さい流量の気流で、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大、応力を充分に抑制でき、また、気流の供給等に必要なエネルギーを更に小さくできるので更に省エネ効果がある他、フィラメント糸の製造費用を更に削減させることができるという特長をも有している。   Thirdly, in a further preferred embodiment of the first important embodiment of the present embodiment, in the region surrounded by the airflow blowing surface of the cooling means, from the region surrounded by the airflow blowing surface of the cooling means, Subtracting the area surrounded by the outer surface of the central member, the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the area where each filament yarn can travel can be reduced. In the region where each filament yarn can travel with an airflow of a smaller flow rate blown from the airflow blowing surface than in the important embodiment 1, the upstream side in the traveling path direction of the filament yarn of the airflow from the upstream side It is easy to increase the flow velocity in the direction toward the direction and decrease the relative speed between each single yarn of the filament yarn and the airflow. In addition, in the upstream of the filament yarn traveling path direction, more upstream than the first important embodiment of the present embodiment, the filament yarn in the traveling path direction of the filament yarn in the region where each filament yarn can travel. It is easy to increase the flow velocity in the direction from the upstream side to the downstream side with an air flow having a smaller flow rate blown out from the air flow blowing surface. As a result, a more preferred embodiment of the first important embodiment of the present embodiment is that the air acting on each single yarn of the filament yarn with a smaller airflow than the first important embodiment of the present embodiment. The resistance and the tension due to this air resistance, the stress can be sufficiently suppressed, and the energy required for supplying the airflow can be further reduced, thus further saving energy and reducing the production cost of the filament yarn. It also has the feature of being able to.

本実施形態はフィラメント糸の走行経路方向において、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積から、中央部材の外側面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する形態により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、また、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する形態により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な形態に本実施形態は好適である。例えば、製糸安定性等を損なわない範囲で、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積から、中央部材の外側面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積や、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって連続的に、あるいは段階的に徐々に小さくなる様に、中央部材の外側面を配設しても良く、あるいは上記断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に中央部材の外側面を配設する過程において、フィラメント糸の走行経路方向の上流側から下流側に向かって、上記断面積を徐々に小さくする程度、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって、上記断面積を徐々に小さくする縮小率を部分的に異なる様にしても本実施形態は好適である。フィラメント糸の走行経路方向において、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積から、中央部材の外側面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する形態、また、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する形態は、特に限られないが、上記断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に中央部材の外側面を配設する過程において、フィラメント糸の走行経路方向の上流側から下流側に向かって、上記断面積を徐々に小さくする縮小率が、フィラメント糸の走行経路方向の上流側で大きくなる様に、中央部材の外側面を配設することが好ましい。フィラメント糸の各単糸が急激に細化、糸速度が急激に増加して、空気抵抗等により張力や応力が急激に増大し易い、フィラメント糸の走行経路方向の上流側の領域に対応して、更に効果的に、フィラメント糸の各単糸に働く空気抵抗やこの空気抵抗による張力の増大を充分に抑制、応力を充分に抑制させ易いためである。なお、この形態は、紡糸口金から紡出された後、紡糸口金の近傍で急激に固化し易く、ほぼ固化するまでにフィラメント糸の各単糸に働く応力が大きくなり易い、単糸細繊度化・多フィラメント化されたフィラメント糸や単糸異形断面化されたフィラメント糸、あるいは熱可塑性ポリマーが改質されたフィラメント糸やガラス転移温度が高い等の特殊な熱可塑性ポリマーから構成されるフィラメント糸等の高機能フィラメント糸に対して、特に極めて有効である。また、フィラメント糸の各単糸が、フィラメント糸の走行経路方向の下流側の領域において、急激に細化し難く、また、糸速度も急激に増加し難いことから、上記断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする縮小率を、急激に細化し、糸速度が急激に増加し易いフィラメント糸の走行経路方向の上流側では大きくなる様にし、急激に細化し難く、糸速度が急激に増加し難いフィラメント糸の走行経路方向の下流側では小さくなる様にしても良い。即ち、上記断面積をフィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする縮小率を、フィラメント糸の走行経路方向の上流側では大きくなる様に、他方、フィラメント糸の走行経路方向の下流側では小さくなる様に、中央部材の外側面を配設しても良い。   This embodiment is surrounded by the outer surface of the central member from the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means in the traveling path direction of the filament yarn. The outer area of the central member is adjusted so that the cross-sectional area obtained by subtracting the cross-sectional area of the region in the direction perpendicular to the traveling path direction of the filament yarn in the region gradually decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn. By the form which arrange | positions a side surface, in the range which satisfies the 1st important embodiment of this embodiment mentioned above, its more preferable embodiment, and the 2nd important embodiment of this embodiment mentioned later, it does not restrict | limit in particular. In addition, in the region surrounded by the airflow blowing surface of the cooling means, the filament is obtained by subtracting the region surrounded by the outer surface of the central member from the region surrounded by the airflow blowing surface of the cooling means. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region where each single yarn of the thread can travel is gradually reduced from the upstream side to the downstream side in the traveling path direction of the filament thread. By the form which arrange | positions the outer surface of a center member, in the range which satisfies the 1st important embodiment of this embodiment mentioned above, its more preferable embodiment, and the 2nd important embodiment of this embodiment mentioned later. However, the present embodiment is not particularly limited, and the present embodiment is suitable for various forms. For example, the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means is surrounded by the outer surface of the central member within a range that does not impair the stability of yarn production. From the area surrounded by the airflow blowing surface of the cooling means in the cross-sectional area obtained by subtracting the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the area, or the area surrounded by the airflow blowing face of the cooling means, The cross-sectional area of the cross section in the direction perpendicular to the travel path direction of the filament yarn in the area where each filament yarn can travel is subtracted from the area surrounded by the outer surface of the central member. The outer surface of the central member may be arranged so as to gradually become smaller from the upstream side toward the downstream side or gradually, or the cross-sectional area may be the filament yarn traveling path. In the process of disposing the outer surface of the central member so as to gradually decrease from the upstream side toward the downstream side, the cross-sectional area is gradually increased from the upstream side to the downstream side in the traveling direction of the filament yarn. The present embodiment is suitable even if the reduction ratio at which the cross-sectional area is gradually reduced is partially changed from the upstream side to the downstream side in the traveling direction of the filament yarn. The filament yarn in the region surrounded by the outer surface of the central member from the cross-sectional area of the cross section in the direction perpendicular to the traveling route direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means in the traveling route direction of the filament yarn The outer surface of the central member is arranged so that the cross-sectional area obtained by subtracting the cross-sectional area in the direction perpendicular to the traveling path direction of the filament yarn gradually decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn. In the form surrounded by the air flow blowing surface of the cooling means, each unit of the filament yarn obtained by subtracting the area surrounded by the outer surface of the central member from the area surrounded by the air flow blowing surface of the cooling means. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the region where the yarn can travel gradually decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn. In this way, the form of disposing the outer surface of the central member is not particularly limited, but the cross-sectional area of the central member gradually decreases from the upstream side to the downstream side in the traveling direction of the filament yarn. In the process of arranging the outer surface, the reduction rate for gradually reducing the cross-sectional area from the upstream side in the traveling path direction of the filament yarn to the upstream side in the traveling path direction of the filament yarn is increased. Further, it is preferable to dispose the outer surface of the central member. Corresponding to the upstream region in the filament yarn travel path direction, where each filament yarn is rapidly thinned, the yarn speed is increased rapidly, and tension and stress are likely to increase rapidly due to air resistance. This is because the air resistance acting on each single yarn of the filament yarn and the increase in the tension due to the air resistance can be sufficiently suppressed and the stress can be sufficiently suppressed more effectively. This form is easy to solidify rapidly in the vicinity of the spinneret after being spun from the spinneret, and the stress acting on each single yarn of the filament yarn is likely to increase until it is almost solidified. -Filament yarns made into multifilaments, single yarns with irregular cross-sections, filament yarns modified with thermoplastic polymers, filament yarns composed of special thermoplastic polymers such as high glass transition temperature, etc. This is particularly effective for high-performance filament yarns. In addition, each single yarn of the filament yarn is not easily thinned rapidly in the region downstream of the filament yarn traveling path direction, and the yarn speed is also difficult to increase rapidly. The reduction ratio that gradually decreases from the upstream side in the path direction to the downstream side is sharply reduced so that the yarn speed is increased rapidly on the upstream side in the travel path direction of the filament yarn, where the yarn speed tends to increase rapidly. It is also possible to reduce the speed on the downstream side of the filament yarn traveling path direction, where the yarn speed is difficult to increase rapidly. That is, the reduction ratio for gradually decreasing the cross-sectional area from the upstream side in the filament yarn traveling path direction toward the downstream side becomes larger on the upstream side in the filament yarn traveling path direction. You may arrange | position the outer surface of a center member so that it may become small in the downstream of a path | route direction.

本実施形態はフィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側、言い換えれば、フィラメント糸の走行経路の最内周面の内側に設けられ、フィラメント糸の走行経路方向に延在し、外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形である中央部材により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な中央部材に好適であり、その個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。   This embodiment is provided on the inside of the filament yarn traveling path as viewed from the filament yarn traveling path direction, in other words, on the innermost peripheral surface of the filament yarn traveling path, and extends in the filament yarn traveling path direction. By the central member having a circular cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the outer side surface, the first important embodiment of the present embodiment described above, a more preferable embodiment thereof, and a later-described embodiment of the present embodiment will be described. As long as the second important embodiment is satisfied, the present invention is not particularly limited and is suitable for various central members. The number, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finishing, surface treatment, structure It is not particularly limited by the member configuration, material, etc.

中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状は、本実施形態の第1の重要な実施形態の更に好ましい実施形態の通り、円形が好ましい。フィラメント糸の各単糸を、フィラメント糸の走行経路を囲う円周方向に、均一に冷却し易く、また、フィラメント糸の各単糸に、円周方向に、均一に気流を供給し易く、更に、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速等を、円周方向に均一にし易い等の理由からである。従って、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状は円形が好ましいが特に限られず、例えば、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形を極端に逸脱しない範囲で楕円や多角形形状、あるいはそれに近い形状であっても本実施形態は好適である。また、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が、円形を極端に逸脱しない範囲で、部分的に異なる形状であっても本実施形態は好適であり、異なる部分が単数あるいは複数あるいは複数種あっても好適である。また、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が、フィラメント糸の走行経路方向に沿って、単数あるいは複数あるいは複数種変化しても本実施形態は好適である。なお、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形を極端に逸脱しない範囲で楕円や多角形形状、あるいはそれに近い形状等である場合、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の外径である中央部材の外側面の外径には、中央部材の外側面のフィラメント糸の走行経路方向に垂直な方向の断面の内接円あるいは外接円の直径が適用される。   The cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface of the central member is preferably circular as in the more preferred embodiment of the first important embodiment of the present embodiment. Each filament yarn is easy to cool uniformly in the circumferential direction surrounding the filament yarn traveling path, and easy to supply air current to each filament yarn evenly in the circumferential direction. In the region surrounded by the airflow blowing surface of the cooling means, each single yarn of the filament yarn can run by subtracting the region surrounded by the outer surface of the central member from the region surrounded by the airflow blowing surface of the cooling means. This is because, for example, the flow velocity in the direction from the upstream side to the downstream side in the travel path direction of the filament yarn of the airflow in a region is easily uniform in the circumferential direction. Therefore, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface of the central member is preferably circular, but is not particularly limited. For example, the cross section in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface of the central member This embodiment is suitable even if the shape is an ellipse, a polygon, or a shape close to it within a range that does not deviate extremely from a circle. In addition, this embodiment is suitable and different even if the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface of the central member is partially different within a range that does not deviate extremely from the circular shape. It is also preferable that there are a single portion, a plurality of portions, or a plurality of portions. In addition, this embodiment is suitable even if the cross-sectional shape of the outer surface of the central member in the direction perpendicular to the traveling path direction of the filament yarn is changed singly, plurally or plurally along the traveling path direction of the filament yarn. . When the cross-sectional shape of the outer surface of the central member in the direction perpendicular to the filament yarn traveling path direction is an ellipse, a polygonal shape, or a shape close to it within a range that does not deviate extremely from the circular shape, the outer surface of the central member The outer diameter of the outer surface of the central member, which is the outer diameter in the direction perpendicular to the traveling path direction of the filament yarn, is the inscribed circle of the cross section in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface of the central member or The diameter of the circumscribed circle applies.

