WO2012086256A1 - Method of manufacturing glass substrate for recording medium - Google Patents

Method of manufacturing glass substrate for recording medium Download PDF

Info

Publication number
WO2012086256A1
WO2012086256A1 PCT/JP2011/068061 JP2011068061W WO2012086256A1 WO 2012086256 A1 WO2012086256 A1 WO 2012086256A1 JP 2011068061 W JP2011068061 W JP 2011068061W WO 2012086256 A1 WO2012086256 A1 WO 2012086256A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
substrate precursor
recording medium
chemical strengthening
Prior art date
Application number
PCT/JP2011/068061
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012086256A1 publication Critical patent/WO2012086256A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a method for producing a glass substrate for a recording medium.
  • a hard disk drive device is a device that magnetically records information on a magnetic disk as an information recording medium having a recording layer formed on a substrate by a magnetic head.
  • a substrate for such an information recording medium that is, a so-called substrate
  • a glass substrate is suitably used (hereinafter, such a glass substrate is also referred to as “glass substrate for recording medium”).
  • the magnetic head when recording information on a magnetic disk (glass substrate for recording medium), the magnetic head is levitated with respect to the magnetic disk without contacting the magnetic disk. It is known that the recording density can be improved by reducing the flying height of the magnetic head. Therefore, in order to increase the recording density by reducing the flying height of the magnetic head, the glass substrate for recording medium is required to have high smoothness and high cleanliness.
  • Such a glass substrate for a recording medium is manufactured by polishing a plurality of times using a glass base plate (hereinafter also referred to as “glass substrate precursor”).
  • a glass base plate hereinafter also referred to as “glass substrate precursor”.
  • JP 2009-076167 A discloses a method for manufacturing a glass substrate for a recording medium.
  • Patent Document 1 in a method for producing a glass substrate for an information recording medium having a polishing step for polishing the surface of a glass substrate, the arithmetic average roughness Ra of the surface of the glass substrate after the polishing step is 0.2 nm or less, undulation
  • a method for producing a glass substrate for an information recording medium is disclosed, characterized in that Wa is 0.5 nm or less and microwaviness ⁇ Wa is 0.2 nm or less.
  • the waviness of the glass substrate for recording medium As the smoothness of the glass substrate for recording medium, and there exists a waviness of 10,000 ⁇ m to 5000 ⁇ m. It has become clear that there is a possibility that the glass substrate for recording medium and the magnetic head come into contact with each other, and this contact may cause reading / writing failure of information or damage the magnetic head. And when further research was conducted, it was found that the waviness mainly occurred in the process of removing the chemically strengthened layer using an abrasive for the glass substrate precursor in the manufacturing process of the glass substrate for recording medium. found.
  • the glass substrate precursor is formed with a chemically strengthened layer to reinforce its surface, but the chemical strengthened layer is sufficiently effective only by being formed on the outer peripheral end surface or inner peripheral end surface of the glass substrate precursor.
  • the recording surface may be removed, and undulation occurs during the removal process.
  • the present invention has been made on the basis of the above-described knowledge, and its object is to produce a glass substrate for a recording medium in which the above-described swell generated during the production process is reduced as much as possible. Is to provide.
  • the present invention relates to a method for producing a glass substrate for a recording medium using a glass substrate precursor, a step of forming a chemical strengthening layer on the surface of the glass substrate precursor, and using a first polishing liquid, Removing the chemical strengthening layer from the recording surface of the glass substrate precursor, wherein the first polishing liquid contains water and a first abrasive, and the first abrasive contains CeO 2 ,
  • An effective amount of CeO 2 in the step of removing the chemical strengthening layer is 0.05 to 0.5 ⁇ g / cm 2 .
  • the present invention may include a step of polishing the recording surface of the glass substrate precursor using a second polishing liquid different from the first polishing liquid after the step of removing the chemical strengthening layer.
  • concentration of the first abrasive in the first polishing liquid is preferably 1 to 9% by mass.
  • the present invention also includes a step of grinding the surface of the glass substrate precursor before the step of forming the chemical strengthening layer, and after the step of grinding the surface of the glass substrate precursor, the glass substrate precursor.
  • the surface of the body preferably has an arithmetic average roughness Ra of 0.1 ⁇ m or less.
  • the first abrasive has a maximum value of 3.5 ⁇ m or less and a cumulative 50 volume% diameter D50 of 0.5 to 1.5 ⁇ m in a particle size distribution measured by a laser diffraction scattering method.
  • the first polishing liquid preferably contains 60% by mass or more of CeO 2 with respect to the total solid content.
  • the glass substrate for a recording medium manufactured by the manufacturing method of the present invention has as few wavinesses as possible, when it is used with a hard disk drive device or the like, information read / write failure occurs or the magnetic head is It can be prevented from being damaged.
  • the present invention relates to a method for producing a glass substrate for a recording medium using a glass substrate precursor, and a step of forming a chemical strengthening layer on the surface of the glass substrate precursor (hereinafter referred to as “chemical strengthening layer forming step”). And a step of removing the chemical strengthening layer from the recording surface of the glass substrate precursor using the first polishing liquid (hereinafter also referred to as “chemical strengthening layer removing step”).
  • the method for producing a glass substrate for a recording medium of the present invention can include other steps as long as it includes the chemical strengthening layer forming step and the chemical strengthening layer removing step.
  • a glass substrate precursor preparation process for preparing a glass substrate precursor can be exemplified.
  • the glass substrate for a recording medium produced by the present invention is used as a substrate for an information recording medium in an information recording apparatus such as a hard disk drive device, and its size and shape are not particularly limited.
  • the outer diameter is 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, etc.
  • the thickness is 2 mm, 1 mm, 0.65 mm, 0.8 mm, etc. be able to.
  • a hole for setting in the information recording apparatus may be formed in the disc-shaped central portion.
  • a glass substrate precursor preparation process is a process performed before performing the chemical strengthening layer formation process of this invention, and is a process of preparing the glass substrate precursor for performing a chemical strengthening layer formation process.
  • Such a glass substrate precursor preparation step includes, for example, the following steps. First, a glass material is melted (glass melting step), molten glass is poured into a lower mold, and press molding is performed with an upper mold to obtain a disk-shaped glass substrate precursor (press molding process). Note that the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using such a press molding process.
  • the glass material is not particularly limited as long as it can be chemically strengthened by ion exchange.
  • soda lime glass mainly composed of SiO 2 , Na 2 O, CaO
  • R ′ Mg, Ca, Sr, Ba
  • aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.
  • the glass substrate precursor press-molded as described above is perforated at the center with a core drill or the like having a diamond grindstone or the like in the cutter (coring process).
