JP2003157522A - Method of manufacturing glass substrate for magnetic recording medium - Google Patents
Method of manufacturing glass substrate for magnetic recording mediumInfo
- Publication number
- JP2003157522A JP2003157522A JP2002253352A JP2002253352A JP2003157522A JP 2003157522 A JP2003157522 A JP 2003157522A JP 2002253352 A JP2002253352 A JP 2002253352A JP 2002253352 A JP2002253352 A JP 2002253352A JP 2003157522 A JP2003157522 A JP 2003157522A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- polishing
- recording medium
- magnetic recording
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Surface Treatment Of Glass (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気記録媒体用ガ
ラス基板を用いた磁気記録媒体の製造方法に関する。TECHNICAL FIELD The present invention relates to a method of manufacturing a magnetic recording medium using a glass substrate for a magnetic recording medium.
【0002】[0002]
【従来の技術】磁気ディスク記憶装置の大容量化に伴っ
て、記録密度の向上のために磁気ヘッド浮上量の低減が
図られている。このためには平滑性に優れた磁気記録媒
体が必要とされるが、通常の薄膜型磁気記録媒体におい
ては磁性膜厚が0.5μm程度以下と薄く、基板の表面
状態が磁気記録媒体の平滑性に著しく影響を及ぼすた
め、平滑性に優れた基板に対する要求が大きくなってき
ている。このような要求に対し、ガラス基板は研磨によ
って比較的容易に表面の平滑化を図ることができるとい
う特徴を有するため、磁気記録媒体用基板として採用さ
れ始めている。2. Description of the Related Art With the increase in capacity of magnetic disk storage devices, the flying height of magnetic heads has been reduced in order to improve recording density. For this purpose, a magnetic recording medium excellent in smoothness is required. However, in a normal thin film magnetic recording medium, the magnetic film thickness is as thin as about 0.5 μm or less, and the surface condition of the substrate is smooth. Therefore, there is an increasing demand for a substrate having excellent smoothness because it significantly affects the property. In response to such a demand, the glass substrate has a feature that its surface can be relatively easily smoothed by polishing, and is therefore being adopted as a substrate for a magnetic recording medium.
【0003】磁気記録媒体用ガラス基板の加工は、通
常、加工順に以下の工程からなり、この工程を経て製造
されたガラス基板は、磁気ヘッド浮上量が75nm程度
の磁気ディスク装置に対して適用が可能である。The processing of a glass substrate for a magnetic recording medium usually includes the following steps in the order of processing. The glass substrate manufactured through these steps is applicable to a magnetic disk device having a magnetic head flying height of about 75 nm. It is possible.
【0004】1.円盤加工工程:板ガラスを円盤形状の
ガラス基板に加工する工程ラップ工程
2.ラップ工程:ガラス基板を所定の板厚に加工する工
程
3.研磨工程:ガラス基板の表面を研磨し平滑にする工
程
4.化学強化工程:ガラス基板に化学強化を施す工程
ここで、3.研磨工程は、通常、それ以前の工程におい
てガラス基板に生じたクラック等の加工変質層を除去す
るための第一段階の研磨と、ガラス基板の表面平滑性を
所定のレベルにするための第二段階の研磨の2段階の研
磨工程から構成されている。1. Disc processing step: a step of processing a plate glass into a disk-shaped glass substrate Lapping step 2. Lapping step: Step of processing the glass substrate into a predetermined plate thickness 3. Polishing step: Step of polishing the surface of the glass substrate to make it smooth. Chemical strengthening step: a step of chemically strengthening the glass substrate. The polishing step is usually a first-step polishing for removing work-affected layers such as cracks generated in the glass substrate in the previous step, and a second step for bringing the surface smoothness of the glass substrate to a predetermined level. It consists of a two-step polishing process of a one-step polishing.
【0005】一方、3.研磨工程のうち上記第二段階の
研磨を4.化学強化工程後に行う方法が知られている
(特開昭63−175219号)。この理由は前記文献
中では明らかにされていないが、ガラス基板の表面をさ
らに平滑にすることを意図したものと推察される。On the other hand, 3. 3. The second step of polishing in the polishing process is performed. A method is known after the chemical strengthening step (Japanese Patent Laid-Open No. 175219/1988). The reason for this is not clarified in the above literature, but it is presumed that it was intended to make the surface of the glass substrate smoother.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、さらに
磁気ヘッド浮上量を低減するため、上記方法により化学
強化後のガラス基板をさらに研磨した場合には、より平
滑な表面を有するガラス基板を得ることはできるもの
の、ガラス基板の反りが生じ易いことが判明した。この
ガラス基板の反りは、磁気記録媒体の軸方向加速度の増
大をもたらし、磁気ヘッドの浮上特性を劣化させて記録
密度向上を阻害する要因となる。However, in order to further reduce the flying height of the magnetic head, when the glass substrate after chemical strengthening is further polished by the above method, a glass substrate having a smoother surface cannot be obtained. Although it was possible, it was found that the glass substrate was likely to warp. The warp of the glass substrate causes an increase in the axial acceleration of the magnetic recording medium, deteriorates the flying characteristics of the magnetic head, and becomes a factor that hinders the improvement of the recording density.
【0007】以上の事情に鑑み、本発明は、優れた平滑
性を有し、反りも少なく、磁気ヘッド浮上量50nm程
度の磁気ディスク装置に対しても適用可能な磁気記録媒
体用ガラス基板の効率的な製造方法を提供することを目
的とする。In view of the above circumstances, the present invention has an efficiency of a glass substrate for a magnetic recording medium which is excellent in smoothness, has little warpage, and can be applied to a magnetic disk device having a magnetic head flying height of about 50 nm. The object is to provide a conventional manufacturing method.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の磁気記録媒体用ガラス基板の製造方
法は、化学強化処理を施したガラス基板の主表面を研磨
し平滑にする磁気記録媒体用ガラス基板の製造方法にお
いて、研磨し削減するガラス厚さを各研磨面につき0.
