JP2007220882A - 埋込配線の形成方法 - Google Patents

埋込配線の形成方法 Download PDF

Info

Publication number
JP2007220882A
JP2007220882A JP2006039263A JP2006039263A JP2007220882A JP 2007220882 A JP2007220882 A JP 2007220882A JP 2006039263 A JP2006039263 A JP 2006039263A JP 2006039263 A JP2006039263 A JP 2006039263A JP 2007220882 A JP2007220882 A JP 2007220882A
Authority
JP
Japan
Prior art keywords
wiring
gas
buried
film
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039263A
Other languages
English (en)
Inventor
Yukio Takigawa
幸雄 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006039263A priority Critical patent/JP2007220882A/ja
Publication of JP2007220882A publication Critical patent/JP2007220882A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】 埋込配線の形成方法に関し、信頼性が高く且つ抵抗上昇が発生しない歩留りの高い埋込多層配線を提供する。
【解決手段】 配線溝孔3をエッチングした後に、バリア膜及びメッキシード層を成膜し、次いで、配線溝孔3をメッキ法により導電体層4で埋め込んだのち、気体状態の有機系ガス5により導電体層4の熱処理を行う。
【選択図】 図1

Description

本発明は埋込配線の形成方法に関するものであり、特に、ダマシン構造を有する半導体装置の配線溝孔埋込後のメッキ導電体内部の不純物、ボイド、自己酸化物をダメージなく除去するための構成に特徴のある埋込配線の形成方法に関するものである。
従来、半導体装置の電極材料、配線材料としては、アルミニウムが広く実用されてきたが、近年の半導体装置の微細化や処理の高速化の要求に伴い、電極や配線の形成をアルミニウムで対応することは困難になってきている。
そのため、アルミニウムの次世代材料として、エレクトロマイグレーションに強く、比抵抗がアルミニウムより小さな銅を利用する試みが進められている。
電極材料や配線材料として銅を用いる場合、銅が選択エッチングの困難な材料であることから、電極や配線はダマシン法により埋込電極或いは埋込配線として形成されることになるが、この場合は、形成される電極や配線のアスペクト比を高くすることによって、半導体装置の微細化、高速化を実現することが可能になる。
このような電極材料や配線材料として用いられる銅は、酸化されやすい性質を有しているため、半導体装置の製造過程においては、電極や配線として形成した銅の表面に、酸化銅(CuO)や亜酸化銅(Cu2 O)といった銅酸化物が生成する。
また、銅は主にめっきにより配線溝孔内に埋め込まれるが、めっきで形成された銅内部には多数のボイドやめっき液起因による不純物、めっき液中の水分による銅酸化物が分散して存在している。
このボイドや不純物、ならびに銅酸化物は、電気抵抗の上昇など、半導体装置の特性低下を招くが、さらにストレスマイグレーション特性を低下させる。そのため、電極或いは配線形成用のめっき埋め込み後に、生成してしまったボイド、不純物、および銅酸化物を除去するための処理が必要となる。
そこで、めっきで形成された銅は、通常、アニールが施され、このアニールによる銅粒界の成長が、粒界界面に極在しているボイドや不純物を外部に押し出す作用への駆動力となる(例えば、特許文献1参照)。
