JP2007217204A - Glass substrate for magnetic recording medium and method for producing the same - Google Patents

Glass substrate for magnetic recording medium and method for producing the same Download PDF

Info

Publication number
JP2007217204A
JP2007217204A JP2006037128A JP2006037128A JP2007217204A JP 2007217204 A JP2007217204 A JP 2007217204A JP 2006037128 A JP2006037128 A JP 2006037128A JP 2006037128 A JP2006037128 A JP 2006037128A JP 2007217204 A JP2007217204 A JP 2007217204A
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic recording
layer
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006037128A
Other languages
Japanese (ja)
Inventor
Morihito Miyamoto
狩人 宮本
Yasuhiro Kaneko
康浩 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006037128A priority Critical patent/JP2007217204A/en
Publication of JP2007217204A publication Critical patent/JP2007217204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for a magnetic recording medium, having improved fracture strength and improved adhesion to a metal layer to be formed on the surface thereof. <P>SOLUTION: The disk glass substrate 1 for a magnetic recording medium is characterized in that a nonchemically strengthened layer 2 (tensile stress layer) is formed in its inside, a chemically strengthened layer 3c (compression stress layer) is formed around the end face 1c of the inner periphery, and a chemically strengthened layer 3d is formed around the end face 1d of the outer periphery. Chemically strengthened layers are formed on neither of the main surfaces (upper surface 1a and lower surface 1b). The fracture strength of the glass substrate can be improved because the chemically strengthened layers formed around the end faces of the substrate can give a balance between the tensile stress and the compression stress in the inside of the substrate. Further, the adhesion strength between a nickel alloy layer formed on the upper surface 1a or the lower surface 1b and the glass substrate can be improved because chemically strengthened layers are formed on neither of the upper surface 1a nor of the lower surface 1b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、磁気記録媒体に用いられるガラス基板及びその製造方法に関する。   The present invention relates to a glass substrate used for a magnetic recording medium and a manufacturing method thereof.

コンピュータ等に用いられる磁気ディスク記録装置、例えばハードディスクには、アルミニウム合金又はガラスのディスクが基板として用いられている。この基板上に金属磁気薄膜が形成され、金属磁気薄膜を磁気ヘッドで磁化することにより情報が記録される。   An aluminum alloy or glass disk is used as a substrate in a magnetic disk recording device used in a computer or the like, for example, a hard disk. A metal magnetic thin film is formed on this substrate, and information is recorded by magnetizing the metal magnetic thin film with a magnetic head.

磁気記録媒体用の基板として、従来は主にアルミニウム合金が用いられていた。しかし、近年はノート型パソコンなどの携帯できるパソコンにも磁気ディスク記録装置が採用されており、また、磁気ディスク記録装置の応答速度を高めるために、磁気記録媒体を10000[rpm]以上で高速回転させる必要がある。従って、高強度な磁気記録媒体用の基板が必要とされてきており、これらの必要性を満たすものとしてガラス基板が用いられるようになった。このガラス基板には、結晶化ガラス基板や化学強化ガラス基板が用いられている。   Conventionally, aluminum alloys have been mainly used as substrates for magnetic recording media. However, in recent years, magnetic disk recording devices are also used in portable personal computers such as notebook computers, and in order to increase the response speed of magnetic disk recording devices, magnetic recording media can be rotated at a high speed of 10,000 [rpm] or more. It is necessary to let Accordingly, a substrate for a high-strength magnetic recording medium has been required, and a glass substrate has been used to satisfy these needs. As this glass substrate, a crystallized glass substrate or a chemically strengthened glass substrate is used.

ここで、磁気記録媒体用ガラス基板の製造方法について簡単に説明する。まず、一般的なドーナツ状のガラス基板の製造方法について説明する。はじめに、ガラス素材を溶融し(ガラス溶融工程)、溶融したガラスを平面形状の金型に流し込み、その金型で溶融ガラスを挟むことによりプレス成形し、円盤状のガラス基板を作製する(プレス成形工程)。そのガラス基板の中心部に孔を開け、ドーナツ状のガラス基板を作製する。   Here, the manufacturing method of the glass substrate for magnetic recording media is demonstrated easily. First, a method for manufacturing a general donut-shaped glass substrate will be described. First, a glass material is melted (glass melting step), the molten glass is poured into a planar mold, and the molten glass is sandwiched between the molds to perform press molding to produce a disk-shaped glass substrate (press molding) Process). A hole is made in the center of the glass substrate to produce a donut-shaped glass substrate.

ドーナツ状のガラス基板は、両表面を研削・研磨加工され、基板の平行度、平坦度、及び厚さが予備調整される(第1ラッピング工程)。平行度等が予備調整されたガラス基板は、外周端面、孔の内周端面が研削され、面取りされて、ガラス基板の外径寸法及び真円度、並びに孔の内径寸法等が微調整される(端面研削加工工程)。なお、ダイヤモンドを用いて削る工程を研削工程と称する。外径寸法等が微調整されたガラス基板は再度、研削・研磨加工され、ガラス基板の平行度、平坦度、及び厚さが微調整される(第2ラッピング工程)。平行度等が微調整されたガラス基板は、両表面が研磨され、表面の凹凸が均一にされ(ポリッシング工程)、最後に洗浄され、磁気記録媒体用のガラス基板となる。   Both surfaces of the doughnut-shaped glass substrate are ground and polished, and the parallelism, flatness, and thickness of the substrate are preliminarily adjusted (first lapping step). The glass substrate whose parallelism is preliminarily adjusted is ground and chamfered on the outer peripheral end surface and the inner peripheral end surface of the hole, and the outer diameter and roundness of the glass substrate, the inner diameter of the hole, and the like are finely adjusted. (End grinding process). The process of cutting with diamond is called a grinding process. The glass substrate whose outer diameter is finely adjusted is ground and polished again, and the parallelism, flatness, and thickness of the glass substrate are finely adjusted (second lapping step). The glass substrate with finely adjusted parallelism and the like is polished on both surfaces, the surface irregularities are made uniform (polishing step), and finally washed to become a glass substrate for a magnetic recording medium.

通常、ガラス基板は、その破壊強度を高めるために、内部に結晶相が生成された結晶化ガラスを用いるか、ポリッシング工程終了後に化学強化を施した化学強化ガラスを用いる。   Usually, for the glass substrate, in order to increase its breaking strength, crystallized glass in which a crystal phase is generated is used, or chemically strengthened glass subjected to chemical strengthening after completion of the polishing process.

結晶化ガラス基板を作製する場合は、上記のプレス成形工程を経たガラス基板をセラミック製の板で挟んで熱処理して結晶化させる(結晶化工程)。結晶化工程の後は、上述した第1ラッピング工程〜ポリッシング工程の処理を施す。   In the case of producing a crystallized glass substrate, the glass substrate that has been subjected to the press molding step is sandwiched between ceramic plates and heat-treated to be crystallized (crystallization step). After the crystallization process, the above-described first lapping process to polishing process are performed.

また、化学強化ガラス基板を作製する場合は、溶融及びプレス成形して得られたガラス基板に対して、ポリッシング工程までの処理を施した後、硝酸ナトリウム、硝酸カリウム等の混合された溶融塩中に浸漬することにより表面に圧縮応力層を形成して破壊強度を高める(例えば特許文献1)。その後洗浄工程の処理を施す。   In the case of producing a chemically strengthened glass substrate, the glass substrate obtained by melting and press-molding is processed up to the polishing step, and then mixed in a molten salt such as sodium nitrate or potassium nitrate. By immersing, a compressive stress layer is formed on the surface to increase the fracture strength (for example, Patent Document 1). Thereafter, the cleaning process is performed.

そして、結晶化ガラス基板や化学強化ガラス基板の表面に磁性材料をスパッタリング法などにより成膜することで磁気記録媒体を製造する。また、磁気記録媒体に記録された磁気記録情報を読み取るための磁気ヘッドは、磁気記録媒体に対してその表面から浮上した状態で移動するように構成されている。   Then, a magnetic recording medium is manufactured by forming a magnetic material on the surface of the crystallized glass substrate or the chemically strengthened glass substrate by a sputtering method or the like. In addition, the magnetic head for reading the magnetic recording information recorded on the magnetic recording medium is configured to move in a state of floating from the surface of the magnetic recording medium.

ところで、磁気記録密度は近年すさまじい勢いで向上しており、年率100%、すなわち毎年2倍の磁気記録密度を達成する競争が繰り広げられている。磁気記録媒体側での記録密度向上策は従来の面内磁気記録による改善と、垂直磁気記録を採用する方法がある。   By the way, the magnetic recording density has been increasing at a tremendous rate in recent years, and there is a competition to achieve an annual rate of 100%, that is, a magnetic recording density that is doubled every year. As measures for improving the recording density on the magnetic recording medium side, there are an improvement by conventional in-plane magnetic recording and a method of adopting perpendicular magnetic recording.