05μm以上0.7μm以下とすることにより、当該各
研磨面における原子間力顕微鏡により測定した12μm
□当たりの凹凸の最大最小値の差異の平均を8nm以上
20nm以下にすることを特徴とする。In order to achieve the above object, a method of manufacturing a glass substrate for a magnetic recording medium according to a first aspect of the present invention is such that the main surface of a chemically strengthened glass substrate is polished to be smooth. In the method for manufacturing a glass substrate for a magnetic recording medium, the glass thickness to be polished and reduced is 0.
12 μm measured by an atomic force microscope on each polished surface by setting the thickness to be not less than 05 μm and not more than 0.7 μm
It is characterized in that the average difference between the maximum and minimum values of unevenness per square is 8 nm or more and 20 nm or less.
【0009】請求項2記載の磁気記録媒体用ガラス基板
の製造方法は、請求項1記載の磁気記録媒体用ガラス基
板の製造方法において、前記化学強化処理前のガラス基
板の各主表面を表面粗さRmax50nm未満とするこ
とを特徴とする。A method for manufacturing a glass substrate for a magnetic recording medium according to a second aspect is the method for manufacturing a glass substrate for a magnetic recording medium according to the first aspect, wherein each main surface of the glass substrate before the chemical strengthening treatment is surface-roughened. The Rmax is less than 50 nm.
【0010】請求項3記載の磁気記録媒体用ガラス基板
の製造方法は、請求項1又は2記載の磁気記録媒体用ガ
ラス基板の製造方法において、前記ガラス基板の両主表
面を0.02μm〜0.2μmの粒径の砥粒により研磨
することを特徴とする。A method of manufacturing a glass substrate for a magnetic recording medium according to a third aspect is the method of manufacturing a glass substrate for a magnetic recording medium according to the first or second aspect, wherein both main surfaces of the glass substrate are 0.02 μm to 0. It is characterized by polishing with abrasive grains having a grain size of 0.2 μm.
【0011】請求項4記載の磁気記録媒体用ガラス基板
の製造方法は、請求項1乃至3のいずれか1項に記載の
磁気記録媒体用ガラス基板の製造方法において、前記ガ
ラス基板の主表面に研磨スラリーを供給しつつ研磨パッ
ドを用いて片面につき0.014μm/分〜0.036
μm/分の研削速度で研削することを特徴とする。A method for manufacturing a glass substrate for a magnetic recording medium according to a fourth aspect is the method for manufacturing a glass substrate for a magnetic recording medium according to any one of the first to third aspects, wherein the main surface of the glass substrate is 0.014 μm / min to 0.036 per side using a polishing pad while supplying polishing slurry.
It is characterized by grinding at a grinding speed of μm / min.
【0012】請求項5記載の磁気記録媒体用ガラス基板
の製造方法は、請求項1乃至4のいずれか1項に記載の
磁気記録媒体用ガラス基板の製造方法において、前記ガ
ラス基板の両研磨面における削減厚さの差異を0.15
μm以下にすることを特徴とする。A method for manufacturing a glass substrate for a magnetic recording medium according to a fifth aspect is the method for manufacturing a glass substrate for a magnetic recording medium according to any one of the first to fourth aspects, wherein both polished surfaces of the glass substrate are The difference in the reduced thickness in 0.15
It is characterized in that it is set to be not more than μm.
【0013】[0013]
【発明の実施の形態】化学強化処理とは、使用するガラ
スのガラス転移点以下の温度領域において、ガラス表面
近傍のイオンをより大きなイオン半径を有するイオンに
置換してガラス表面に圧縮応力を発生させることをい
い、例えば、ガラスを硝酸カリウム溶融塩中に浸漬さ
せ、ガラス中のナトリウムイオンを前記溶融塩中のカリ
ウムイオンに置換することにより行われる。BEST MODE FOR CARRYING OUT THE INVENTION Chemical strengthening treatment means that in the temperature range below the glass transition point of the glass used, ions near the glass surface are replaced with ions having a larger ionic radius to generate compressive stress on the glass surface. It is carried out by, for example, immersing glass in a molten salt of potassium nitrate and substituting sodium ion in the glass with potassium ion in the molten salt.
【0014】本発明に用いることができるガラスは、化
学強化処理が可能であれば特に制限はなく、ソーダ石灰
ガラス、ホウ珪酸ガラス、アルミノホウ珪酸ガラス等を
用いることができる。The glass that can be used in the present invention is not particularly limited as long as it can be chemically strengthened, and soda lime glass, borosilicate glass, aluminoborosilicate glass and the like can be used.
【0015】尚、本発明に使用できる研磨材としては、
酸化セリウム、アルミナ砥粒、ダイヤモンド砥粒、コロ
イダルシリカ砥粒、酸化ジルコニウム砥粒等を挙げるこ
とができるが、研磨面の平滑性向上の観点から、無水硅
酸の超微粒子をコロイド溶液としたコロイダルシリカ、
酸化ジルコニウムの超微粒子等の遊離砥粒が望ましい。
また、一般に砥粒の粒径が小さいほど表面平滑性は向上
するが、一方では砥粒価格も上昇するため、本発明の実
施には0.02μm〜0.2μmの粒径の砥粒が特に好
ましい。さらには、砥粒の形状としては球形に近いもの
が平滑性向上の観点から好ましい。The abrasives usable in the present invention include:
Cerium oxide, alumina abrasive grains, diamond abrasive grains, colloidal silica abrasive grains, zirconium oxide abrasive grains, etc. can be mentioned, but from the viewpoint of improving the smoothness of the polished surface, colloidal using ultrafine particles of silicic acid anhydride as a colloidal solution. silica,
Free abrasive grains such as zirconium oxide ultrafine particles are desirable.
Further, generally, the smaller the grain size of the abrasive grains is, the more the surface smoothness is improved, but on the other hand, the price of the grain grains is also increased. preferable. Further, the shape of the abrasive grains is preferably close to a spherical shape from the viewpoint of improving smoothness.