その際用いられるアニール条件は、大気または不活性ガス雰囲気で100〜400℃で、5秒〜1 時間程度行われる。
一方、半導体装置の高速化のためには、配線・電極の低抵抗化とともに、寄生容量を低減するためには層間絶縁膜の低誘電率化が必要となり、低誘電率の層間絶縁膜としてポリアエーテル等の低誘電率の有機絶縁材料(例えば、ダウケミカル社登録商標SiLK)やポーラスシリカの採用が試みられている(例えば、特許文献2参照)。
特開平11−297696号公報 特開2004−071705号公報
しかし、従来のアニール処理には、以下に示すような問題点があった。
従来のアニール処理は、大気中または不活性ガス中で行われるが、アニールにより銅粒界がある程度は成長し、成長にともないめっき中のボイドがめっき層の上部に移動し、上部に移動したボイドはCMP工程において取除かれる。
しかし、めっき膜内部のボイドが全て上層に移動する訳ではなく、CMP工程で除去しきれない残留ボイドがデバイス駆動時における温度環境により再移動し、配線やビア内がオープンに至るまでになる(ストレスマイグレーション)。また、デバイス動作時電流や待機時リーク電流により、ボイドが移動し配線内オープンの原因となるという問題点がある。
また、めっきで成膜した銅内部にはめっき液起因の不純物が存在し、この不純物は配線腐食の原因となる。さらに、大気中でアニールを行うと銅表面が酸化するが、銅の酸化は深さ方向への進行性があるために、酸化銅がCMP工程で除去しきれず、埋込配線内に残留する可能性が生ずる。
この残留した銅酸化物は配線抵抗上昇の原因となる。
したがって、本発明は、信頼性が高く且つ抵抗上昇が発生しない歩留りの高い埋込多層配線を提供することを目的とする。
図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
なお、図における符号1は、下層の配線である。
図1参照
上記課題を解決するために、本発明は、埋込配線6の形成方法において、配線溝孔3をエッチングした後に、バリア膜及びメッキシード層を成膜し、次いで、配線溝孔3をメッキ法により導電体層4で埋め込んだのち、気体状態の有機系ガス5により導電体層4の熱処理を行う工程を有することを特徴とする
このように、配線溝孔3をメッキ法により導電体層4で埋め込んだのち、気体状態の有機系ガス5により導電体層4の熱処理を行うことにより、表面における有機系ガス5との反応により、ボイドや不純物の内部拡散が加速され導電体層4の表面に集積されることになり、このボイドや不純物の集積した表面部を埋込配線6を形成する際のCMP工程で除去することにより、ボイドや不純物を効果的に除去することができる。
即ち、有機系ガス5のアニール時にめっき銅表面が還元され、そのため銅酸化物の表面濃度が薄くなり、めっき内部の銅酸化物が粒界を通して表面に移動する。
この時、導電体層4内部のボイドは元来粒界に分布していることから、銅酸化物の移動と共に表面に移動することとなる。
一方、導電体層4内の不純物も粒界における物質移動にともなって表面に移動し、表面に移動した不純物は有機系ガス5により除去されることになる。
したがって、従来のアニール効果による粒成長加え、有機系ガス5による処理による粒界内不純物除去により、信頼性の高いデバイスを提供することができる。
また、熱処理工程において使用する有機系ガス5としては、ギ酸、酢酸、プロピオン酸或いは酪酸等のカルボン酸を有するガスが望ましく、それによって、層間絶縁膜2等の他の部材にダメージを与えることがない。
なお、カルボン酸の分子量が大きくなるほど反応がソフトになる。
或いは、熱処理工程において使用する有機系ガス5としては、メタノール等のアルコール類でも良く、一般的にはカルボン酸を有するガスより反応がソフトであるので、層間絶縁膜2がSiを構成元素として含む有機系絶縁膜である場合にも、熱処理に伴って層間絶縁膜2がダメージを受けることがない。
上述熱処理は、各種の材料からなる配線に適用されるものであるが、表面の酸化物やその後の腐食が問題となる銅或いはCu−Al,Cu−Si等の銅を含む合金の場合に特に有効となる。