本実施形態は中央部材の外側面の外径により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な中央部材の外側面の外径の形態に好適である。例えば、中央部材の外側面の外径は、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、フィラメント糸の走行経路方向の上流側から下流側に向かって殆ど変化しなくても良く、また、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増あるいは漸減しても良く、また、フィラメント糸の走行経路方向の上流側から下流側に向かって増加と減少が単数あるいは複数あるいは複数種あっても良い。また、例えば、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増、漸減、あるいは増加、減少が連続的に、あるいは段階的に行われても良く、あるいは、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増、漸減、あるいは増加、減少する過程において、漸増、漸減、あるいは増加、減少の程度が部分的に変化しても良い。また、例えば、フィラメント糸の走行経路方向において、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積から、中央部材の外側面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積や、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する過程において、フィラメント糸の走行経路方向の上流側から下流側に向かって、上記断面積を徐々に小さくする縮小率が、フィラメント糸の走行経路方向の上流側で大きくなる様に、中央部材の外側面の外径を、中央部材のフィラメント糸の走行経路方向の上流側において、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくなる様に配設しても良い。また、例えば、中央部材の外側面の外径を、中央部材のフィラメント糸の走行経路方向の上流側において、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に大きくなる様に配設し、且つ、中央部材のフィラメント糸の走行経路方向の下流側において、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設しても良い。また、例えば、中央部材の外側面の外径が、フィラメント糸の走行経路方向に沿って、単数あるいは複数あるいは複数種変化しても本実施形態は好適である。更に、例えば、フィラメント糸の強伸度や伸度、強度等の更なる品質向上や、気流吹き出し面から吹き出される気流の流量を小さくして更なる省エネやフィラメント糸の製造費用の削減等を狙って、中央部材の外側面の外径を大きくして、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を小さくし、この冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の各単糸が走行可能な領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を大きくし易くしても良い。   This embodiment satisfies the above-described first important embodiment of the present embodiment, a more preferable embodiment thereof, and a second important embodiment of the present embodiment described later, depending on the outer diameter of the outer surface of the central member. The range is not particularly limited, and is suitable for the form of the outer diameter of the outer surface of various central members. For example, the outer diameter of the outer side surface of the central member is within a range satisfying the first important embodiment of the present embodiment described above, a more preferable embodiment thereof, and a second important embodiment of the present embodiment described later. However, it is not particularly limited, and there may be almost no change from the upstream side to the downstream side in the traveling path direction of the filament yarn, and it may be gradually increased or gradually decreased from the upstream side in the traveling path direction of the filament yarn toward the downstream side. In addition, there may be one or a plurality or a plurality of types of increases and decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn. Further, for example, the increase, decrease, increase, or decrease gradually from the upstream side to the downstream side in the filament yarn traveling path direction may be performed continuously or stepwise, or the filament yarn traveling path direction. In the process of gradually increasing, gradually decreasing, increasing or decreasing from the upstream side to the downstream side, the degree of gradual increase, gradual decrease, increase or decrease may partially change. Further, for example, in the filament yarn traveling path direction, the region surrounded by the airflow blowing surface of the cooling means is surrounded by the outer surface of the central member from the cross-sectional area of the section perpendicular to the filament yarn traveling path direction. From the area surrounded by the airflow blowing surface of the cooling means in the cross-sectional area obtained by subtracting the cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the area, or the area surrounded by the airflow blowing face of the cooling means, The cross-sectional area of the cross section in the direction perpendicular to the travel path direction of the filament yarn in the area where each filament yarn can travel is subtracted from the area surrounded by the outer surface of the central member. In the process of disposing the outer surface of the central member so that it gradually decreases from the upstream side to the downstream side, the filament yarn travels from the upstream side to the downstream side in the traveling path direction. The outer diameter of the outer surface of the central member is set upstream of the filament yarn traveling path direction of the central member so that the reduction ratio for gradually reducing the cross-sectional area increases on the upstream side of the filament yarn traveling path direction. , The filament yarn may be disposed so as to gradually increase from the upstream side to the downstream side in the traveling path direction. Further, for example, the outer diameter of the outer surface of the central member is arranged so as to gradually increase from the upstream side in the traveling path direction of the filament yarn to the downstream side in the traveling path direction of the filament yarn of the central member. And may be disposed so as to gradually decrease from the upstream side in the traveling path direction of the filament yarn toward the downstream side in the traveling path direction of the filament yarn of the central member. In addition, for example, this embodiment is suitable even if the outer diameter of the outer surface of the central member is changed singly, plurally, or plurally along the traveling path direction of the filament yarn. In addition, for example, further improvement of the filament yarn's strength, elongation, strength, etc., reduction of the airflow blown out from the airflow blowing surface, further energy saving and reduction of filament yarn manufacturing costs, etc. Aiming to increase the outer diameter of the outer surface of the central member, the region surrounded by the airflow blowing surface of the cooling means is surrounded by the outer surface of the central member from the region surrounded by the airflow blowing surface of the cooling means. The cross-sectional area of the cross section in the direction perpendicular to the traveling path direction of the filament yarn in the area where each filament yarn can travel is reduced, and the area surrounded by the air flow blowing surface of the cooling means is reduced. The flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn in the airflow in the region where each single yarn of the filament yarn can travel may be easily increased.

本実施形態は中央部材の外形形状等により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な中央部材の外径形状等の形態に好適である。例えば、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、中央部材や中央部材のフィラメント糸の走行経路方向の上流側あるいは下流側等に、その外側面のフィラメント糸の走行経路方向に垂直な方向の断面の外径がフィラメント糸の走行経路方向の上流側から下流側に向かって拡大あるいは縮小するテーパー形状が単数あるいは複数あるいは複数種設けられても良い。また、例えば、断熱部材や保温部材、加熱部材、冷却部材、加熱手段、冷却手段、温度等の計測手段等が中央部材に設けられても本実施形態は好適である。また、例えば、冷却斑や糸揺れ等の抑制を狙って、中央部材のフィラメント糸の走行経路方向の下流側に、フィラメント糸の走行経路方向に垂直な方向の面や、その外側面のフィラメント糸の走行経路方向に垂直な方向の断面の外径が例えばフィラメント糸の走行経路方向の上流側から下流側に向かって縮小するテーパー形状の表面等を設け、その垂直な方向の面やテーパー形状の表面等に、フィラメント糸の走行経路方向の上流側から下流側に向かって気流を吹き出す気流吹き出し面を配設しても良い。また、他方、例えば、中央部材のフィラメント糸の走行経路方向の上流側に、フィラメント糸の走行経路方向に垂直な方向の面や、その外側面のフィラメント糸の走行経路方向に垂直な方向の断面の外径が例えばフィラメント糸の走行経路方向の下流側から上流側に向かって縮小するテーパー形状の表面等を設け、その垂直な方向の面やテーパー形状の表面等に、フィラメント糸の走行経路方向の下流側から上流側に向かって気流を吹き出す気流吹き出し面を配設しても良く、また、中央部材に、フィラメント糸の走行経路方向に垂直な方向の断面が円形で、フィラメント糸の走行経路方向に延在し、フィラメント糸の走行経路の内周側から外向きに気流を吹き出す気流吹き出し面を配設しても良く、特に限られない。また、中央部材が単数あるいは複数あるいは複数種の中央部材から構成されても好適であり、また、単数あるいは複数あるいは複数種の中央部材が冷却手段に設けられても好適であり、また、単数あるいは複数あるいは複数種の紡糸口金あるいは紡糸パックに対し、単数あるいは複数あるいは複数種の中央部材が設けられても本実施形態は好適である。   In the present embodiment, the outer shape of the central member and the like satisfy the first important embodiment of the present embodiment, a more preferable embodiment thereof, and a second important embodiment of the present embodiment described later. It is not particularly limited, and is suitable for forms such as the outer diameter shape of various central members. For example, as long as the first important embodiment of the present embodiment and the more preferable embodiment thereof and the second important embodiment of the present embodiment to be described later are satisfied, the central member and the filament yarn of the central member The outer diameter of the cross section in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface is increased or reduced from the upstream side to the downstream side in the traveling path direction of the filament yarn, such as on the upstream side or the downstream side in the traveling path direction. One or a plurality of taper shapes may be provided. Further, for example, the present embodiment is suitable even if a heat insulating member, a heat retaining member, a heating member, a cooling member, a heating unit, a cooling unit, a measuring unit such as a temperature, and the like are provided in the central member. Also, for example, with the aim of suppressing cooling spots and yarn swaying, a surface in the direction perpendicular to the traveling path direction of the filament yarn on the downstream side of the traveling path direction of the filament yarn of the central member, or a filament thread on the outer surface thereof The outer surface of the cross section in the direction perpendicular to the traveling path direction is provided with, for example, a tapered surface that decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn. An air flow blowing surface that blows an air flow from the upstream side toward the downstream side in the traveling path direction of the filament yarn may be disposed on the surface or the like. On the other hand, for example, on the upstream side of the filament yarn in the traveling path direction of the central member, the cross section in the direction perpendicular to the traveling path direction of the filament yarn on the upstream side of the filament yarn or the cross section in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface For example, a taper-shaped surface whose outer diameter decreases from the downstream side to the upstream side in the filament yarn traveling path direction is provided, and the filament yarn traveling path direction is provided on the surface in the vertical direction or the tapered surface. An air flow blowing surface that blows out an air flow from the downstream side to the upstream side of the filament yarn may be disposed, and the central member has a circular cross section in a direction perpendicular to the traveling route direction of the filament yarn, and the traveling route of the filament yarn An air flow blowing surface that extends in the direction and blows the air flow outward from the inner peripheral side of the filament yarn traveling path may be disposed, and is not particularly limited. Further, it is preferable that the central member is composed of a single member or plural or plural kinds of central members, and it is also preferable that a single member or plural or plural kinds of central members are provided in the cooling means. Even if a single member, a plurality of members, or a plurality of members are provided for a plurality or a plurality of types of spinnerets or spin packs, this embodiment is suitable.