【0016】本発明によれば、ガラス基板表面を研磨し
ガラス厚さを削減する量が、ガラス基板の反りを一定値
以上としない範囲以内でありながら一定の表面平滑性を
確保するのに必要な範囲以上であるため、表面平滑性に
優れ、かつ、反りの少ない化学強化ガラス基板を製造す
ることができる。According to the present invention, the amount by which the glass substrate surface is polished to reduce the glass thickness is required to secure a constant surface smoothness within a range in which the warp of the glass substrate is not more than a certain value. Since it is at least the above range, a chemically strengthened glass substrate having excellent surface smoothness and less warp can be manufactured.
【0017】化学強化処理を施したガラス基板の応力分
布は、図5に示すように、表面付近の圧縮応力が非常に
大きい一方、表面から内部に進むと応力値が急激に減少
する。このため、化学強化処理後のガラス基板を研磨す
る場合には、ガラス基板の研磨面間で削減するガラス厚
さに差があると、この差異が微小であっても、研磨面間
における応力のバランスがくずれて大きな曲げ応力が発
生し、結果として、特に板厚が薄い磁気記録媒体用ガラ
ス基板にあっては、容易に反りの原因となる。Regarding the stress distribution of the glass substrate subjected to the chemical strengthening treatment, as shown in FIG. 5, the compressive stress in the vicinity of the surface is very large, while the stress value sharply decreases from the surface to the inside. Therefore, when polishing the glass substrate after the chemical strengthening treatment, if there is a difference in the glass thickness to be reduced between the polishing surfaces of the glass substrate, even if this difference is small, the stress between the polishing surfaces is reduced. The balance is lost and a large bending stress is generated, and as a result, the glass substrate for a magnetic recording medium having a particularly small thickness easily causes warpage.
【0018】この削減する厚さの差異はガラス基板両面
の研磨速度の差によって生じるため、研磨条件を基板両
面で同一とするように留意する必要があるが、この条件
を厳密に同一とすることは極めて困難であるため、上記
反りを回避するためには削減するガラス厚さを一定値以
下とせざるを得ない。Since the difference in the thickness to be reduced is caused by the difference in the polishing rate on both sides of the glass substrate, it is necessary to keep the same polishing conditions on both sides of the substrate. However, the conditions should be exactly the same. Since it is extremely difficult to reduce the warp, the glass thickness to be reduced must be set to a certain value or less.
【0019】しかし、削減する厚さを小さくしすぎると
表面平滑性を失するおそれがある。特に、化学強化後の
ガラス基板上には、本発明者が後述する実施例において
確認したように、数十nmの突起が生じており、少なく
ともこの突起を取り除く程度には表面を研磨する必要が
あると考えられる。However, if the thickness to be reduced is made too small, the surface smoothness may be lost. Particularly, on the glass substrate after the chemical strengthening, as confirmed by the present inventor in Examples described later, projections of several tens nm are formed, and it is necessary to polish the surface at least to remove the projections. It is believed that there is.
【0020】本発明によれば、化学強化処理後のガラス
基板の研磨により削減するガラス厚さとガラス基板の表
面平滑性または反りの関係を後述する実施例により確認
し、削減厚さの差異を制御することにより、優れた表面
平滑性を有しつつ基板の反りも実用上支障のない範囲と
したため、磁気ヘッド浮上量を低減し得るガラス基板を
効率的に製造することが可能である。According to the present invention, the relationship between the glass thickness reduced by the polishing of the glass substrate after the chemical strengthening treatment and the surface smoothness or warpage of the glass substrate is confirmed by the examples described later, and the difference in the reduced thickness is controlled. By doing so, the warp of the substrate is within a range that does not hinder practical use while having excellent surface smoothness, so that it is possible to efficiently manufacture a glass substrate that can reduce the flying height of the magnetic head.
【0021】[0021]
【実施例】(実施例1)
1.円盤加工工程
まず、40mm角、厚さ0.7mmのソーダライムシリ
ケートガラスからなる板ガラスを、ダイヤモンド工具を
用いて、外径34mm、内径8mmのドーナツ状に円盤
加工し、さらに、外周端面及び内周端面に所定の面取り
加工を施した。[Example] (Example 1) 1. Disc processing step First, a plate glass made of soda lime silicate glass of 40 mm square and 0.7 mm thickness is processed into a donut shape with an outer diameter of 34 mm and an inner diameter of 8 mm by using a diamond tool. A predetermined chamfering process was applied to the end faces.
【0022】2.ラップ工程
図6に示したラップ装置を用いてラップ工程を行った。
ラップ砥粒としては粒度#1000のアルミナ砥粒25
aを用い、研磨圧力を200g/cm2程度に設定し、
内側ギヤ21と外側ギヤ22とを回転させることによ
り、FRP製のキャリア23内に設置したガラス基板1
の両面をラッピングした。この加工により、ガラス基板
の板厚を0.45mm、表面粗さをRmax2μm程度
にした。2. Lapping Process A lapping process was performed using the lapping device shown in FIG.
Alumina abrasive grains with a grain size of # 1000 as lapping grains 25
a, the polishing pressure is set to about 200 g / cm 2 ,
The glass substrate 1 installed in the FRP carrier 23 by rotating the inner gear 21 and the outer gear 22.
Wrapping both sides. By this processing, the plate thickness of the glass substrate was 0.45 mm and the surface roughness was about Rmax 2 μm.
【0023】3.研磨第1工程
図7に示した研磨装置を用いて、上記のラップ工程で発
生したクラック等の加工変質層を除去した。ここで、図
7に示した研磨装置は、図6に示したラップ装置におけ
る鋳鉄定盤24の代わりにその内表面にポリッシュ用パ
ッド31を接着した定盤32を用いる点と、アルミナ砥
粒の代わりに酸化セリウム砥粒を水と混合した研磨スラ
リー25bを用いる点のみがラップ装置と異なるが、他
は同じである。この研磨第1工程は、ポリッシュ用パッ
ド31として硬質パッド(スピードファム(株)社製ポ
リウレタンパッド;商品名MHC15A)を用い、以下
の研磨条件で行った。3. First Step of Polishing Using the polishing apparatus shown in FIG. 7, a work-affected layer such as a crack generated in the lapping step was removed. Here, in the polishing apparatus shown in FIG. 7, instead of the cast iron surface plate 24 in the lapping device shown in FIG. 6, a surface plate 32 having a polishing pad 31 adhered to its inner surface is used, and the polishing machine shown in FIG. Instead of the lapping device, only a polishing slurry 25b in which cerium oxide abrasive grains are mixed with water is used, but the other points are the same. The first polishing step was performed under the following polishing conditions using a hard pad (polyurethane pad manufactured by Speed Fam Co., Ltd .; trade name MHC15A) as the polishing pad 31.