本発明では、メッキ埋込層形成後の熱処理をカルボン酸を有するガス等の有機系ガス雰囲気中で行っているので、ボイドや不純物の内部拡散を加速して、効果的にボイドや不純物を除去することができ、したがって、従来のアニール効果による粒成長加え、有機系ガスによる処理による粒界内不純物除去により、信頼性の高いデバイスを提供することができる。
また、熱処理時のガスは直接層間絶縁膜に触れることは無いので、熱処理工程に伴って配線溝孔を形成する層間絶縁膜がダメージを受けて誘電率が増大することがないので、設計通りの高速半導体装置を構成することができる。
本発明は、下層配線或いはビア上に層間絶縁膜を設け、シングルダマシン法或いはデュアルダマシン法を用いて上層配線或いはビアを形成する際に、層間絶縁膜に埋込用溝或いは埋込用孔を形成したのち、埋込用溝或いは埋込用孔中にメッキ法を用いてCu等の金属を埋め込み、引き続き有機系ガスによるアニールを行い、CMP法によって不要部を研磨することによって埋込配線或いはビアを同時に或いは個別の工程で形成するものである。
この場合の熱処理に用いる有機系ガスとしては、カルボン酸或いはアルコール類を用い、例えば、銅に生成した酸化銅あるいは亜酸化銅といった銅酸化物を、気体状態のカルボン酸〔RCOOH:R=H,Cn 2n+1,Cn m 2n-m+1(n,mは自然数、X=F
,Cl)〕を用いて還元して清浄化される。
カルボン酸は、銅酸化物に対して還元剤として作用し、銅酸化物を金属銅(Cu)に還元し、二酸化炭素(CO2 )及び水(H2 O)を生成する。
例えば、カルボン酸としてギ酸〔HCOOH:メタン酸(methanoic acid)〕を用いた場合、酸化銅(CuO)は反応式、
HCOOH+CuO→Cu+CO2 +H2
に基づいて、また、亜酸化銅(Cu2 O)は反応式、
HCOOH+Cu2 O→2Cu+CO2 +H2
に基づいて、それぞれ金属銅に還元される。
ここで、ギ酸による酸化銅または亜酸化銅の還元反応における標準ギブズエネルギーは、上記反応式に基づいて生成するH2 Oが気体状態の場合には、それぞれ約−132kJ/mol、約−112kJ/molとなる。
即ち、この還元反応は、金属銅を生成する方向に進行し易く、この方向に反応が進行する還元温度で処理を行うことにより、半導体装置の製造過程で電極や配線に生成した酸化銅あるいは亜酸化銅を還元することができるようになる。
この場合、熱処理において生成する二酸化炭素および水は、上記の反応条件においては気体状態であるため、熱処理後に、これらが不純物として残留することがなく、したがって、熱処理後の工程に影響を及ぼすことなく、安定した特性を有する半導体装置を製造することが可能になる。
また、この場合の熱処理条件としては、処理チャンバ内のカルボン酸の分圧を50Pa〜10000Paの範囲とし、還元温度100℃〜400℃、全圧100Torr〜300Torrで還元時間3分、特に還元温度400℃の場合には、圧力100Torr〜200Torrで還元時間1分の反応条件で処理することにより、電極や配線の表面に凹凸を生じさせることなく、埋込配線や電極を大粒径化してボイドや不純物を表面に集積することができるとともに、短い還元時間で均一に銅酸化物を還元することができる。
なお、化学大辞典(共立出版刊)によれば、銅と蟻酸が反応し蟻酸銅となる場合もあるが、生成された蟻酸銅は加熱により気化するので、銅表面に付着した銅酸化物を蟻酸蒸気を用い、気相中でリフトオフして装置のダウンフローで排出除去できる。
なお、還元剤として用いるカルボン酸は、ギ酸〔HCOOH〕のほか、
酢酸〔CH3 COOH:エタン酸(ethanoic acid )〕
プロピオン酸〔C2 5 COOH:プロパン酸(propanoic acid)〕 酪酸〔C3 7 COOH:ブタン酸(butanoic acid )〕
などの比較的沸点の低いものを用いるのが好ましい。
また、有機系ガスとして、カルボン酸を含む成分以外に、メタノール或いはエタノール等のアルコール系成分を気化させて噴出させても清浄化作用が得られる。
次に、図2乃至図5を参照して、本発明の実施例1のデュアルダマシン工程を説明するが、まず、図2を参照して本発明の実施に用いる熱処理装置を説明する。
図2参照
図2は本発明の実施に用いる熱処理装置の概念的構成図である。
