JP3641171B2 - Method for manufacturing glass substrate for magnetic recording medium - Google Patents

Method for manufacturing glass substrate for magnetic recording medium Download PDF

Info

Publication number
JP3641171B2
JP3641171B2 JP23313699A JP23313699A JP3641171B2 JP 3641171 B2 JP3641171 B2 JP 3641171B2 JP 23313699 A JP23313699 A JP 23313699A JP 23313699 A JP23313699 A JP 23313699A JP 3641171 B2 JP3641171 B2 JP 3641171B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
glass
thickness
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23313699A
Other languages
Japanese (ja)
Other versions
JP2000105922A (en
Inventor
好洋 松野
慎也 片山
賢介 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP23313699A priority Critical patent/JP3641171B2/en
Publication of JP2000105922A publication Critical patent/JP2000105922A/en
Application granted granted Critical
Publication of JP3641171B2 publication Critical patent/JP3641171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体用ガラス基板及び前記ガラス基板を用いた磁気記録媒体の製造方法に関する。
【0002】
【従来の技術】
磁気ディスク記憶装置の大容量化にともなって、記録密度の向上のために磁気ヘッド浮上量の低減が図られている。このためには平滑性に優れた磁気記録媒体が必要とされるが、通常の薄膜型磁気記録媒体においては磁性膜厚が0.5μm程度以下と薄く、基板の表面状態が磁気記録媒体の平滑性に著しく影響を及ぼすため、平滑性に優れた基板に対する要求が大きくなってきている。このような要求に対し、ガラス基板は研磨によって比較的容易に表面の平滑化を図ることができるという特徴を有するため、磁気記録媒体用基板として採用され始めている。
【0003】
磁気記録媒体用ガラス基板の加工は、通常、加工順に以下の工程からなり、この工程を経て製造されたガラス基板は、磁気ヘッド浮上量が75nm程度の磁気ディスク装置に対して適用が可能である。
1.円盤加工工程:板ガラスを円盤形状のガラス基板に加工する工程ラップ工程
2.ラップ工程:ガラス基板を所定の板厚に加工する工程
3.研磨工程:ガラス基板の表面を研磨し平滑にする工程
4.化学強化工程:ガラス基板に化学強化を施す工程
ここで、3.研磨工程は、通常、それ以前の工程においてガラス基板に生じたクラック等の加工変質層を除去するための第一段階の研磨と、ガラス基板の表面平滑性を所定のレベルにするための第二段階の研磨の2段階の研磨工程から構成されている。
【0004】
一方、3.研磨工程のうち上記第二段階の研磨を4.化学強化工程後に行う方法が知られている(特開昭63−175219号)。この理由は前記文献中では明らかにされていないが、ガラス基板の表面をさらに平滑にすることを意図したものと推察される。
【0005】
【発明が解決しようとする課題】
しかしながら、さらに磁気ヘッド浮上量を低減するため、上記方法により化学強化後のガラス基板をさらに研磨した場合には、より平滑な表面を有するガラス基板を得ることはできるものの、ガラス基板の反りが生じ易いことが判明した。このガラス基板の反りは、磁気記録媒体の軸方向加速度の増大をもたらし、磁気ヘッドの浮上特性を劣化させて記録密度向上を阻害する要因となる。
【0006】
以上の事情に鑑み、本発明は、優れた平滑性を有し、反りも少なく、磁気ヘッド浮上量50nm程度の磁気ディスク装置に対しても適用可能な磁気記録媒体用ガラス基板の効率的な製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、化学強化処理を施したガラスディスク基板の主表面を研磨し平滑にする磁気記録媒体用ガラスディスク基板の製造方法において、前記ガラスディスク基板の主表面の両面を、0.02μm〜0.2μmの粒径の砥粒と研磨パッドを用いて同時に研磨し、その削減するガラス厚さを各研磨面につき0.1μm以上0.7μm以下とし、両研磨面における削減厚さの差異を0.15μm以下にし、当該各研磨面における原子間力顕微鏡により測定した12μm□当たりの凹凸の最大値と最小値の差異の平均を15nm以下にすることを特徴とする磁気記録媒体用ガラスディスク基板の製造方法である。
【0009】
【発明の実施の形態】
化学強化処理とは、使用するガラスのガラス転移点以下の温度領域において、ガラス表面近傍のイオンをより大きなイオン半径を有するイオンに置換してガラス表面に圧縮応力を発生させることをいい、例えば、ガラスを硝酸カリウム溶融塩中に浸漬させ、ガラス中のナトリウムイオンを前記溶融塩中のカリウムイオンに置換することにより行われる。
【0010】
本発明に用いることができるガラスは、化学強化処理が可能であれば特に制限はなく、ソーダ石灰ガラス、ホウ珪酸ガラス、アルミノホウ珪酸ガラス等を用いることができる。
【0011】
尚、本発明に使用できる研磨材としては、酸化セリウム、アルミナ砥粒、ダイヤモンド砥粒、コロイダルシリカ砥粒、酸化ジルコニウム砥粒等を挙げることができるが、研磨面の平滑性向上の観点から、無水硅酸の超微粒子をコロイド溶液としたコロイダルシリカ、酸化ジルコニウムの超微粒子等の遊離砥粒が望ましい。また、一般に砥粒の粒径が小さいほど表面平滑性は向上するが、一方では砥粒価格も上昇するため、本発明の実施には0.02μm〜0.2μmの粒径の砥粒が特に好ましい。さらには、砥粒の形状としては球形に近いものが平滑性向上の観点から好ましい。
【0012】