面内磁気記録による改善には、ガラス基板表面にテクスチャーを施し、磁気ヘッドの低浮上化と電磁変換特性を改善する方法が採られる。ガラス基板表面に「テクスチャー」と呼ばれる円周状の微細な溝を形成するテクスチャー加工が行われる(例えば特許文献2)このテクスチャー加工を行うことにより、磁気記録媒体上を磁気ヘッドが浮上し、シークするときに、磁気記録媒体と磁気ヘッドとが接触し摩擦するのを防止し、また、面内での磁化方向を記録方向である円周方向に配向させることができる。円周方向に配向させることにより、いわゆる「異方性媒体」として高密度記録が可能となる。   In order to improve by in-plane magnetic recording, a method is adopted in which a texture is applied to the surface of the glass substrate to reduce the flying height of the magnetic head and improve the electromagnetic conversion characteristics. Texture processing is performed to form circumferential fine grooves called “texture” on the surface of the glass substrate (for example, Patent Document 2). By performing this texture processing, the magnetic head floats on the magnetic recording medium and seeks. In this case, the magnetic recording medium and the magnetic head can be prevented from coming into contact with each other and rubbed, and the in-plane magnetization direction can be oriented in the circumferential direction which is the recording direction. By orienting in the circumferential direction, high density recording becomes possible as a so-called “anisotropic medium”.

このテクスチャー加工により基板表面に形成される溝は、幅が1[μm]以下で、深さが0.1[nm]程度の同心円状である必要がある。この同心円状の溝に沿って磁性体を配列し、1つのビットを形成する。この加工をした磁性体は同心円に沿って異方性を持ち、N極とS極とが分離しやすくなるので、電磁変換特性のS/N比を高めることが可能となる。   The grooves formed on the substrate surface by this texturing need to be concentric with a width of 1 [μm] or less and a depth of about 0.1 [nm]. A magnetic body is arranged along the concentric grooves to form one bit. The processed magnetic body has anisotropy along a concentric circle, and the N pole and the S pole can be easily separated, so that the S / N ratio of electromagnetic conversion characteristics can be increased.

テクスチャー加工は、ガラス基板の表面にダイヤモンドスラリーを滴下しながらテープ部材をガラス基板の表面に摺接することにより行われる、テクスチャー加工を行う装置は特に限定されず、いわゆるテクスチャーマシンが使用される。このテクスチャー加工の制御は、ガラス基板の微小うねり、表面平均粗さにも依存する。   The texture processing is performed by sliding the tape member on the surface of the glass substrate while dropping the diamond slurry on the surface of the glass substrate. The texture processing apparatus is not particularly limited, and a so-called texture machine is used. The control of this texture processing also depends on the fine waviness and surface average roughness of the glass substrate.

一方、アルミニウム合金基板に対しては、ガラス基板よりも容易にテクスチャー加工を施すことができる。アルミニウム合金基板を用いて磁気記録媒体を製造する場合、一般的にアルミニウム合金基板上に、無電解めっき法によりニッケル−リン(Ni−P)合金層を形成し、更に研磨により平滑化し、その後、テクスチャー加工を行っている。すなわち、アルミニウム合金基板については、ニッケル合金層に対してテクスチャー加工を施している訳であり、結晶化ガラス基板や化学強化ガラス基板についても、表面にニッケル合金層が形成されていれば、容易にテクスチャー加工を施すことが可能であると考えられる。   On the other hand, it is possible to texture the aluminum alloy substrate more easily than the glass substrate. When producing a magnetic recording medium using an aluminum alloy substrate, a nickel-phosphorus (Ni-P) alloy layer is generally formed on the aluminum alloy substrate by an electroless plating method, and further smoothed by polishing. Texture processing is performed. In other words, the aluminum alloy substrate is textured on the nickel alloy layer, and the crystallized glass substrate and the chemically strengthened glass substrate can be easily formed if the nickel alloy layer is formed on the surface. It is considered possible to apply texture processing.

一方、高密度化技術として期待の大きい垂直磁気記録媒体においては、磁性体を基板表面に垂直に並べる必要があり、そのためには、磁性体と基板との間に軟磁性層を形成する必要がある。軟磁性層は約100μmの厚さが必要であるため、磁性体を形成するためのスパッタリング法では膨大な時間がかかるため、量産化を実現する際の障害になっている。この軟磁性層の代表的な合金として、ニッケル−コバルト(Ni−Co)合金が挙げられる。従って、成膜速度がスパッタリング法よりも速くて大量処理が容易な無電解めっき法によりニッケル合金を結晶化ガラス基板や化学強化ガラス基板に成膜できれば、垂直磁気記録媒体の量産化も可能であると考えられる。   On the other hand, in a perpendicular magnetic recording medium that is highly expected as a high-density technology, it is necessary to arrange magnetic materials perpendicularly to the substrate surface. For this purpose, it is necessary to form a soft magnetic layer between the magnetic material and the substrate. is there. Since the soft magnetic layer needs to have a thickness of about 100 μm, the sputtering method for forming the magnetic material takes an enormous amount of time, which is an obstacle to realizing mass production. A typical alloy of the soft magnetic layer is a nickel-cobalt (Ni-Co) alloy. Therefore, if a nickel alloy can be formed on a crystallized glass substrate or a chemically strengthened glass substrate by an electroless plating method that is faster than the sputtering method and easy to process in large quantities, mass production of perpendicular magnetic recording media is possible. it is conceivable that.

特開2003−157522号公報JP 2003-157522 A 特開2002−251716号公報JP 2002-251716 A

しかしながら、結晶化ガラス基板や化学強化ガラス基板上に密着強度が高いニッケル−リン合金層やニッケル−コバルト合金層などのニッケル合金層を形成することは困難であり、従来から様々な対応策が検討されているが、十分な密着強度は得られていない。   However, it is difficult to form nickel alloy layers such as nickel-phosphorus alloy layers and nickel-cobalt alloy layers with high adhesion strength on crystallized glass substrates and chemically tempered glass substrates. However, sufficient adhesion strength is not obtained.

結晶化ガラス基板や化学強化ガラス基板にニッケル合金を無電解めっき法にて成膜する技術については、主にめっき処理前における前処理方法を工夫する試みがなされている。しかしながら、このように前処理方法を工夫しても、めっき処理後になされる平滑化のための研磨工程において、その研磨の加工圧力に耐えられる程度にニッケル合金層の密着強度を高くすることができず、研磨工程においてニッケル合金層が剥がれてしまい、量産化が困難となっている。   As for the technique of forming a nickel alloy film on a crystallized glass substrate or a chemically strengthened glass substrate by an electroless plating method, an attempt has been made mainly to devise a pretreatment method before plating treatment. However, even if the pretreatment method is devised in this way, the adhesion strength of the nickel alloy layer can be increased to the extent that it can withstand the processing pressure of the polishing in the polishing process for smoothing performed after the plating process. However, the nickel alloy layer is peeled off during the polishing process, making mass production difficult.

無電解めっき法は、めっきの目的の金属よりもイオン化傾向の高い卑金属を種晶として基板表面に付着させ、その後、その基板を、目的の金属イオンを含有するめっき液に浸漬する。そのことにより、目的の金属が種晶の金属とイオン交換し、目的の金属のめっきが進行して基板表面に目的の金属が形成される。   In the electroless plating method, a base metal having a higher ionization tendency than a target metal is deposited as a seed crystal on a substrate surface, and then the substrate is immersed in a plating solution containing the target metal ion. As a result, the target metal ion-exchanges with the seed crystal metal, and the target metal plating proceeds to form the target metal on the substrate surface.

従来、ニッケル合金層の密着強度を高めるには種晶がガラス基板表面に強固に食い込んでいることが重要であり、そのためには、表面に適度に凹凸があった方が良いとの考えに基づき、基板表面を粗面化する工夫がなされてきた。例えば、結晶化ガラスは結晶相と非結晶相が混在していることから、ガラス基板の表面を粗面化するには好都合であり、そのため、結晶化ガラスはめっきが容易であるとされている。   Conventionally, in order to increase the adhesion strength of the nickel alloy layer, it has been important that the seed crystal has firmly penetrated the surface of the glass substrate. To that end, based on the idea that the surface should be moderately uneven The invention has been made to roughen the substrate surface. For example, crystallized glass is advantageous for roughening the surface of a glass substrate because a crystal phase and an amorphous phase are mixed, and therefore, crystallized glass is said to be easy to plate. .