本実施形態は中央部材の取付位置等により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な形態に好適である。また、本実施形態は中央部材のフィラメント糸の走行経路方向の上流側の上端や、下流側の下端の位置により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な形態に好適である。なお、以下、中央部材のフィラメント糸の走行経路方向の上流側の上端を中央部材の上端、中央部材のフィラメント糸の走行経路方向の下流側の下端を中央部材の下端と呼ぶこととする。中央部材の上端の位置は特に限られず、例えば、中央部材の上端を、気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側に配設しても下流側に配設しても良く、あるいはフィラメント糸の走行経路方向において、気流吹き出し面の上端と同じ位置に配設しても良い。なお、中央部材の上端の位置は、特に限られないが、中央部材の上端を、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側に配設する場合は、好ましくは、少なくとも気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側において、中央部材の外側面の外径を、フィラメント糸の走行経路方向の下流側から上流側に向かって漸減する様に設けると良く、また、少なくとも中央部材の気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側を、その外側面のフィラメント糸の走行経路方向に垂直な方向の断面の外径がフィラメント糸の走行経路方向の下流側から上流側に向かって縮小するテーパー形状とすると良く、あるいは、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側において、中央部材の外側面の外径を小さくすると良い。中央部材の上端を、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側に配設する場合に、例えば、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側において、中央部材の外側面の外径を、フィラメント糸の走行経路方向の下流側から上流側に向かって殆ど変化しない、または漸増する様に設けたり、あるいは、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側において、中央部材の外側面の外径を大きくしたりすると、中央部材の気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側が邪魔となって、気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側の、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側のフィラメント糸の非走行領域が狭くなり、気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側の、気流吹き出し面から直接気流供給を受けられない紡糸口金の下面の近傍の領域への気流供給は、気流吹き出し面から吹き出され、フィラメント糸の各単糸をフィラメント糸の走行経路の外周側から内周側に向かって通過した気流が、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側のフィラメント糸の非走行領域を、フィラメント糸の走行経路方向の下流側から上流側に向かって上昇する形で行われ難くなり、気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側の、気流吹き出し面から直接気流供給を受けられない紡糸口金の下面の近傍の領域への気流供給は、気流吹き出し面の特に気流吹き出し面のフィラメント糸の走行経路方向の上流側から吹き出された気流が、気流吹き出し面等とフィラメント糸の走行経路の最外周面との間の流路を通って、紡糸口金の下面の近傍の領域へ上昇、流入する形で行われ易くなる。結果、この気流吹き出し面等とフィラメント糸の走行経路の最外周面との間からの上昇流により、フィラメント糸の走行経路の外周側の各単糸が内周側の各単糸に対して、フィラメント糸の走行経路方向のより上流側から強く冷却され易くなり、また、これにより冷却斑や、糸揺れ等が発生し易くなる。従って、中央部材の上端を、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側に配設する場合は、上記の通り、少なくとも気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側において、中央部材の外側面の外径を、フィラメント糸の走行経路方向の下流側から上流側に向かって漸減する様に設ける等すると好ましい。なお、中央部材の上端を、気流吹き出し面の上端を含む気流吹き出し面の上端よりフィラメント糸の走行経路方向の上流側に配設する場合において、中央部材の外側面の外径を、フィラメント糸の走行経路方向の下流側から上流側に向かって漸減させるに際し、無論、気流吹き出し面の上端よりフィラメント糸の走行経路方向の下流側から漸減させても良く、また、気流吹き出し面の上端よりフィラメント糸の走行経路方向の下流側から、中央部材のフィラメント糸の走行経路方向の上流側を、その外側面のフィラメント糸の走行経路方向に垂直な方向の断面の外径がフィラメント糸の走行経路方向の下流側から上流側に向かって縮小するテーパー形状としても良く、あるいは、気流吹き出し面の上端よりフィラメント糸の走行経路方向の下流側から、中央部材の外側面の外径を小さくしても良い。また、特に限られないが、中央部材のフィラメント糸の走行経路方向の上流側の外側面の外径がフィラメント糸の走行経路方向の下流側から上流側に向かって殆ど変化しない場合や漸増する場合、あるいは、中央部材のフィラメント糸の走行経路方向の上流側の外側面の外径が大きい場合等は、好ましくは、中央部材の上端を、気流吹き出し面の上端よりフィラメント糸の走行経路方向の下流側に配設すると良い。理由は上記同様である。また、中央部材の下端の位置も上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、例えば、中央部材の下端を、気流吹き出し面の下端よりフィラメント糸の走行経路方向の上流側に配設しても下流側に配設しても良く、あるいはフィラメント糸の走行経路方向において、気流吹き出し面の下端と同じ位置に配設しても良い。あるいは、中央部材の下端を、冷却手段のフィラメント糸の走行経路方向の下流側の下端よりフィラメント糸の走行経路方向の上流側に配設しても下流側に配設しても良く、あるいはフィラメント糸の走行経路方向において、冷却手段のフィラメント糸の走行経路方向の下流側の下端と同じ位置に配設しても良い。   This embodiment is within a range that satisfies the first important embodiment of the present embodiment described above, a more preferable embodiment thereof, and a second important embodiment of the present embodiment described later, depending on the mounting position of the central member. It is not particularly limited, and is suitable for various forms. Moreover, this embodiment is based on the position of the upper end on the upstream side in the traveling path direction of the filament yarn of the central member and the position of the lower end on the downstream side. As long as the second important embodiment of the present embodiment to be described later is satisfied, the present invention is not particularly limited and is suitable for various forms. Hereinafter, the upper end of the central member in the traveling path direction of the filament yarn is referred to as the upper end of the central member, and the lower end of the central member in the traveling path direction of the filament yarn is referred to as the lower end of the central member. The position of the upper end of the central member is not particularly limited. For example, the upper end of the central member may be disposed on the upstream side or the downstream side in the traveling direction of the filament yarn from the upper end of the airflow blowing surface. Alternatively, the filament yarn may be disposed at the same position as the upper end of the airflow blowing surface in the traveling path direction of the filament yarn. The position of the upper end of the central member is not particularly limited, but when the upper end of the central member is disposed upstream of the upper end of the airflow blowing surface including the upper end of the airflow blowing surface in the filament yarn traveling path direction. Preferably, the outer diameter of the outer surface of the central member is upstream from the downstream side in the traveling direction of the filament yarn on the upstream side in the traveling path direction of the filament yarn from the upper end of the airflow blowing surface including at least the upper end of the airflow blowing surface. It is preferable to provide a taper that gradually decreases toward the side, and at the upstream side of the airflow blowing surface including at least the upper end of the airflow blowing surface of the central member, the filament yarn on the outer side of the upstream side in the traveling path direction of the filament yarn The outer diameter of the cross section in the direction perpendicular to the path direction should be a taper shape that decreases from the downstream side to the upstream side in the traveling path direction of the filament yarn. Alternatively, the upstream side of the travel path direction of the filament yarn from the upper end of the blowing airflow plane containing the upper end of the blowing airflow surface, it is preferable to reduce the outer diameter of the outer surface of the central member. When the upper end of the central member is arranged upstream of the upper end of the airflow blowing surface including the upper end of the airflow blowing surface in the traveling direction of the filament yarn, for example, from the upper end of the airflow blowing surface including the upper end of the airflow blowing surface The outer diameter of the outer surface of the central member on the upstream side in the traveling path direction of the filament yarn is provided so as to hardly change or gradually increase from the downstream side to the upstream side in the traveling path direction of the filament yarn, or When the outer diameter of the outer surface of the central member is increased upstream of the upper end of the airflow blowing surface including the upper end of the airflow blowing surface in the traveling path direction of the filament yarn, the airflow blowing including the upper end of the airflow blowing surface of the central member The upstream side of the filament yarn travel path direction from the upper end of the surface is obstructive, and the filament yarn travel path direction from the upper end of the airflow blowing surface The non-traveling area of the filament yarn inside the filament yarn traveling path as viewed from the upstream side of the filament yarn traveling path becomes narrower, and the airflow blowing surface upstream of the airflow blowing surface in the direction of the filament yarn upstream. Airflow supply to the area near the lower surface of the spinneret that cannot receive direct airflow supply from the airflow is blown out from the airflow blowing surface, and each filament yarn is directed from the outer circumference side to the inner circumference side of the filament yarn travel path. The airflow that has passed through the filament yarn travels in the form of rising from the downstream side to the upstream side in the filament yarn travel path direction as viewed from the filament yarn travel path direction. Supply airflow directly from the airflow blowing surface upstream of the upper end of the airflow blowing surface in the direction of the filament yarn travel path. The airflow supplied to the area near the lower surface of the spinneret that cannot be received is that the airflow blown from the upstream side of the airflow blowing surface, particularly the filament yarn on the airflow blowing surface, in the traveling direction of the filament yarn, It becomes easy to carry out in the form of rising and flowing into the region near the lower surface of the spinneret through the flow path between the outermost peripheral surface of the travel path. As a result, due to the upward flow from between this air flow blowing surface and the outermost peripheral surface of the filament yarn traveling path, each single yarn on the outer peripheral side of the filament yarn traveling path is compared with each single yarn on the inner peripheral side, It becomes easy to be strongly cooled from the upstream side in the traveling path direction of the filament yarn, and this makes it easy to generate cooling spots and yarn fluctuations. Therefore, when the upper end of the central member is disposed upstream of the upper end of the airflow blowing surface including the upper end of the airflow blowing surface in the traveling direction of the filament yarn, as described above, the airflow including at least the upper end of the airflow blowing surface It is preferable that the outer diameter of the outer surface of the central member is provided so as to gradually decrease from the downstream side in the traveling path direction of the filament yarn toward the upstream side in the upstream direction in the traveling path direction of the filament yarn from the upper end of the blowing surface. In the case where the upper end of the central member is disposed upstream of the upper end of the airflow blowing surface including the upper end of the airflow blowing surface in the direction of travel of the filament yarn, the outer diameter of the outer surface of the central member is When gradually decreasing from the downstream side in the traveling path direction toward the upstream side, of course, it may be gradually decreased from the downstream side in the traveling path direction of the filament yarn from the upper end of the airflow blowing surface, and the filament yarn from the upper end of the airflow blowing surface. The outer diameter of the cross section in the direction perpendicular to the traveling path direction of the filament yarn on the outer surface of the central member from the downstream side in the traveling path direction of the filament yarn of the central member is the traveling path direction of the filament thread. The taper shape may be reduced from the downstream side toward the upstream side, or may be lower than the upper end of the airflow blowing surface in the direction of the filament yarn traveling path. From the side may reduce the outer diameter of the outer surface of the central member. In addition, the outer diameter of the outer surface on the upstream side in the traveling path direction of the filament yarn of the central member hardly changes from the downstream side in the traveling path direction of the filament yarn toward the upstream side, or is gradually increased. Alternatively, when the outer diameter of the upstream outer surface of the central member in the traveling direction of the filament yarn is large, the upper end of the central member is preferably arranged downstream of the upper end of the air flow blowing surface in the traveling direction of the filament yarn. It is good to arrange on the side. The reason is the same as above. Further, the position of the lower end of the central member is particularly limited as long as the first important embodiment of the present embodiment and the more preferable embodiment thereof and the second important embodiment of the present embodiment described later are satisfied. For example, the lower end of the central member may be disposed on the upstream side or the downstream side in the filament yarn traveling path direction from the lower end of the air flow blowing surface, or in the filament yarn traveling path direction, You may arrange | position in the same position as the lower end of an airflow blowing surface. Alternatively, the lower end of the central member may be arranged on the upstream side or the downstream side in the filament yarn traveling path direction from the downstream lower end in the filament yarn traveling path direction of the cooling means, or the filament You may arrange | position in the traveling path direction of a thread | yarn in the same position as the downstream lower end of the traveling path direction of the filament thread | yarn of a cooling means.

本実施形態は中央部材の支持部材により、上記した本実施形態の第1の重要な実施形態とその更に好ましい実施形態や後述する本実施形態の第2の重要な実施形態を満足する範囲で、特に限られず、様々な中央部材の支持部材に好適であり、その個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。例えば、中央部材の支持部材は、冷却手段のフィラメント糸の走行経路方向の上流側の部材や下流側の部材、あるいは、例えば、紡糸口金等の、フィラメント糸の走行経路方向の上流側の部材や、糸油剤付与・集束・ガイド・案内等の手段等の、フィラメント糸の走行経路方向の下流側の部材等から設けられても良く、あるいは気流吹き出し面や気流吹き出し部、あるいは気流吹き出し面や気流吹き出し部に設けられた非吹き出し部等から設けられても良い。また、中央部材の支持部材に、気流の供給用の気流配管等が設けられても良い。なお、本実施形態の、冷却手段の気流吹き出し面で囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面積を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくする形態や、フィラメント糸の走行経路方向において、冷却手段の気流吹き出し面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積から、中央部材の外側面に囲まれた領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積を差し引いた断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の前記外側面を配設する形態、あるいは、冷却手段の気流吹き出し面に囲まれた領域において、冷却手段の気流吹き出し面に囲まれた領域から、中央部材の外側面に囲まれた領域を差し引いた、フィラメント糸の各単糸が走行可能な領域のフィラメント糸の走行経路方向に垂直な方向の断面の断面積が、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に、中央部材の外側面を配設する形態等において、中央部材の支持部材のフィラメント糸の走行経路方向に垂直な方向の断面の断面積は無論考慮して良いが、考慮しなくても良い。   In the present embodiment, the support member of the central member satisfies the first important embodiment of the present embodiment and the more preferable embodiment thereof and the second important embodiment of the present embodiment described later. It is not particularly limited and is suitable for supporting members of various central members, and is particularly limited by the number, outer shape, outer dimensions, mounting position and orientation, surface shape, surface finish, surface treatment, structure, member configuration, material, etc. Absent. For example, the support member of the central member may be an upstream member or downstream member in the filament yarn traveling path direction of the cooling means, or an upstream member in the filament yarn traveling path direction, such as a spinneret. May be provided from a member on the downstream side of the filament yarn traveling path direction, such as a means for applying, bundling, guiding, and guiding the thread oil agent, or an airflow blowing surface or an airflow blowing portion or an airflow blowing surface or an airflow You may provide from the non-blowing part etc. which were provided in the blowing part. Further, an airflow pipe for supplying airflow or the like may be provided on the support member of the central member. In this embodiment, the cross-sectional area in the direction perpendicular to the traveling path direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means is gradually increased from the upstream side to the downstream side in the traveling path direction of the filament yarn. Or the cross-sectional area of the section perpendicular to the traveling direction of the filament yarn in the region surrounded by the airflow blowing surface of the cooling means in the traveling direction of the filament yarn, surrounded by the outer surface of the central member The central member is such that the cross-sectional area obtained by subtracting the cross-sectional area of the filament yarn in the direction perpendicular to the traveling path direction of the filament yarn gradually decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn. In the form in which the outer side surface is disposed, or in the region surrounded by the airflow blowing surface of the cooling means, the outer surface of the central member is removed from the region surrounded by the airflow blowing surface of the cooling means. The cross-sectional area of the cross section in the direction perpendicular to the traveling direction of the filament yarn in the region where each single yarn of the filament yarn can travel is subtracted from the area surrounded by the surface, and is downstream from the upstream side in the traveling direction of the filament yarn. Of course, in the configuration in which the outer surface of the central member is disposed so as to gradually become smaller toward the side, the cross-sectional area of the cross section perpendicular to the filament yarn traveling path direction of the supporting member of the central member is of course considered. Good but not necessary to consider.