本発明によれば、ガラス基板表面を研磨しガラス厚さを削減する量が、ガラス基板の反りを一定値以上としない範囲以内でありながら一定の表面平滑性を確保するのに必要な範囲以上であるため、表面平滑性に優れ、かつ、反りの少ない化学強化ガラス基板を製造することができる。
【0013】
化学強化処理を施したガラス基板の応力分布は、図5に示すように、表面付近の圧縮応力が非常に大きい一方、表面から内部に進むと応力値が急激に減少する。このため、化学強化処理後のガラス基板を研磨する場合には、ガラス基板の研磨面間で削減するガラス厚さに差があると、この差異が微小であっても、研磨面間における応力のバランスがくずれて大きな曲げ応力が発生し、結果として、特に板厚が薄い磁気記録媒体用ガラス基板にあっては、容易に反りの原因となる。
【0014】
この削減する厚さの差異はガラス基板両面の研磨速度の差によって生じるため、研磨条件を基板両面で同一とするように留意する必要があるが、この条件を厳密に同一とすることは極めて困難であるため、上記反りを回避するためには削減するガラス厚さを一定値以下とせざるを得ない。
【0015】
しかし、削減する厚さを小さくしすぎると表面平滑性を失するおそれがある。特に、化学強化後のガラス基板上には、本発明者が後述する実施例において確認したように、数十nmの突起が生じており、少なくともこの突起を取り除く程度には表面を研磨する必要があると考えられる。
【0016】
本発明によれば、化学強化処理後のガラス基板の研磨により削減するガラス厚さとガラス基板の表面平滑性または反りの関係を後述する実施例により確認し、削減厚さを一定範囲内に制御することにより、優れた表面平滑性を有しつつ基板の反りも実用上支障のない範囲としたため、磁気ヘッド浮上量を低減し得るガラス基板を効率的に製造することが可能である。
【0017】
【実施例】
(実施例1)
1.円盤加工工程
まず、40mm角、厚さ0.7mmのソーダライムシリケートガラスからなる板ガラスを、ダイヤモンド工具を用いて、外径34mm、内径8mmのドーナツ状に円盤加工し、さらに、外周端面及び内周端面に所定の面取り加工を施した。
【0018】
2.ラップ工程
図6に示したラップ装置を用いてラップ工程を行った。ラップ砥粒としては粒度#1000のアルミナ砥粒25aを用い、研磨圧力を200g/cm2 程度に設定し、内側ギヤ21と外側ギヤ22とを回転させることにより、FRP製のキャリア23内に設置したガラス基板1の両面をラッピングした。この加工により、ガラス基板の板厚を0.45mm、表面粗さをRmax 2μm程度にした。
【0019】
3.研磨第1工程
図7に示した研磨装置を用いて、上記のラップ工程で発生したクラック等の加工変質層を除去した。ここで、図7に示した研磨装置は、図6に示したラップ装置における鋳鉄定盤24の代わりにその内表面にポリッシュ用パッド31を接着した定盤32を用いる点と、アルミナ砥粒の代わりに酸化セリウム砥粒を水と混合した研磨スラリー25bを用いる点のみがラップ装置と異なるが、他は同じである。この研磨第1工程は、ポリッシュ用パッド31として硬質パッド(スピードファム(株)社製ポリウレタンパッド;商品名MHC15A)を用い、以下の研磨条件で行った。
【0020】
研磨スラリー:酸化セリウム(平均粒径:約1.5μm)+水
研磨圧力:200g/cm2
研磨時間:30分間
除去量:60μm(両面)
【0021】
この研磨第1工程により、ガラス基板1の表面粗さは、原子間力顕微鏡(デジタルインスツルメント(株)社製;商品名NanoScope:以下「AFM」という。)による表面12μm□あたりの凹凸の最大値と最小値の差異(以下単に「最大最小値」という。)で、平均18nm、最大35nm程度になった。また、ガラス基板1の反りは、表面形状測定装置(ZYGO(株)社製;ZYGOMark 4)による測定から、平均約1μmであった。尚、本工程においては、表面粗さをRmax 50nm未満とすることが望ましい。研磨第2工程との関連において生産効率を上げる等の理由からである。
【0022】
4.化学強化工程
ガラス基板を450℃に加熱した硝酸カリウム溶融塩中に20時間浸漬して化学強化処理を行い、表面に圧縮応力層を形成した。光学式測定機によれば、この応力層の厚みは約60μm、表面の圧縮応力は約60kgf/mm2であった。
【0023】
この化学強化工程により、ガラス基板の表面粗さは、AFMによる12μm□の最大最小値が平均27nm、最大45nmとなり、表面平滑性は同工程前よりも悪化した。
【0024】
化学強化処理後のガラス基板の主表面をAFMにより観察したところ、ガラス基板の表面には直径0.2μm程度、高さ数十nmの多数の突起が多数存在していた。化学強化処理前のガラス基板にはこのような多数の突起は観察されないことから、この突起は化学強化処理に伴ってガラス基板上に発生したものである。
【0025】
図8に、この突起のうち最大級のものを含む研磨面の断面を示す。
【0026】
また、ガラス基板の反りは、前述の表面形状測定装置による測定から平均約1μmであり、化学強化処理前と同一であった。
【0027】
尚、本工程において形成する応力層の厚みはイオン交換時の温度・時間を制御することにより10μm〜200μmとすることが適当である。
【0028】
5.研磨第2工程
図1及び図2に示した研磨装置を用いて、一枚ごとにガラス基板の両面を同時に研磨した。即ち、ガラス基板1を、ガイドローラ2a、2b、2cにより鉛直状態に保持し、ガラス基板1の両側に対向して設けた定盤3a、3b上にそれぞれ両面テープで接着された研磨パッド4a、4bにより加圧しつつ、研磨液供給パイプ5から研磨スラリー6を供給しながらモーター7a、7bにより駆動ベルト8a、8bを介して研磨パッド4a、4bを回転させることによりガラス基板1の両面を同時に研磨した。このとき、ガイドローラ2a、2b、2cが取り付けられた揺動治具9を上下に駆動させることにより、ガラス基板1を揺動した。揺動幅10は、研磨・削減されるガラス厚が半径方向にほぼ一様になるように決定した。研磨パッド4a、4bの加圧はバネ式加圧治具11を用いて、保持台12、軸13を介して研磨パッド4a、4bをガラス基板1に押し付けることにより行った。また、研磨スラリー6は、研磨液タンク14からポンプ15によって供給した。
【0029】
研磨パッドとしては軟質パッド(スピードファム(株)社製スウェードパッド;商品名ポリテックス)を用い、以下の研磨条件で行った。
【0030】
研磨スラリー:酸化ジルコニウム(平均粒径:約0.2μm)+水
研磨圧力:100g/cm2
研磨時間:4分間
【0031】