しかしながら、今後求められる更なる高密度記録への対応が可能な基板は、表面が平滑化されていることが必要であると考えられている。従って、ニッケル合金層を形成するためにガラス基板の表面を粗面化することは、更なる高密度記録を阻害することになる。また、めっきによりニッケル合金層が形成された面を研磨することにより表面を平滑化しようとしても、下地(ガラス基板)の凹凸が表面に影響を与えるため、十分に平滑化できず、高密度記録に要求されるレベルまで表面を平滑にすることができないといった問題がある。   However, it is considered that the substrate that can cope with the further high-density recording required in the future needs to have a smooth surface. Therefore, roughening the surface of the glass substrate to form a nickel alloy layer hinders further high-density recording. Also, even if an attempt is made to smooth the surface by polishing the surface on which the nickel alloy layer is formed by plating, the unevenness of the base (glass substrate) affects the surface, so it cannot be smoothed sufficiently, and high-density recording There is a problem that the surface cannot be smoothed to a level required for the above.

この発明は上記の問題を解決するものであり、破壊強度を高めつつ、基板表面上に形成される金属層との密着強度を高めることが可能な磁気記録媒体用ガラス基板を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described problem, and an object thereof is to provide a glass substrate for a magnetic recording medium that can increase the adhesion strength with a metal layer formed on the substrate surface while increasing the fracture strength. And

この出願に係る発明者は、化学強化を施していないガラス基板に金属層を形成した場合に、金属層の密着強度が高くなることに着目し、ガラス基板に対して化学強化処理を施した後、主表面の化学強化層を除去し、化学強化層が除去された主表面上に金属層を形成することで、ガラス基板の破壊強度を高めつつ、ガラス基板と金属層との密着強度を高めることができることを見出した。   The inventor according to this application pays attention to the fact that when a metal layer is formed on a glass substrate that has not been chemically strengthened, the adhesion strength of the metal layer is increased, and after performing a chemical strengthening treatment on the glass substrate By removing the chemical strengthening layer on the main surface and forming a metal layer on the main surface from which the chemical strengthening layer has been removed, the adhesion strength between the glass substrate and the metal layer is increased while increasing the breaking strength of the glass substrate. I found that I can do it.

化学強化処理を施していないガラス基板に金属層を形成すると、ガラス基板と金属層との密着強度が高くなるが、化学強化処理が施されていないため、破壊強度が低くなってしまう。   When a metal layer is formed on a glass substrate that has not been subjected to chemical strengthening treatment, the adhesion strength between the glass substrate and the metal layer is increased, but since the chemical strengthening treatment is not performed, the fracture strength is reduced.

そこで、この出願に係る発明者は、ガラス基板に対して化学強化処理を施した後、主表面に形成された化学強化層を除去した。これにより、ガラス基板の端面に化学強化層が残存し、その端面に形成された化学強化層によってガラス基板の破壊強度を維持できることが分かった。そして、主表面に形成された化学強化層は除去されているため、その主表面に金属層を形成した場合に、ガラス基板と金属層との密着強度を高めることが可能となる。   Then, the inventor who concerns this application removed the chemical strengthening layer formed in the main surface, after performing the chemical strengthening process with respect to the glass substrate. Thereby, it turned out that a chemical strengthening layer remains in the end surface of a glass substrate, and the fracture strength of a glass substrate can be maintained with the chemical strengthening layer formed in the end surface. Since the chemically strengthened layer formed on the main surface is removed, the adhesion strength between the glass substrate and the metal layer can be increased when a metal layer is formed on the main surface.

以下、この発明の具体的な形態を示す。   Hereinafter, specific embodiments of the present invention will be described.

この発明の第1の形態は、表面及び前記表面の周囲に端面を有する円盤状の磁気記録媒体用ガラス基板であって、前記端面から内部の所定範囲に亘って化学強化層が形成されていることを特徴とする磁気記録媒体用ガラス基板である。   1st form of this invention is a disk-shaped glass substrate for magnetic recording media which has an end surface around the surface and the said surface, Comprising: The chemical strengthening layer is formed over the predetermined range inside from the said end surface. This is a glass substrate for a magnetic recording medium.

この発明の第2の形態は、第1の形態に係る磁気記録媒体用ガラス基板であって、前記表面に金属層が形成されていることを特徴とするものである。   A second aspect of the present invention is a glass substrate for a magnetic recording medium according to the first aspect, wherein a metal layer is formed on the surface.

この発明の第3の形態は、第2の形態に係る磁気記録媒体用ガラス基板であって、前記金属層は、無電解めっき法により析出されたニッケル合金で構成されていることを特徴とするものである。   According to a third aspect of the present invention, there is provided the glass substrate for a magnetic recording medium according to the second aspect, wherein the metal layer is composed of a nickel alloy deposited by an electroless plating method. Is.

この発明の第4の形態は、円盤状のガラス基板の表面及び前記表面の周囲に対して化学強化処理を施す化学強化処理工程と、前記表面を研磨することにより、前記表面に形成された化学強化層を除去する除去工程と、を含むことを特徴とする磁気記録媒体用ガラス基板の製造方法である。   According to a fourth aspect of the present invention, there is provided a chemical strengthening treatment step for subjecting a surface of a disk-shaped glass substrate and the periphery of the surface to a chemical strengthening treatment, and a chemical formed on the surface by polishing the surface. And a removing step for removing the reinforcing layer. A method for producing a glass substrate for a magnetic recording medium.

この発明の第5の形態は、第4の形態に係る磁気記録媒体用ガラス基板の製造方法であって、前記研磨後の表面に金属層を形成する金属層形成ステップを更に含むことを特徴とするものである。   A fifth aspect of the present invention is a method for manufacturing a glass substrate for a magnetic recording medium according to the fourth aspect, further comprising a metal layer forming step of forming a metal layer on the polished surface. To do.

この発明の第6の形態は、第5の形態に係る磁気記録媒体用ガラス基板の製造方法であって、前記金属層形成ステップでは、無電解めっき法によりニッケル合金からなる金属層を前記研磨後の表面に形成することを特徴とするものである。   A sixth aspect of the present invention is a method for manufacturing a glass substrate for a magnetic recording medium according to the fifth aspect, wherein in the metal layer forming step, a metal layer made of a nickel alloy is polished after the polishing by an electroless plating method. It is formed on the surface of this.

この発明によると、磁気記録媒体用ガラス基板の破壊強度を高めつつ、基板表面に形成される金属層との密着強度を高めることが可能となる。   According to the present invention, it is possible to increase the adhesion strength with the metal layer formed on the surface of the substrate while increasing the breaking strength of the glass substrate for a magnetic recording medium.

[磁気記録媒体用ガラス基板の構成]
この発明の実施形態に係る磁気記録媒体用ガラス基板の概略構成について図1を参照して説明する。図1は、この発明の実施形態に係る磁気記録媒体用ガラス基板の概略構成を示す図であり、図1(a)は基板の斜視図、図1(b)は基板の断面図である。
[Configuration of glass substrate for magnetic recording medium]
A schematic configuration of a glass substrate for a magnetic recording medium according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a glass substrate for a magnetic recording medium according to an embodiment of the present invention. FIG. 1 (a) is a perspective view of the substrate, and FIG. 1 (b) is a sectional view of the substrate.

図1(a)に示すように、この実施形態に係る磁気記録媒体用ガラス基板1は、円盤状の形状を有し、中央に孔が形成されている。   As shown in FIG. 1A, the glass substrate 1 for a magnetic recording medium according to this embodiment has a disk shape, and a hole is formed at the center.

図1(b)のA−A断面図に示すように、磁気記録媒体用ガラス基板1は、内部に非化学強化層2(引張り応力層)が存在し、内周端面1cには内部に化学強化層3cが形成され、外周端面1dには内部に化学強化層3dが形成されている。この実施形態では、主表面である上面1a及び下面1bには化学強化層は形成されていない。なお、ガラス基板として、例えばアルミノシリケートガラスが用いられる。   As shown in the AA cross-sectional view of FIG. 1B, the glass substrate 1 for magnetic recording medium has a non-chemical strengthening layer 2 (tensile stress layer) inside, and the inner peripheral end face 1c has chemical inside. A reinforcing layer 3c is formed, and a chemical reinforcing layer 3d is formed inside the outer peripheral end face 1d. In this embodiment, the chemical strengthening layer is not formed on the upper surface 1a and the lower surface 1b which are main surfaces. For example, aluminosilicate glass is used as the glass substrate.

このように、主表面である上面1a及び下面1bに化学強化層を設けず、内周端面1c及び外周端面1dに化学強化層を設けることにより、端面に形成された化学強化層による圧縮応力と、内部に存在する非化学強化層による引張り応力とのバランスを図ることができ、その結果、磁気記録媒体用ガラス基板1の破壊強度を高めることが可能となる。特に、主表面である上面1a及び下面1bの圧縮応力が大きくなるとガラス基板が破壊するおそれがあるため、上面1a及び下面1bの圧縮応力を小さくすることで、圧縮応力と引張り応力とのバランスをとり、磁気記録媒体用ガラス基板1の破壊強度を高めている。   Thus, by providing a chemical strengthening layer on the inner peripheral end face 1c and the outer peripheral end face 1d without providing a chemical strengthening layer on the upper surface 1a and the lower face 1b, which are the main surfaces, the compressive stress due to the chemical strengthening layer formed on the end face Further, it is possible to achieve a balance with the tensile stress due to the non-chemically strengthened layer existing inside, and as a result, it is possible to increase the breaking strength of the glass substrate 1 for magnetic recording media. In particular, if the compressive stress of the upper surface 1a and the lower surface 1b, which is the main surface, increases, the glass substrate may be destroyed. Therefore, the breaking strength of the glass substrate 1 for magnetic recording media is increased.