なお、本実施形態の第1の重要な実施形態の更に好ましい実施形態において、特に限られないが、好ましくは、例えば、紡糸口金の下面の中心周辺を避けて紡糸口金の下面の中心からみて紡糸口金の下面の外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心周辺に吐出孔を配列しない非配列領域を設け、紡糸口金の下面の中心からみて紡糸口金の下面の外周側の領域に吐出孔を配列すること等により、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側に、言い換えれば、フィラメント糸の走行経路の最内周面の内側に、フィラメント糸の非走行領域ができるように紡糸口金に穿設される吐出孔を配列すると良い。また、特に限られないが、好ましくは、例えば、紡糸口金の下面の中心周辺に吐出孔を配列しない非配列領域を設け、この領域が大きくなる様に、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心からみて最内周に配列される吐出孔の紡糸口金の下面の中心からの距離が大きくなる様に、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心からみて最内周に配列される吐出孔を通る紡糸口金の下面の中心を中心とした最内周列の半径あるいは直径が大きくなる様に、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側の領域に吐出孔を配列すること等により、フィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側のフィラメント糸の非走行領域、言い換えれば、フィラメント糸の走行経路の最内周面の内側のフィラメント糸の非走行領域が大きくなる様に、紡糸口金に穿設される吐出孔を配列すると良い。上記した様に、中央部材をフィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側に、言い換えれば、フィラメント糸の走行経路の最内周面の内側に、配設し易く、また、充分な大きさで中央部材を配設し易くできる等の理由からである。また、本実施形態の第1の重要な実施形態の更に好ましい実施形態において、例えば、一つの紡糸口金から紡出される単糸数が単数の場合、中央部材が設けられるフィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側の領域、言い換えれば、フィラメント糸の走行経路の最内周面の内側の領域は、例えば、紡糸口金の下面の中心周辺を避けて紡糸口金の下面の中心からみて紡糸口金の下面の外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心周辺に吐出孔を配列しない非配列領域を設け、紡糸口金の下面の中心からみて紡糸口金の下面の外周側の領域に吐出孔を配列すること等により設けられる。   In the further preferred embodiment of the first important embodiment of the present embodiment, although not particularly limited, preferably, for example, spinning from the center of the lower surface of the spinneret while avoiding the periphery of the center of the lower surface of the spinneret. Dispose the discharge holes in the outer peripheral area of the lower surface of the spinneret or provide a non-arrangement area in which the discharge holes are not arranged around the center of the lower surface of the spinneret. By arranging the discharge holes in the region of the filament yarn, the filament yarn is not placed inside the filament yarn running path as viewed from the filament yarn running path direction, in other words, inside the innermost peripheral surface of the filament yarn running path. It is preferable to arrange the discharge holes drilled in the spinneret so that a traveling region is formed. In addition, although not particularly limited, preferably, for example, a non-arrangement region where no discharge holes are arranged around the center of the lower surface of the spinneret is provided, and the spinneret is viewed from the center of the lower surface of the spinneret so that this region becomes larger. Spinning is performed so that the discharge holes are arranged in a region on the outer peripheral side of the lower surface of the nozzle, or the distance from the center of the lower surface of the spinneret of the discharge hole arranged on the innermost periphery when viewed from the center of the lower surface of the spinneret. The center of the lower surface of the spinneret through which the discharge holes are arranged in the region on the outer peripheral side of the lower surface of the spinneret as viewed from the center of the lower surface of the spinneret or through the discharge holes arranged in the innermost periphery as viewed from the center of the lower surface of the spinneret The filament yarn travels by arranging discharge holes in a region on the outer peripheral side of the lower surface of the spinneret as viewed from the center of the lower surface of the spinneret so that the radius or diameter of the innermost circumferential row centering on the Direction In view of this, the non-traveling area of the filament yarn inside the traveling path of the filament yarn, in other words, the non-traveling area of the filament yarn inside the innermost peripheral surface of the traveling path of the filament yarn is drilled in the spinneret. It is preferable to arrange the discharge holes. As described above, the central member is easy to be disposed on the inside of the filament yarn traveling path when viewed from the filament yarn traveling path direction, in other words, on the innermost peripheral surface of the filament yarn traveling path, and sufficient This is because the central member can be easily arranged with a large size. Further, in a further preferred embodiment of the first important embodiment of the present embodiment, for example, when the number of single yarns spun from one spinneret is singular, as viewed from the traveling path direction of the filament yarn provided with the central member. The inner region of the filament yarn traveling path, in other words, the inner region of the innermost peripheral surface of the filament yarn traveling path, for example, avoids the periphery of the center of the lower surface of the spinneret and is viewed from the center of the lower surface of the spinneret. Dispose the discharge holes in the outer peripheral area of the lower surface of the spinneret or provide a non-arrangement area in which the discharge holes are not arranged around the center of the lower surface of the spinneret. It is provided by arranging discharge holes in this area.

また、本実施形態の第2の重要な実施形態では、上記した本実施形態の第1の重要な実施形態に記載のフィラメント糸の製造装置を用い、熱可塑性ポリマーを溶融紡糸し、フィラメント糸を製造することを特徴とするフィラメント糸の製造方法が提供される。   Further, in the second important embodiment of the present embodiment, the filament yarn production apparatus described in the first important embodiment of the present embodiment is used to melt-spin the thermoplastic polymer, A method for producing a filament yarn is provided.

では次に、その他の実施形態について説明する。本実施形態は溶融紡糸の構成により特に限られない。溶融紡糸工程で低配向未延伸糸(以下UDY:Un Drawn Yarn)を得る構成や、部分配向糸(以下POY:Partially Oriented Yarn)を得る構成、紡糸と延伸を直結して延伸糸(以下FOY:Full Oriented Yarn)を1工程で得る紡糸直延伸(以下DSD:Direct Spin Draw)の構成、紡糸速度が高速で延伸を必要としないOSY(One Step Yarn)に対応した構成にも好適である。なお、図1、図2では、UDYやPOY、OSYに対応した構成の図示となっているが、本実施形態がこれに限定されるものではない。また、本実施形態は紡糸速度により特に限られず、300〜10000m/分程度の範囲であっても好適である。なお、ポリエステルフィラメント糸において、一般に紡糸速度はUDYに対応した構成で300〜1800m/分程度、POYに対応した構成で1800〜5000m/分程度、DSDの構成で300〜1800m/分程度(なお、巻取速度は2000〜5000m/分程度)、OSYに対応した構成で3000〜10000m/分程度であるが、上記はあくまで一例を示したものであり、ポリエステルやその他の熱可塑性ポリマーから構成されるフィラメント糸において、紡糸速度が上記速度の範囲を超えるUDY、POY、DSD、OSYであっても、本実施形態は好適である。   Next, other embodiments will be described. This embodiment is not particularly limited by the configuration of melt spinning. In the melt spinning process, a low-oriented undrawn yarn (hereinafter referred to as UDY) or a partially oriented yarn (hereinafter referred to as POY: Partially Oriented Yarn) is obtained. It is also suitable for a configuration of direct spinning drawing (hereinafter referred to as DSD: Direct Spin Draw) in which Full Oriented Yarn) is obtained in one step, and a configuration corresponding to OSY (One Step Yarn) which has a high spinning speed and does not require stretching. In FIGS. 1 and 2, configurations corresponding to UDY, POY, and OSY are illustrated, but the present embodiment is not limited to this. Further, the present embodiment is not particularly limited depending on the spinning speed, and is suitable even in a range of about 300 to 10,000 m / min. In the polyester filament yarn, generally, the spinning speed is about 300 to 1800 m / min in the configuration corresponding to UDY, about 1800 to 5000 m / min in the configuration corresponding to POY, and about 300 to 1800 m / min in the configuration of DSD (in addition, The winding speed is about 2000 to 5000 m / min), and the configuration corresponding to OSY is about 3000 to 10000 m / min, but the above is only an example, and is composed of polyester or other thermoplastic polymer Even if the spinning speed of the filament yarn is UDY, POY, DSD, or OSY exceeding the above speed range, this embodiment is suitable.

本実施形態はフィラメント糸10を構成する熱可塑性ポリマーにより特に限られず、ポリエステル、ポリアミド、ポリフェニレン、ポリオレフィン、ポリスチレン、ポリケトンや、可塑剤を含有したセルロースエステル系熱可塑性ポリマー等にも好適であり、溶融紡糸により紡糸される合成繊維や半合成繊維等の化学繊維等に好適である。本実施形態に好適なポリエステルの一例を挙げれば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレート等が挙げられる。また、ポリアミドの一例を挙げれば、ナイロン6、ナイロン66等が挙げられる。また、本実施形態は、共重合されたポリアミドにも好適である。また、ポリフェニレンとしてはポリフェニレンサルファイド、ポリオレフィンとしてはポリエチレン、ポリプロピレン、ポリスチレンとしてはポリスチレン等が挙げられる。   This embodiment is not particularly limited by the thermoplastic polymer constituting the filament yarn 10, and is also suitable for polyester, polyamide, polyphenylene, polyolefin, polystyrene, polyketone, cellulose ester-based thermoplastic polymer containing a plasticizer, and the like. It is suitable for chemical fibers such as synthetic fibers and semi-synthetic fibers spun by spinning. Examples of polyesters suitable for this embodiment include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid, polyethylene naphthalate, polybutylene naphthalate, polypropylene terephthalate, and the like. Examples of polyamides include nylon 6 and nylon 66. The present embodiment is also suitable for copolymerized polyamide. Examples of polyphenylene include polyphenylene sulfide, examples of polyolefin include polyethylene, polypropylene, and polystyrene include polystyrene.

また、本実施形態は熱可塑性ポリマーに製糸安定性等を損なわない範囲で他の共重合成分が含まれていても好適である。ポリエステルで一例を挙げれば、鮮明性に優れた染色が可能なポリエステルカチオン可染糸において、一般的に共重合されるソジウムソルホネートイソフタル酸やポリエチレングリコール等が含まれたものでも本実施形態は好適である。また、製糸安定性等を損なわない範囲で二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤が含有されていても好適である。   Moreover, this embodiment is suitable even if other copolymerization components are contained in the thermoplastic polymer in the range which does not impair the spinning stability. An example of polyester is a polyester cation dyeable yarn that can be dyed with excellent sharpness, and this embodiment is also used in the case where sodium sulfonate isophthalic acid or polyethylene glycol that are generally copolymerized is included. Is preferred. Further, matting agents such as titanium dioxide, silicon oxide, kaolin, anti-coloring agents, stabilizers, antioxidants, deodorants, flame retardants, yarn friction reducing agents, coloring pigments, as long as the yarn-making stability is not impaired. It is suitable even if various functional particles such as surface modifiers and additives such as organic compounds are contained.

また、本実施形態はフィラメント糸10の各単糸の成分構成により特に限られない。各単糸を構成する成分が単数でも複数でも良く、例えば、芯鞘型複合や海島型複合、サイドバイサイド型複合等の複合の構成であっても好適である。また、複数成分が混合されたアロイやブレンド等の構成でも好適である。また、複合の各成分がアロイやブレンド等の複数成分から構成されても好適である。   In addition, the present embodiment is not particularly limited by the component configuration of each single yarn of the filament yarn 10. The component constituting each single yarn may be singular or plural. For example, a composite configuration such as a core-sheath type composite, a sea-island type composite, or a side-by-side type composite is suitable. Moreover, it is also suitable for a structure such as an alloy or blend in which a plurality of components are mixed. It is also preferable that each composite component is composed of a plurality of components such as alloys and blends.