ここで、この研磨条件における研磨速度は、片面につき約0.036μm/分であり、従って、この研磨第2工程におけるガラス基板の削減厚さは、片面につき約0.15μmであった。
【0032】
この工程は、上述の化学強化工程で発生した突起を除去すると同時に、研磨第1工程後にガラス基板の主表面に残存している微小な傷、凹凸等をも除去するものであり、この工程を経て製造したガラス基板の表面粗さは、前述のAFMにより測定した12μm□の最大最小値で、平均10nm、最大14nmと十分に小さいものであった。
【0033】
研磨後のガラス基板の主表面をAFMにより観察したところ、化学強化工程において発生した突起はほぼ除去できたことが確認されていた。
【0034】
図9に、研磨後の研磨面の断面を示す。
【0035】
また、ガラス基板の反りは、表面形状測定装置による測定から、平均約1.2μmであり、化学強化前より若干増大したが、許容値である2μmよりも小さいものであった。
【0036】
ここで、研磨第2工程を、複数枚ごとに研磨するいわゆるバッチ研磨により行わず、一枚ごとに研磨を行ういわゆる枚葉研磨により行ったのは、研磨前のガラス厚さのばらつきを反映して各ガラス基板の厚さの削減量にばらつきが生じるのを防止するためである。即ち、バッチ中板厚が薄いガラス基板に対しては研磨力が十分に働かず、予定していた研磨が十分に行えなくなることを防ぐためである。
【0037】
全てのガラス基板について板厚を測定し、板厚により選別したガラス基板のみをバッチ研磨することによっても、研磨厚さのばらつきは防止できる。しかし、この方法は、全数について板厚を検査する必要があり、また、一定量のストックをもつ必要があるので生産効率上却って好ましくない。従って、本発明では、研磨第2工程として、枚葉研磨する装置によって削磨厚さを確実に一定範囲内に制御しながら研磨する工程を採用した。
【0038】
(実施例2)
図3は、実施例1において上記研磨第2工程におけるガラス基板の削減厚さを種々に変えて得た各ガラス基板について、AFMにより測定した12μm□の最大最小値及び表面形状測定装置により測定した反りとガラス基板の削減厚さを示したものである。
【0039】
これより、表面の平滑性については、削減する厚さが0.05μm以上ではAFMの最大最小値が平均20nm以下となってかなり平滑な面が得られていることが、特に削減厚さが0.1μm以上ではAFMの最大最小値が平均15nm以下となり非常に平滑な面が得られていることがわかる。また、反りについては、削減する厚さが0.7μm以下であれば許容値である2μmを越えることはなく、特に削減厚さが0.3μm以下では1.4μm以下となり反りの少ない良好なガラス基板が得られることがわかる。
【0040】
これは、削減厚さが0.05μm以下であると、前述の化学強化に伴って発生する突起及び研磨第1工程において残存した微細な傷や凹凸を十分に除去できないためであり、また、削減厚さが0.7μmを越えると、両研磨面間の削減厚さの差異が大きくなり、それに起因する曲げ応力が増大するためである。
【0041】
以上より明らかなように、片面の削減厚さが0.05μm以上0.7μm以下の範囲内であれば、極めて平滑な表面を持ち、かつ、反りが十分小さな磁気記録媒用化学強化ガラス基板を得ることができる。
【0042】
また、量産時の表面凹凸状態、反りのばらつき及び研磨時間の短縮の観点から、削減するガラス厚さは0.15μm以上0.3μm以下が特に好ましい。
【0043】
(実施例3)
研磨第2段階における研磨スラリーをコロイダルシリカ(平均粒径:約0.05μm)に変える以外はすべて実施例1と同一条件でガラス基板を作製した。ここで、この研磨条件における研磨速度は、各研磨面について約0.014μm/分であり、従って、この研磨第2段階における削減厚さは約0.06μmであった。
【0044】
本実施例によるガラス基板の表面粗さは、AFMにより測定した12μm□の最大最小値で平均8nm最大10nmとさらに小さいものであった。また、ガラス基板1の反りは、表面形状測定装置による測定から平均約1.1μmであり、化学強化前よりやや増大したが、許容値である2μmよりも小さいものであった

【0045】
(実施例4)
外径34mm、内径8mm、板厚0.381mmの化学強化後のガラス基板の片面のみを種々の厚さで削減・研磨し、この削減する厚さと発生する反りの大きさを表面形状測定装置により計測した結果を図4に示す。0.15μmの削減厚さの差により許容値である2μmを上回る反りが発生することがわかる。
【0046】
(実施例5)
次に、上記の実施例1によって得られたガラス基板を用いて磁気記録媒体としての磁気ディスクを以下の方法により製造した。
【0047】
まず、実施例1により得たガラス基板の主表面に、膜厚100nmのTi膜、膜厚150nmのCr膜、膜厚50nmのCo−Cr−Ta合金膜、膜厚20nmのC膜を順次スパッタリングにより成膜した。次に、パーフロロポリエーテル系の潤滑剤をその表面に塗布し、磁気ディスクを得た。ここで、Co−Ni−Cr合金膜は磁性膜であり、その下地層たるCr膜及びTi膜は磁性膜の磁気特性を向上させる下地膜であり、C膜は保護膜である。
【0048】
この磁気ディスク数枚について、グライドハイトテスター(イートン(社)社製;製品No.005G)を用いてタッチダウンハイト(以下「TDH」という。)を測定した。この測定の概略を図10に示す。即ち、磁気ディスク42を十分高速で回転させ、磁気ヘッド41を浮上させ、この状態で磁気ディスク42の回転数を徐々に下げて行き、磁気ディスク42と磁気ヘッド41との接触が生じ始めるところの磁気ヘッド42の浮上高さをもってTDHとした。接触の有無は、磁気ヘッドに取り付けたアコースティック・エミッションセンサーによって検出した。
【0049】
本実施例による磁気ディスクのTDHは、平均20nm、最大25nmであり、極めて良好なものであった。このような磁気ディスクは、生産時の種々のマージンを考慮しても、磁気ヘッドの浮上高さが50nm以下である磁気ディスク装置に対して容易に適用可能である。
【0050】
【発明の効果】
本発明によれば、磁気ヘッド浮上高さを50nm程度とする磁気ディスク装置にも使用可能な磁気記録媒体に適するガラス基板を効率的に生産することが可能である。
【0051】
特に、磁気ヘッド浮上量の低減に障害となるガラス基板の反りを抑制しつつ表面平滑性を実現できる化学強化後のガラス基板の厚さの削減範囲を明確にしたため、これを研磨条件に反映させることにより上記ガラス基板を従来よりも効率よく製造する方法を実現した。
【図面の簡単な説明】
【図1】本発明の実施に適した装置の模式図