そして、この磁気記録媒体用ガラス基板1の上面1aに、無電解めっき法によってニッケル合金層を形成する。上面1aには化学強化層が形成されていないため、磁気記録媒体用ガラス基板1とニッケル合金層との密着強度を高めることが可能となる。なお、下面1bにニッケル合金層を形成する場合であっても、下面1bには化学強化層が形成されていないため、磁気記録媒体用ガラス基板1とニッケル合金層との密着強度を高めることが可能となる。   Then, a nickel alloy layer is formed on the upper surface 1a of the magnetic recording medium glass substrate 1 by electroless plating. Since no chemically strengthened layer is formed on the upper surface 1a, the adhesion strength between the magnetic recording medium glass substrate 1 and the nickel alloy layer can be increased. Even when the nickel alloy layer is formed on the lower surface 1b, since the chemically strengthened layer is not formed on the lower surface 1b, the adhesion strength between the magnetic recording medium glass substrate 1 and the nickel alloy layer can be increased. It becomes possible.

[磁気記録媒体用ガラス基板の製造方法]
次に、この実施形態に係る磁気記録媒体用ガラス基板の製造方法について説明する。
[Method for producing glass substrate for magnetic recording medium]
Next, the manufacturing method of the glass substrate for magnetic recording media which concerns on this embodiment is demonstrated.

まず、半製品のガラス基板(ブランクス材)を作製する(ステップS01)。そして、研削・研磨工程が施される前段階のガラス基板(穴開きブランクス材)を作製する(ステップS02)。次に、その穴開きブランクス材を研削加工し、研磨前(Ready To Polish:RTP)のガラス基板(以下、RTPガラス基板と称する)を作製する(ステップS03)。その後、RTPガラス基板に対して化学強化処理を施す(ステップS04)。化学強化処理を行った後、ガラス基板の主表面を研磨することで、主表面に形成された化学強化層を除去し、磁気記録媒体用ガラス基板を作製する(ステップS05)。その後、磁気記録媒体用ガラス基板を洗浄する(ステップS06)。これらの工程を経ることで、この実施形態に係る磁気記録媒体用ガラス基板1が作製される。そして、洗浄後の磁気記録媒体用ガラス基板に対して無電解めっき法によりニッケル合金層を形成する(ステップS07)。以下、各工程における具体的な処理内容を説明する。   First, a semi-finished glass substrate (blank material) is produced (step S01). Then, a glass substrate (perforated blanks material) in the previous stage to be subjected to the grinding / polishing process is produced (step S02). Next, the perforated blanks material is ground and a glass substrate (hereinafter referred to as RTP glass substrate) before polishing (Ready To Polish: RTP) is produced (step S03). Thereafter, a chemical strengthening process is performed on the RTP glass substrate (step S04). After performing the chemical strengthening treatment, the main surface of the glass substrate is polished to remove the chemical strengthening layer formed on the main surface, thereby producing a glass substrate for a magnetic recording medium (step S05). Thereafter, the glass substrate for magnetic recording medium is washed (step S06). Through these steps, the glass substrate 1 for magnetic recording media according to this embodiment is manufactured. Then, a nickel alloy layer is formed on the cleaned glass substrate for magnetic recording medium by electroless plating (step S07). Hereinafter, specific processing contents in each step will be described.

<ステップS01:ブランクス材の作製工程>
まず、ガラス素材を溶融し(ガラス溶融工程)、溶融したガラスを平面形状の金型に流し込み、その金型で溶融ガラスを挟むことによりプレス成形し、円盤状のガラス基板を作製する(プレス形成工程)。このプレス成形工程により作製された半製品のガラス基板を「ブランクス材」と称する。
<Step S01: Blanks Material Production Process>
First, a glass material is melted (glass melting step), the molten glass is poured into a planar mold, and the molten glass is sandwiched between the molds and press-molded to produce a disk-shaped glass substrate (press formation) Process). The semi-finished glass substrate produced by this press molding process is referred to as “blank material”.

<ステップS02:穴開きブランクス材の作製>
結晶化処理後のブランクス材の中央に内径6[mm]の穴をダイヤモンドコアドリルで開ける。このプロセスを経て、外径66[mm]、内径19[mm]、板厚1.1[mm]のドーナツ状の穴開きブランクス材を得る。
<Step S02: Production of perforated blanks>
A hole with an inner diameter of 6 [mm] is opened with a diamond core drill in the center of the blanks after the crystallization treatment. Through this process, a donut-shaped perforated blank material having an outer diameter of 66 [mm], an inner diameter of 19 [mm], and a plate thickness of 1.1 [mm] is obtained.

<ステップS03:研削加工、RTPガラス基板の作製工程>
ステップS03にて作製された穴開きブランクス材を、ダイヤモンドペレットが貼り付けられたプレートを保持した両面研削機にて研削を行い、板厚を0.8[mm]に加工する。その後、内径と外径とを同時に加工できる加工装置にて、外径65[mm]、内径20[mm]に加工する。その後、さらに、上記両面研削機にて、厚さが0.67[mm]になるまで穴空きブランクス材を研削する。この研削加工まで終了したガラス基板がRTPガラス基板と称される。
<Step S03: Grinding, RTP glass substrate manufacturing process>
The perforated blanks produced in step S03 is ground by a double-side grinding machine holding a plate on which diamond pellets are attached, and the thickness is processed to 0.8 [mm]. Then, it is processed into an outer diameter of 65 [mm] and an inner diameter of 20 [mm] by a processing apparatus capable of processing the inner diameter and the outer diameter simultaneously. Thereafter, the perforated blank material is further ground with the double-side grinding machine until the thickness becomes 0.67 [mm]. The glass substrate that has been subjected to the grinding process is referred to as an RTP glass substrate.

<ステップS04:化学強化処理の工程>
硝酸ナトリウムと硝酸カリウムとを混合した混合液(溶融塩)を用いて、上記RTPガラス基板に対して化学強化処理を行う。以下、混合液(溶融塩)の混合比率と温度を示す。
混合液(溶融塩):硝酸ナトリウムと硝酸カリウムを3対1の重量比率で混合した。
混合液(溶融塩)の温度:380℃
<Step S04: Chemical Strengthening Process>
A chemical strengthening process is performed on the RTP glass substrate using a mixed solution (molten salt) obtained by mixing sodium nitrate and potassium nitrate. Hereinafter, the mixing ratio and temperature of the mixed liquid (molten salt) are shown.
Mixed liquid (molten salt): Sodium nitrate and potassium nitrate were mixed at a weight ratio of 3: 1.
Temperature of mixed liquid (molten salt): 380 ° C

この380℃の混合液(溶融塩)に上記RTPガラス基板を所定時間、浸漬することにより、化学強化層(圧縮応力層)を形成した。化学強化処理を施すことにより、ナトリウムイオンとカリウムイオンとがガラス内部に拡散し、ガラス基板中のリチウムイオンと交換(イオン交換)する。このイオン交換により、原子半径の差からガラス基板表面に圧縮応力が発生する。   A chemical strengthening layer (compressive stress layer) was formed by immersing the RTP glass substrate in the liquid mixture (molten salt) at 380 ° C. for a predetermined time. By performing the chemical strengthening treatment, sodium ions and potassium ions diffuse into the glass and exchange (ion exchange) with lithium ions in the glass substrate. This ion exchange generates a compressive stress on the surface of the glass substrate due to the difference in atomic radius.

<ステップS05:研磨処理の工程>
次に、研削加工が施されたガラス基板の主表面を研磨する。この研磨では、両面研磨機を用いて2回に分けて研磨を行う。以下、第1の研磨処理と第2の研磨処理の条件を説明する。
<Step S05: Polishing Process>
Next, the main surface of the glass substrate that has been subjected to grinding is polished. In this polishing, polishing is performed in two steps using a double-side polishing machine. Hereinafter, conditions of the first polishing process and the second polishing process will be described.

(第1の研磨処理の条件)
研磨機として、スピードファム社製の16Bタイプの研磨機を用いた。1回あたりの処理枚数は100枚である。研磨機の上下のプレートには発泡ポリウレタンからなる研磨布(ロデール製MHC14)が貼られている。研磨材には、酸化セリウムを主成分とする研磨材(三井金属製E−21)を水に含ませて100g/L程度のスラリー濃度に調整した研磨スラリーを用いた。
(Conditions for the first polishing process)
As a polishing machine, a 16B type polishing machine manufactured by Speed Fam Co., Ltd. was used. The number of sheets processed at one time is 100 sheets. Polishing cloth made of polyurethane foam (Roder MHC14) is attached to the upper and lower plates of the polishing machine. As the abrasive, an abrasive slurry containing cerium oxide as a main component (E-21 made by Mitsui Metals) in water and adjusted to a slurry concentration of about 100 g / L was used.