本実施形態はフィラメント糸10の単糸数により特に限られず、モノフィラメント糸、マルチフィラメント糸にも好適である。また、ステープルの分野の様に単糸数が数千本、例えば2000本程度のフィラメント糸にも好適である。なお、ステープル以外の衣料用、産業用の分野では、単糸数が1〜1000本あるいは1〜600本程度までの範囲のフィラメント糸が多い。また、本実施形態はフィラメント糸10の各単糸の単糸繊度により特に限られず、0.1〜数百dtex程度の範囲であっても好適である。なお、dtexはデシテックスを示す。例えば、溶融紡糸後の単糸繊度が0.1〜16dtex、あるいは0.1〜10dtex、0.1〜3.5dtex程度の範囲のフィラメント糸にも好適である。なお、単糸繊度が小さければ小さいほど、常法、例えば、ユニフロ冷却手段等の従来の技術との差異が明確となり易い。また、得られたフィラメント糸は溶融紡糸の後に、必要に応じ、更に同工程あるいは別工程にて、1.7〜6倍、あるいは1.2〜2倍程度に延伸あるいは延伸・仮撚加工等され、単糸繊度0.1〜2.6dtex、あるいは0.1〜1.6dtex、0.1〜1.1dtex程度の範囲のフィラメント糸とされる。また、本実施形態はフィラメント糸10の各単糸の断面形状により特に限られず、丸断面、楕円、三角形等の多角形断面、六葉等の多葉断面、楕円八葉等の楕円多葉断面、C型、Y型、十字型等の文字型断面等や、中空部を有する断面等や、これらに近い断面等であっても好適である。   This embodiment is not particularly limited by the number of single yarns of the filament yarn 10, and is also suitable for monofilament yarns and multifilament yarns. Moreover, it is also suitable for filament yarns having several thousand yarns, for example, about 2000, as in the field of staples. In the fields of apparel and industrial use other than staples, there are many filament yarns in the range of 1 to 1000 or 1 to 600 single yarns. In addition, the present embodiment is not particularly limited by the single yarn fineness of each single yarn of the filament yarn 10, and is preferably in the range of about 0.1 to several hundred dtex. Dtex indicates decitex. For example, it is also suitable for filament yarns having a single yarn fineness after melt spinning of about 0.1 to 16 dtex, 0.1 to 10 dtex, or 0.1 to 3.5 dtex. In addition, the smaller the single yarn fineness, the more easily the difference from conventional techniques such as a conventional method such as a Uniflow cooling means. In addition, after melt spinning, the obtained filament yarn is further stretched to about 1.7 to 6 times, or about 1.2 to 2 times, or drawn / false twisted, etc. The filament yarn has a single yarn fineness of 0.1 to 2.6 dtex, or 0.1 to 1.6 dtex, and 0.1 to 1.1 dtex. Further, the present embodiment is not particularly limited by the cross-sectional shape of each single yarn of the filament yarn 10, and is a round cross-section, a polygonal cross-section such as an ellipse or a triangle, a multi-leaf cross-section such as a six-leaf, an elliptic multi-leaf cross-section such as an ellipse eight-leaf. It is also suitable for character-type cross sections such as C-type, Y-type, and cross-shaped, cross-sections having hollow portions, and cross sections close to these.

本実施形態は紡糸口金1から紡出されるフィラメント糸10の糸条数により特に限られず、単数あるいは複数であっても好適である。例えば、糸条数が1〜8糸条、1〜6糸条あるいは1〜4糸条であっても好適である。また、上記したフィラメント糸や単糸に関連する各形態が組み合わされたフィラメント糸や単糸が紡出されても好適であり、また、単数あるいは複数あるいは複数種の紡糸口金から、単数あるいは複数あるいは複数種のフィラメント糸や単糸が紡出されても本実施形態は好適である。   This embodiment is not particularly limited by the number of filament yarns 10 spun from the spinneret 1, and may be one or more. For example, it is suitable even if the number of yarns is 1-8 yarns, 1-6 yarns, or 1-4 yarns. In addition, it is also preferable that a filament yarn or a single yarn, which is a combination of the above-described forms related to the filament yarn or the single yarn, is spun. This embodiment is suitable even when a plurality of types of filament yarns and single yarns are spun.

本実施形態は紡糸口金1により特に限られない。様々な紡糸口金に好適であり、紡糸口金の個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。また、紡糸口金1に穿設される吐出孔により特に限られない。様々な吐出孔に好適であり、吐出孔の個数、外形形状、外形寸法、孔径、孔長、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。なお、本実施形態において、紡糸口金の下面は、紡糸口金のフィラメント糸の走行経路方向の下流側の、フィラメント糸の走行経路方向に垂直な方向の面である、紡糸口金の下面を全体的に示すものであり、仮に紡糸口金の下面に凹凸があったり、曲面があったりしても、それらを含めて紡糸口金の下面を全体的に示すものとする。   This embodiment is not particularly limited by the spinneret 1. It is suitable for various spinnerets, and is not particularly limited by the number of spinnerets, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finish, surface treatment, structure, member configuration, material, and the like. Further, the present invention is not particularly limited by the discharge hole formed in the spinneret 1. It is suitable for various discharge holes, and is not particularly limited by the number of discharge holes, outer shape, outer dimensions, hole diameter, hole length, surface shape, surface finish, surface treatment, structure, member configuration, material, and the like. In the present embodiment, the lower surface of the spinneret is entirely the lower surface of the spinneret, which is a surface in the direction perpendicular to the traveling path direction of the filament yarn, downstream of the traveling path direction of the filament yarn of the spinning nozzle. Even if there are irregularities or curved surfaces on the lower surface of the spinneret, the entire lower surface of the spinneret including them is shown.

本実施形態は紡糸口金1に穿設される吐出孔の配列により特に限られない。様々な配列に好適であり、円周状配列、格子状配列、千鳥格子状配列等の様々な配列に好適である。また、品質や製糸安定性等を損なわない範囲で、部分的に吐出孔が穿設されない非穿設部が設けられる配列や、紡糸口金から紡出される複数のフィラメント糸を各糸条に分離するための分離帯が設けられる配列、吐出孔の穿設数の分布に疎密が設けられる配列等にも好適である。また、非穿設部、分離帯、穿設部の疎密が中央部材の支持部材の配置等に合わせて設けられた配列等にも好適である。また、非穿設部、分離帯、穿設数の疎密が単数あるいは複数あるいは複数種設けられた配列等にも好適である。なお、図1、図2において、フィラメント糸10を数本の直線で図示しているが、これはフィラメント糸が紡出されるさまを単に示したものであり、フィラメント糸の単糸数や糸条数、フィラメント糸の集束形態、たわみ状態等や、吐出孔の配列数や配列形態等の形態を限定するものではなく、本実施形態はこれに限定されない。なお、本実施形態は紡糸口金1に穿設される吐出孔の配列により特に限られないが、例えば、特に、一つの紡糸口金から紡出される単糸数が複数の場合は、好ましくは、フィラメント糸の走行経路の最外周面やフィラメント糸の走行経路の最内周面が、フィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、フィラメント糸の紡出や走行等を妨げない範囲で、気流吹き出し面や冷却手段の上流側部材の内側面等に近接する様に、紡糸口金に穿設される吐出孔を配列すると良い。これは、例えば、紡糸口金の下面の中心からみて最外周に配列される吐出孔や最内周に配列される吐出孔を、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側に配列する、あるいは紡糸口金の下面の中心からみて最外周に配列される吐出孔や最内周に配列される吐出孔の紡糸口金の下面の中心からの距離が大きくなる様に配列する、あるいは紡糸口金の下面の中心からみて最外周に配列される吐出孔を通る紡糸口金の下面の中心を中心とした最外周列の半径あるいは直径や、最内周に配列される吐出孔を通る紡糸口金の下面の中を中心とした最内周列の半径あるいは直径が大きくなる様に配列すること等により行われる。また、本実施形態は紡糸口金に穿設される吐出孔の配列により特に限られないが、例えば、特に、一つの紡糸口金から紡出される単糸数が複数の場合は、好ましくは、フィラメント糸の走行経路の最内周面の内側にフィラメント糸の非走行領域ができるように紡糸口金に穿設される吐出孔を配列すると良い。これは、例えば、紡糸口金の下面の中心周辺を避けて紡糸口金の下面の中心からみて紡糸口金の下面の外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心周辺に吐出孔を配列しない非配列領域を設け、紡糸口金の下面の中心からみて紡糸口金の下面の外周側の領域に吐出孔を配列すること等により行われる。また、本実施形態は紡糸口金に穿設される吐出孔の配列により特に限られないが、例えば、特に、一つの紡糸口金から紡出される単糸数が複数の場合は、好ましくは、フィラメント糸の走行経路の最内周面の内側のフィラメント糸の非走行領域が大きくなる様に、紡糸口金に穿設される吐出孔を配列すると良い。これは、例えば、紡糸口金の下面の中心周辺に吐出孔を配列しない非配列領域を設け、この領域が大きくなる様に、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心からみて最内周に配列される吐出孔の紡糸口金の下面の中心からの距離が大きくなる様に、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側の領域に吐出孔を配列する、あるいは紡糸口金の下面の中心からみて最内周に配列される吐出孔を通る紡糸口金の下面の中心を中心とした最内周列の半径あるいは直径が大きくなる様に、紡糸口金の下面の中心からみて紡糸口金の下面のより外周側の領域に吐出孔を配列すること等により行われる。上記した様に、フィラメント糸の走行経路の最外周面やフィラメント糸の走行経路の最内周面をフィラメント糸の走行経路方向の上流側から下流側にわたって、フィラメント糸の走行経路方向に垂直な方向に、気流吹き出し面等に近接させて配設すると、気流吹き出し面から吹き出された気流でフィラメント糸の各単糸廻りの気流を整流化し易くでき、また、フィラメント糸の走行経路の外周側の各単糸と内周側の各単糸との間の冷却斑等も抑制でき、更に、中央部材をフィラメント糸の走行経路方向からみてフィラメント糸の走行経路の内側に、言い換えれば、フィラメント糸の走行経路の最内周面の内側に、配設し易く、また、充分な大きさで中央部材を配設し易くできる等の理由からである。   This embodiment is not particularly limited by the arrangement of the discharge holes formed in the spinneret 1. It is suitable for various arrangements, and is suitable for various arrangements such as a circumferential arrangement, a lattice arrangement, and a staggered arrangement. In addition, an arrangement in which a non-perforated portion in which a discharge hole is not partially perforated or a plurality of filament yarns spun from a spinneret are separated into individual yarns as long as quality, yarn-stabilization stability, etc. are not impaired. Therefore, it is also suitable for an arrangement in which separation bands are provided, an arrangement in which the distribution of the number of ejection holes is densely provided, and the like. Further, it is also suitable for an arrangement in which the density of the non-perforated portion, the separation band, and the perforated portion is provided in accordance with the arrangement of the support member of the central member. Further, it is also suitable for non-perforated portions, separation bands, arrangements where the number of perforations is singular or plural or plural types. In FIGS. 1 and 2, the filament yarn 10 is shown by several straight lines, but this shows only how the filament yarn is spun, and the number of filament yarns and the number of yarns are shown. The embodiment of the present invention is not limited to this, and is not intended to limit the form of the filament yarns, the state of deflection, the state of deflection, the number of discharge holes arranged, the form of arrangement, and the like. The present embodiment is not particularly limited by the arrangement of the discharge holes drilled in the spinneret 1. For example, particularly when there are a plurality of single yarns spun from one spinneret, it is preferable to use filament yarns. The filament yarn is spun in the direction perpendicular to the filament yarn travel path direction from the upstream side to the downstream side of the filament yarn travel route direction. It is preferable to arrange the discharge holes drilled in the spinneret so as to be close to the air flow blowing surface, the inner surface of the upstream member of the cooling means, etc., as long as they do not interfere with the exit and running. This is because, for example, the discharge holes arranged on the outermost periphery as viewed from the center of the lower surface of the spinneret and the discharge holes arranged on the innermost periphery are arranged on the outer peripheral side of the lower surface of the spinneret when viewed from the center of the lower surface of the spinneret. Arrange the discharge holes arranged on the outermost periphery as viewed from the center of the lower surface of the spinneret or the discharge holes arranged on the innermost circumference, or the distance from the center of the lower surface of the spinneret, or spin The radius or diameter of the outermost circumferential row centered on the center of the lower surface of the spinneret passing through the discharge holes arranged on the outermost periphery as viewed from the center of the lower surface of the base, and the spinneret of the spinneret passing through the discharge holes arranged on the innermost circumference This is performed by arranging the innermost circumferential row centering on the lower surface so that the radius or diameter is increased. Further, the present embodiment is not particularly limited by the arrangement of the discharge holes drilled in the spinneret. For example, particularly when the number of single yarns spun from one spinneret is plural, preferably the filament yarn It is preferable to arrange discharge holes drilled in the spinneret so that a non-running region of the filament yarn is formed inside the innermost circumferential surface of the running path. For example, discharge holes are arranged in a region on the outer peripheral side of the lower surface of the spinneret as viewed from the center of the lower surface of the spinneret avoiding the periphery of the center of the lower surface of the spinneret, or the discharge holes are disposed around the center of the lower surface of the spinneret. A non-arrangement region where no nozzles are arranged is provided, and discharge holes are arranged in a region on the outer peripheral side of the lower surface of the spinneret as viewed from the center of the lower surface of the spinneret. Further, the present embodiment is not particularly limited by the arrangement of the discharge holes drilled in the spinneret. For example, particularly when the number of single yarns spun from one spinneret is plural, preferably the filament yarn It is preferable to arrange the discharge holes drilled in the spinneret so that the non-running region of the filament yarn inside the innermost circumferential surface of the running path becomes large. This is because, for example, a non-arrangement region where the discharge holes are not arranged around the center of the lower surface of the spinneret is provided, and the region on the outer peripheral side of the lower surface of the spinneret is viewed from the center of the lower surface of the spinneret so that this region becomes larger. Spinners as viewed from the center of the bottom surface of the spinneret so that the distance from the center of the bottom surface of the spinneret is larger than the center of the bottom surface of the spinneret. The innermost circumferential row centering on the center of the lower surface of the spinneret that arranges the discharge holes in the region on the outer peripheral side of the lower surface of the base, or passes through the discharge holes arranged in the innermost periphery when viewed from the center of the lower surface of the spinneret This is performed by arranging discharge holes in a region on the outer peripheral side of the lower surface of the spinneret as viewed from the center of the lower surface of the spinneret so that the radius or diameter of the spinneret is increased. As described above, the direction that is perpendicular to the direction of the filament yarn travels from the upstream side to the downstream side of the filament yarn travel path direction from the outermost peripheral surface of the filament yarn travel path and the innermost circumferential surface of the filament yarn travel path. In addition, when arranged close to the airflow blowing surface, etc., the airflow around the single yarn of the filament yarn can be easily rectified by the airflow blown from the airflow blowing surface, Cooling spots, etc. between the single yarn and each single yarn on the inner peripheral side can also be suppressed, and further, the central member is seen from the filament yarn traveling path direction inside the filament yarn traveling path, in other words, the filament yarn traveling This is because it is easy to dispose inside the innermost peripheral surface of the path, and the central member can be easily disposed with a sufficient size.