  • a core drill or the like having a diamond grindstone or the like in the cutter (coring process).
  • the end face of the hole is referred to as an inner circumference.
  • both surfaces of the glass substrate precursor with holes formed therein are ground to preliminarily adjust the overall shape of the glass substrate precursor, that is, the parallelism, flatness and thickness of the glass substrate precursor (first lapping step) ).
  • the inner and outer diameters are processed by grinding the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor with, for example, a grinding wheel such as a drum-shaped diamond (inner / outer diameter processing step).
  • a grinding wheel such as a drum-shaped diamond
  • the inner peripheral end face of the glass substrate is made to have a curved corner at the chamfered portion by brush polishing using a polishing liquid, and fine scratches and the like are removed (inner peripheral end face processing step).
  • both surfaces of the glass substrate precursor are ground again to finely adjust the parallelism, flatness and thickness of the glass substrate (second lapping step).
  • the outer peripheral end surface of the glass substrate is subjected to brush polishing using a polishing liquid so that the corners of the chamfered portion are curved surfaces, and fine scratches are removed (outer peripheral end surface processing step).
  • the order from the first lapping step after the coring processing to the outer peripheral end surface processing step is not limited to the one shown above, and can be changed as appropriate according to the situation.
  • the first and second lapping processes may be performed as one process first, and then the inner / outer diameter machining process, the inner circumference and outer circumference end face machining processes may be performed. Further, after the first lapping step and the inner / outer diameter machining step, the second lapping step, the inner circumference and the outer circumference end face machining step may be performed.
  • the double-sided grinding machine includes a disk-shaped upper surface plate and a lower surface plate that are arranged vertically so as to be parallel to each other, and rotate in opposite directions.
  • the recording surface of the glass substrate precursor the surface of the glass substrate precursor having a large area excluding the outer peripheral end surface and the inner peripheral end surface, the main surface or simply A plurality of diamond pellets for grinding the surface (also called the surface) are attached.
  • the upper and lower surface plates there are a plurality of carriers that rotate in combination with an internal gear provided in an annular shape on the outer periphery of the lower surface plate and a sun gear provided around the rotation axis of the lower surface plate.
  • the carrier is provided with a plurality of holes, and the glass substrate precursor is fitted into the holes and arranged.
  • the upper and lower surface plates, the internal gear and the sun gear can be operated by separate driving.
  • the so-called lapping process including the first lapping process and the second lapping process is a process of processing the glass substrate precursor to a predetermined plate thickness. Specifically, for example, a step of grinding (lapping) both surfaces of the glass substrate precursor can be mentioned. By doing so, the parallelism, flatness, and thickness of the glass substrate precursor can be adjusted. Further, this lapping step may be performed once or twice or more. For example, in the case of performing twice, in the first lapping step (first lapping step), the parallelism, flatness and thickness of the glass substrate precursor are preliminarily adjusted, and in the second lapping step (second lapping step), Finely adjust the parallelism, flatness and thickness of the glass substrate precursor.
  • examples of the first lapping step include a step in which the entire surface of the glass substrate precursor has a substantially uniform surface roughness.
  • a mechanical method using loose abrasive polishing by a surface grinder can be applied.
  • the difference between the minimum value and the maximum value of Ra obtained should be about 0.01 to 0.4 ⁇ m. Is preferred.
  • the second lapping step is preferably a step in which the arithmetic average roughness Ra of the glass substrate precursor surface is 0.1 ⁇ m or less and the flatness is 7 ⁇ m or less.
  • the surface roughness Ra is 0.1 ⁇ m or less, and it is preferable that the surface roughness Ra is as low as possible. However, if the surface roughness Ra is too low, the surface becomes too smooth. Since the processing becomes difficult in the lapping process, it is considered that 0.01 ⁇ m is the limit.
  • a method of grinding with a fixed abrasive polishing pad set in a lapping apparatus can be applied.
  • a fixed abrasive polishing pad for example, a commercially available one can be used, such as a three-dimensional fixed abrasive with a surface pattern such as Trizacto (diamond tile size 2 ⁇ m, manufactured by Sumitomo 3M Co., Ltd.) 2 ⁇ m. Can be used.
  • the surface roughness of the recording surface of the glass substrate precursor has a maximum height Rmax of 1.0 ⁇ m and an arithmetic average roughness Ra. Is preferably 0.1 ⁇ m or less. More preferably, Ra is 0.05 ⁇ m or less.
  • the present invention includes a step of grinding the surface of the glass substrate precursor (that is, the lapping step described above) before the step of forming a chemical strengthening layer described later, and the surface of the glass substrate precursor is ground.
  • the surface of the glass substrate precursor has an arithmetic average roughness Ra of 0.1 ⁇ m. The following is preferable.
  • the inner peripheral and outer peripheral end faces of the glass substrate precursor are polished by brush polishing in the inner peripheral and outer peripheral end face processing steps.
  • the brush is preferably made of nylon, polypropylene or the like having a diameter of about 0.2 to 0.3 mm.
  • the polishing liquid preferably contains cerium oxide (CeO 2 ) having a particle size of about several ⁇ m.
  • the surface roughness of the inner and outer peripheral end faces is preferably such that Rmax is 0.2 ⁇ m to 0.4 ⁇ m and Ra is about 0.02 ⁇ m to 0.04 ⁇ m.
  • the shape of the end surface of the glass substrate precursor that has undergone the inner and outer diameter processing steps and the inner and outer peripheral end surface processing steps is such that the corner formed by the main surface and the end surface is removed, and 0.2 mm to 0.5 mm from the outer end surface It will be in a state of sagging from the main surface from a certain position.
  • the arithmetic average roughness Ra centerline average roughness
  • the maximum height Rmax are defined in JIS B0601: 2001. These can be measured by an atomic force microscope (AFM) or the like. These rules and measurement methods are common to the other Ra and Rmax in this specification unless otherwise specified.
  • the grinding machines used in the first lapping process and the second lapping process have the same configuration, but it is preferable to perform grinding using separate grinding machines prepared exclusively for each process. This is because the dedicated diamond pellets are pasted, so that the replacement is a large-scale operation, and complicated operations such as resetting the grinding conditions are required, resulting in a decrease in manufacturing efficiency.
  • the chemical strengthening layer forming step of the present invention is a step of forming a chemical strengthening layer on the surface of the glass substrate precursor prepared through the glass substrate precursor preparing step. Such a process usually reinforces the surface of the glass substrate precursor using a chemical strengthening treatment liquid.