【図2】本発明の実施に適した装置の研磨部分の模式図
【図3】化学強化処理後のガラス基板のガラス板厚の削磨量と基板表面の平滑性、基板の反りとの関係を示す図
【図4】化学強化処理後のガラス基板の片側だけを研磨したときの削減厚さと基板の反りの関係を示す図
【図5】化学強化処理を施したガラスの断面方向の応力分布を示す図
【図6】実施例のラップ工程で用いた装置要部の模式図
【図7】実施例の研磨第1工程で用いた装置要部の模式図
【図8】化学強化処理後のガラス基板断面を原子間力顕微鏡で測定した結果を示す図
【図9】研磨第2工程後のガラス基板断面を原子間力顕微鏡で測定した結果を示す図
【図10】タッチダウンハイト測定の概略を示す図
【符号の説明】
1 ガラス基板、
2a、2b、2c ガイドローラ、
3 定盤、
4a、4b 研磨パッド、
5 研磨液供給パイプ、
6a、6b 研磨スラリー、
7a、7b モーター、
8a、8b 駆動ベルト、
9 揺動治具、
10 揺動幅、
11 バネ式加圧治具、
12 保持台、
13 軸、
14 研磨液タンク、
15 ポンプ、
21 内側治具、
22 外側治具、
23 キャリア、
24 鋳鉄定盤、
25a アルミナ砥硫を含む研磨スラリー、
25b 酸化セリウムを含む研磨スラリー、
31 ポリッシュ用パッド、
32 ポリッシュ用パッドを接着した定盤、
41 磁気ヘッド、
42 磁気ディスク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass substrate for a magnetic recording medium and a method for producing a magnetic recording medium using the glass substrate.
[0002]
[Prior art]
As the capacity of a magnetic disk storage device increases, the flying height of the magnetic head is reduced in order to improve the recording density. For this purpose, a magnetic recording medium having excellent smoothness is required. However, in a normal thin-film magnetic recording medium, the magnetic film thickness is as thin as about 0.5 μm or less, and the surface state of the substrate is smooth. Since the performance is remarkably affected, there is an increasing demand for a substrate having excellent smoothness. In response to such demands, a glass substrate has a feature that the surface can be smoothed relatively easily by polishing. Therefore, the glass substrate has begun to be adopted as a substrate for a magnetic recording medium.
[0003]
Processing of a glass substrate for a magnetic recording medium usually includes the following steps in the order of processing, and the glass substrate manufactured through this step can be applied to a magnetic disk device having a magnetic head flying height of about 75 nm. .
1. Disk processing step: a process lapping step for processing plate glass into a disk-shaped glass substrate. 2. Lapping step: A step of processing a glass substrate to a predetermined plate thickness. Polishing step: A step of polishing and smoothing the surface of the glass substrate. Chemical strengthening step: a step of chemically strengthening a glass substrate. The polishing step is usually a first step for removing a work-affected layer such as a crack generated in the glass substrate in the previous step, and a second step for bringing the surface smoothness of the glass substrate to a predetermined level. It consists of a two-stage polishing process of stage polishing.
[0004]
On the other hand, 3. 3. The second stage polishing in the polishing step. A method performed after the chemical strengthening step is known (Japanese Patent Laid-Open No. 63-175219). Although this reason is not clarified in the said literature, it is guessed that it intended to make the surface of a glass substrate smooth further.