【0024】研磨スラリー:酸化セリウム(平均粒径:
約1.5μm)+水
研磨圧力:200g/cm2
研磨時間:30分間
除去量:60μm(両面)
この研磨第1工程により、ガラス基板1の表面粗さは、
原子間力顕微鏡(デジタルインスツルメント(株)社
製;商品名NanoScope:以下「AFM」とい
う。)による表面12μm□あたりの凹凸の最大値と最
小値の差異(以下単に「最大最小値」という。)で、平
均18nm、最大35nm程度になった。また、ガラス
基板1の反りは、表面形状測定装置(ZYGO(株)社
製;ZYGOMark 4)による測定から、平均約1
μmであった。尚、本工程においては、表面粗さをRm
ax 50nm未満とすることが望ましい。研磨第2工
程との関連において生産効率を上げる等の理由からであ
る。Polishing slurry: cerium oxide (average particle size:
(About 1.5 μm) + water polishing pressure: 200 g / cm 2 polishing time: 30 minutes removal amount: 60 μm (both sides) By this polishing first step, the surface roughness of the glass substrate 1 is
Difference between the maximum value and the minimum value of the irregularities per 12 μm square on the surface by an atomic force microscope (manufactured by Digital Instruments Co., Ltd .; trade name NanoScope: hereinafter referred to as “AFM”) (hereinafter simply referred to as “maximum minimum value”) .), The average was 18 nm and the maximum was about 35 nm. Further, the warp of the glass substrate 1 is about 1 on average from the measurement by a surface shape measuring device (ZYGO Mark 4; ZYGOMark 4).
was μm. In this step, the surface roughness is Rm.
It is desirable that the ax is less than 50 nm. This is because the production efficiency is increased in relation to the second polishing step.
【0025】4.化学強化工程
ガラス基板を450℃に加熱した硝酸カリウム溶融塩中
に20時間浸漬して化学強化処理を行い、表面に圧縮応
力層を形成した。光学式測定機によれば、この応力層の
厚みは約60μm、表面の圧縮応力は約60kgf/m
m2であった。4. Chemical Strengthening Step A glass substrate was immersed in a molten salt of potassium nitrate heated at 450 ° C. for 20 hours for chemical strengthening treatment to form a compressive stress layer on the surface. According to an optical measuring machine, the thickness of this stress layer is about 60 μm, and the compressive stress on the surface is about 60 kgf / m.
It was m 2 .
【0026】この化学強化工程により、ガラス基板の表
面粗さは、AFMによる12μm□の最大最小値が平均
27nm、最大45nmとなり、表面平滑性は同工程前
よりも悪化した。By this chemical strengthening process, the surface roughness of the glass substrate was 27 nm on average and 45 nm at the maximum of 12 μm □ by AFM, and the surface smoothness was worse than that before the process.
【0027】化学強化処理後のガラス基板の主表面をA
FMにより観察したところ、ガラス基板の表面には直径
0.2μm程度、高さ数十nmの多数の突起が多数存在
していた。化学強化処理前のガラス基板にはこのような
多数の突起は観察されないことから、この突起は化学強
化処理に伴ってガラス基板上に発生したものである。The main surface of the glass substrate after the chemical strengthening treatment is A
When observed by FM, a large number of protrusions having a diameter of about 0.2 μm and a height of several tens nm were present on the surface of the glass substrate. Since many such protrusions are not observed on the glass substrate before the chemical strengthening treatment, the protrusions are generated on the glass substrate during the chemical strengthening treatment.
【0028】図8に、この突起のうち最大級のものを含
む研磨面の断面を示す。FIG. 8 shows a cross section of the polishing surface including the largest one of the protrusions.
【0029】また、ガラス基板の反りは、前述の表面形
状測定装置による測定から平均約1μmであり、化学強
化処理前と同一であった。The warp of the glass substrate was about 1 μm on average as measured by the above-mentioned surface profile measuring apparatus, which was the same as before the chemical strengthening treatment.
【0030】尚、本工程において形成する応力層の厚み
はイオン交換時の温度・時間を制御することにより10
μm〜200μmとすることが適当である。The thickness of the stress layer formed in this step is 10 by controlling the temperature and time during ion exchange.
It is suitable to set the thickness to μm to 200 μm.
【0031】5.研磨第2工程
図1及び図2に示した研磨装置を用いて、一枚ごとにガ
ラス基板の両面を同時に研磨した。即ち、ガラス基板1
を、ガイドローラ2a、2b、2cにより鉛直状態に保
持し、ガラス基板1の両側に対向して設けた定盤3a、
3b上にそれぞれ両面テープで接着された研磨パッド4
a、4bにより加圧しつつ、研磨液供給パイプ5から研
磨スラリー6を供給しながらモーター7a、7bにより
駆動ベルト8a、8bを介して研磨パッド4a、4bを
回転させることによりガラス基板1の両面を同時に研磨
した。このとき、ガイドローラ2a、2b、2cが取り
付けられた揺動治具9を上下に駆動させることにより、
ガラス基板1を揺動した。揺動幅10は、研磨・削減さ
れるガラス厚が半径方向にほぼ一様になるように決定し
た。研磨パッド4a、4bの加圧はバネ式加圧治具11
を用いて、保持台12、軸13を介して研磨パッド4
a、4bをガラス基板1に押し付けることにより行っ
た。また、研磨スラリー6は、研磨液タンク14からポ
ンプ15によって供給した。5. Second Step of Polishing Using the polishing apparatus shown in FIGS. 1 and 2, both surfaces of the glass substrates were simultaneously polished one by one. That is, the glass substrate 1
Are held vertically by the guide rollers 2a, 2b, 2c, and are provided on both sides of the glass substrate 1 so as to face each other,
Polishing pad 4 adhered on each side 3b with double-sided tape
Both sides of the glass substrate 1 are rotated by rotating the polishing pads 4a, 4b via the drive belts 8a, 8b by the motors 7a, 7b while supplying the polishing slurry 6 from the polishing liquid supply pipe 5 while applying pressure with a and 4b. Polished at the same time. At this time, by vertically moving the swing jig 9 to which the guide rollers 2a, 2b, 2c are attached,
The glass substrate 1 was rocked. The swing width 10 was determined so that the glass thickness to be polished / reduced was substantially uniform in the radial direction. Pressurization of the polishing pads 4a and 4b is performed by the spring type pressing jig 11
Using the polishing pad 4 via the holder 12 and the shaft 13.