  • a chemically strengthened layer forming step can be employed without any particular limitation to a conventionally known method known as a chemical strengthening step in the method for producing a glass substrate for recording medium.
  • a step of immersing the glass substrate precursor in a chemical strengthening treatment liquid can be exemplified.
  • a chemical strengthening layer is formed in the area
  • the surface of the glass substrate precursor in the expression “to form the chemical strengthening layer on the surface of the glass substrate precursor” includes a recording surface, an inner peripheral end surface, and an outer peripheral end surface. .
  • the alkali metal ions such as lithium ions and sodium ions contained in the glass substrate precursor are immersed by immersing the glass substrate precursor in a heated chemical strengthening treatment liquid. It is carried out by an ion exchange method that substitutes alkali metal ions such as potassium ions having a larger ion radius. Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and the surface of the glass substrate precursor is strengthened in the region.
  • Examples of such chemical strengthening treatment liquid include nitrate. Specifically, a salt obtained by mixing sodium nitrate and potassium nitrate is heated, and the glass substrate precursor is immersed in the molten liquid.
  • the glass substrate precursor is preferably washed with a neutral detergent and pure water and dried after being treated with such a chemical strengthening treatment solution.
  • the interface between the chemically strengthened layer and the non-chemically strengthened region is determined based on whether or not ions introduced by ion exchange are present, and is usually SEM-EDX (scanning electron microscope-energy dispersive type).
  • SEM-EDX scanning electron microscope-energy dispersive type
  • the cross section of the glass substrate precursor is measured using X-ray spectroscopy, and the point where the ratio of sodium and potassium is the same as the glass composition is taken as the interface. For this reason, the determination as to whether or not the chemical strengthening layer has been removed by the process described later is also based on the same measurement, and in the absence of ions introduced by ion exchange, the chemical strengthening layer has been removed. to decide.
  • Such a chemically strengthened layer has an effect of improving impact resistance, vibration resistance, heat resistance and the like.
  • an effect can be obtained by forming a chemical strengthening layer only on the end face (that is, the outer peripheral end face and the inner peripheral end face) of the glass substrate precursor.
  • the reinforcing layer is removed from the surface (that is, the recording surface) of the glass substrate precursor. This is because, by removing the chemical strengthening layer from the recording surface in this way, it is possible to obtain an advantage of not generating scratches or dents that occur during processing.
  • the chemical strengthening layer removing step of the present invention is a step of removing the chemical strengthening layer from the recording surface of the glass substrate precursor using the first polishing liquid.
  • the first polishing liquid contains water and a first abrasive
  • the first abrasive contains CeO 2 (cerium oxide).
  • the effective CeO 2 amount in the chemical strengthening layer removing step is 0.05 to 0.5 ⁇ g / cm 2 .
  • Such a chemical strengthening layer removing step removes the chemical strengthening layer from the recording surface of the glass substrate precursor, precisely finishes the recording surface of the glass substrate precursor, and has a desired shape of the outer peripheral edge of the recording surface. It has the effect of finishing into a shape. Furthermore, this chemical strengthening layer removing step improves the surface roughness and efficiently obtains the final shape so that the surface roughness finally required in the polishing step described later can be efficiently obtained. It also has the effect of adjusting its shape so that it can be made.
  • the chemical strengthening layer removing step is performed by polishing the recording surface of the glass substrate precursor on which the chemical strengthening layer is formed, using a pad holding the first polishing liquid.
  • the layer is removed.
  • the first polishing liquid contains at least water and a first abrasive
  • the first abrasive contains at least CeO 2 .
  • the first abrasive may contain other abrasives as long as it contains CeO 2 in this way. Examples of such other abrasives include zirconium silicate, zirconia, alumina, colloidal silica, and the like.
  • the concentration of the first abrasive in the first polishing liquid is preferably 1 to 9% by mass, and more preferably 3 to 7% by mass. If the amount is less than 1% by mass, sufficient polishing action cannot be obtained. If the amount exceeds 9% by mass, the effective CeO 2 amount exceeds the above range, and undulation may occur.
  • the first polishing liquid may preferably include CeO 2 60 wt% or more based on the total solid content, more preferably it contains more than 90 wt%.
  • CeO 2 is less than 60% by mass, a sufficient polishing action cannot be obtained. In this respect, the higher the concentration of CeO 2 , the better.
  • polishing agent, surfactant, a dispersing agent, a chelating agent, etc. may be contained.
  • the first abrasive has a maximum value of 3.5 ⁇ m or less and a cumulative 50 volume% diameter D50 of 0.5 to 1.5 ⁇ m in a particle size distribution measured by a laser diffraction scattering method. preferable.
  • the maximum value is more preferably 2.5 ⁇ m or less, and the cumulative 50 volume% diameter D50 is more preferably 0.5 to 1.2 ⁇ m. If the maximum value exceeds 3.5 ⁇ m, scratches may occur on the recording surface, which may not be preferable. Further, if the cumulative 50 volume% diameter D50 is less than 0.5 ⁇ m, the processing is difficult to perform and the production efficiency is deteriorated, and if it exceeds 1.5 ⁇ m, the roughness after processing becomes rough, which is not preferable.
  • the effective CeO 2 amount in the chemical strengthening layer removing step is an index indicating the degree or strength of the action of the first abrasive on the recording surface of the glass substrate precursor in the step, which is 0.05.
  • the effective CeO 2 amount is more preferably 0.1 to 0.4 ⁇ g / cm 2 .
  • the effective amount of CeO 2 is less than 0.05 [mu] g / cm 2, or could not be sufficiently removed chemically strengthened layer, it becomes impossible to obtain a sufficient polishing effect.
  • the effective CeO 2 amount exceeds 0.5 ⁇ g / cm 2 , undulation occurs in the glass substrate.
  • Such an effective CeO 2 amount can be achieved by controlling the first abrasive concentration in the first polishing liquid and the CeO 2 content in the total solid content as described above.
  • the effective CeO 2 amount refers to a numerical value measured as follows.
  • the glass substrate precursor immediately after the chemical strengthening layer removing step is immersed in a mixed solution of 50 ml of nitric acid and 10 ml of 35 mass% hydrogen peroxide solution for 30 minutes at a liquid temperature of 80 ° C.
  • a rinsing step for cleaning the glass substrate precursor is performed after the chemical strengthening layer removing step is completed.
  • the glass substrate before such cleaning that is, immediately after the chemical strengthening layer removing step
  • the glass substrate precursor is taken out of the mixed solution, and then the mass of Ce contained in the mixed solution is measured using an inductively coupled plasma mass spectrometer (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometer
  • “7700s” trade name manufactured by Agilent Technologies can be used.