圧力150[kg/cm]、回転数20[rpm]、研磨時間30分程度の研磨加工条件で、上記研磨スラリーを循環させながら両面研磨機にて、第1の化学強化処理が終了したガラス基板を研磨した。ガラス基板を研磨することで、片面で約15[μm]、両面合わせて約30[μm]を研磨した。 The glass on which the first chemical strengthening process has been completed with a double-side polishing machine while circulating the polishing slurry under the polishing processing conditions of pressure 150 [kg / cm 2 ], rotation speed 20 [rpm], and polishing time of about 30 minutes. The substrate was polished. By polishing the glass substrate, about 15 [μm] on one side and about 30 [μm] on both sides were polished.

(第2の研磨処理の条件)
研磨機は、上記第1の研磨処理で用いた研磨機(スピードファム社製の16Bタイプの研磨機)を用いた。カネボウ製のスエード研磨布を上下のプレートに接着させて使用した。研磨材には、酸化セリウムを主成分とする微細な研磨材(昭和電工製V2104)を水に含ませて100g/L程度のスラリー濃度に調整した研磨スラリーを用いた。
(Conditions for second polishing process)
The polishing machine used was the polishing machine used in the first polishing process (16B type polishing machine manufactured by Speedfam). Kanebo's suede polishing cloth was used by adhering it to the upper and lower plates. As the abrasive, a fine slurry (V2104 manufactured by Showa Denko) containing cerium oxide as a main component was included in water and the slurry was adjusted to a slurry concentration of about 100 g / L.

圧力80[g/cm]、回転数50[rpm]、研磨時間10分程度の研磨加工条件で、上記研磨スラリーを循環させながら両面研磨機にて、第1の研磨処理が終了したガラス基
板を研磨した。ガラス基板を研磨することで、片面で約2[μm]、両面合わせて約4[μm]を研磨した。
A glass substrate on which a first polishing process has been completed with a double-side polishing machine while circulating the polishing slurry under a polishing process condition of a pressure of 80 [g / cm 2 ], a rotation speed of 50 [rpm], and a polishing time of about 10 minutes. Polished. By polishing the glass substrate, about 2 [μm] on one side and about 4 [μm] on both sides were polished.

このステップS05における研磨処理の工程で第1の研磨処理及び第2の研磨処理を実施することにより、ガラス基板の厚さを約0.635[mm]とした。   By carrying out the first polishing process and the second polishing process in the polishing process in step S05, the thickness of the glass substrate was set to about 0.635 [mm].

ここで、ステップS04における化学強化処理の工程、及びステップS05における研磨処理の工程について図2を参照して説明する。図2は、この発明の実施形態に係る磁気記録媒体用ガラス基板の製造方法を説明するための基板の断面図である。   Here, the chemical strengthening process in step S04 and the polishing process in step S05 will be described with reference to FIG. FIG. 2 is a cross-sectional view of a substrate for explaining a method for manufacturing a glass substrate for a magnetic recording medium according to an embodiment of the present invention.

(ステップS04)
まず、RTPガラス基板に対して化学強化処理を施すことにより、図2(a)に示すように、ガラス基板の全表面に化学強化層3(圧縮応力層)を形成する。このガラス基板は、内部に非化学強化層2(引張り応力層)が存在し、その周りが化学強化されて化学強化層3(圧縮応力層)が形成されている。
(Step S04)
First, a chemical strengthening process is performed on the RTP glass substrate to form a chemically strengthened layer 3 (compressive stress layer) on the entire surface of the glass substrate, as shown in FIG. This glass substrate has a non-chemically strengthened layer 2 (tensile stress layer) inside, and the periphery thereof is chemically strengthened to form a chemically strengthened layer 3 (compressive stress layer).

(ステップS05)
次に、このガラス基板の主表面(上面1a及び下面1b)に形成された化学強化層(圧縮応力層)を研磨することにより、図2(b)に示すように、磁気記録媒体用ガラス基板1を作製する。ここでは、この研磨工程により主表面(上面1a及び下面1b)に形成された化学強化層(圧縮応力層)を完全に除去し、主表面(上面1a及び下面1b)に化学強化層を残存させない。ガラス基板の主表面のみを研磨し、内周端面1c及び外周端面1dを研磨していないため、内周端面1cには内部に化学強化層3cが残存し、外周端面1dには内部に化学強化層3dが残存する。
(Step S05)
Next, by polishing the chemical strengthening layer (compressive stress layer) formed on the main surface (upper surface 1a and lower surface 1b) of this glass substrate, as shown in FIG. 2B, the glass substrate for magnetic recording medium 1 is produced. Here, the chemical strengthening layer (compressive stress layer) formed on the main surface (upper surface 1a and lower surface 1b) by this polishing process is completely removed, and the chemical strengthening layer is not left on the main surface (upper surface 1a and lower surface 1b). . Since only the main surface of the glass substrate is polished and the inner peripheral end face 1c and the outer peripheral end face 1d are not polished, the chemically strengthened layer 3c remains on the inner peripheral end face 1c, and the outer peripheral end face 1d is chemically strengthened internally. Layer 3d remains.

以上のように、主表面(上面1a及び下面1b)に形成された化学強化層(圧縮応力層)を研磨して除去し、内周端面1c及び外周端面1dに化学強化層を残存させることで、ガラス基板内部の圧縮応力と引張り応力とのバランスがとれるため、ガラス基板の破壊強度を高めることが可能となる。   As described above, the chemical strengthening layer (compressive stress layer) formed on the main surface (upper surface 1a and lower surface 1b) is polished and removed, and the chemical strengthening layer remains on the inner peripheral end surface 1c and the outer peripheral end surface 1d. Since the compressive stress and tensile stress inside the glass substrate can be balanced, the breaking strength of the glass substrate can be increased.

<ステップS06:洗浄の工程>
次に、研磨処理後のガラス基板を洗浄する。ここでは、PVA製のスポンジブラシでスクラブ洗浄を行い、その後、超音波浸漬槽内で洗剤を用いて洗浄する。そして、IPAの蒸気中で洗浄後のガラス基板を乾燥する。
<Step S06: Cleaning Process>
Next, the glass substrate after the polishing treatment is washed. Here, scrub cleaning is performed with a sponge brush made of PVA, and then cleaning is performed using a detergent in an ultrasonic immersion bath. And the glass substrate after washing | cleaning is dried in the vapor | steam of IPA.

<ステップS07:めっき工程>
以上の工程を経て作製された磁気記録媒体用ガラス基板に、無電解めっき法によってニッケル合金層を形成する。磁気記録媒体用ガラス基板1の主表面(上面1a及び下面1b)には化学強化層が形成されていないため、基板とニッケル合金層との密着強度を高めることが可能となる。ニッケル合金層の形成方法は公知の方法と同じであるが、脱脂、感受性化、活性化の処理を行った後、無電解めっきを施してニッケル合金層を形成する。
<Step S07: Plating process>
A nickel alloy layer is formed by an electroless plating method on the glass substrate for magnetic recording media produced through the above steps. Since the chemical strengthening layer is not formed on the main surface (upper surface 1a and lower surface 1b) of the glass substrate 1 for magnetic recording media, the adhesion strength between the substrate and the nickel alloy layer can be increased. The formation method of the nickel alloy layer is the same as a known method, but after the degreasing, sensitization, and activation processes are performed, electroless plating is performed to form the nickel alloy layer.

ステップS07では、「表面技術Vol.44 No.10、1993年(ガラスと無電解ニッケルめっきの密着性)」に記載されている一般的なニッケル合金のめっきを施した。ここで、脱脂処理、感受性化処理、活性化処理、及び無電解めっきについて詳しく説明する。
脱脂処理:磁気記録媒体用ガラス基板を、パーカコーポレーション製のアルカリ洗剤PK−LCG22(5%水溶液、50℃)に15分間浸漬し、その後水洗を実施した。
感受性化処理:試薬の塩化第1スズ(SnCl)の0.1g/L水溶液中に5分間浸漬し、その後水洗を実施した。
活性化処理:試薬の塩化パラジウム(PdCl)の0.1g/L水溶液中に5分間浸漬し、その後水洗を実施した。
無電解めっき:上記脱脂、感受性化、活性化の処理を行った後、上村工業製のニッケル−リンめっき液に浸漬し、20μmのニッケル−リン合金層を形成した。
ベーキング:無電解めっきを施した後、150℃で2時間のベーキングを行った。
In step S07, general nickel alloy plating described in “Surface Technology Vol. 44 No. 10, 1993 (Adhesiveness between Glass and Electroless Nickel Plating)” was applied. Here, the degreasing process, the sensitization process, the activation process, and the electroless plating will be described in detail.
Degreasing treatment: The glass substrate for magnetic recording medium was immersed in an alkaline detergent PK-LCG22 (5% aqueous solution, 50 ° C.) manufactured by Parker Corporation for 15 minutes, and then washed with water.
Sensitization treatment: The sample was immersed in a 0.1 g / L aqueous solution of stannous chloride (SnCl) for 5 minutes, and then washed with water.
Activation treatment: It was immersed in a 0.1 g / L aqueous solution of the reagent palladium chloride (PdCl) for 5 minutes, and then washed with water.
Electroless plating: After performing the above degreasing, sensitization and activation treatments, it was immersed in a nickel-phosphorous plating solution manufactured by Uemura Kogyo to form a 20 μm nickel-phosphorous alloy layer.
Baking: After electroless plating, baking was performed at 150 ° C. for 2 hours.