この熱処理装置は、アッシング装置を兼ねる熱処理装置であり、ガス導入口12及び排気口13を備えた処理チャンバー11、処理チャンバー11内に設けられたステージを兼ねる下部電極14、下部電極14と対向するように設けられたリング状上部電極15、リング状上部電極15の中央部に移動可能に嵌め込まれた有機系ガス噴出シャワーヘッド16、有機系材料を貯蔵する貯蔵槽19と有機系ガス噴出シャワーヘッド16との間に接続された有機系ガス供給用配管17、有機系ガス供給用配管17の途中に設けられ有機系材料を加熱して気化して有機系ガスとする気化器18、及び、ステージを兼ねる下部電極14の下部に配置されて被処理基板21を加熱するヒータ20によって構成される。
熱処理工程においては、図に示すように、有機系ガス噴出シャワーヘッド16を下降させてリング状上部電極15の中央部に嵌め込み、この状態で有機系ガス噴出シャワーヘッド16から気化器18によって気化された有機系ガスを噴出して、ヒータ20によって反応生成物が気体状態となる温度以上に加熱したアッシング処理後の被処理基板21を熱処理して、気体状の反応生成物及び未反応の有機系ガスを排気口13からダウンフローで排出する。
次に、図3乃至図5を参照して、本発明の実施例1のデュアルダマシン工程を説明する。
図3参照
まず、p型シリコン基板31に素子分離絶縁膜32を形成したのち、ゲート絶縁膜33を介してゲート電極34を設け、このゲート電極34をマスクとしてn型不純物を導入することによってn型エクステンション領域35を形成し、次いで、サイドウォール36を形成したのち、再び、n型不純物を導入することによって、n型ソース・ドレイン領域37を形成する。
次いで、全面にCoを堆積させたのち、熱処理することによってCoシリサイド電極38,39を形成し、次いで、未反応のCoを除去したのち全面にSiO2 膜40及びBPSG膜41を堆積させたのち、表面平坦化を行いエッチングストッパーとなるSiCN膜42を形成する。
次いで、n型ソース・ドレイン領域37に達するビアホールを形成したのち、TiNからなるバリア膜43を介してWを埋め込み、CMP法によって不要部を除去することによってWプラグ44を形成する。
次いで、プラズマCVD法を用いてSiOCからなる第1配線用絶縁膜45を堆積させたのち、Wプラグ44を露出する配線用溝を形成する。
次いで、TaNからなるバリア膜46を介してCu埋込層47で電気メッキ法によって埋め込む(なお、Cuメッキシード層を図示を省略する)。
次いで、被処理基板を処理チャンバー11内に移し、有機系ガス噴出シャワーヘッド16から気化器18によって気化された蟻酸ガス48を蟻酸ガス48の分圧が200Paになるように導入して、ヒータ20によって基板温度を150℃とし、全圧が200Torrの状態で還元時間2分で被処理基板を還元処理して、Cu埋込層47の表面を蟻酸化反応によって処理、還元反応で生成されたCO2 及び水蒸気(H2 O)とともに、不純物を排気口13から排気除去する。
図4参照
次いで、被処理基板を処理チャンバー11より取り出したのち、CMP法によって不要部を除去することによって第1Cu埋込配線49を形成する。
次いで、プラズマCVD法を用いて厚さが、例えば、50nmのSiCN膜50、厚さが、例えば、150nmのSiO2 からなるビア形成用絶縁膜51、厚さが、例えば、50nmのSiCN膜52、厚さが、例えば、250nmのSiOCからなる第2配線用絶縁膜53、及び、厚さが、例えば、50nmのSiCN膜54を順次堆積させる。
次いで、フロロカーボン系のエッチングガスを用いたプラズマエッチングによって、第2配線用絶縁膜53に幅が例えば、0.12μmの配線用溝55を形成したのち、ビア形成用絶縁膜51に第1Cu埋込配線49に達する直径が例えば、0.12μmのビアホール56を形成する。
図5参照
次いで、次いで、再び、配線用溝55及びビアホール56をTaNからなるバリア膜57を介してCu埋込層58で埋め込む(なお、Cuメッキシード層を図示を省略する)。