It was performed by pressing a and 4b against the glass substrate 1. The polishing slurry 6 was supplied from the polishing liquid tank 14 by the pump 15.
【0032】研磨パッドとしては軟質パッド(スピード
ファム(株)社製スウェードパッド;商品名ポリテック
ス)を用い、以下の研磨条件で行った。As the polishing pad, a soft pad (Suede Pad manufactured by Speed Fam Co., Ltd .; trade name Polytex) was used, and the polishing was performed under the following polishing conditions.
【0033】研磨スラリー:酸化ジルコニウム(平均粒
径:約0.2μm)+水
研磨圧力:100g/cm2
研磨時間:4分間
ここで、この研磨条件における研磨速度は、片面につき
約0.036μm/分であり、従って、この研磨第2工
程におけるガラス基板の削減厚さは、片面につき約0.
15μmであった。Polishing slurry: Zirconium oxide (average particle size: about 0.2 μm) + water Polishing pressure: 100 g / cm 2 Polishing time: 4 minutes Here, the polishing rate under these polishing conditions is about 0.036 μm / side. Therefore, the reduction thickness of the glass substrate in this second polishing step is about 0.
It was 15 μm.
【0034】この工程は、上述の化学強化工程で発生し
た突起を除去すると同時に、研磨第1工程後にガラス基
板の主表面に残存している微小な傷、凹凸等をも除去す
るものであり、この工程を経て製造したガラス基板の表
面粗さは、前述のAFMにより測定した12μm□の最
大最小値で、平均10nm、最大14nmと十分に小さ
いものであった。In this step, the protrusions generated in the above-mentioned chemical strengthening step are removed, and at the same time, minute scratches, unevenness, etc. remaining on the main surface of the glass substrate after the first polishing step are also removed. The surface roughness of the glass substrate manufactured through this step was 10 μm on average and 14 nm on average, which were sufficiently small with the maximum and minimum values of 12 μm □ measured by the above-mentioned AFM.
【0035】研磨後のガラス基板の主表面をAFMによ
り観察したところ、化学強化工程において発生した突起
はほぼ除去できたことが確認されていた。When the main surface of the glass substrate after polishing was observed by AFM, it was confirmed that the protrusions generated in the chemical strengthening step could be almost removed.
【0036】図9に、研磨後の研磨面の断面を示す。FIG. 9 shows a cross section of the polished surface after polishing.
【0037】また、ガラス基板の反りは、表面形状測定
装置による測定から、平均約1.2μmであり、化学強
化前より若干増大したが、許容値である2μmよりも小
さいものであった。Further, the warp of the glass substrate was about 1.2 μm on average as measured by the surface profile measuring apparatus, which was slightly larger than that before the chemical strengthening, but was smaller than the allowable value of 2 μm.
【0038】ここで、研磨第2工程を、複数枚ごとに研
磨するいわゆるバッチ研磨により行わず、一枚ごとに研
磨を行ういわゆる枚葉研磨により行った理由は、研磨前
のガラス厚さのばらつきを反映して各ガラス基板の厚さ
の削減量にばらつきが生じるのを防止するためである。
即ち、バッチ中板厚が薄いガラス基板に対しては研磨力
が十分に働かず、予定していた研磨が十分に行えなくな
ることを防ぐためである。Here, the reason why the second polishing step is not so-called batch polishing in which a plurality of sheets are polished but so-called single-wafer polishing in which each sheet is polished is the reason why the variation in glass thickness before polishing is performed. This is to prevent variations in the reduction amount of the thickness of each glass substrate by reflecting the above.
That is, the polishing force is not sufficiently exerted on the glass substrate having a thin plate thickness during the batch, and it is intended to prevent the planned polishing from being not sufficiently performed.
【0039】全てのガラス基板について板厚を測定し、
板厚により選別したガラス基板のみをバッチ研磨するこ
とによっても、研磨厚さのばらつきは防止できる。しか
し、この方法は、全数について板厚を検査する必要があ
り、また、一定量のストックをもつ必要があるので生産
効率上却って好ましくない。従って、本発明では、研磨
第2工程として、枚葉研磨する装置によって削磨厚さを
確実に一定範囲内に制御しながら研磨する工程を採用し
た。The plate thickness was measured for all glass substrates,
Variation in the polishing thickness can also be prevented by batch-polishing only the glass substrate selected according to the plate thickness. However, this method is not preferable in terms of production efficiency because it is necessary to inspect the plate thickness for all the pieces and it is necessary to have a fixed amount of stock. Therefore, in the present invention, as the second polishing step, the step of polishing is performed while the polishing thickness is surely controlled within a certain range by the single-wafer polishing apparatus.
【0040】(実施例2)図3は、実施例1において上
記研磨第2工程におけるガラス基板の削減厚さを種々に
変えて得た各ガラス基板について、AFMにより測定し
た12μm□の最大最小値及び表面形状測定装置により
測定した反りとガラス基板の削減厚さを示したものであ
る。Example 2 FIG. 3 shows the maximum and minimum values of 12 μm □ measured by AFM for each glass substrate obtained by changing the reduced thickness of the glass substrate in the second polishing step in Example 1 in various ways. And the warpage measured by the surface shape measuring device and the reduced thickness of the glass substrate.