  • the mass of the measured Ce it calculates the CeO 2 mass in the recording surface of the glass substrate precursor during chemical strengthening layer removing step.
  • it is the effective amount of CeO 2 as determined from the area of the mass and the glass substrate precursor of the recording surface of the calculated CeO 2 (both sides).
  • the pad for holding the first polishing liquid is a hard pad having a hardness A of about 80 to 90.
  • a pad made of urethane foam is preferably used.
  • the hardness of the pad becomes soft due to the heat generated by polishing, the shape change of the polished surface increases, so it is preferable to use a hard pad.
  • Such a chemically strengthened layer removing step can be normally performed using a polishing apparatus having a structure similar to that of the grinding machine described above.
  • the weight applied to the glass substrate precursor by the surface plate of the polishing apparatus Is preferably 90 g / cm 2 to 110 g / cm 2 .
  • the load applied to the glass substrate precursor by the surface plate greatly affects the shape of the outer peripheral edge. As the weight is increased, the inner side of the outer peripheral end portion tends to decrease and increase toward the outer side. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases. The weight can be determined while observing such a tendency.
  • the rotation speed of the surface plate is 25 rpm to 50 rpm, and the rotation speed of the upper surface plate is 30% to 40% slower than the rotation speed of the lower surface plate.
  • polishing amount it is preferable to employ the above polishing conditions and set the polishing amount to 30 ⁇ m to 40 ⁇ m (that is, to remove the region from the surface to a depth of 30 ⁇ m to 40 ⁇ m so that the chemical strengthening layer can be completely removed). If it is less than 30 ⁇ m, scratches and defects may not be sufficiently removed. On the other hand, when the thickness exceeds 40 ⁇ m, it is possible to obtain a surface roughness in which Rmax is in the range of 2 to 60 nm and Ra is in the range of 2 to 4 nm. Thereby, the chemical strengthening layer on the recording surface of the glass substrate precursor can be completely removed.
  • the dispersing agent which has polycarboxylic acid as a main component is preferably about 0.25 to 5 parts by mass with respect to 1 part by mass of the first abrasive. This is because the concentration is sufficient to enhance dispersibility.
  • the main component polycarboxylic acid preferably has an average molecular weight of about 1000 to 2000. This is to prevent the viscosity from affecting.
  • Other dispersing agents can be used as long as the same dispersibility can be obtained. For example, a sulfonic acid-based or phosphonic acid-based dispersant can be used.
  • the effective CeO 2 amount is not only the concentration of the first abrasive and the content of CeO 2 with respect to the total solid content, but also the load on the glass substrate precursor, the rotational speed of the polishing apparatus, and the difference between the upper and lower surfaces of the rotational speed. It is also possible to make adjustments by appropriately adjusting the above. For example, if the load on the glass substrate precursor is increased, the effective CeO 2 amount tends to increase, and the effective CeO 2 amount tends to increase even if the rotational speed of the polishing apparatus is increased. Even if the difference is increased, the effective CeO 2 amount tends to increase.
  • the recording surface of the glass substrate precursor is polished using a second polishing liquid different from the first polishing liquid (hereinafter also referred to as “polishing step”). It is preferable to contain.
  • Such a polishing step is a step of further precisely polishing the recording surface of the glass substrate precursor after the chemical strengthening layer removing step. Specifically, it is a step of polishing the recording surface of the glass substrate precursor from which the chemical strengthening layer has been removed, using a pad holding a second polishing liquid different from the first polishing liquid.
  • the second polishing liquid one containing water and a second abrasive can be used.
  • the second abrasive CeO 2 (cerium oxide) can be contained in the same manner as the first abrasive, but in order to make the recording surface of the glass substrate precursor more smooth, the grains are smaller than the first abrasive. It is preferable to use an abrasive having a finer diameter and less variation.
  • the average particle size of the second abrasive is preferably about 20 nm. And it can be set as a 2nd polishing liquid by disperse
  • the mixing ratio of water and the second abrasive is preferably about 1: 9 to 3: 7.
  • components other than CeO 2 can include the same components as those mentioned for the first abrasive.
  • the pad for holding the second polishing liquid is a soft pad having a hardness of about 65 to 80 (Asker-C) that is softer than the pad used in the chemical strengthening layer removing step.
  • the pad is made of urethane foam or suede. It is preferable to use a pad made of metal.
  • Such a polishing step can usually be performed using a polishing apparatus similar to the above, but the weight applied to the glass substrate by the surface plate of the polishing apparatus should be 90 g / cm 2 to 110 g / cm 2. preferable.
  • the load applied to the glass substrate by the surface plate greatly affects the shape of the outer peripheral edge as in the chemical strengthening layer removal process, but the shape cannot be changed as efficiently as the chemical strengthening layer removal process because the polishing rate is slow. .
  • the change in the shape of the outer peripheral end due to the increase / decrease of the weight is the same as in the chemical strengthening layer removing step. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases.
  • the rotation speed of the surface plate is preferably 15 rpm to 35 rpm, and the rotation speed of the upper surface plate is preferably 30% to 40% slower than the rotation speed of the lower surface plate.
  • the shape of the outer peripheral edge of the present invention is obtained, and the surface roughness of the recording surface is Rmax 2 nm to 6 nm and Ra is 0.2 nm to 0.4 nm. It can be a range.
  • the polishing amount is preferably 1 ⁇ m to 5 ⁇ m (that is, polished and removed from the surface to a depth of 1 ⁇ m to 5 ⁇ m). By setting the polishing amount within this range, it is possible to efficiently remove minute defects such as minute roughness and undulation generated on the surface, and minute scratches generated in the steps so far.
  • polishing process it is preferable not to use the polishing apparatus used in the chemical strengthening layer removing process as it is, but to perform polishing using another polishing apparatus having the same configuration but prepared for each process. This is because, if the polishing apparatus used in the chemical strengthening layer removal process is used as it is, the polishing accuracy in the polishing process decreases due to the first abrasive remaining in the chemical strengthening layer removal process, or the polishing conditions are reset. This is because complicated work is required and the production efficiency is lowered.
  • the glass substrate for recording medium of the present invention can be produced by washing the glass substrate precursor with acid or alkali after the completion of such a polishing step and subsequently conducting inspection.
  • the method for producing a glass substrate for recording medium of the present invention may have various steps other than those described above. For example, heat shock process for confirming strength reliability of glass substrate for recording media, cleaning process for removing foreign substances such as abrasives and chemical strengthening treatment liquid remaining on the surface of glass substrate, various inspection / evaluation processes, etc. You may have.