次いで、再び、被処理基板を処理チャンバー11内に移し、有機系ガス噴出シャワーヘッド16から気化器18によって気化された蟻酸ガス59を蟻酸ガス59の分圧が200Paになるように導入して、ヒータ20によって基板温度を150℃とし、全圧が200Torrの状態で還元時間2分で被処理基板を還元処理して、Cu埋込層58の表面を蟻酸化反応によって処理、還元反応で生成されたCO2 及び水蒸気(H2 O)とともに、不純物を排気口13から排気除去する。
次いで、被処理基板を処理チャンバー11より取り出したのち、CMP法によって不要部を除去することによってCuビア60及び第2Cu埋込配線61を形成する。
以降は、必要とする多層配線層数に応じてビア形成用絶縁膜及び層間絶縁膜の堆積工程、配線用溝及びビアホールの形成工程、ビア及び配線溝の埋込工程、有機系ガス中でのアニール工程、及び、CMP工程を繰り返すことによって半導体装置が完成する。
この本発明の実施例1において、上述の図示した2層配線構造において20M(2×107 )個のビアチェーンを形成して信頼性を確認したところ、ビアチェーンのコンタクト歩留りは100%であり、十分な信頼性が得られた。
本発明の実施例1においては、めっき後の熱処理を気化した蟻酸ガスを用いて気相処理として行っているので、反応生成物等は被処理基板の表面の残存することがなく、処理に伴う層間絶縁膜の比誘電率の増大も見られないので、寄生容量の増大による信号遅延が発生することがない。
因に、Cu埋込層の形成後に蟻酸ガスによる熱処理を行わずに大気中にてアニールを行い、二層配線構造を作製したところ、実施例1と同じ構造のビアチェーンのコンタクト歩留まりは70%であり、信頼性が欠如していた。
このように、本発明の実施例1においては、埋込工程の後のアニール工程を気化した蟻酸ガスを用いて気相処理として行っているので、従来のアニール効果による粒成長加え、有機系ガスによる処理による粒界内不純物除去により、信頼性の高いデバイスを提供することができる。
次に、本発明の実施例2のデュアルダマシン工程を説明するが、第2配線用絶縁膜53としてポリアエーテル等の低誘電率の有機絶縁材料(例えば、ダウケミカル社登録商標SiLKTM)を用いて塗布形成したものであり、それにともなって、アッシング処理を水素プラズマを用いて行うとともに、埋込工程の後のアニール処理をメタノールガスを用いて行ったものであり、基本的な工程及び構造は上記の実施例1と全く同様であるので、詳細な工程の説明は省略する。
この実施例2のアニール工程においては、Cu埋込層を形成したのち、処理チャンバー11内に有機系ガス噴出シャワーヘッド16から気化器18によって気化されたメタノールガスをメタノールガスの分圧が200Paになるように導入して、ヒータ20によって基板温度を150℃とし、全圧が200Torrの状態で還元時間2分で被処理基板を還元処理して、Cu埋込層47或いはCu埋込層58の表面に形成された銅酸化物を金属銅に還元するとともに、ボイド或いは不純物を表面に集積させるものである。
この実施例2におけるコンタクト歩留りは、上述の実施例1と同じ構造のビアチェーンのコンタクト歩留まりとして100%であり、実施例1と同等の信頼性が得られた。
因に、Cu埋込層の形成後に、メタノールガスによる清浄化処理を行わずに大気中アニールを行い、二層配線構造を作製したところ、実施例1と同じ構造のビアチェーンのコンタクト歩留まりは82%であり、信頼性が欠如していた。
次に、本発明の実施例3のデュアルダマシン工程を説明するが、ビア形成等絶縁膜51として第2配線用絶縁膜53と同じSiOC膜を用いたものであり、それ以外の工程及び構造は上記の実施例1と全く同様であるので、詳細な工程の説明は省略する。
この実施例3におけるコンタクト歩留りは、上述の実施例1と同じ構造のビアチェーンのコンタクト歩留まりとして100%であり、実施例1と同等の信頼性が得られた。
因に、Cu埋込層の形成後、有機系ガスによる清浄化処理を行わずに大気中アニールで、二層配線構造を作製したところ、実施例1と同じ構造のビアチェーンのコンタクト歩留まりは78%であり、信頼性が低下していた。
次に、図6乃至図8を参照して、本発明の実施例4のシングルダマシン工程を説明するが、デュアルダマシン工程をシングルダマシン工程に置き換えただけで、基本的構造及び処理条件は上記の実施例1と全く同様である。