<化学強化層の厚さの測定>
ここで、化学強化層の厚さの測定方法について説明する。化学強化処理を施したガラス基板を分割し、ガラス基板の断面を偏光顕微鏡で観察すると、内部応力の差を着色度で観測できる。また、断面を深さ方向にEPMA(Electron Probe Micro Analyzer)でイオン分析すると、ナトリウムとカリウムのイオン分布を定量的に評価することができる。ナトリウムイオン濃度は、最表面から内部に向かって次第に低下するが、ガラス組成に含有されるベースにまで減少するとそれ以上は減少しない。表面からこの一定値に至った厚さを化学強化層の厚さとする。
<Measurement of thickness of chemically strengthened layer>
Here, a method for measuring the thickness of the chemically strengthened layer will be described. When a chemically strengthened glass substrate is divided and the cross section of the glass substrate is observed with a polarizing microscope, the difference in internal stress can be observed with the degree of coloring. In addition, when ion analysis is performed in the depth direction with an EPMA (Electron Probe Micro Analyzer), the ion distribution of sodium and potassium can be quantitatively evaluated. The sodium ion concentration gradually decreases from the outermost surface toward the inside, but does not decrease any more when the sodium ion concentration decreases to the base contained in the glass composition. The thickness that reaches this constant value from the surface is taken as the thickness of the chemically strengthened layer.

<密着強度の評価>
ステップS07でニッケル合金層が形成された磁気記録媒体用ガラス基板に対して、剥離テスト(JIS K5400 8.15)を実施し、ニッケル合金層の密着強度の評価を行った。
<Evaluation of adhesion strength>
A peel test (JIS K5400 8.15) was performed on the glass substrate for magnetic recording medium on which the nickel alloy layer was formed in step S07, and the adhesion strength of the nickel alloy layer was evaluated.

<破壊強度の評価>
2.5インチ基板を搭載するランプロードタイプの東芝製ハードディスク装置にステップ06までの処理で得られたガラス基板を1枚搭載し、高さ2mから鉄板上へ自由落下させた。そして、10枚のガラス基板について落下試験を行い、破損したガラス基板の枚数によって破壊強度を評価した。
<Evaluation of fracture strength>
A glass substrate obtained by the process up to Step 06 was mounted on a ramp load type Toshiba hard disk device on which a 2.5-inch substrate is mounted, and the glass substrate was dropped from a height of 2 m onto an iron plate. Then, a drop test was performed on 10 glass substrates, and the breaking strength was evaluated based on the number of broken glass substrates.

[実施例]
次に、具体的な実施例と、その実施例に対する比較例を説明する。
[Example]
Next, a specific example and a comparative example for the example will be described.

(実施例1)
実施例1に用いたガラス基板の条件を以下に示す。
ガラスの種類:アルミノシリケートガラス(石塚ガラス製IG−93)
Example 1
The conditions of the glass substrate used in Example 1 are shown below.
Glass type: aluminosilicate glass (IG-93 made by Ishizuka Glass)

ステップS01からステップS03の工程を経て作製されたRTPガラス基板に対して化学強化処理を施した(ステップS04)。このとき、硝酸ナトリウムと硝酸カリウムとを3対1の重量比率で混合した、380℃の混合液(溶融塩)にガラス基板を40分間浸漬した。その結果、ガラス基板の表面から25[μm]の深さまで化学強化させた。その後、ガラス基板の主表面(上面1a及び下面1b)を研磨して上面1a及び下面1bに形成されている化学強化層を除去し、磁気記録媒体用ガラス基板1を作製した(ステップS05)。その後、磁気記録媒体用ガラス基板1を洗浄した(ステップS06)。なお、この磁気記録媒体用ガラス基板1の表面粗さRaは5Åとなった。この表面粗さRaは、JIS B0601の規定による「表面粗さ」の算術平均粗さRaである。以下に、ステップS05の処理が施された後のガラス基板の寸法を示す。
外径:65[mm]
内径:20[mm]
厚さ:0.635[mm]
内周端面1c及び外周端面1dに形成された化学強化層の厚さ:25[μm]
ガラス基板の主表面(上面1a及び下面1b)の化学強化層は除去されている。
The chemical strengthening process was performed on the RTP glass substrate manufactured through the processes from Step S01 to Step S03 (Step S04). At this time, the glass substrate was immersed for 40 minutes in a 380 ° C. mixed solution (molten salt) in which sodium nitrate and potassium nitrate were mixed at a weight ratio of 3: 1. As a result, it was chemically strengthened from the surface of the glass substrate to a depth of 25 [μm]. Thereafter, the main surface (upper surface 1a and lower surface 1b) of the glass substrate was polished to remove the chemical strengthening layer formed on the upper surface 1a and the lower surface 1b, thereby manufacturing the glass substrate 1 for magnetic recording medium (step S05). Thereafter, the glass substrate 1 for magnetic recording medium was washed (step S06). The surface roughness Ra of the glass substrate 1 for magnetic recording media was 5 mm. This surface roughness Ra is an arithmetic average roughness Ra of “surface roughness” according to JIS B0601. Below, the dimension of the glass substrate after the process of step S05 is given is shown.
Outer diameter: 65 [mm]
Inner diameter: 20 [mm]
Thickness: 0.635 [mm]
Thickness of the chemical strengthening layer formed on the inner peripheral end face 1c and the outer peripheral end face 1d: 25 [μm]
The chemical strengthening layer on the main surface (upper surface 1a and lower surface 1b) of the glass substrate is removed.

<密着強度の評価>
主表面(上面1a及び下面1b)の化学強化層が除去された磁気記録媒体用ガラス基板1に対して無電解めっき法を施すことによりニッケル−リン合金層を形成し(ステップS07)、ニッケル合金層とガラス基板表面との密着強度を評価した。
評価結果:上記剥離テスト(JIS K5400 8.15)を実施し、ニッケル合金層とガラス基板との密着強度が高いことが分かった。
<Evaluation of adhesion strength>
A nickel-phosphorus alloy layer is formed by applying an electroless plating method to the glass substrate 1 for magnetic recording medium from which the chemical strengthening layer on the main surface (upper surface 1a and lower surface 1b) has been removed (step S07). The adhesion strength between the layer and the glass substrate surface was evaluated.
Evaluation results: The above peel test (JIS K5400 8.15) was carried out, and it was found that the adhesion strength between the nickel alloy layer and the glass substrate was high.

<破壊強度の評価>
ステップS06までで作製された磁気記録媒体用ガラス基板1をハードディスク装置に搭載し、上記落下試験を行った。ここでは、10枚のガラス基板に対して落下試験を行った。
割れ枚数:0枚(10枚中)
このように、ガラス基板の破壊強度が高いことが分かった。
<Evaluation of fracture strength>
The glass substrate 1 for magnetic recording media produced up to step S06 was mounted on a hard disk device, and the above drop test was performed. Here, a drop test was performed on ten glass substrates.
Number of cracks: 0 (out of 10)
Thus, it was found that the breaking strength of the glass substrate was high.

以上のように、実施例1に係るガラス基板によると、磁気記録媒体に要求される破壊強度を高くしつつ、基板表面との密着強度が十分に高いニッケル合金層を形成することが可能となる。   As described above, according to the glass substrate of Example 1, it is possible to form a nickel alloy layer having sufficiently high adhesion strength with the substrate surface while increasing the fracture strength required for the magnetic recording medium. .