  • Magnetic recording medium A magnetic recording medium using the glass substrate for recording medium of the present invention will be described below by taking a magnetic disk as an example.
  • a magnetic film is directly formed on the surface of a disk-shaped recording medium glass substrate.
  • a method for forming the magnetic film a conventionally known method can be used.
  • the film thickness by spin coating is about 0.3 ⁇ m to 1.2 ⁇ m
  • the film thickness by sputtering is about 0.04 ⁇ m to 0.08 ⁇ m
  • the film thickness by electroless plating is 0.05 ⁇ m to 0.1 ⁇ m. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.
  • the magnetic material used for the magnetic film is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Ni having a high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO.
  • the magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise.
  • a nonmagnetic film for example, Cr, CrMo, CrV, etc.
  • magnetic particles such as Fe, Co, FeCo, CoNiPt are dispersed in a non-magnetic film made of ferrite, iron-rare earth, SiO 2 , BN, or the like.
  • the magnetic film may be either an inner surface type or a vertical type recording format.
  • a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head.
  • the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
  • an underlayer or a protective layer may be provided.
  • the underlayer is formed between the glass substrate for recording medium and the magnetic film, and the protective layer is formed on the magnetic film.
  • the underlayer in the magnetic disk is selected according to the magnetic film.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics.
  • the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer.
  • These protective layers can be continuously formed with an underlayer, a magnetic film, and the like by an in-line sputtering apparatus. Further, such a protective layer may be a single layer, or may be a multilayer structure composed of the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer.
  • a dispersion liquid in which colloidal silica fine particles are dispersed in a solution obtained by diluting tetraalkoxysilane with an alcohol solvent is applied on the Cr layer, and further fired to obtain silicon dioxide ( A SiO 2 ) layer may be formed.
  • Tg 500 ° C.
  • Glass blanks with a thickness of 1.00 mm were obtained by sandwiching glass and press forming), coring process (through holes were formed in the center of the surface of the glass blanks using a diamond core drill, and donut-shaped perforated blanks 1st lapping step (Blank material is ground with a double-side grinding machine holding a plate with diamond pellets, and the parallelism, flatness, and thickness are pre-adjusted), ⁇ Outer diameter processing step (grinding using # 325 grindstone and chamfering with # 500 grindstone, outer diameter of blanks material Method, roundness, inner diameter of the hole, etc.), inner peripheral end surface processing step (polishing the inner peripheral end surface with a nylon polishing brush and cerium oxide to make a mirror surface), second lapping step (The conditions were changed as will be described later), outer diameter end surface processing step (outer end portion is polished with a nylon polishing brush and cerium oxide and mirrored like the inner peripheral portion)
  • a glass substrate precursor having a thickness of 65 mm, an inner diameter
  • the surface of the glass substrate precursor is subjected to a second lapping step (that is, a step of grinding the surface of the glass substrate precursor that is performed before the step of forming the chemical strengthening layer) under the conditions of diamond tile (Diamond Tile).
  • the surface of the glass substrate precursor can be lapped by using a three-dimensional fixed abrasive with a surface pattern. Specifically, lapping can be performed using Tri-act (registered trademark) of 3M.
  • the diamond tile used here had a concentration of 100 and a particle size of 2 ⁇ m.
  • the surface of the glass substrate precursor before the chemical strengthening layer forming step is changed to the arithmetic average roughness described in Table 1 ("Initial Ra" section). It adjusted so that it might become Ra. In this case, Ra tends to decrease when the concentration of diamond tiles is increased, and Ra tends to decrease even if the particle size is decreased.
  • the glass substrate precursor prepared as described above is immersed in a chemical strengthening treatment liquid at 400 ° C. for 60 minutes, which is composed of a 1: 1 composition of sodium nitrate and potassium nitrate.
  • a chemically strengthened layer was formed on the 10 ⁇ m region of the surface.
  • the concentration of the first abrasive (corresponding to the total amount of solids) containing water and the first abrasive becomes the concentration described in Table 1 (section “First Abrasive Concentration”), and is based on the total amount of solids the content of CeO 2 was prepared first polishing liquid such that the content described in Table 1 (the "CeO 2 content”).
  • the first abrasive was measured by a laser diffraction scattering method (using a particle size distribution measuring device (trade name: “SALD-2200”, manufactured by Shimadzu Corporation)) and the particle size distribution was measured, the maximum value was 3.
  • the cumulative 50% by volume diameter D50 was 1.0 ⁇ m.
  • the chemical strengthening layer was removed from the recording surface of the glass substrate precursor in which the chemical strengthening layer was formed above.
  • the first polishing liquid obtained above is held on a urethane pad (trade name: “MH-C15A”, manufactured by Nita Haas Co., Ltd., hardness A: 85), and a polishing apparatus (manufactured by Speed Fem Co.) is used.
  • a polishing apparatus manufactured by Speed Fem Co.
  • the polishing conditions were a load of 100 g / cm 2 , a rotation speed of the upper surface plate of 30 rpm, a rotation speed of the lower surface plate of 24 rpm, and a polishing amount of 32 ⁇ m.
  • a recording substrate glass substrate was manufactured by polishing the recording surface of the glass substrate precursor under the following polishing conditions using a second polishing liquid different from the first polishing liquid.
  • the composition of the second polishing liquid is as follows. That is, it contains water and a second abrasive, and the second abrasive consists of colloidal silica having a particle size of 20 nm, a dispersant mainly composed of polycarboxylic acid, HEDP (chelating agent), and citric acid.
  • the polishing conditions were a load of 110 g / cm 2 , an upper surface plate rotation speed of 30 rpm, a lower surface plate rotation speed of 30 rpm, and a polishing amount of 1.5 ⁇ m.
  • the glass substrate for a recording medium thus obtained was measured effective amount of CeO 2 and swell.
  • the results are shown in Table 1.
  • the effective CeO 2 amount was measured by the measurement method described above before the polishing step with the second polishing liquid.
  • the waviness Wa was evaluated according to the following criteria by measuring at a wavelength of 10 mm to 0.1 mm using OptiFlat (manufactured by Phase Shift Technology).
  • Waviness Wa is less than 5 mm

Abstract

The invention relates to a manufacturing method of a glass substrate for a recording medium using a glass substrate precursor, comprising a step of forming a chemically toughened layer on the surface of the glass substrate precursor, and a step of removing the chemically toughened layer from the recording surface of the glass substrate precursor using a first polishing solution, wherein the first polishing solution comprises water and a first polishing material, the first polishing material comprises CeO2, and the effective amount of CeO2 in the step of removing the chemically toughened layer is between 0.05 to 0.5 µg/cm2.