本実施形態は紡糸パック2により特に限られない。様々な紡糸パックに好適であり、紡糸パックの個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。   This embodiment is not particularly limited by the spinning pack 2. It is suitable for various spinning packs, and is not particularly limited by the number of spinning packs, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finishing, surface treatment, structure, member configuration, material, and the like.

本実施形態はスピンブロック3により特に限られない。様々なスピンブロックに好適であり、スピンブロックの個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。また、図1、図2では図示をしていないが、スピンブロックに通常配設される紡糸パックを加熱・保温する紡糸パック加熱器や熱可塑性ポリマーの供給配管、断熱部材、保温部材等や、ポンプ等や追加の加熱部材、加熱手段等が設けられても良く、また、本実施形態はこれらにより特に限られない。なお、図1、図2における紡糸口金1、紡糸パック2、スピンブロック3の図示は、あくまで一例であり、紡糸口金1、紡糸パック2、スピンブロック3の外形形状等の形態を限定するものではなく、本実施形態はこれに限定されない。   This embodiment is not particularly limited by the spin block 3. It is suitable for various spin blocks, and is not particularly limited by the number of spin blocks, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finishing, surface treatment, structure, member configuration, material, and the like. Although not shown in FIG. 1 and FIG. 2, a spinning pack heater for heating and keeping a spinning pack normally disposed in a spin block, a supply pipe for a thermoplastic polymer, a heat insulating member, a heat retaining member, etc. A pump or the like, an additional heating member, a heating means, or the like may be provided, and the present embodiment is not particularly limited by these. The illustration of the spinneret 1, the spin pack 2, and the spin block 3 in FIGS. 1 and 2 is merely an example, and the outer shape of the spinneret 1, the spin pack 2, and the spin block 3 is not limited. The present embodiment is not limited to this.

本実施形態は気流室7、気流供給口8により特に限られない。様々な気流室、気流供給口に好適であり、その個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。また、ラビリンス構造やハニカム等の整流格子の構造、圧損部材等や上記気流吹き出し部の部材で記載した様な部材、断熱部材、保温部材、加熱部材、冷却部材、加熱手段、冷却手段、温度や圧力、流速等の計測手段、気流調整手段等が単数あるいは複数あるいは複数種設けられても好適である。また、気流吹き出し面から吹き出される気流のフィラメント糸の走行経路を囲う円周方向の流速分布が均一になるように、気流室7や冷却手段4内の気流流路等に圧損部材等が設けられても良い。また、気流室7や冷却手段4内の気流流路等の大きさ等が、フィラメント糸の走行方向や走行経路方向に沿って殆ど変化しない構成や、フィラメント糸の走行方向や走行経路方向の上流側から下流側に向かって拡大、縮小する構成、あるいはフィラメント糸の走行方向や走行経路方向の上流側から下流側に向かって拡大と縮小が単数あるいは複数あるいは複数種ある構成等であっても好適である。また、単数あるいは複数あるいは複数種の冷却手段や気流吹き出し部に対し、単数あるいは複数あるいは複数種の気流室、気流供給口が設けられても好適であり、また、単数あるいは複数あるいは複数種の気流室、気流供給口に、単数あるいは複数あるいは複数種の気流、例えば、気流の物質や組成、温度、流速、流量等が異なる気流が供給されても本実施形態は好適である。
本実施形態は上記した本実施形態の第1、第2の重要な実施形態を満足する範囲で冷却手段4により特に限られない。様々な冷却手段に好適であり、その個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。また、冷却手段やその周辺に、断熱部材、保温部材、加熱部材、加熱手段、冷却部材、冷却手段、温度等の計測手段等の部材や、冷却手段の気流流路内にラビリンス構造やハニカム等の整流格子の構造、圧損部材等や上記気流吹き出し部の部材で記載した様な部材、断熱部材、保温部材、加熱部材、加熱手段、冷却部材、冷却手段、温度等の計測手段等の部材、あるいは冷却手段のフィラメント糸の走行経路方向の上流側や下流側等に、フィラメント糸の走行経路を外周側から囲う内側の内側面のフィラメント糸の走行経路方向に垂直な方向の断面形状が円形やそれに近い形状であるフィラメント糸の走行経路方向に延在する部材等が単数あるいは複数あるいは複数種設けられても好適である。また、本実施形態は冷却手段の上流側部材や上流側部材の内側面等により特に限られない。特に限られないが、冷却手段の上流側部材の内側面のフィラメント糸の走行経路方向の下流側の下端におけるフィラメント糸の走行経路方向に垂直な方向の内径は、好ましくは、気流吹き出し面の上端における気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径と同じになるように、あるいは小さくなるように設けるのが良い。冷却手段の上流側部材で、気流吹き出し面5や気流吹き出し部6等を、より確実に支持、保持あるいはシール等できるためである。また、冷却手段の上流側部材の内側面のフィラメント糸の走行経路方向の下流側の下端におけるフィラメント糸の走行経路方向に垂直な方向の内径を、気流吹き出し面の上端における気流吹き出し面のフィラメント糸の走行経路方向に垂直な方向の内径と同じになるように、あるいは小さくなるように冷却手段の上流側部材を配設することで、フィラメント糸の走行経路の最外周面と冷却手段の上流側部材の内側面が近接して、フィラメント糸の走行経路の最外周面と冷却手段の上流側部材の内側面との間の流路が狭くなり、気流吹き出し面5の特にフィラメント糸の走行経路方向の上流側から吹き出された気流が、この流路を通って、紡糸口金の下面の近傍領域に、フィラメント糸の走行経路方向の下流側から上流側に向かって上昇、流入し難くなり、この上昇流により、フィラメント糸の走行経路の外周側の各単糸が内周側の各単糸に対して、フィラメント糸の走行経路方向のより上流側から強く冷却され易くなることにより発生する冷却斑や、糸揺れ等の問題を発生し難くすることができるためである。また、上記した気流吹き出し面、気流吹き出し部、気流室、気流供給口等の各形態含め、冷却手段に関する上記した各形態が組み合わされた冷却手段であっても本実施形態は好適である。また、単数あるいは複数あるいは複数種の紡糸口金あるいは紡糸パックに対し、単数あるいは複数あるいは複数種の冷却手段が設けられても本実施形態は好適である。なお、図1、図2における気流吹き出し面5、気流吹き出し部6、気流室7、気流供給口8、冷却手段4等の図示は、あくまで一例であり、これらの外形形状等の形態を限定するものではなく、本実施形態は上記した本実施形態の第1、第2の重要な実施形態を満足する範囲でこれに限定されない。また、図1、図2における気流供給口8に記載の矢印は、気流が流れるさまを単に示したものであり、気流の流速や流量、流れ方向等の形態を限定するものではなく、本実施形態はこれに限られない。
This embodiment is not particularly limited by the airflow chamber 7 and the airflow supply port 8. It is suitable for various airflow chambers and airflow supply ports, and is not particularly limited by the number, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finishing, surface treatment, structure, member configuration, material, and the like. Also, a member such as a labyrinth structure or a structure of a rectifying grid such as a honeycomb, a pressure loss member, or a member of the air flow blowing portion, a heat insulating member, a heat retaining member, a heating member, a cooling member, a heating unit, a cooling unit, a temperature, It is preferable that one or more or a plurality of types of measuring means such as pressure and flow velocity, airflow adjusting means, and the like are provided. Further, a pressure loss member or the like is provided in the airflow chamber 7 or the airflow passage in the cooling means 4 so that the circumferential flow velocity distribution surrounding the traveling path of the filament yarn of the airflow blown out from the airflow blowing surface is uniform. May be. In addition, the configuration in which the size of the air flow path in the air flow chamber 7 and the cooling means 4 hardly changes along the traveling direction and the traveling path direction of the filament yarn, and the upstream of the traveling direction and the traveling path direction of the filament yarn. Preferred is a configuration that expands and contracts from the side toward the downstream side, or a configuration that includes one or more or multiple types of expansion and contraction from the upstream side to the downstream side in the traveling direction and the traveling path direction of the filament yarn. It is. Further, it is also preferable that a single or plural or plural kinds of air flow chambers and air flow supply ports are provided for the single or plural or plural kinds of cooling means or air flow blowing portions, and the single or plural or plural kinds of air flows. This embodiment is suitable even when one or a plurality of or a plurality of types of air currents, for example, air currents having different materials and compositions, temperatures, flow velocities, flow rates, and the like are supplied to the chamber and the air current supply port.
The present embodiment is not particularly limited by the cooling means 4 as long as the first and second important embodiments of the present embodiment described above are satisfied. It is suitable for various cooling means, and is not particularly limited by the number, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finishing, surface treatment, structure, member configuration, material, and the like. In addition, a member such as a heat insulating member, a heat retaining member, a heating member, a heating member, a cooling member, a measuring unit such as a temperature, a labyrinth structure, a honeycomb, etc. Members such as the structure of the rectifying grid, pressure loss member, etc., members as described in the members of the air flow blowing part, heat insulating member, heat retaining member, heating member, heating means, cooling member, cooling means, temperature measuring means, etc., Alternatively, the cross-sectional shape in the direction perpendicular to the traveling path direction of the filament yarn on the inner inner surface surrounding the traveling path of the filament yarn from the outer peripheral side is circular or the like on the upstream side or the downstream side in the traveling path direction of the filament yarn of the cooling means. It is also preferable that a single member, a plurality of members, or a plurality of members or the like extending in the traveling path direction of the filament yarn having a shape close to that is provided. Further, the present embodiment is not particularly limited by the upstream member of the cooling means, the inner surface of the upstream member, and the like. Although not particularly limited, the inner diameter in the direction perpendicular to the traveling path direction of the filament yarn at the lower end downstream of the traveling path direction of the filament yarn on the inner surface of the upstream member of the cooling means is preferably the upper end of the air flow blowing surface It is preferable that the air flow is provided so as to be the same as or smaller than the inner diameter in the direction perpendicular to the traveling path direction of the filament yarn on the air flow blowing surface. This is because the airflow blowing surface 5, the airflow blowing portion 6 and the like can be supported, held, or sealed more reliably by the upstream member of the cooling means. In addition, the inner diameter of the inner surface of the upstream member of the cooling means on the downstream lower end of the filament yarn in the traveling path direction is perpendicular to the filament yarn traveling path direction, and the filament yarn on the airflow blowing surface at the upper end of the air blowing surface By arranging the upstream member of the cooling means so as to be the same as or smaller than the inner diameter in the direction perpendicular to the traveling path direction, the outermost peripheral surface of the filament yarn traveling path and the upstream side of the cooling means The inner side surfaces of the members are close to each other, and the flow path between the outermost peripheral surface of the filament yarn traveling path and the inner surface of the upstream member of the cooling means is narrowed, and the filament yarn traveling path direction in particular on the airflow blowing surface 5 The airflow blown from the upstream side of the yarn passes through this flow path and rises and flows from the downstream side in the traveling direction of the filament yarn toward the upstream side in the vicinity of the lower surface of the spinneret. This upward flow makes it easier for each filament on the outer circumference side of the filament yarn travel path to be strongly cooled from the upstream side in the filament path direction relative to each inner thread on the inner circumference side. This is because it is possible to make it difficult for problems such as generated cooling spots and yarn shaking to occur. In addition, the present embodiment is also suitable for a cooling unit in which the above-described forms relating to the cooling unit are combined, including the above-described forms such as the airflow blowing surface, the airflow blowing unit, the airflow chamber, and the airflow supply port. In addition, this embodiment is suitable even if a single, a plurality, or a plurality of types of spinning caps or spin packs are provided with a single, a plurality, or a plurality of types of cooling means. In addition, illustration of the airflow blowing surface 5, the airflow blowing part 6, the airflow chamber 7, the airflow supply port 8, the cooling means 4, etc. in FIG. 1, FIG. 2 is an example to the last, and forms, such as these external shapes, are limited. However, the present embodiment is not limited to this as long as the first and second important embodiments of the present embodiment are satisfied. Moreover, the arrow described in the airflow supply port 8 in FIG. 1 and FIG. 2 simply indicates how the airflow flows, and does not limit the flow rate, flow rate, flow direction, and the like of the airflow. The form is not limited to this.