[0005]
[Problems to be solved by the invention]
However, in order to further reduce the flying height of the magnetic head, when the glass substrate after chemical strengthening is further polished by the above method, a glass substrate having a smoother surface can be obtained, but warpage of the glass substrate occurs. It turned out to be easy. This warpage of the glass substrate causes an increase in the axial acceleration of the magnetic recording medium, which degrades the flying characteristics of the magnetic head and hinders the improvement in recording density.
[0006]
In view of the above circumstances, the present invention provides an efficient production of a glass substrate for a magnetic recording medium that can be applied to a magnetic disk device having excellent smoothness, little warpage, and a magnetic head flying height of about 50 nm. It aims to provide a method.
[0007]
[Means for Solving the Problems]
The present invention provides a method for producing a glass disk substrate for a magnetic recording medium in which the main surface of a glass disk substrate subjected to chemical strengthening treatment is polished and smoothed, and both surfaces of the main surface of the glass disk substrate are 0.02 μm to 0 mm. Polishing at the same time using a 2 μm grain size abrasive and a polishing pad, the glass thickness to be reduced is 0.1 μm or more and 0.7 μm or less for each polished surface, and the difference in the reduced thickness on both polished surfaces to 0.15μm or less, the glass disk for a magnetic recording medium characterized to Rukoto the average of the difference between the maximum value and the minimum value of irregularities per 12 [mu] m □ as measured by atomic force microscopy in the polished surface 15nm or less A method for manufacturing a substrate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Chemical strengthening treatment refers to generating compressive stress on the glass surface by substituting ions in the vicinity of the glass surface with ions having a larger ionic radius in the temperature region below the glass transition point of the glass used, for example, It is performed by immersing the glass in molten potassium nitrate and replacing sodium ions in the glass with potassium ions in the molten salt.
[0010]
The glass that can be used in the present invention is not particularly limited as long as it can be chemically strengthened, and soda-lime glass, borosilicate glass, aluminoborosilicate glass, and the like can be used.
[0011]
Incidentally, examples of the abrasive that can be used in the present invention include cerium oxide, alumina abrasive grains, diamond abrasive grains, colloidal silica abrasive grains, zirconium oxide abrasive grains, etc., from the viewpoint of improving the smoothness of the polished surface, Free abrasive grains such as colloidal silica using ultrafine succinic anhydride as a colloidal solution and ultrafine particles of zirconium oxide are desirable. In general, the smaller the grain size of the abrasive grains, the better the surface smoothness. On the other hand, the price of the abrasive grains also rises. Therefore, abrasive grains having a grain size of 0.02 μm to 0.2 μm are particularly suitable for carrying out the present invention. preferable. Furthermore, the shape of the abrasive grains is preferably a spherical shape from the viewpoint of improving smoothness.
[0012]
According to the present invention, the amount of polishing the glass substrate surface and reducing the glass thickness is within a range that does not make the glass substrate warp to be a certain value or more, but more than a range necessary to ensure a certain surface smoothness. Therefore, a chemically strengthened glass substrate having excellent surface smoothness and little warpage can be produced.
[0013]
As shown in FIG. 5, the stress distribution of the glass substrate subjected to the chemical strengthening treatment has a very large compressive stress in the vicinity of the surface, while the stress value sharply decreases when proceeding from the surface to the inside. For this reason, when polishing a glass substrate after chemical strengthening treatment, if there is a difference in the glass thickness to be reduced between the polished surfaces of the glass substrate, even if this difference is small, the stress between the polished surfaces is reduced. The balance is lost and a large bending stress is generated. As a result, particularly in a glass substrate for a magnetic recording medium having a thin plate thickness, it easily causes a warp.
[0014]
Since the difference in thickness to be reduced is caused by the difference in the polishing rate on both sides of the glass substrate, it is necessary to take care that the polishing conditions are the same on both sides of the substrate, but it is extremely difficult to make these conditions exactly the same. Therefore, in order to avoid the warp, the glass thickness to be reduced must be a certain value or less.
[0015]
However, if the thickness to be reduced is too small, the surface smoothness may be lost. In particular, on the glass substrate after chemical strengthening, as confirmed in Examples described later by the inventor, protrusions of several tens of nanometers are formed, and it is necessary to polish the surface at least to the extent that these protrusions are removed. It is believed that there is.
[0016]
According to the present invention, the relationship between the glass thickness to be reduced by polishing the glass substrate after the chemical strengthening treatment and the surface smoothness or warpage of the glass substrate is confirmed by examples described later, and the reduced thickness is controlled within a certain range. Accordingly, since the substrate warpage is within a range that does not impede practically while having excellent surface smoothness, it is possible to efficiently manufacture a glass substrate that can reduce the flying height of the magnetic head.
[0017]
【Example】
(Example 1)
1. Disc processing step First, plate glass made of soda lime silicate glass of 40 mm square and 0.7 mm thick is disked into a donut shape with an outer diameter of 34 mm and an inner diameter of 8 mm using a diamond tool. A predetermined chamfering process was performed on the end face.
[0018]
2. Lapping process The lapping process was performed using the lapping apparatus shown in FIG. As the lapping abrasive grains, alumina abrasive grains 25a having a grain size of # 1000 are used, the polishing pressure is set to about 200 g / cm 2 , and the inner gear 21 and the outer gear 22 are rotated to be installed in the carrier 23 made of FRP. The both surfaces of the glass substrate 1 were wrapped. By this processing, the plate thickness of the glass substrate was set to 0.45 mm, and the surface roughness was set to about Rmax 2 μm.