Description

記録媒体用ガラス基板を製造する方法Method for producing glass substrate for recording medium
 本発明は、記録媒体用ガラス基板を製造する方法に係わる。 The present invention relates to a method for producing a glass substrate for a recording medium.
 磁気、光、または光磁気等を利用することによって、情報を記録媒体に記録する情報記録装置が知られている。このような情報記録装置は、その代表的なものとして、たとえば、ハードディスクドライブ(HDD)装置等が挙げられる。ハードディスクドライブ装置は、基板上に記録層を形成した情報記録媒体としての磁気ディスクに対して、磁気ヘッドによって磁気的に情報を記録する装置である。このような情報記録媒体の基板、すなわちいわゆるサブストレートとしては、ガラス基板が好適に用いられている(以下、このようなガラス基板を「記録媒体用ガラス基板」ともいう)。 2. Description of the Related Art Information recording apparatuses that record information on a recording medium by using magnetism, light, or magnetomagnetism are known. A typical example of such an information recording apparatus is a hard disk drive (HDD) apparatus. A hard disk drive device is a device that magnetically records information on a magnetic disk as an information recording medium having a recording layer formed on a substrate by a magnetic head. As a substrate for such an information recording medium, that is, a so-called substrate, a glass substrate is suitably used (hereinafter, such a glass substrate is also referred to as “glass substrate for recording medium”).
 また、このようなハードディスクドライブ装置において、磁気ディスク(記録媒体用ガラス基板)に情報を記録させる際、磁気ヘッドは、磁気ディスクに接触することなく、磁気ディスクに対して浮上させられている。そして、磁気ヘッドの浮上量を低減させることによって、記録密度の向上が図れることが知られている。よって、磁気ヘッドの浮上量を低減させて記録密度を高めるために、記録媒体用ガラス基板は、その平滑性が高く、清浄度が高いことが求められている。 In such a hard disk drive, when recording information on a magnetic disk (glass substrate for recording medium), the magnetic head is levitated with respect to the magnetic disk without contacting the magnetic disk. It is known that the recording density can be improved by reducing the flying height of the magnetic head. Therefore, in order to increase the recording density by reducing the flying height of the magnetic head, the glass substrate for recording medium is required to have high smoothness and high cleanliness.
 このような記録媒体用ガラス基板は、ガラス素板(以下、「ガラス基板前駆体」ともいう)を用いて、これを複数回研磨すること等によって製造される。具体的には、特開2009-076167号公報(特許文献1)に記録媒体用ガラス基板の製造方法が開示されている。 Such a glass substrate for a recording medium is manufactured by polishing a plurality of times using a glass base plate (hereinafter also referred to as “glass substrate precursor”). Specifically, JP 2009-076167 A (Patent Document 1) discloses a method for manufacturing a glass substrate for a recording medium.
 特許文献1には、ガラス基板の表面を研磨する研磨工程を有する情報記録媒体用ガラス基板の製造方法において、該研磨工程後のガラス基板の表面の算術平均粗さRaが0.2nm以下、うねりWaが0.5nm以下であり、さらに微小うねりμWaが0.2nm以下であることを特徴とする情報記録媒体用ガラス基板の製造方法が開示されている。 In Patent Document 1, in a method for producing a glass substrate for an information recording medium having a polishing step for polishing the surface of a glass substrate, the arithmetic average roughness Ra of the surface of the glass substrate after the polishing step is 0.2 nm or less, undulation A method for producing a glass substrate for an information recording medium is disclosed, characterized in that Wa is 0.5 nm or less and microwaviness μWa is 0.2 nm or less.
特開2009-076167号公報JP 2009-076167 A
 昨今のハードディスクドライブ装置には、DFH(ダイナミックフライングハイト)機構を備えた磁気ヘッドが用いられており、磁気ヘッドの浮上量がさらに低減されたことから、記録媒体用ガラス基板の平滑性がより一層求められており、上記特許文献1の製造方法により得られたガラス基板についても更なる改良が求められる現状にある。 In recent hard disk drives, magnetic heads equipped with a DFH (dynamic flying height) mechanism are used, and the flying height of the magnetic head is further reduced, so that the smoothness of the glass substrate for recording media is further increased. Therefore, the glass substrate obtained by the manufacturing method described in Patent Document 1 is also required to be further improved.
 本発明者の研究によれば、記録媒体用ガラス基板の平滑性として、当該記録媒体用ガラス基板のうねりを制御することが重要であることが判明しており、10000μm~5000μmのうねりが存在すると記録媒体用ガラス基板と磁気ヘッドとが接触する可能性があり、この接触により情報の読み書き不良が発生したり、磁気ヘッドが損傷する場合があることが明らかとなった。そして、さらに研究を進めたところ、当該うねりは、記録媒体用ガラス基板の製造工程において、ガラス基板前駆体に対して研磨剤を用いて化学強化層を除去する工程で主として発生していることが判明した。すなわち、ガラス基板前駆体は、その表面を強化するために化学強化層が形成されるが、該化学強化層はガラス基板前駆体の外周端面や内周端面に形成するだけでも十分にその効果が発揮され、記録面からはそれが除去される場合があり、この除去工程時にうねりが発生することが判明した。 According to the research of the present inventors, it has been found that it is important to control the waviness of the glass substrate for recording medium as the smoothness of the glass substrate for recording medium, and there exists a waviness of 10,000 μm to 5000 μm. It has become clear that there is a possibility that the glass substrate for recording medium and the magnetic head come into contact with each other, and this contact may cause reading / writing failure of information or damage the magnetic head. And when further research was conducted, it was found that the waviness mainly occurred in the process of removing the chemically strengthened layer using an abrasive for the glass substrate precursor in the manufacturing process of the glass substrate for recording medium. found. That is, the glass substrate precursor is formed with a chemically strengthened layer to reinforce its surface, but the chemical strengthened layer is sufficiently effective only by being formed on the outer peripheral end surface or inner peripheral end surface of the glass substrate precursor. As a result, it has been found that the recording surface may be removed, and undulation occurs during the removal process.
 本発明は、上記のような知見に基づきなされたものであって、その目的とするところは、製造工程中に発生する上記のようなうねりを可能な限り低減した記録媒体用ガラス基板の製造方法を提供することにある。 The present invention has been made on the basis of the above-described knowledge, and its object is to produce a glass substrate for a recording medium in which the above-described swell generated during the production process is reduced as much as possible. Is to provide.