【0041】これより、表面の平滑性については、削減
する厚さが0.05μm以上ではAFMの最大最小値が
平均20nm以下となってかなり平滑な面が得られてい
ることが、特に削減厚さが0.1μm以上ではAFMの
最大最小値が平均15nm以下となり非常に平滑な面が
得られていることがわかる。また、反りについては、削
減する厚さが0.7μm以下であれば許容値である2μ
mを越えることはなく、特に削減厚さが0.3μm以下
では1.4μm以下となり反りの少ない良好なガラス基
板が得られることがわかる。With respect to the smoothness of the surface, it can be seen that when the thickness to be reduced is 0.05 μm or more, the AFM maximum and minimum values are 20 nm or less on average, and a considerably smooth surface is obtained. Is 0.1 μm or more, the maximum and minimum values of AFM are 15 nm or less on average, and it can be seen that a very smooth surface is obtained. Regarding the warp, if the thickness to be reduced is 0.7 μm or less, the allowable value is 2 μm.
It can be seen that the glass thickness does not exceed m, and particularly when the reduced thickness is 0.3 μm or less, it becomes 1.4 μm or less, and a good glass substrate with less warpage can be obtained.
【0042】これは、削減厚さが0.05μm以下であ
ると、前述の化学強化に伴って発生する突起及び研磨第
1工程において残存した微細な傷や凹凸を十分に除去で
きないためであり、また、削減厚さが0.7μmを越え
ると、両研磨面間の削減厚さの差異が大きくなり、それ
に起因する曲げ応力が増大するためである。This is because if the reduced thickness is 0.05 μm or less, it is not possible to sufficiently remove the protrusions and fine scratches and irregularities remaining in the first polishing step, which are caused by the above-mentioned chemical strengthening. Further, if the reduced thickness exceeds 0.7 μm, the difference in the reduced thickness between both polished surfaces becomes large, and the bending stress resulting from this increases.
【0043】以上より明らかなように、片面の削減厚さ
が0.05μm以上0.7μm以下の範囲内であれば、
極めて平滑な表面を持ち、かつ、反りが十分小さな磁気
記録媒用化学強化ガラス基板を得ることができる。As is clear from the above, if the reduced thickness on one side is in the range of 0.05 μm or more and 0.7 μm or less,
It is possible to obtain a chemically strengthened glass substrate for a magnetic recording medium which has an extremely smooth surface and has a sufficiently small warpage.
【0044】また、量産時の表面凹凸状態、反りのばら
つき及び研磨時間の短縮の観点から、削減するガラス厚
さは0.15μm以上0.3μm以下が特に好ましい。Further, from the viewpoints of surface irregularities during production, unevenness of warpage, and shortening of polishing time, the glass thickness to be reduced is particularly preferably 0.15 μm or more and 0.3 μm or less.
【0045】(実施例3)研磨第二段階における研磨ス
ラリーをコロイダルシリカ(平均粒径:約0.05μ
m)に変える以外は全て実施例1と同一条件でガラス基
板を作製した。ここで、この研磨条件における研磨速度
は、各研磨面について約0.014μm/分であり、従
って、この研磨第二段階における削減厚さは約0.06
μmであった。Example 3 The polishing slurry used in the second polishing step was colloidal silica (average particle size: about 0.05 μm).
A glass substrate was manufactured under the same conditions as in Example 1 except that the glass substrate was changed to m). Here, the polishing rate under this polishing condition is about 0.014 μm / min for each polishing surface, and therefore, the reduced thickness in the second polishing step is about 0.06.
was μm.
【0046】本実施例によるガラス基板の表面粗さは、
AFMにより測定した12μm□の最大最小値で平均8
nm最大10nmとさらに小さいものであった。また、
ガラス基板1の反りは、表面形状測定装置による測定か
ら平均約1.1μmであり、化学強化前よりやや増大し
たが、許容値である2μmよりも小さいものであった。The surface roughness of the glass substrate according to this embodiment is
An average of 8 with a maximum and minimum value of 12 μm □ measured by AFM
The maximum was 10 nm, which was even smaller. Also,
The warp of the glass substrate 1 was about 1.1 μm on average as measured by the surface profile measuring device, and was slightly increased from that before the chemical strengthening, but it was smaller than the allowable value of 2 μm.
【0047】(実施例4)外径34mm、内径8mm、
板厚0.381mmの化学強化後のガラス基板の片面の
みを種々の厚さで削減・研磨し、この削減する厚さと発
生する反りの大きさを表面形状測定装置により計測した
結果を図4に示す。0.15μmの削減厚さの差により
許容値である2μmを上回る反りが発生することがわか
る。Example 4 Outer diameter 34 mm, inner diameter 8 mm,
Fig. 4 shows the results of measuring and reducing the reduced thickness and the amount of warp generated by reducing and polishing only one side of the chemically strengthened glass substrate with a thickness of 0.381 mm to various thicknesses in Fig. 4. Show. It can be seen that due to the difference in the reduced thickness of 0.15 μm, a warp exceeding the allowable value of 2 μm occurs.
【0048】(実施例5)次に、上記の実施例1によっ
て得られたガラス基板を用いて磁気記録媒体としての磁
気ディスクを以下の方法により製造した。Example 5 Next, a magnetic disk as a magnetic recording medium was manufactured by the following method using the glass substrate obtained in Example 1 above.
【0049】まず、実施例1により得たガラス基板の主
表面に、膜厚100nmのTi膜、膜厚150nmのC
r膜、膜厚50nmのCo−Cr−Ta合金膜、膜厚2
0nmのC膜を順次スパッタリングにより成膜した。次
に、パーフロロポリエーテル系の潤滑剤をその表面に塗
布し、磁気ディスクを得た。ここで、Co−Ni−Cr
合金膜は磁性膜であり、その下地層たるCr膜及びTi
膜は磁性膜の磁気特性を向上させる下地膜であり、C膜
は保護膜である。First, a 100 nm-thickness Ti film and a 150 nm-thickness C film were formed on the main surface of the glass substrate obtained in Example 1.
r film, Co-Cr-Ta alloy film with a film thickness of 50 nm, film thickness 2
A 0 nm C film was sequentially formed by sputtering. Next, a perfluoropolyether lubricant was applied to the surface to obtain a magnetic disk. Where Co-Ni-Cr
The alloy film is a magnetic film, and the underlying Cr film and Ti film.