図6参照
まず、図示を省略するが、図4と全く同様にMOSFET及びn型ソース・ドレイン領域上に設けたCoシリサイド電極に接続するWプラグ44を形成したのち、プラズマCVD法を用いてSiOCからなる第1配線用絶縁膜45を堆積させたのち、Wプラグ44を露出する配線用溝を形成する。
次いで、TaNからなるバリア膜46を介してCu埋込層47で電気メッキ法によって埋め込んだのち(なお、Cuメッキシード層を図示を省略する)、被処理基板を処理チャンバー11内に移し、有機系ガス噴出シャワーヘッド16から気化器18によって気化された蟻酸ガス48を蟻酸ガス48の分圧が200Paになるように導入して、ヒータ20によって基板温度を150℃とし、全圧が200Torrの状態で還元時間2分で被処理基板を還元処理して、Cu埋込層47の表面を蟻酸化反応によって処理、還元反応で生成されたCO2 及び水蒸気(H2 O)とともに、不純物を排気口13から排気除去する。
次いで、被処理基板を処理チャンバー11より取り出したのち、CMP法によって不要部を除去することによって第1Cu埋込配線49を形成する。
次いで、プラズマCVD法を用いて厚さが、例えば、50nmのSiCN膜50、厚さが、例えば、150nmのSiO2 からなるビア形成用絶縁膜51、及び、厚さが、例えば、50nmのSiCN膜52を順次堆積する。
次いで、フロロカーボン系のエッチングガスを用いたプラズマエッチングによって、ビア形成用絶縁膜51に第1Cu埋込配線49に達する直径が例えば、0.12μmのビアホール62を形成する。
図7参照
次いで、TaNからなるバリア膜63を介してCu埋込層64で電気メッキ法によって埋め込んだのち(なお、Cuメッキシード層を図示を省略する)、被処理基板を処理チャンバー11内に移し、有機系ガス噴出シャワーヘッド16から気化器18によって気化された蟻酸ガス65を蟻酸ガス65の分圧が200Paになるように導入して、ヒータ20によって基板温度を150℃とし、全圧が200Torrの状態で還元時間2分で被処理基板を還元処理して、Cu埋込層64の表面を蟻酸化反応によって処理、還元反応で生成されたCO2 及び水蒸気(H2 O)とともに、不純物を排気口13から排気除去する。
次いで、被処理基板を処理チャンバー11より取り出したのち、CMP法によって不要部を除去することによってCuビア66を形成する。
次いで、再び、プラズマCVD法を用いて、厚さが、例えば、250nmのSiOCからなる第2配線用絶縁膜53及び厚さが、例えば、50nmのSiCN膜54を順次堆積させる。
図8参照
次いで、再び、フロロカーボン系のエッチングガスを用いたプラズマエッチングによって、第2配線用絶縁膜53にCuビア66に達する幅が例えば、0.12μmの配線用溝67を形成する。
次いで、再び、TaNからなるバリア膜68を介してCu埋込層69で電気メッキ法によって埋め込んだのち(なお、Cuメッキシード層を図示を省略する)、被処理基板を処理チャンバー11内に移し、有機系ガス噴出シャワーヘッド16から気化器18によって気化された蟻酸ガス70を蟻酸ガス70の分圧が200Paになるように導入して、ヒータ20によって基板温度を150℃とし、全圧が200Torrの状態で還元時間2分で被処理基板を還元処理して、Cu埋込層69の表面を蟻酸化反応によって処理、還元反応で生成されたCO2 及び水蒸気(H2 O)とともに、不純物を排気口13から排気除去する。
次いで、被処理基板を処理チャンバー11より取り出したのち、CMP法によって不要部を除去することによって第2Cu埋込配線71を形成する。
以降は、必要とする多層配線層数に応じてビア形成用絶縁膜堆積工程、ビアホールの形成工程、埋込工程、アニール工程、ビア形成工程、層間絶縁膜の堆積工程、配線用溝の形成工程、埋込工程、アニール工程、及び、埋込配線の形成工程を繰り返すことによって半導体装置が完成する。
この本発明の実施例4においても実施例1と同様の構造の2層配線構造において20M(2×107 )個のビアチェーンを形成して信頼性を確認したところ、ビアチェーンのコンタクト歩留りは100%であり、十分な信頼性が得られた。