[0019]
3. Polishing First Process Using the polishing apparatus shown in FIG. 7, a work-affected layer such as a crack generated in the lapping process was removed. Here, the polishing apparatus shown in FIG. 7 uses a surface plate 32 in which a polishing pad 31 is bonded to the inner surface instead of the cast iron surface plate 24 in the lapping apparatus shown in FIG. Instead, it differs from the lapping apparatus only in that a polishing slurry 25b in which cerium oxide abrasive grains are mixed with water is used, but the rest is the same. This first polishing step was carried out under the following polishing conditions using a hard pad (polyurethane pad manufactured by Speedfam Co., Ltd .; trade name: MHC15A) as the polishing pad 31.
[0020]
Polishing slurry: cerium oxide (average particle size: about 1.5 μm) + water polishing pressure: 200 g / cm 2
Polishing time: 30 minutes Removal amount: 60 μm (both sides)
[0021]
By this first polishing step, the surface roughness of the glass substrate 1 is determined by an atomic force microscope (manufactured by Digital Instruments Co., Ltd .; trade name NanoScope: hereinafter referred to as “AFM”) with irregularities per surface of 12 μm □. The difference between the maximum value and the minimum value (hereinafter simply referred to as “maximum / minimum value”) was about 18 nm on average and about 35 nm on maximum. Moreover, the curvature of the glass substrate 1 was about 1 micrometer on the average from the measurement by a surface shape measuring apparatus (ZYGOMark 4 made by ZYGO Co., Ltd.). In this step, it is desirable that the surface roughness be less than Rmax 50 nm. This is because the production efficiency is increased in relation to the second polishing step.
[0022]
4). Chemical strengthening process A glass substrate was immersed in molten potassium nitrate heated to 450 ° C. for 20 hours for chemical strengthening treatment to form a compressive stress layer on the surface. According to the optical measuring machine, the thickness of the stress layer was about 60 μm, and the compressive stress on the surface was about 60 kgf / mm 2 .
[0023]
As a result of this chemical strengthening step, the surface roughness of the glass substrate was an average maximum of 12 μm square of 27 μm and a maximum of 45 nm by AFM, and the surface smoothness was worse than before the step.
[0024]
When the main surface of the glass substrate after the chemical strengthening treatment was observed by AFM, a large number of many protrusions having a diameter of about 0.2 μm and a height of several tens of nm were present on the surface of the glass substrate. Since such a large number of protrusions are not observed on the glass substrate before the chemical strengthening treatment, the protrusions are generated on the glass substrate along with the chemical strengthening treatment.
[0025]
FIG. 8 shows a cross section of the polished surface including the largest of the protrusions.
[0026]
Further, the warpage of the glass substrate was about 1 μm on average from the measurement by the surface shape measuring device described above, and was the same as before the chemical strengthening treatment.
[0027]
The thickness of the stress layer formed in this step is suitably 10 μm to 200 μm by controlling the temperature and time during ion exchange.
[0028]
5. Polishing Second Step Both surfaces of the glass substrate were simultaneously polished for each sheet using the polishing apparatus shown in FIGS. That is, the polishing pad 4a, which holds the glass substrate 1 in a vertical state by the guide rollers 2a, 2b, 2c and is bonded to the surface plates 3a, 3b provided opposite to both sides of the glass substrate 1 with double-sided tape, respectively. Polishing both surfaces of the glass substrate 1 at the same time by rotating the polishing pads 4a and 4b via the drive belts 8a and 8b by the motors 7a and 7b while supplying the polishing slurry 6 from the polishing liquid supply pipe 5 while applying pressure by the polishing liquid supply pipe 5b. did. At this time, the glass substrate 1 was rocked by driving the rocking jig 9 attached with the guide rollers 2a, 2b, and 2c up and down. The oscillation width 10 was determined so that the glass thickness to be polished and reduced was almost uniform in the radial direction. The pressing of the polishing pads 4 a and 4 b was performed by pressing the polishing pads 4 a and 4 b against the glass substrate 1 through the holding table 12 and the shaft 13 using the spring-type pressing jig 11. The polishing slurry 6 was supplied from the polishing liquid tank 14 by a pump 15.
[0029]
As a polishing pad, a soft pad (Suede pad manufactured by Speed Fam Co., Ltd .; trade name Polytex) was used under the following polishing conditions.
[0030]
Polishing slurry: zirconium oxide (average particle size: about 0.2 μm) + water polishing pressure: 100 g / cm 2
Polishing time: 4 minutes [0031]
Here, the polishing rate under this polishing condition was about 0.036 μm / min per side, and therefore the reduced thickness of the glass substrate in this second polishing step was about 0.15 μm per side.
[0032]
This process removes the protrusions generated in the above-described chemical strengthening process, and at the same time removes fine scratches, irregularities, etc. remaining on the main surface of the glass substrate after the first polishing process. The surface roughness of the glass substrate produced through the process was sufficiently small, with an average of 10 nm and a maximum of 14 nm, being the maximum and minimum values of 12 μm □ measured by the AFM described above.
[0033]
When the main surface of the polished glass substrate was observed by AFM, it was confirmed that the protrusions generated in the chemical strengthening step could be almost removed.
[0034]
FIG. 9 shows a cross section of the polished surface after polishing.
[0035]
Further, the warpage of the glass substrate was about 1.2 μm on average from the measurement by the surface shape measuring device, which was slightly increased from that before chemical strengthening, but was smaller than the allowable value of 2 μm.
[0036]
Here, the second polishing step is not performed by so-called batch polishing for polishing a plurality of sheets, but is performed by so-called single wafer polishing for polishing one by one, reflecting the variation in glass thickness before polishing. This is to prevent variation in the thickness reduction amount of each glass substrate. That is, the polishing force does not sufficiently act on the glass substrate having a thin plate thickness in the batch, and the planned polishing cannot be prevented sufficiently.