The film is a base film that improves the magnetic characteristics of the magnetic film, and the C film is a protective film.
【0050】この磁気ディスク数枚について、グライド
ハイトテスター(イートン(社)社製;製品No.00
5G)を用いてタッチダウンハイト(以下「TDH」と
いう。)を測定した。この測定の概略を図10に示す。
即ち、磁気ディスク42を十分高速で回転させ、磁気ヘ
ッド41を浮上させ、この状態で磁気ディスク42の回
転数を徐々に下げて行き、磁気ディスク42と磁気ヘッ
ド41との接触が生じ始めるところの磁気ヘッド42の
浮上高さをもってTDHとした。接触の有無は、磁気ヘ
ッドに取り付けたアコースティック・エミッションセン
サーによって検出した。About several of these magnetic disks, glide height tester (manufactured by Eaton Co., Ltd .; product No. 00)
5G) was used to measure the touchdown height (hereinafter referred to as “TDH”). The outline of this measurement is shown in FIG.
That is, the magnetic disk 42 is rotated at a sufficiently high speed, the magnetic head 41 is levitated, and in this state, the rotational speed of the magnetic disk 42 is gradually lowered, and contact between the magnetic disk 42 and the magnetic head 41 begins to occur. The flying height of the magnetic head 42 was taken as TDH. The presence or absence of contact was detected by an acoustic emission sensor attached to the magnetic head.
【0051】本実施例による磁気ディスクのTDHは、
平均20nm、最大25nmであり、極めて良好なもの
であった。このような磁気ディスクは、生産時の種々の
マージンを考慮しても、磁気ヘッドの浮上高さが50n
m以下である磁気ディスク装置に対して容易に適用可能
である。The TDH of the magnetic disk according to this embodiment is
The average was 20 nm and the maximum was 25 nm, which was extremely good. In such a magnetic disk, the flying height of the magnetic head is 50n even if various margins at the time of production are taken into consideration.
It can be easily applied to a magnetic disk device having a size of m or less.
【0052】[0052]
【発明の効果】本発明によれば、磁気ヘッド浮上高さを
50nm程度とする磁気ディスク装置にも使用可能な磁
気記録媒体に適するガラス基板を効率的に生産すること
が可能である。According to the present invention, it is possible to efficiently produce a glass substrate suitable for a magnetic recording medium that can be used in a magnetic disk device having a magnetic head flying height of about 50 nm.
【0053】特に、磁気ヘッド浮上量の低減に障害とな
るガラス基板の反りを抑制しつつ表面平滑性を実現でき
る化学強化後のガラス基板の厚さの削減範囲を明確にし
たため、これを研磨条件に反映させることにより上記ガ
ラス基板を従来よりも効率よく製造する方法を実現し
た。In particular, the reduction range of the thickness of the glass substrate after chemical strengthening which can realize the surface smoothness while suppressing the warp of the glass substrate which is an obstacle to the reduction of the flying height of the magnetic head is clarified. By reflecting this in the above, a method for manufacturing the above glass substrate more efficiently than ever has been realized.
【図1】本発明の実施に適した装置の模式図である。FIG. 1 is a schematic diagram of an apparatus suitable for implementing the present invention.
【図2】本発明の実施に適した装置の研磨部分の模式図
である。FIG. 2 is a schematic view of a polishing portion of an apparatus suitable for carrying out the present invention.
【図3】化学強化処理後のガラス基板のガラス板厚の削
磨量と基板表面の平滑性、基板の反りとの関係を示す図
である。FIG. 3 is a diagram showing the relationship between the amount of abrasion of the glass plate after the chemical strengthening treatment, the smoothness of the substrate surface, and the warp of the substrate.
【図4】化学強化処理後のガラス基板の片側だけを研磨
したときの削減厚さと基板の反りの関係を示す図であ
る。FIG. 4 is a diagram showing the relationship between the reduced thickness and the warp of the substrate when only one side of the glass substrate after being chemically strengthened is polished.
【図5】化学強化処理を施したガラスの断面方向の応力
分布を示す図である。FIG. 5 is a diagram showing a stress distribution in a cross-sectional direction of glass that has been chemically strengthened.
【図6】実施例のラップ工程で用いた装置要部の模式図
である。FIG. 6 is a schematic diagram of a main part of an apparatus used in a lapping process of an example.
【図7】実施例の研磨第1工程で用いた装置要部の模式
図である。FIG. 7 is a schematic diagram of a main part of an apparatus used in a polishing first step of an example.
【図8】化学強化処理後のガラス基板断面を原子間力顕
微鏡で測定した結果を示す図である。FIG. 8 is a diagram showing a result of measuring a cross section of a glass substrate after a chemical strengthening treatment with an atomic force microscope.
【図9】研磨第2工程後のガラス基板断面を原子間力顕
微鏡で測定した結果を示す図である。FIG. 9 is a diagram showing a result of measuring a cross section of a glass substrate after a second polishing step with an atomic force microscope.
【図10】タッチダウンハイト測定の概略を示す図であ
る。FIG. 10 is a diagram showing an outline of touchdown height measurement.