また、ガラス基板の表面粗さRaを5Åにしても、ニッケル合金層とガラス基板との密着強度を高くすることができるため、高密度記録に要求される表面の平滑性を維持しつつ、密着強度が高いニッケル合金層をガラス基板上に形成することが可能となる。つまり、ニッケル合金層とガラス基板との密着強度を高めるために、ガラス基板の表面に凹凸を形成して粗面化する必要がなく、ガラス基板の表面を平滑にしつつ、ニッケル合金層とガラス基板との密着強度を高めることが可能となる。   In addition, even if the surface roughness Ra of the glass substrate is 5 mm, the adhesion strength between the nickel alloy layer and the glass substrate can be increased, so that the surface smoothness required for high density recording is maintained and the adhesion is maintained. A nickel alloy layer having high strength can be formed on the glass substrate. In other words, in order to increase the adhesion strength between the nickel alloy layer and the glass substrate, there is no need to form irregularities on the surface of the glass substrate to roughen the surface, and the surface of the glass substrate is smoothed while the nickel alloy layer and the glass substrate are smoothed. It is possible to increase the adhesion strength.

次に、上記実施例に対する比較例について説明する。   Next, a comparative example for the above embodiment will be described.

(比較例1)
比較例1に用いたガラス基板の条件を以下に示す。
ガラスの種類:アルミノシリケートガラス
(Comparative Example 1)
The conditions of the glass substrate used in Comparative Example 1 are shown below.
Glass type: aluminosilicate glass

ステップS01からステップS03の工程を経て作製されたRTPガラス基板に対して化学強化処理を施した(ステップS04)。この比較例1では、硝酸ナトリウムと硝酸カリウムとを3対1の重量比率で混合した、380℃の混合液(溶融塩)にガラス基板を40分間浸漬した。その結果、ガラス基板の表面から25[μm]の深さまで化学強化された。化学強化処理を行った後、ガラス基板を洗浄した(ステップS06)。この比較例では、主表面(上面及び下面)を研磨せずに、主表面(上面及び下面)に化学強化層を残存させている。以下に、化学強化処理が施された後のガラス基板の寸法を示す。
外径:65[mm]
内径:20[mm]
厚さ:0.635[mm]
ガラス基板の表面に形成された化学強化層の厚さ:25[μm]
主表面(上面及び下面)は研磨されていないため、内周端面及び外周端面のみならず、主表面(上面及び下面)にも化学強化層が残存している。
The chemical strengthening process was performed on the RTP glass substrate manufactured through the processes from Step S01 to Step S03 (Step S04). In Comparative Example 1, the glass substrate was immersed for 40 minutes in a mixed solution (molten salt) at 380 ° C. in which sodium nitrate and potassium nitrate were mixed at a weight ratio of 3: 1. As a result, it was chemically strengthened from the surface of the glass substrate to a depth of 25 [μm]. After performing the chemical strengthening treatment, the glass substrate was washed (step S06). In this comparative example, the chemical strengthening layer remains on the main surface (upper surface and lower surface) without polishing the main surface (upper surface and lower surface). Below, the dimension of the glass substrate after a chemical strengthening process is given is shown.
Outer diameter: 65 [mm]
Inner diameter: 20 [mm]
Thickness: 0.635 [mm]
Thickness of the chemically strengthened layer formed on the surface of the glass substrate: 25 [μm]
Since the main surface (upper surface and lower surface) is not polished, the chemical strengthening layer remains not only on the inner peripheral end surface and the outer peripheral end surface but also on the main surface (upper surface and lower surface).

<密着強度の評価>
このガラス基板に対して無電解めっき法を施すことによりニッケル−リン合金層を形成し、ニッケル合金層とガラス基板表面との密着強度を評価した。
評価結果:上記剥離テスト(JIS K5400 8.15)を実施し、ニッケル合金層とガラス基板との密着強度が低いことが分かった。
<Evaluation of adhesion strength>
A nickel-phosphorus alloy layer was formed by applying an electroless plating method to this glass substrate, and the adhesion strength between the nickel alloy layer and the glass substrate surface was evaluated.
Evaluation results: The above peel test (JIS K5400 8.15) was carried out, and it was found that the adhesion strength between the nickel alloy layer and the glass substrate was low.

<破壊強度の評価>
ステップS06までで作製されたガラス基板をハードディスク装置に搭載し、上記落下試験を行った。ここでは、10枚のガラス基板に対して落下試験を行った。
割れ枚数:0枚(10枚中)
このように、ガラス基板の破壊強度が高いことが分かった。
<Evaluation of fracture strength>
The glass substrate manufactured up to step S06 was mounted on a hard disk device, and the drop test was performed. Here, a drop test was performed on ten glass substrates.
Number of cracks: 0 (out of 10)
Thus, it was found that the breaking strength of the glass substrate was high.

以上のように比較例1に係るガラス基板によると、基板の全面に亘って化学強化処理が施されているため、破壊強度を高くすることができたが、化学強化処理が施された表面にニッケル合金層を形成したため、ニッケル合金層と基板表面との密着強度を高めることができなかった。   As described above, according to the glass substrate according to Comparative Example 1, since the chemical strengthening treatment was performed over the entire surface of the substrate, the fracture strength could be increased, but the surface subjected to the chemical strengthening treatment was applied. Since the nickel alloy layer was formed, the adhesion strength between the nickel alloy layer and the substrate surface could not be increased.

(比較例2)
比較例2に用いたガラス基板の条件を以下に示す。
ガラスの種類:アルミノシリケートガラス
(Comparative Example 2)
The conditions of the glass substrate used in Comparative Example 2 are shown below.
Glass type: aluminosilicate glass

比較例2では、ステップS04の化学強化処理を行わず、ステップS01〜S03、S05、S06の処理を施して、表面粗さRa=5Åのガラス基板を作製した。以下に、この比較例2に係るガラス基板の寸法を示す。
外径:65[mm]
内径:20[mm]
厚さ:0.635[mm]
In Comparative Example 2, the chemical strengthening process of Step S04 was not performed, but the processes of Steps S01 to S03, S05, and S06 were performed to produce a glass substrate having a surface roughness Ra = 5 mm. Below, the dimension of the glass substrate which concerns on this comparative example 2 is shown.
Outer diameter: 65 [mm]
Inner diameter: 20 [mm]
Thickness: 0.635 [mm]

<密着強度の評価>
このガラス基板に対して無電解めっき法を施すことによりニッケル−リン合金層を形成し(ステップS07)、ニッケル合金層とガラス基板表面との密着強度を評価した。
評価結果:上記剥離テスト(JIS K5400 8.15)を実施し、ニッケル合金層とガラス基板との密着強度が高いことが分かった。
<Evaluation of adhesion strength>
The glass substrate was subjected to electroless plating to form a nickel-phosphorus alloy layer (step S07), and the adhesion strength between the nickel alloy layer and the glass substrate surface was evaluated.
Evaluation results: The above peel test (JIS K5400 8.15) was carried out, and it was found that the adhesion strength between the nickel alloy layer and the glass substrate was high.

<破壊強度の評価>
比較例2に係るガラス基板をハードディスク装置に搭載し、上記落下試験を行った。ここでは、10枚のガラス基板に対して落下試験を行った。
割れ枚数:8枚(10枚中)
このように、ガラス基板の破壊強度が低いことが分かった。
<Evaluation of fracture strength>
The glass substrate according to Comparative Example 2 was mounted on a hard disk device, and the drop test was performed. Here, a drop test was performed on ten glass substrates.
Number of cracks: 8 (out of 10)
Thus, it was found that the fracture strength of the glass substrate was low.

以上のように比較例2に係るガラス基板によると、化学強化処理を施していないため、ニッケル合金層と基板表面との密着強度を高めることができたが、磁気記録媒体に要求される破壊強度が得られなかった。   As described above, according to the glass substrate of Comparative Example 2, since the chemical strengthening treatment was not performed, the adhesion strength between the nickel alloy layer and the substrate surface could be increased, but the fracture strength required for the magnetic recording medium Was not obtained.

実施例1、比較例1、2をまとめた結果を図3の表に示す。実施例1に係るガラス基板は、磁気記録媒体に要求される条件を満たし、比較例1、2に係るガラス基板は、その条件を満たしていないことが分かる。図3の表中、総合評価の合格が上記条件を満たし、不合格が条件を満たしていないことを示している。従って、ガラス基板の主表面の化学強化層を除去することで、磁気記録媒体に要求される破壊強度を維持しつつ、基板表面とニッケル合金層との密着強度を高めることが可能となる。   The result of putting together Example 1 and Comparative Examples 1 and 2 is shown in the table of FIG. It can be seen that the glass substrate according to Example 1 satisfies the conditions required for the magnetic recording medium, and the glass substrates according to Comparative Examples 1 and 2 do not satisfy the conditions. In the table | surface of FIG. 3, the pass of comprehensive evaluation satisfy | fills the said conditions, and it has shown that the rejection does not satisfy | fill the conditions. Therefore, by removing the chemically strengthened layer on the main surface of the glass substrate, it is possible to increase the adhesion strength between the substrate surface and the nickel alloy layer while maintaining the fracture strength required for the magnetic recording medium.