本実施形態は気流吹き出し面から吹き出される気流9により特に限られない。様々な気流に好適であり、気流の成分や温度、湿度、流速、流量、流れ方向等や、それらの分布等により特に限られない。気流の成分は例えば、空気や通常の空気に含まれる酸素等の成分、水分を含む空気や、希ガス、窒素等の不活性気体、スチーム等や、これらの混合物であっても本実施形態は好適である。なお、一般には空気や乾燥空気が用いられる場合が多い。気流の温度は例えば、一般に数℃あるいは10℃程度から20℃あるいは30℃程度が用いられる場合が多いが、特に限られない。例えば、徐冷等の目的で上記温度以上の高温の気流や、ガラス転移温度前後あるいはガラス転移温度以上の高温の気流等が用いられても本実施形態は好適である。気流の流速は例えば、一般に1〜5m/分程度から100〜200m/分程度が用いられる場合が多いが、特に限られない。フィラメント糸の単糸数、単糸繊度、紡糸速度や、冷却開始距離QTD等により、上記範囲内かそれ以外の範囲の流速が用いられても本実施形態は好適である。気流の流れ方向は特に限られず、例えば、水平方向、水平方向よりフィラメント糸の走行経路方向に対し上流側上方向、下流側下方向や、フィラメント糸やその各単糸の走行経路方向あるいは走行方向に対し垂直な方向、あるいはそれより上流側上方向、下流側下方向や、フィラメント糸やその各単糸の走行方向等であっても本実施形態は好適である。なお、特に限られないが、好ましくは、気流の流れ方向は、フィラメント糸やその各単糸の走行方向に対し垂直な方向、あるいはそれより下流側下方向が良い。気流の流れ方向をフィラメント糸やその各単糸の走行方向に対し垂直な方向より上流側上方向とすると、フィラメント糸やその各単糸に働く空気抵抗等が増加し易い等の理由からである。気流の成分や温度、湿度、流速、流量、流れ方向等の分布は特に限られず、様々な分布に本実施形態は好適である。気流のフィラメント糸の走行経路方向の流速分布は特に限られず、製糸安定性等を損なわない範囲で、フィラメント糸の走行経路方向に沿って変化の殆どない分布や、フィラメント糸の走行経路方向の上流側から下流側に向かって漸増あるいは漸減する分布、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって増加と減少が単数あるいは複数あるいは複数種ある分布等であっても好適である。なお、本実施形態では、気流吹き出し面の内径を、フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設するので、気流吹き出し面に囲まれた領域における気流のフィラメント糸の走行経路方向の上流側から下流側に向かう方向の流速を、特に、フィラメント糸の走行経路方向の下流側において、フィラメント糸の各単糸と気流との間の相対速度を充分小さくするに足る流速まで大きくし易い。このため、省エネやフィラメント糸の製造費用を削減させる等の狙いで、気流吹き出し面から吹き出される気流のフィラメント糸の走行経路方向の流速分布を、フィラメント糸の走行経路方向の上流側から下流側に向かって漸減する分布としても本実施形態は好適である。また、気流のフィラメント糸の走行経路方向の温度分布も特に限られず、製糸安定性等を損なわない範囲で、上記した気流のフィラメント糸の走行経路方向の流速分布と同様な分布等であっても好適である。なお、特に限られないが、気流のフィラメント糸の走行経路方向の温度分布において、フィラメント糸の走行経路方向の上流側から下流側に向かって漸減する分布が好ましい。フィラメント糸の各単糸の走行状態が安定化し易い等の理由からである。また、フィラメント糸の走行経路方向の上流側から下流側に向かって温度が漸減する分布は特に限られず、製糸安定性等を損なわない範囲で、フィラメント糸の走行経路方向の上流側から下流側に向かって連続的に、あるいは段階的に温度が漸減する分布、あるいはフィラメント糸の走行経路方向の上流側から下流側に向かって温度が漸減し、その過程で温度の漸減の程度が部分的に異なる分布等であっても好適である。また、気流吹き出し面から吹き出される気流の温度をフィラメント糸の走行経路方向の上流側から下流側に向かって漸減させるに際し、気流吹き出し面の上端やその周辺あるいは気流吹き出し面のフィラメント糸の走行経路方向の上流側から吹き出される気流に、高温の気流、例えば、ガラス転移温度前後あるいはガラス転移温度以上の高温の気流等が用いられても本実施形態は好適である。更に、気流のフィラメント糸の走行経路を囲う円周方向の流速、温度分布についても特に限られず、同様に製糸安定性等を損なわない範囲で様々な分布に本実施形態は好適である。なお、特に限られないが、一般に、内吹き円筒状冷却手段において、気流のフィラメント糸の走行経路を囲う円周方向の流速、温度分布は均一になるようにすることが多く、その様にすることが本実施形態でも好ましい。フィラメント糸の各単糸を円周方向に均一に冷却し易い等の理由からである。なお、気流の成分や温度、湿度、流速、流量、流れ方向、動圧、静圧等やそれらの分布等は一般に調整、制御、管理されることが多く、フィラメント糸10の品種等により、調整されることも多い。また、気流配管等の気流の供給系統に設けられたファンやブロワ等の気流発生手段や、気流フィルター、気流調整手段等により、調整、制御、管理されることも多い。なお、特に限られないが、気流の成分や温度、湿度、流速、流量、流れ方向、動圧、静圧等やそれらの分布等は、例えば、気流吹き出し面から吹き出されるまでの気流の供給系統等において、調整、制御、管理されることが本実施形態でも好ましい。また、特に限られないが、気流の成分や温度、湿度、流速、流量、流れ方向、動圧、静圧等やそれらの分布等が、例えば、気流配管等の気流の供給系統に設けられたファンやブロワ等の気流発生手段や、気流フィルター、気流調整手段等により、調整、制御、管理された上で、気流吹き出し面や気流吹き出し部、あるいは冷却手段に供給されることも好ましい。気流の斑や変動、現場雰囲気の乱れ等の影響等で、フィラメント糸の糸の太さ斑や品質斑等の均斉性等が悪化することを防止するため等の理由からである。また、図1、図2において、気流9を多数の矢印で図示しているが、これは気流が吹き出されるさまを単に示したものであり、気流の流速や流量、流れ方向等の形態を限定するものでなく、本実施形態はこれに限られない。   This embodiment is not particularly limited by the airflow 9 blown out from the airflow blowing surface. It is suitable for various airflows, and is not particularly limited by airflow components, temperature, humidity, flow velocity, flow rate, flow direction, etc., their distribution, and the like. For example, the components of the airflow may be components such as air or oxygen contained in normal air, air containing moisture, inert gas such as noble gas or nitrogen, steam, or a mixture thereof. Is preferred. In general, air or dry air is often used. The temperature of the airflow is, for example, generally about several degrees C or about 10 degrees C to about 20 degrees C or about 30 degrees C, but is not particularly limited. For example, the present embodiment is suitable even when a high-temperature airflow higher than the above temperature or a high-temperature airflow around the glass transition temperature or higher than the glass transition temperature is used for the purpose of slow cooling or the like. For example, the flow rate of the airflow is generally about 1 to 5 m / min to about 100 to 200 m / min in many cases, but is not particularly limited. This embodiment is suitable even when a flow rate within the above range or other ranges is used depending on the number of single filament yarns, single yarn fineness, spinning speed, cooling start distance QTD, and the like. The flow direction of the airflow is not particularly limited. For example, the horizontal direction, the upstream direction from the horizontal direction to the filament yarn traveling path direction, the downstream downstream direction, the filament yarn and the traveling path direction or traveling direction of each single yarn thereof. The present embodiment is suitable even in a direction perpendicular to the upper direction, an upward direction upstream, a downward direction downstream, and the traveling direction of the filament yarn and each single yarn thereof. Although not particularly limited, preferably, the flow direction of the airflow is preferably a direction perpendicular to the traveling direction of the filament yarn or each single yarn thereof, or a downstream downward direction. This is because if the airflow direction is set to the upstream side upward from the direction perpendicular to the traveling direction of the filament yarn or each single yarn, the air resistance acting on the filament yarn or each single yarn is likely to increase. . Distributions of airflow components, temperature, humidity, flow velocity, flow rate, flow direction, etc. are not particularly limited, and this embodiment is suitable for various distributions. The flow velocity distribution in the traveling path direction of the filament yarn of the air current is not particularly limited, and the distribution with almost no change along the traveling path direction of the filament yarn or the upstream in the traveling path direction of the filament yarn is within a range that does not impair the stability of the yarn production. A distribution that gradually increases or decreases from the side toward the downstream side, or a distribution in which the number of increases and decreases from the upstream side to the downstream side in the traveling direction of the filament yarn is one, a plurality, or a plurality of types is also suitable. In the present embodiment, since the inner diameter of the airflow blowing surface is arranged so as to gradually decrease from the upstream side to the downstream side in the filament yarn traveling path direction, the airflow in the region surrounded by the airflow blowing surface The flow velocity in the direction from the upstream side to the downstream side in the traveling path direction of the filament yarn, especially the downstream speed in the traveling path direction of the filament yarn, the relative speed between each single yarn of the filament yarn and the air flow is sufficiently small. It is easy to increase the flow rate to a sufficient level. For this reason, the flow velocity distribution in the traveling path direction of the filament yarn of the air current blown out from the air flow blowing surface is changed from the upstream side to the downstream side in the traveling path direction of the filament yarn for the purpose of saving energy and reducing the manufacturing cost of the filament yarn. The present embodiment is also suitable as a distribution that gradually decreases toward. Also, the temperature distribution in the traveling path direction of the filament yarn of the air current is not particularly limited, and may be the same distribution as the flow velocity distribution in the traveling path direction of the filament thread of the above-described air flow as long as the yarn production stability is not impaired. Is preferred. Although not particularly limited, in the temperature distribution in the traveling path direction of the filament yarn of the airflow, a distribution that gradually decreases from the upstream side to the downstream side in the traveling path direction of the filament yarn is preferable. This is because the traveling state of each single yarn of the filament yarn is easily stabilized. In addition, the distribution in which the temperature gradually decreases from the upstream side in the traveling path direction of the filament yarn to the downstream side is not particularly limited, and from the upstream side in the traveling path direction of the filament yarn to the downstream side within a range that does not impair the stability of yarn production. The temperature gradually decreases continuously or in stages, or the temperature gradually decreases from the upstream side to the downstream side in the direction of the filament yarn traveling path, and the degree of the temperature gradually decreases in the process. A distribution or the like is also suitable. Further, when gradually decreasing the temperature of the airflow blown out from the airflow blowing surface from the upstream side to the downstream side in the filament yarn traveling path direction, the upper end of the airflow blowing surface or the vicinity thereof or the filament yarn traveling path on the airflow blowing surface This embodiment is suitable even when a high-temperature airflow, for example, a high-temperature airflow around the glass transition temperature or higher than the glass transition temperature is used as the airflow blown from the upstream side in the direction. Further, the flow velocity and temperature distribution in the circumferential direction surrounding the traveling path of the filament yarn of the air current are not particularly limited, and similarly, the present embodiment is suitable for various distributions within a range not impairing the yarn production stability. Although not particularly limited, generally, in the inner blow cylindrical cooling means, the flow velocity and temperature distribution in the circumferential direction surrounding the traveling path of the filament yarn of the air flow are often made uniform, and so on. This is also preferable in this embodiment. This is because each single yarn of the filament yarn can be easily cooled uniformly in the circumferential direction. In general, air flow components, temperature, humidity, flow velocity, flow rate, flow direction, dynamic pressure, static pressure, etc. and their distribution are generally adjusted, controlled, and managed. Often done. Further, the air flow is often adjusted, controlled, and managed by an air flow generating means such as a fan or a blower provided in an air flow supply system such as an air flow pipe, an air flow filter, an air flow adjusting means, or the like. In addition, although not particularly limited, for example, supply of airflow until the airflow is blown out from the airflow blowing surface, such as airflow components, temperature, humidity, flow velocity, flow rate, flow direction, dynamic pressure, static pressure, etc. In this embodiment, it is preferable that the system is adjusted, controlled, and managed. In addition, although not particularly limited, airflow components, temperature, humidity, flow velocity, flow rate, flow direction, dynamic pressure, static pressure, etc. and their distribution are provided in an airflow supply system such as an airflow pipe, for example. It is also preferably supplied to the air flow blowing surface, the air flow blowing unit, or the cooling means after being adjusted, controlled and managed by an air flow generating means such as a fan or blower, an air flow filter, an air flow adjusting means or the like. This is for the purpose of preventing the uniformity of the thickness of the filament yarn, the uniformity of quality, and the like from deteriorating due to the influence of fluctuations and fluctuations in the air flow, disturbance in the field atmosphere, and the like. 1 and 2, the air flow 9 is illustrated by a number of arrows, but this simply shows how the air flow is blown out, and the flow rate, flow rate, flow direction, etc. of the air flow are shown. However, the present embodiment is not limited to this.