[0037]
Variation in the polishing thickness can also be prevented by measuring the plate thickness of all the glass substrates and batch polishing only the glass substrates selected by the plate thickness. However, this method is not preferable in terms of production efficiency because it is necessary to inspect the plate thickness for all units and to have a certain amount of stock. Therefore, in the present invention, as the second polishing step, a step of polishing while reliably controlling the polishing thickness within a certain range by a single wafer polishing apparatus is adopted.
[0038]
(Example 2)
FIG. 3 shows the maximum and minimum values of 12 μm square measured by AFM and the surface shape measuring device for each glass substrate obtained by variously changing the reduced thickness of the glass substrate in the second polishing step in Example 1. It shows the warpage and the reduced thickness of the glass substrate.
[0039]
From this, regarding the smoothness of the surface, when the thickness to be reduced is 0.05 μm or more, the maximum and minimum values of AFM are 20 nm or less on average, and a fairly smooth surface is obtained. It can be seen that when the thickness is .1 μm or more, the maximum and minimum values of AFM are 15 nm or less on average and a very smooth surface is obtained. As for warpage, if the thickness to be reduced is 0.7 μm or less, the allowable value of 2 μm is not exceeded. Especially when the reduction thickness is 0.3 μm or less, it is 1.4 μm or less and good glass with little warpage. It can be seen that a substrate is obtained.
[0040]
This is because if the reduced thickness is 0.05 μm or less, the protrusions generated by the above-described chemical strengthening and the fine scratches and irregularities remaining in the first polishing step cannot be sufficiently removed. This is because if the thickness exceeds 0.7 μm, the difference in the reduced thickness between both polished surfaces becomes large, and the bending stress resulting therefrom increases.
[0041]
As is clear from the above, if the reduced thickness on one side is in the range of 0.05 μm or more and 0.7 μm or less, a chemically strengthened glass substrate for a magnetic recording medium having an extremely smooth surface and sufficiently small warpage is obtained. Can be obtained.
[0042]
Moreover, the glass thickness to be reduced is particularly preferably not less than 0.15 μm and not more than 0.3 μm from the viewpoint of surface unevenness in mass production, variation in warpage and shortening of polishing time.
[0043]
(Example 3)
A glass substrate was produced under the same conditions as in Example 1 except that the polishing slurry in the second polishing stage was changed to colloidal silica (average particle diameter: about 0.05 μm). Here, the polishing rate under this polishing condition was about 0.014 μm / min for each polishing surface, and thus the reduction thickness in this polishing second stage was about 0.06 μm.
[0044]
The surface roughness of the glass substrate according to this example was as small as an average of 8 nm and a maximum of 10 nm, with a maximum and minimum value of 12 μm □ measured by AFM. Further, the warpage of the glass substrate 1 was about 1.1 μm on average from the measurement by the surface shape measuring device and increased slightly before chemical strengthening, but was smaller than the allowable value of 2 μm.
[0045]
(Example 4)
Only one side of the chemically strengthened glass substrate having an outer diameter of 34 mm, an inner diameter of 8 mm, and a plate thickness of 0.381 mm is reduced and polished with various thicknesses, and the thickness to be reduced and the size of the generated warp are measured by a surface shape measuring device. The measurement results are shown in FIG. It can be seen that the warpage exceeding the allowable value of 2 μm occurs due to the difference in the reduced thickness of 0.15 μm.
[0046]
(Example 5)
Next, a magnetic disk as a magnetic recording medium was manufactured by the following method using the glass substrate obtained in Example 1 above.
[0047]
First, a 100 nm thick Ti film, a 150 nm thick Cr film, a 50 nm thick Co—Cr—Ta alloy film, and a 20 nm thick C film are sequentially sputtered onto the main surface of the glass substrate obtained in Example 1. Was formed. Next, a perfluoropolyether lubricant was applied to the surface to obtain a magnetic disk. Here, the Co—Ni—Cr alloy film is a magnetic film, the Cr film and the Ti film as the underlayer are base films that improve the magnetic properties of the magnetic film, and the C film is a protective film.
[0048]
The touchdown height (hereinafter referred to as “TDH”) was measured for several magnetic disks using a glide height tester (manufactured by Eaton Corporation; product No. 005G). An outline of this measurement is shown in FIG. That is, the magnetic disk 42 is rotated at a sufficiently high speed, the magnetic head 41 is floated, and the rotational speed of the magnetic disk 42 is gradually lowered in this state, and contact between the magnetic disk 42 and the magnetic head 41 begins to occur. The flying height of the magnetic head 42 was defined as TDH. The presence or absence of contact was detected by an acoustic emission sensor attached to the magnetic head.
[0049]
The TDH of the magnetic disk according to this example was 20 nm on average and 25 nm at maximum, which was extremely good. Such a magnetic disk can be easily applied to a magnetic disk apparatus in which the flying height of the magnetic head is 50 nm or less, even in consideration of various margins during production.
[0050]
【The invention's effect】
According to the present invention, it is possible to efficiently produce a glass substrate suitable for a magnetic recording medium that can also be used in a magnetic disk device having a magnetic head flying height of about 50 nm.