この発明の実施形態に係る磁気記録媒体用基板の概略構成を示す図であり、図1(a)は基板の斜視図、図1(b)は基板のA−A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the board | substrate for magnetic recording media based on embodiment of this invention, Fig.1 (a) is a perspective view of a board | substrate, FIG.1 (b) is AA sectional drawing of a board | substrate. この発明の実施形態に係る磁気記録媒体用基板の製造方法を説明するための基板の断面図である。It is sectional drawing of the board | substrate for demonstrating the manufacturing method of the board | substrate for magnetic recording media which concerns on embodiment of this invention. 密着強度及び破壊強度の評価結果を示す表である。It is a table | surface which shows the evaluation result of adhesion strength and fracture strength.

符号の説明Explanation of symbols

1 磁気記録媒体用ガラス基板
1a 上面
1b 下面
1c 内周端面
1d 外周端面
2 非化学強化層(引張り応力層)
3 化学強化層(圧縮応力層)
DESCRIPTION OF SYMBOLS 1 Glass substrate for magnetic recording media 1a Upper surface 1b Lower surface 1c Inner peripheral end surface 1d Outer peripheral end surface 2 Non-chemical strengthening layer (tensile stress layer)
3 Chemical strengthening layer (compressive stress layer)

Claims (6)

表面及び前記表面の周囲に端面を有する円盤状の磁気記録媒体用ガラス基板であって、
前記端面から内部の所定範囲に亘って化学強化層が形成されていることを特徴とする磁気記録媒体用ガラス基板。
A disk-shaped glass substrate for a magnetic recording medium having a surface and an end surface around the surface,
A glass substrate for a magnetic recording medium, wherein a chemically strengthened layer is formed over a predetermined range from the end face to the inside.
前記表面に金属層が形成されていることを特徴とする請求項1に記載の磁気記録媒体用ガラス基板。   The glass substrate for a magnetic recording medium according to claim 1, wherein a metal layer is formed on the surface. 前記金属層は、無電解めっき法により析出されたニッケル合金で構成されていることを特徴とする請求項2に記載の磁気記録媒体用ガラス基板。   The glass substrate for a magnetic recording medium according to claim 2, wherein the metal layer is made of a nickel alloy deposited by an electroless plating method. 円盤状のガラス基板の表面及び前記表面の周囲に対して化学強化処理を施す化学強化処理工程と、
前記表面を研磨することにより、前記表面に形成された化学強化層を除去する除去工程と、
を含むことを特徴とする磁気記録媒体用ガラス基板の製造方法。
A chemical strengthening treatment step for subjecting the surface of the disk-shaped glass substrate and the periphery of the surface to a chemical strengthening treatment;
By removing the chemical strengthening layer formed on the surface by polishing the surface,
The manufacturing method of the glass substrate for magnetic recording media characterized by the above-mentioned.
前記研磨後の表面に金属層を形成する金属層形成ステップを更に含むことを特徴とする請求項4に記載の磁気記録媒体用ガラス基板の製造方法。   The method for producing a glass substrate for a magnetic recording medium according to claim 4, further comprising a metal layer forming step of forming a metal layer on the polished surface. 前記金属層形成ステップでは、無電解めっき法によりニッケル合金からなる金属層を前記研磨後の表面に形成することを特徴とする請求項5に記載の磁気記録媒体用ガラス基板の製造方法。   6. The method for manufacturing a glass substrate for a magnetic recording medium according to claim 5, wherein in the metal layer forming step, a metal layer made of a nickel alloy is formed on the polished surface by an electroless plating method.
JP2006037128A 2006-02-14 2006-02-14 Glass substrate for magnetic recording medium and method for producing the same Pending JP2007217204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037128A JP2007217204A (en) 2006-02-14 2006-02-14 Glass substrate for magnetic recording medium and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037128A JP2007217204A (en) 2006-02-14 2006-02-14 Glass substrate for magnetic recording medium and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007217204A true JP2007217204A (en) 2007-08-30

Family

ID=38494890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037128A Pending JP2007217204A (en) 2006-02-14 2006-02-14 Glass substrate for magnetic recording medium and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007217204A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201758A (en) * 2009-06-04 2011-10-13 Ohara Inc Crystallized glass substrate for information recording medium and method for producing the same
JP2011207626A (en) * 2009-06-04 2011-10-20 Ohara Inc Crystallized glass substrate for information recording medium and method for producing the same
WO2012086256A1 (en) * 2010-12-24 2012-06-28 コニカミノルタオプト株式会社 Method of manufacturing glass substrate for recording medium
JP2012150865A (en) * 2011-01-19 2012-08-09 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and its manufacturing method
CN109592906A (en) * 2018-11-22 2019-04-09 重庆两江联创电子有限公司 A kind of processing method, glass cover-plate and the mobile terminal of 3D glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334841A (en) * 1994-06-06 1995-12-22 Fuji Electric Co Ltd Electroless ni-p plating method for glass substrate for magnetic disk
JPH11120554A (en) * 1997-10-14 1999-04-30 Mitsubishi Chemical Corp Production of substrate for magnetic recording medium
JP2000207730A (en) * 1999-01-12 2000-07-28 Ishizuka Glass Co Ltd Glass substrate of magnetic recording medium
JP2003036528A (en) * 2001-07-25 2003-02-07 Nippon Sheet Glass Co Ltd Base for information recording medium, its manufacturing method, and information recording medium
JP2003157522A (en) * 2002-08-30 2003-05-30 Nippon Sheet Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
WO2005043512A1 (en) * 2003-10-31 2005-05-12 Konica Minolta Opto, Inc. Glass substrate for information recording medium and information recording medium employing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334841A (en) * 1994-06-06 1995-12-22 Fuji Electric Co Ltd Electroless ni-p plating method for glass substrate for magnetic disk
JPH11120554A (en) * 1997-10-14 1999-04-30 Mitsubishi Chemical Corp Production of substrate for magnetic recording medium
JP2000207730A (en) * 1999-01-12 2000-07-28 Ishizuka Glass Co Ltd Glass substrate of magnetic recording medium
JP2003036528A (en) * 2001-07-25 2003-02-07 Nippon Sheet Glass Co Ltd Base for information recording medium, its manufacturing method, and information recording medium
JP2003157522A (en) * 2002-08-30 2003-05-30 Nippon Sheet Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
WO2005043512A1 (en) * 2003-10-31 2005-05-12 Konica Minolta Opto, Inc. Glass substrate for information recording medium and information recording medium employing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201758A (en) * 2009-06-04 2011-10-13 Ohara Inc Crystallized glass substrate for information recording medium and method for producing the same
JP2011207626A (en) * 2009-06-04 2011-10-20 Ohara Inc Crystallized glass substrate for information recording medium and method for producing the same
US8283060B2 (en) 2009-06-04 2012-10-09 Ohara Inc. Crystallized glass substrate for information recording medium and method of producing the same
US8852764B2 (en) 2009-06-04 2014-10-07 Ohara Inc. Crystallized glass substrate for information recording medium and method of producing the same
WO2012086256A1 (en) * 2010-12-24 2012-06-28 コニカミノルタオプト株式会社 Method of manufacturing glass substrate for recording medium
JP2012150865A (en) * 2011-01-19 2012-08-09 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and its manufacturing method
CN109592906A (en) * 2018-11-22 2019-04-09 重庆两江联创电子有限公司 A kind of processing method, glass cover-plate and the mobile terminal of 3D glass

Similar Documents

Publication Publication Date Title
JP5297549B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2005093720A1 (en) Glass substrate for magnetic disk
WO2008068997A1 (en) Process for producing glass substrate for recording medium, glass substrate for recording medium, recording medium, and holding jig
WO2008004471A1 (en) Process for producing glass substrate, magnetic disc and process for manufacturing the same
JP6089039B2 (en) Glass substrate for magnetic disk, magnetic disk
JP2008302448A (en) Method for manufacturing glass substrate for information recording medium, glass substrate for information recording medium, and magnetic recording medium
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP2007217204A (en) Glass substrate for magnetic recording medium and method for producing the same
CN110431627A (en) Substrate for magnetic disc and disk
JP2007164901A (en) Glass substrate for magnetic recording medium and method of manufacturing glass substrate for magnetic recording medium
JP5661950B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2011033948A1 (en) Glass substrate for information recording medium, information recording medium, and method for producing glass substrate for information recording medium
WO2013046583A1 (en) Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
JP4548140B2 (en) Glass substrate for magnetic recording media
JP2014188668A (en) Method of manufacturing glass substrate
JP2009048688A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5339010B1 (en) Manufacturing method of glass substrate for HDD
JP5032758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP2007188601A (en) Glass substrate for magnetic recording medium
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP2006099813A (en) Method for manufacturing magnetic recording medium substrate, and method for manufacturing magnetic recording medium using the same
JPWO2009096217A1 (en) Method for manufacturing substrate for magnetic recording medium, and magnetic recording medium
JP2006095678A (en) Polishing method for glass substrate for magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090128

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20090227

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20090527

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20100319

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Effective date: 20100603

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20101228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A02