本実施形態は糸油剤付与・集束・ガイド・案内等の手段11により特に限られない。様々な手段に好適であり、手段の個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られない。また、糸油剤付与手段はガイド給油方式でもローラー給油方式であっても好適であり、糸油剤付与・集束・ガイド・案内等の手段は非回転手段でも回転手段でも本実施形態は好適である。また、上記手段は設けなくても設けても良く、設ける場合は糸油剤付与・集束・ガイド・案内等の手段であれば良く、あるいはそれらの何れかが一つが設けられても良く、あるいはそれらが単数あるいは複数あるいは複数種設けられても、上記各形態が組み合わされた手段が同様に設けられても良く、特に限られず好適である。   The present embodiment is not particularly limited by the means 11 such as thread oil application, focusing, guide, and guide. It is suitable for various means, and is not particularly limited by the number of means, outer shape, outer dimensions, mounting position / orientation, surface shape, surface finishing, surface treatment, structure, member configuration, material, and the like. The thread oil agent applying means may be either a guide oil supply system or a roller oil supply system, and the present embodiment is preferable whether the thread oil agent application / focusing / guide / guide means is non-rotating means or rotating means. In addition, the above means may be provided without being provided, and when provided, any means such as application of a thread oil agent, focusing, guide, guide, etc. may be provided, or any one of them may be provided, or they may be provided. Even if a single, a plurality, or a plurality of types are provided, means in which the above embodiments are combined may be provided in the same manner, and is not particularly limited.

本実施形態は糸引取手段12、糸巻取手段13により特に限られない。様々な糸引取手段、糸巻取手段に好適であり、手段の個数、外形形状、外形寸法、取付位置・向き、表面形状、表面仕上げ、表面処理、構造、部材構成、材質等により特に限られず、例えば、糸引取手段は、ローラーやサクションガン等の糸吸引手段、フィラメント糸を気流で送り出す糸送出手段、コンベヤ等の糸搬送手段等であっても好適であり、例えば、糸巻取手段は、フィラメント糸を巻き取るワインダー方式や、フィラメント糸を籠の様な容器で受け取るキャン方式等の糸巻取手段であっても本実施形態は好適である。また、糸引取手段のローラーに複数回フィラメント糸が掛けられても好適であり、糸引取手段が延伸手段を兼ねても好適である。また、糸引取手段や糸巻取手段に、糸油剤付与・集束・ガイド・案内等の手段や、加熱ローラー、加熱チューブ等の糸加熱手段、糸加湿手段、糸リラックス手段、糸延伸手段、糸吸引手段、糸送出手段、糸搬送手段等が単数あるいは複数あるいは複数種設けられても好適である。また、糸引取手段や糸巻取手段が単数あるいは複数あるいは複数種設けられても、上記各形態が組み合わされた糸引取手段や糸巻取手段が同様に設けられても好適である。   This embodiment is not particularly limited by the yarn take-up means 12 and the yarn take-up means 13. Suitable for various thread take-up means, thread take-up means, not limited by the number of means, external shape, external dimensions, mounting position and orientation, surface shape, surface finish, surface treatment, structure, member configuration, material, etc. For example, the yarn take-up means is preferably a yarn suction means such as a roller or a suction gun, a yarn feed-out means for sending filament yarn by airflow, a yarn transport means such as a conveyor, etc. For example, the yarn take-up means is a filament This embodiment is also suitable for yarn winding means such as a winder type that winds a yarn or a can type that receives a filament yarn in a container such as a bag. Further, it is preferable that the filament yarn is hung on the roller of the yarn take-up means a plurality of times, and it is also preferred that the yarn take-up means also serves as the drawing means. In addition, thread oiling means, thread winding means, thread oiling means, bundling, guiding and guiding means, heating roller, heating tube and other thread heating means, thread humidifying means, thread relaxing means, thread stretching means, thread suction It is also preferable that a single means, a plurality of yarn feeding means, a yarn conveying means, or the like is provided. Further, it is preferable that a single, a plurality, or a plurality of types of yarn take-up means and yarn take-up means are provided, or that a thread take-up means and a yarn take-up means in which the above embodiments are combined are provided in the same manner.

本発明は、極めて汎用性の高い発明であり、溶融紡糸によって得られる多くのフィラメント糸に好適である。特に、強伸度や伸度、強度等の品質や、糸の太さ斑や品質斑等の均斉性、また、毛羽等の品位に優れたフィラメント糸の製造に好適であり、単糸細繊度化・多フィラメント化されたフィラメント糸や単糸異形断面化されたフィラメント糸、あるいは熱可塑性ポリマーが改質されたフィラメント糸やガラス転移温度が高い等の特殊な熱可塑性ポリマーから構成されるフィラメント糸等の高機能フィラメント糸の製造にも好適である。また、本発明は、フィラメント糸の溶融紡糸の構成により特に限られるものではなく、UDYあるいはPOYに対応した溶融紡糸の構成に限らず、DSDやOSYに対応した溶融紡糸の構成にも応用できるが、その応用範囲がこれらに限られるものではない。   The present invention is an extremely versatile invention and is suitable for many filament yarns obtained by melt spinning. In particular, it is suitable for the production of filament yarns with excellent quality such as high elongation, elongation, strength, etc., uniformity of yarn thickness spots and quality spots, and quality such as fluff. Filament yarns made from special or thermoplastic polymers such as filament yarns made into multi-filaments, single yarns with irregular cross-sections, filament yarns modified with thermoplastic polymers, and high glass transition temperatures It is also suitable for the production of high-function filament yarns such as In addition, the present invention is not particularly limited by the configuration of melt spinning of the filament yarn, and is not limited to the configuration of melt spinning corresponding to UDY or POY, but can also be applied to the configuration of melt spinning corresponding to DSD and OSY. The application range is not limited to these.

本実施形態の一実施例に係る好ましい溶融紡糸の構成の一例を模式的に例示した縦断面の概略図である。It is the schematic of the longitudinal cross-section which illustrated typically an example of the structure of the preferable melt spinning which concerns on one Example of this embodiment. 本実施形態の一実施例に係る好ましい溶融紡糸の構成の別の一例を模式的に例示した縦断面の概略図である。It is the schematic of the longitudinal cross-section which illustrated typically another example of the structure of the preferable melt spinning which concerns on one Example of this embodiment.

符号の説明Explanation of symbols

1:紡糸口金
2:紡糸パック
3:スピンブロック
4:冷却手段
5:フィラメント糸の走行経路を外周側から包囲する様に設けられた気流吹き出し面
6:気流吹き出し部
7:気流室
8:気流供給口
9:気流吹き出し面から吹き出される気流
10:フィラメント糸
11:糸油剤付与・集束・ガイド・案内等の手段
12:糸引取手段
13:糸巻取手段
D:フィラメント糸の走行経路方向のある位置における気流吹き出し面の内径
QTD:冷却開始距離
d:フィラメント糸の走行経路方向のある位置における中央部材の外側面の外径
1: Spinneret 2: Spin pack 3: Spin block 4: Cooling means 5: Air flow blowing surface 6: Air flow blowing unit 7: Air flow chamber 8: Air flow supply provided so as to surround the traveling path of the filament yarn from the outer peripheral side Mouth 9: Airflow blown out from the airflow blowing surface 10: Filament yarn 11: Means for applying, bundling, guiding, guiding, etc. 12: Yarn take-up means 13: Yarn winding means D: A position in the filament yarn traveling path direction The inner diameter QTD of the air flow blowing surface in FIG. 5 is the cooling start distance d: the outer diameter of the outer surface of the central member at a certain position in the filament yarn traveling path direction.

Claims (2)

溶融した熱可塑性ポリマーをフィラメント糸として紡出する紡糸口金と、前記フィラメント糸の走行経路方向に垂直な方向の断面形状が円形で、前記フィラメント糸の走行経路を外周側から包囲し、前記フィラメント糸の走行経路の外周側から内向きに気流を吹き付けてフィラメント糸を冷却する気流吹き出し面を設けた冷却手段とを少なくとも有するフィラメント糸の製造装置であって、前記冷却手段の前記気流吹き出し面の前記フィラメント糸の走行経路方向に垂直な方向の断面形状を、前記フィラメント糸の走行経路方向の上流側から下流側に向かって徐々に小さくなる様に配設することを特徴とするフィラメント糸の製造装置。 A spinneret for spinning a molten thermoplastic polymer as a filament yarn, and a circular cross-sectional shape in a direction perpendicular to the travel path direction of the filament yarn, and the filament yarn surrounds the travel path of the filament yarn from the outer peripheral side. A filament yarn manufacturing apparatus having at least a cooling means provided with an air flow blowing surface for blowing the air flow inward from the outer peripheral side of the travel path to cool the filament yarn, wherein the air flow blowing surface of the cooling means An apparatus for producing a filament yarn, characterized in that a cross-sectional shape in a direction perpendicular to the traveling path direction of the filament yarn is arranged so as to gradually decrease from the upstream side to the downstream side in the traveling path direction of the filament yarn. . 請求項1に記載のフィラメント糸の製造装置を用い、熱可塑性ポリマーを溶融紡糸し、フィラメント糸を製造することを特徴とするフィラメント糸の製造方法。 A method for producing a filament yarn, wherein the filament yarn is produced by melt spinning a thermoplastic polymer using the filament yarn production apparatus according to claim 1.
JP2008215059A 2008-08-25 2008-08-25 Apparatus and method for producing filament yarn Pending JP2010047880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215059A JP2010047880A (en) 2008-08-25 2008-08-25 Apparatus and method for producing filament yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215059A JP2010047880A (en) 2008-08-25 2008-08-25 Apparatus and method for producing filament yarn

Publications (1)

Publication Number Publication Date
JP2010047880A true JP2010047880A (en) 2010-03-04

Family

ID=42065174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215059A Pending JP2010047880A (en) 2008-08-25 2008-08-25 Apparatus and method for producing filament yarn

Country Status (1)

Country Link
JP (1) JP2010047880A (en)

Similar Documents

Publication Publication Date Title
JP2010106393A (en) Apparatus and method for producing multifilament yarn
JP2010077553A (en) Apparatus and method for producing filament yarn
JP5526531B2 (en) Spinning cooling device and melt spinning method
JP2008231607A (en) Annular cooling apparatus for spinning and melt-spinning method
JPH0718047B2 (en) Equipment for cooling, stabilizing and finishing melt-spun filaments
US6705852B2 (en) Melt spinning apparatus
JP5428979B2 (en) Spin pack and method for producing filament yarn
JP4946111B2 (en) Synthetic fiber melt spinning apparatus and synthetic fiber manufacturing method
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JP2007063690A (en) Device for cooling yarn
JP2002542402A (en) Apparatus and method for spinning polymer filaments
JP2006241611A (en) Melt-spinning equipment of synthetic fiber
JP2007247121A (en) Yarn cooling device
JP5906808B2 (en) Synthetic fiber manufacturing method
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JP4988318B2 (en) Multi-spindle melt spinning apparatus and ultrafine multifilament yarn obtained therefrom
JP2010077570A (en) Melt-spinning method and melt-spinning apparatus
JP2011102448A (en) Apparatus and method of producing filament yarn
KR100502397B1 (en) Molten yarn take-up device
JP2010047880A (en) Apparatus and method for producing filament yarn
JP5332253B2 (en) Filament yarn manufacturing apparatus and manufacturing method
JP2009068154A (en) Yarn cooling device
JPH07118912A (en) Device for spinning synthetic filament
JP2006528283A (en) Melt spinning, cooling and winding equipment
JPS6128012A (en) Method for melt spinning modified cross section fiber