[0051]
In particular, the reduction range of the thickness of the glass substrate after chemical strengthening that can realize surface smoothness while suppressing warpage of the glass substrate that hinders the reduction of the flying height of the magnetic head has been clarified, and this is reflected in the polishing conditions. As a result, a method for producing the glass substrate more efficiently than the conventional method was realized.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus suitable for carrying out the present invention. FIG. 2 is a schematic view of a polished portion of the apparatus suitable for carrying out the present invention. Fig. 4 shows the relationship between the amount of polishing, the smoothness of the substrate surface, and the warpage of the substrate. Fig. 4 shows the relationship between the reduced thickness and the warpage of the substrate when only one side of the glass substrate after chemical strengthening is polished. 5 is a diagram showing the stress distribution in the cross-sectional direction of the glass subjected to chemical strengthening treatment. FIG. 6 is a schematic diagram of the main part of the apparatus used in the lapping process of the example. FIG. 7 is used in the first polishing process of the example. Schematic diagram of the main part of the device [Fig. 8] Fig. 9 shows the result of measuring the cross section of the glass substrate after chemical strengthening with an atomic force microscope. [Fig. 9] Measuring the cross section of the glass substrate after the second polishing step with an atomic force microscope. Fig. 10 shows the result of the measurement. Fig. 10 shows the outline of the touchdown height measurement.
1 glass substrate,
2a, 2b, 2c guide rollers,
3 Surface plate,
4a, 4b polishing pad,
5 Polishing liquid supply pipe,
6a, 6b polishing slurry,
7a, 7b motor,
8a, 8b drive belt,
9 Swing jig,
10 Oscillation width,
11 Spring-type pressure jig,
12 holding stand,
13 axes,
14 Polishing liquid tank,
15 pump,
21 inner jig,
22 Outer jig,
23 Career,
24 Cast iron surface plate,
25a Abrasive slurry containing alumina abrasive,
25b A polishing slurry containing cerium oxide,
31 Polishing pad,
32 A surface plate with a polishing pad bonded,
41 magnetic head,
42 Magnetic disk

Claims (1)

化学強化処理を施したガラスディスク基板の主表面を研磨し平滑にする磁気記録媒体用ガラスディスク基板の製造方法において、前記ガラスディスク基板の主表面の両面を、0.02μm〜0.2μmの粒径の砥粒と研磨パッドを用いて同時に研磨し、その削減するガラス厚さを各研磨面につき0.1μm以上0.7μm以下とし、両研磨面における削減厚さの差異を0.15μm以下にし、当該各研磨面における原子間力顕微鏡により測定した12μm□当たりの凹凸の最大値と最小値の差異の平均を15nm以下にすることを特徴とする磁気記録媒体用ガラスディスク基板の製造方法。In the method for manufacturing a glass disk substrate for a magnetic recording medium, wherein the main surface of the glass disk substrate subjected to chemical strengthening treatment is polished and smoothed, both surfaces of the main surface of the glass disk substrate are formed with grains of 0.02 μm to 0.2 μm. Polishing simultaneously using diameter abrasive grains and polishing pad, the glass thickness to be reduced is 0.1 μm or more and 0.7 μm or less for each polishing surface, and the difference in reduction thickness between both polishing surfaces is 0.15 μm or less to method of manufacturing a magnetic recording medium for a glass disk substrate, wherein to Rukoto the average of the difference between the maximum value and the minimum value of irregularities per 12 [mu] m □ as measured by atomic force microscopy in the polished surface 15nm or less .
JP23313699A 1999-08-19 1999-08-19 Method for manufacturing glass substrate for magnetic recording medium Expired - Lifetime JP3641171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23313699A JP3641171B2 (en) 1999-08-19 1999-08-19 Method for manufacturing glass substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23313699A JP3641171B2 (en) 1999-08-19 1999-08-19 Method for manufacturing glass substrate for magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28220993A Division JP3162558B2 (en) 1993-11-11 1993-11-11 Glass substrate for magnetic recording medium and method of manufacturing magnetic recording medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002253352A Division JP2003157522A (en) 2002-08-30 2002-08-30 Method of manufacturing glass substrate for magnetic recording medium
JP2003199436A Division JP2004055128A (en) 2003-07-18 2003-07-18 Manufacturing method of glass disk substrate for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2000105922A JP2000105922A (en) 2000-04-11
JP3641171B2 true JP3641171B2 (en) 2005-04-20

Family

ID=16950305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23313699A Expired - Lifetime JP3641171B2 (en) 1999-08-19 1999-08-19 Method for manufacturing glass substrate for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3641171B2 (en)

Also Published As

Publication number Publication date
JP2000105922A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP5297549B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2010001844A1 (en) Magnetic disc substrate, method for manufacturing the same, and magnetic disc
JP2004342307A (en) Method for manufacturing glass substrate for magnetic recording medium
JP3568888B2 (en) Glass substrate for information recording medium, information recording medium, and method for producing them
JP4790973B2 (en) Method for manufacturing glass substrate for information recording medium using polishing pad and glass substrate for information recording medium obtained by the method
JP2006092722A (en) Magnetic disk substrate and production method of magnetic disk
JP3162558B2 (en) Glass substrate for magnetic recording medium and method of manufacturing magnetic recording medium
JP3254157B2 (en) Glass substrate for recording medium, and recording medium using the substrate
JP5577290B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP5361185B2 (en) Manufacturing method of glass substrate for magnetic disk
JP3554476B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JP2001167430A (en) Substrate for magnetic disk and its manufacturing method
JP2000185927A (en) Polishing method and apparatus therefor, and glass substrate for magnetic recording medium, and magnetic recording medium
JP2004055128A (en) Manufacturing method of glass disk substrate for magnetic recording medium
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2001191247A (en) Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP3641171B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5227132B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2010005772A (en) Method of processing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2004265582A (en) Glass substrate for magnetic disk, and magnetic disk
JP2007090452A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JP2001250224A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2010009723A (en) Method of machining glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2009104703A (en) Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP4347146B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

EXPY Cancellation because of completion of term