因に、上述のアニール処理を行わずに、大気中アニールで二層配線構造を作製したところ、実施例1と同じ構造のビアチェーンのコンタクト歩留まりは80%であり、信頼性の低下が見られた。
以上、本発明の各実施例を説明してきたが、本発明は各実施例に記載された構成・条件等に限られるものではなく各種の変更が可能であり、例えば、ビアホールのサイズ及び埋込配線の幅等は任意であり、必要とする集積度に応じて適宜決定すれば良い。
また、上記の各実施例においては、ビア及び埋込配線をCuによって形成しているが、Cuに限られるものではなく、Cu−AlやCu−Si等のCuを主成分とする合金にも適用されるものである。
また、上記の実施例1,3,4においては、メッキによる埋込工程後のアニール工程におけるカルボン酸として、蟻酸を用いているが、これらの蟻酸に限られるものではなく、酢酸、プロピオン酸或いは酪酸等の他のカルボン酸を用いても良いものである。
また、上記の実施例2においては、メッキによる埋込工程後のアニール工程をメタノールを用いて行っているが、メタノールに限られるものではなく、エタノール或いはプロピルアルコール等の他のアルコール類を用いても良いものである。
また、上記の各実施例における配線用絶縁膜及びビア形成用絶縁膜の組み合わせた単なる一例であり、他の絶縁材料を用いた層間絶縁膜構造に適用できることは言うまでもないことであり、SiCN膜の代わりにSiN膜またはSiOCN膜を用いても良いし、或いは、SiOC膜の代わりにSiO2 膜或いはSiOCN膜を用いても良いものである。
なお、SiOCN膜に対して本発明の実施例と同様の有機系ガス雰囲気中におけるアニール処理を行った場合、処理後の比誘電率は約2.9であり、処理前の比誘電率と殆ど変化がないか若干の低下が見られた。
また、上記の各実施例においては、特に言及してないが、エッチング工程後のエッチング残渣の剥離処理工程及び清浄化処理工程を行う場合に、このエッチング残渣の剥離処理工程及び清浄化処理工程も上述の有機系ガス雰囲気中での熱処理として行っても良いものである。
本発明の活用例としては、高集積度半導体装置の多層配線構造が典型的なものであるが、半導体装置における配線構造に限られるものではなく、強誘電体を用いた光デバイスの配線接続構造としても適用されるものである。
本発明の原理的構成の説明図である。 本発明の実施に用いる熱処理装置の概念的構成図である。 本発明の実施例1のデュアルダマシン工程の途中までの説明図である。 本発明の実施例1のデュアルダマシン工程の図3以降の途中までの説明図である。 本発明の実施例1のデュアルダマシン工程の図4以降の説明図である。 本発明の実施例4のシングルダマシン工程の途中までの説明図である。 本発明の実施例4のシングルダマシン工程の図6以降の途中までの説明図である。 本発明の実施例4のシングルダマシン工程の図7以降の説明図である。
符号の説明
1 下層の配線
2 層間絶縁膜
3 配線溝孔
4 導電体層
5 有機系ガス
6 埋込配線
11 処理チャンバー
12 ガス導入口
13 排気口
14 下部電極
15 リング状上部電極
16 有機系ガス噴出シャワーヘッド
17 有機系ガス供給用配管
18 気化器
19 貯蔵槽
20 ヒータ
21 被処理基板
31 p型シリコン基板
32 素子分離絶縁膜
33 ゲート絶縁膜
34 ゲート電極
35 n型エクステンション領域
36 サイドウォール
37 n型ソース・ドレイン領域
38 Coシリサイド電極
39 Coシリサイド電極
40 SiO2
41 BPSG膜
42 SiCN膜
43 バリア膜
44 Wプラグ
45 第1配線用絶縁膜
46 バリア膜
47 Cu埋込層
48 蟻酸ガス
49 第1Cu埋込配線
50 SiCN膜
51 ビア形成用絶縁膜
52 SiCN膜
53 第2配線用絶縁膜
54 SiCN膜
55 配線用溝
56 ビアホール
57 バリア膜
58 Cu埋込層
59 蟻酸ガス
60 Cuビア
61 第2Cu埋込配線
62 ビアホール
63 バリア膜
64 Cu埋込層
65 蟻酸ガス
66 Cuビア
67 配線用溝
68 バリア膜
69 Cu埋込雄
70 蟻酸ガス
71 第2Cu埋込配線