 本発明は、ガラス基板前駆体を用いて記録媒体用ガラス基板を製造する方法に関し、該ガラス基板前駆体の表面に対して化学強化層を形成する工程と、第1研磨液を用いて、該ガラス基板前駆体の記録面から該化学強化層を除去する工程と、を含み、該第1研磨液は、水と第1研磨剤とを含み、該第1研磨剤は、CeO2を含み、該化学強化層を除去する工程における実効CeO2量は、0.05~0.5μg/cm2であることを特徴とする。 The present invention relates to a method for producing a glass substrate for a recording medium using a glass substrate precursor, a step of forming a chemical strengthening layer on the surface of the glass substrate precursor, and using a first polishing liquid, Removing the chemical strengthening layer from the recording surface of the glass substrate precursor, wherein the first polishing liquid contains water and a first abrasive, and the first abrasive contains CeO 2 , An effective amount of CeO 2 in the step of removing the chemical strengthening layer is 0.05 to 0.5 μg / cm 2 .
 ここで、本発明は、上記化学強化層を除去する工程の後に、上記第1研磨液とは異なる第2研磨液を用いて、上記ガラス基板前駆体の記録面を研磨する工程を含むことが好ましく、また上記第1研磨液中の上記第1研磨剤の濃度は、1~9質量%であることが好ましい。 Here, the present invention may include a step of polishing the recording surface of the glass substrate precursor using a second polishing liquid different from the first polishing liquid after the step of removing the chemical strengthening layer. The concentration of the first abrasive in the first polishing liquid is preferably 1 to 9% by mass.
 また、本発明は、上記化学強化層を形成する工程の前に、上記ガラス基板前駆体の表面を研削する工程を含み、該ガラス基板前駆体の表面を研削する工程の後、該ガラス基板前駆体の表面は、算術平均粗さRaが0.1μm以下であることが好ましい。また、上記第1研磨剤は、レーザ回折散乱法で測定された粒度分布において、最大値が3.5μm以下であり、かつ累積50体積%径D50が0.5~1.5μmであることが好ましく、上記第1研磨液は、固形分全量に対してCeO2を60質量%以上含むことが好ましい。 The present invention also includes a step of grinding the surface of the glass substrate precursor before the step of forming the chemical strengthening layer, and after the step of grinding the surface of the glass substrate precursor, the glass substrate precursor. The surface of the body preferably has an arithmetic average roughness Ra of 0.1 μm or less. The first abrasive has a maximum value of 3.5 μm or less and a cumulative 50 volume% diameter D50 of 0.5 to 1.5 μm in a particle size distribution measured by a laser diffraction scattering method. Preferably, the first polishing liquid preferably contains 60% by mass or more of CeO 2 with respect to the total solid content.
 本発明の製造方法により製造された記録媒体用ガラス基板は、うねりが可能な限り低減されていることから、ハードディスクドライブ装置等により使用する場合において、情報の読み書き不良が発生したり、磁気ヘッドが損傷することを防止できる。 Since the glass substrate for a recording medium manufactured by the manufacturing method of the present invention has as few wavinesses as possible, when it is used with a hard disk drive device or the like, information read / write failure occurs or the magnetic head is It can be prevented from being damaged.
 以下、本発明についてさらに詳細に説明する。
 <記録媒体用ガラス基板を製造する方法>
 本発明は、ガラス基板前駆体を用いて記録媒体用ガラス基板を製造する方法に係わり、ガラス基板前駆体の表面に対して化学強化層を形成する工程(以下、「化学強化層形成工程」とも記す)と、第1研磨液を用いて、ガラス基板前駆体の記録面から化学強化層を除去する工程(以下、「化学強化層除去工程」とも記す)とを少なくとも含むものである。
Hereinafter, the present invention will be described in more detail.
<Method for producing glass substrate for recording medium>
The present invention relates to a method for producing a glass substrate for a recording medium using a glass substrate precursor, and a step of forming a chemical strengthening layer on the surface of the glass substrate precursor (hereinafter referred to as “chemical strengthening layer forming step”). And a step of removing the chemical strengthening layer from the recording surface of the glass substrate precursor using the first polishing liquid (hereinafter also referred to as “chemical strengthening layer removing step”).
 本発明の記録媒体用ガラス基板を製造する方法は、このように化学強化層形成工程と化学強化層除去工程とを含む限り、他の工程を含むことができる。このような他の工程としては、たとえばガラス基板前駆体を準備するガラス基板前駆体準備工程等を挙げることができる。 The method for producing a glass substrate for a recording medium of the present invention can include other steps as long as it includes the chemical strengthening layer forming step and the chemical strengthening layer removing step. As such other processes, for example, a glass substrate precursor preparation process for preparing a glass substrate precursor can be exemplified.
 <記録媒体用ガラス基板>
 本発明で製造される記録媒体用ガラス基板は、ハードディスクドライブ装置等の情報記録装置において情報記録媒体の基板として用いられるものであり、その大きさや形状は特に限定されない。たとえば、外径が2.5インチ、1.8インチ、1インチ、0.8インチなどであり、厚みが2mm、1mm、0.65mm、0.8mmなどである、円板状のものとすることができる。また、その円板状の中央部には、情報記録装置にセットするための孔が開けられていてもよい。
<Glass substrate for recording medium>
The glass substrate for a recording medium produced by the present invention is used as a substrate for an information recording medium in an information recording apparatus such as a hard disk drive device, and its size and shape are not particularly limited. For example, the outer diameter is 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, etc., and the thickness is 2 mm, 1 mm, 0.65 mm, 0.8 mm, etc. be able to. Further, a hole for setting in the information recording apparatus may be formed in the disc-shaped central portion.
 <ガラス基板前駆体準備工程>
 ガラス基板前駆体準備工程は、本発明の化学強化層形成工程を実行する前に行なわれる工程であり、化学強化層形成工程を実行するためのガラス基板前駆体を準備する工程である。
<Glass substrate precursor preparation process>
A glass substrate precursor preparation process is a process performed before performing the chemical strengthening layer formation process of this invention, and is a process of preparing the glass substrate precursor for performing a chemical strengthening layer formation process.
 このようなガラス基板前駆体準備工程は、たとえば次のような工程を含む。まず、ガラス素材を溶融し(ガラス溶融工程)、溶融ガラスを下型に流し込み、上型によってプレス成形して円板状のガラス基板前駆体を得る(プレス成形工程)。なお、円板状のガラス基板前駆体は、このようなプレス成形工程によらず、たとえばダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出して作製してもよい。 Such a glass substrate precursor preparation step includes, for example, the following steps. First, a glass material is melted (glass melting step), molten glass is poured into a lower mold, and press molding is performed with an upper mold to obtain a disk-shaped glass substrate precursor (press molding process). Note that the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using such a press molding process.