1 ガラス基板 2a、2b、2c ガイドローラ 3 定盤 4a、4b 研磨パッド 5 研磨液供給パイプ 6a、6b 研磨スラリー 7a、7b モーター 8a、8b 駆動ベルト 9 揺動治具 10 揺動幅 11 バネ式加圧治具 12 保持台 13 軸 14 研磨液タンク 15 ポンプ 21 内側治具 22 外側治具23 キャリア 24 鋳鉄定盤 25a アルミナ砥硫を含む研磨スラリー 25b 酸化セリウムを含む研磨スラリー 31 ポリッシュ用パッド 32 ポリッシュ用パッドを接着した定盤 41 磁気ヘッド 42 磁気ディスク 1 glass substrate 2a, 2b, 2c Guide roller 3 surface plates 4a, 4b polishing pad 5 Polishing liquid supply pipe 6a, 6b Polishing slurry 7a, 7b motor 8a, 8b drive belt 9 Swing jig 10 swing width 11 Spring pressure jig 12 holding table 13 axes 14 Polishing liquid tank 15 pumps 21 Inner jig 22 outer jig 23 carrier 24 cast iron surface plate 25a Polishing Slurry Containing Alumina Abrasive 25b Polishing slurry containing cerium oxide 31 Polishing pad 32 Surface plate bonded with polishing pad 41 magnetic head 42 magnetic disk
フロントページの続き (72)発明者 松野 賢介 大阪府大阪市中央区北浜四丁目7番28号 日本板硝子株式会社内 Fターム(参考) 4G059 AA09 AC03 5D112 AA02 BA03 BA09 GA09 GA28Continued front page (72) Inventor Kensuke Matsuno 7-28 Kitahama 4-28, Chuo-ku, Osaka City, Osaka Prefecture Within Nippon Sheet Glass Co., Ltd. F-term (reference) 4G059 AA09 AC03 5D112 AA02 BA03 BA09 GA09 GA28
Claims (5)
面を研磨し平滑にする磁気記録媒体用ガラス基板の製造
方法において、研磨し削減するガラス厚さを各研磨面に
つき0.05μm以上0.7μm以下とすることによ
り、当該各研磨面における原子間力顕微鏡により測定し
た12μm□当たりの凹凸の最大最小値の差異の平均を
8nm以上20nm以下にすることを特徴とする磁気記
録媒体用ガラス基板の製造方法。1. In a method for producing a glass substrate for a magnetic recording medium, which polishes and smoothes a main surface of a chemically strengthened glass substrate, the glass thickness to be polished and reduced is 0.05 μm or more for each polished surface. The glass for a magnetic recording medium is characterized by setting the average of the maximum and minimum values of irregularities per 12 μm square measured by an atomic force microscope on each polished surface to 8 nm or more and 20 nm or less. Substrate manufacturing method.
表面を表面粗さRmax50nm未満とすることを特徴
とする請求項2記載の磁気記録媒体用ガラス基板の製造
方法。2. The method for producing a glass substrate for a magnetic recording medium according to claim 2, wherein each of the main surfaces of the glass substrate before the chemical strengthening treatment has a surface roughness Rmax of less than 50 nm.
m〜0.2μmの粒径の砥粒により研磨することを特徴
とする請求項1又は2記載の磁気記録媒体用ガラス基板
の製造方法。3. 0.02 μ of each of the main surfaces of the glass substrate
The method for producing a glass substrate for a magnetic recording medium according to claim 1 or 2, wherein polishing is performed with abrasive grains having a grain size of m to 0.2 µm.
を供給しつつ研磨パッドを用いて片面につき0.014
μm/分〜0.036μm/分の研削速度で研削するこ
とを特徴とする請求項1乃至3のいずれか1項に記載の
磁気記録媒体用ガラス基板の製造方法。4. A polishing pad is used while supplying a polishing slurry to the main surface of the glass substrate to form 0.014 per side.
The method for manufacturing a glass substrate for a magnetic recording medium according to claim 1, wherein the glass substrate is ground at a grinding speed of μm / min to 0.036 μm / min.
厚さの差異を0.15μm以下にすることを特徴とする
請求項1乃至4のいずれか1項に記載の磁気記録媒体用
ガラス基板の製造方法。5. The glass substrate for a magnetic recording medium according to claim 1, wherein the difference in the reduced thickness between both polished surfaces of the glass substrate is 0.15 μm or less. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253352A JP2003157522A (en) | 2002-08-30 | 2002-08-30 | Method of manufacturing glass substrate for magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253352A JP2003157522A (en) | 2002-08-30 | 2002-08-30 | Method of manufacturing glass substrate for magnetic recording medium |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23313699A Division JP3641171B2 (en) | 1999-08-19 | 1999-08-19 | Method for manufacturing glass substrate for magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003157522A true JP2003157522A (en) | 2003-05-30 |
Family
ID=19196631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002253352A Pending JP2003157522A (en) | 2002-08-30 | 2002-08-30 | Method of manufacturing glass substrate for magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003157522A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217204A (en) * | 2006-02-14 | 2007-08-30 | Konica Minolta Opto Inc | Glass substrate for magnetic recording medium and method for producing the same |
-
2002
- 2002-08-30 JP JP2002253352A patent/JP2003157522A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217204A (en) * | 2006-02-14 | 2007-08-30 | Konica Minolta Opto Inc | Glass substrate for magnetic recording medium and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005645B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
CN108447507B (en) | Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and grinding tool | |
JP3162558B2 (en) | Glass substrate for magnetic recording medium and method of manufacturing magnetic recording medium | |
JP7270682B2 (en) | Fixed abrasive grindstone and glass substrate manufacturing method | |
JP3254157B2 (en) | Glass substrate for recording medium, and recording medium using the substrate | |
JP5361185B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
WO2012029857A1 (en) | Method for producing glass substrate for magnetic disks, and method for producing magnetic disk | |
JP5297281B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP2004055128A (en) | Manufacturing method of glass disk substrate for magnetic recording medium | |
JP5227132B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP2010005772A (en) | Method of processing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method of manufacturing magnetic disk | |
JP2001191247A (en) | Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium | |
JP5074311B2 (en) | Magnetic disk glass substrate processing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method | |
JP5350853B2 (en) | Manufacturing method of glass substrate and manufacturing method of magnetic recording medium | |
JP2003157522A (en) | Method of manufacturing glass substrate for magnetic recording medium | |
JP2001250224A (en) | Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium | |
JP3641171B2 (en) | Method for manufacturing glass substrate for magnetic recording medium | |
JP5265429B2 (en) | Manufacturing method of glass substrate and manufacturing method of magnetic recording medium | |
JP5461936B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP2005293840A (en) | Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk | |
JP5701938B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP5639215B2 (en) | Glass substrate for magnetic disk, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk | |
JP2010231841A (en) | Method for manufacturing glass substrate, glass substrate and magnetic recording medium | |
CN109285565B (en) | Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk | |
WO2012132073A1 (en) | Method for manufacturing glass substrate for information recording medium, and information recording medium |