Claims (5)

  1. 配線溝孔エッチング後に、バリア膜及びメッキシード層を成膜し、次いで、前記配線溝孔をメッキ法により導電体層で埋め込んだのち、気体状態の有機系ガスにより前記導電体層の熱処理を行う工程を有することを特徴とする埋込配線の形成方法。
  2. 上記有機系ガスがカルボン酸を有することを特徴とする請求項1記載の埋込配線の形成方法。
  3. 上記カルボン酸が、ギ酸、酢酸、プロピオン酸或いは酪酸の内のいずれか1種であるであることを特徴とする請求項2記載の埋込配線の形成方法。
  4. 上記有機系ガスがアルコール類であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の埋込配線の形成方法。
  5. 上記導電体層が、銅或いは銅を含む合金からなることを特徴とする請求項1乃至4のいずれか1項に記載の埋込配線の形成方法。
JP2006039263A 2006-02-16 2006-02-16 埋込配線の形成方法 Pending JP2007220882A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039263A JP2007220882A (ja) 2006-02-16 2006-02-16 埋込配線の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039263A JP2007220882A (ja) 2006-02-16 2006-02-16 埋込配線の形成方法

Publications (1)

Publication Number Publication Date
JP2007220882A true JP2007220882A (ja) 2007-08-30

Family

ID=38497833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039263A Pending JP2007220882A (ja) 2006-02-16 2006-02-16 埋込配線の形成方法

Country Status (1)

Country Link
JP (1) JP2007220882A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144755A (ja) * 2011-01-07 2012-08-02 Hitachi Chemical Co Ltd 金属銅膜の作製方法及び印刷金属銅パターン
JP5450780B1 (ja) * 2012-12-21 2014-03-26 有限会社 ナプラ 微細空間内に導体を形成する方法
JP2017050339A (ja) * 2015-08-31 2017-03-09 東京エレクトロン株式会社 ハロゲン除去方法および半導体装置の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533880A (ja) * 2000-05-15 2003-11-11 エイエスエム マイクロケミストリ オーワイ 集積回路の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533880A (ja) * 2000-05-15 2003-11-11 エイエスエム マイクロケミストリ オーワイ 集積回路の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144755A (ja) * 2011-01-07 2012-08-02 Hitachi Chemical Co Ltd 金属銅膜の作製方法及び印刷金属銅パターン
JP5450780B1 (ja) * 2012-12-21 2014-03-26 有限会社 ナプラ 微細空間内に導体を形成する方法
JP2017050339A (ja) * 2015-08-31 2017-03-09 東京エレクトロン株式会社 ハロゲン除去方法および半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP5267130B2 (ja) 半導体装置およびその製造方法
US9653327B2 (en) Methods of removing a material layer from a substrate using water vapor treatment
KR100475931B1 (ko) 반도체 소자의 다층 배선 형성방법
JP4350337B2 (ja) 半導体装置
JP5076452B2 (ja) 半導体装置の製造方法
US8115318B2 (en) Semiconductor device having silicon-diffused metal wiring layer and its manufacturing method
JP3248492B2 (ja) 半導体装置及びその製造方法
US20030209738A1 (en) Semiconductor device having silicon-including metal wiring layer and its manufacturing method
US20080136037A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP7343619B2 (ja) 充填による選択的金属用のプロセス統合アプローチ
EP1894233B1 (en) Prevention of copper delamination in semiconductor device
JP2009043974A (ja) 半導体装置の製造方法、半導体基板の処理装置及び記憶媒体
JP2007220882A (ja) 埋込配線の形成方法
US7732304B2 (en) Method of manufacturing semiconductor device
US6881661B2 (en) Manufacturing method of semiconductor device
US20070218214A1 (en) Method of improving adhesion property of dielectric layer and interconnect process
US7745335B2 (en) Semiconductor device manufactured by reducing hillock formation in metal interconnects
TWI539523B (zh) Semiconductor device manufacturing method and recording medium
JP2006286802A (ja) 埋込配線の形成方法
JP2007227706A (ja) 埋込配線の形成方法
JP2006303179A (ja) 埋込導電体の形成方法
CN106783730B (zh) 一种形成空气隙/铜互连的方法
CN113097125A (zh) 半导体结构及其形成方法
JP2007208142A (ja) 半導体装置の製造方法
CN114695252A (zh) 一种金属层的形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090121

A977 Report on retrieval

Effective date: 20100305

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713