 ここで、上記ガラス素材としては、イオン交換による化学強化が可能なガラスであれば特に限定はない。たとえば、SiO2、Na2O、CaOを主成分としたソーダライムガラス、SiO2、Al23、R2O(R=K、Na、Li)を主成分としたアルミノシリケートガラス、ボロシリケートガラス、Li2O-SiO2系ガラス、Li2O-Al23-SiO2系ガラス、R’O-Al23-SiO2系ガラス(R’=Mg、Ca、Sr、Ba)などを使用することができる。中でも、アルミノシリケートガラスやボロシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。 Here, the glass material is not particularly limited as long as it can be chemically strengthened by ion exchange. For example, soda lime glass mainly composed of SiO 2 , Na 2 O, CaO, aluminosilicate glass mainly composed of SiO 2 , Al 2 O 3 , R 2 O (R = K, Na, Li), borosilicate Glass, Li 2 O—SiO 2 glass, Li 2 O—Al 2 O 3 —SiO 2 glass, R′O—Al 2 O 3 —SiO 2 glass (R ′ = Mg, Ca, Sr, Ba) Etc. can be used. Among these, aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.
 次いで、上記のようにプレス成形したガラス基板前駆体は、カッター部にダイヤモンド砥石等を備えたコアドリル等で中心部に孔が開けられる(コアリング加工工程)。以下では、この孔の端面を内周という。 Next, the glass substrate precursor press-molded as described above is perforated at the center with a core drill or the like having a diamond grindstone or the like in the cutter (coring process). Hereinafter, the end face of the hole is referred to as an inner circumference.
 次に、孔が開けられたガラス基板前駆体の両表面を研削加工し、ガラス基板前駆体の全体形状、すなわちガラス基板前駆体の平行度、平坦度および厚みを予備調整する(第1ラッピング工程)。 Next, both surfaces of the glass substrate precursor with holes formed therein are ground to preliminarily adjust the overall shape of the glass substrate precursor, that is, the parallelism, flatness and thickness of the glass substrate precursor (first lapping step) ).
 続いて、ガラス基板前駆体の外周端面および内周端面を、たとえば鼓状のダイヤモンド等の研削砥石により研削することで内・外径加工する(内・外径加工工程)。次いで、ガラス基板の内周端面を、研磨液を使用したブラシ研磨により面取り部の角部を曲面とし、また微細なキズ等を除去する(内周端面加工工程)。 Subsequently, the inner and outer diameters are processed by grinding the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor with, for example, a grinding wheel such as a drum-shaped diamond (inner / outer diameter processing step). Next, the inner peripheral end face of the glass substrate is made to have a curved corner at the chamfered portion by brush polishing using a polishing liquid, and fine scratches and the like are removed (inner peripheral end face processing step).
 引き続き、ガラス基板前駆体の両表面を再び研削加工して、ガラス基板の平行度、平坦度および厚みを微調整する(第2ラッピング工程)。そして、ガラス基板の外周端面を、研磨液を使用したブラシ研磨により面取り部の角部を曲面とし、また微細なキズ等を除去する(外周端面加工工程)。 Subsequently, both surfaces of the glass substrate precursor are ground again to finely adjust the parallelism, flatness and thickness of the glass substrate (second lapping step). Then, the outer peripheral end surface of the glass substrate is subjected to brush polishing using a polishing liquid so that the corners of the chamfered portion are curved surfaces, and fine scratches are removed (outer peripheral end surface processing step).
 上記コアリング加工以降の第1ラッピング工程から外周端面加工工程までの順序は、上記に示したものに限定されず、状況に応じて適宜変更することができる。たとえば、第1および第2ラッピング工程を一工程として最初に行ない、その後、内・外径加工工程、内周および外周端面加工工程を行なってもよい。また、第1ラッピング工程、内・外径加工工程の後、第2ラッピング工程、内周および外周端面加工工程を行なってもよい。 The order from the first lapping step after the coring processing to the outer peripheral end surface processing step is not limited to the one shown above, and can be changed as appropriate according to the situation. For example, the first and second lapping processes may be performed as one process first, and then the inner / outer diameter machining process, the inner circumference and outer circumference end face machining processes may be performed. Further, after the first lapping step and the inner / outer diameter machining step, the second lapping step, the inner circumference and the outer circumference end face machining step may be performed.
 ここで、第1および第2ラッピング工程にてガラス基板前駆体を研削する研削機について説明する。研削機は、両面研削機と呼ばれる公知の研削機を使用できる。両面研削機は、互いに平行になるように上下に配置された円盤状の上定盤と下定盤とを備えており、互いに逆方向に回転する。この上下の定盤の対向するそれぞれの面にガラス基板前駆体の記録面(ガラス基板前駆体の表面のうち、外周端面や内周端面を除く広い面積を有する表面であって、主表面または単に表面とも呼ばれる)を研削するための複数のダイヤモンドペレットが貼り付けてある。この上下の定盤の間には、下定盤の外周に円環状に設けてあるインターナルギアと下定盤の回転軸の周囲に設けてある太陽ギアとに結合して回転する複数のキャリアがある。このキャリアには、複数の穴が設けてあり、この穴にガラス基板前駆体をはめ込んで配置する。上下の定盤、インターナルギアおよび太陽ギアは別駆動で動作することができる。 Here, a grinding machine for grinding the glass substrate precursor in the first and second lapping steps will be described. As the grinding machine, a known grinding machine called a double-side grinding machine can be used. The double-sided grinding machine includes a disk-shaped upper surface plate and a lower surface plate that are arranged vertically so as to be parallel to each other, and rotate in opposite directions. On the opposing surfaces of the upper and lower surface plates, the recording surface of the glass substrate precursor (the surface of the glass substrate precursor having a large area excluding the outer peripheral end surface and the inner peripheral end surface, the main surface or simply A plurality of diamond pellets for grinding the surface (also called the surface) are attached. Between the upper and lower surface plates, there are a plurality of carriers that rotate in combination with an internal gear provided in an annular shape on the outer periphery of the lower surface plate and a sun gear provided around the rotation axis of the lower surface plate. The carrier is provided with a plurality of holes, and the glass substrate precursor is fitted into the holes and arranged. The upper and lower surface plates, the internal gear and the sun gear can be operated by separate driving.
 また、上記第1ラッピング工程および第2ラッピング工程を含む所謂ラッピング工程とは、ガラス基板前駆体を所定の板厚に加工する工程である。具体的には、たとえば、ガラス基板前駆体の両面を研削(ラッピング)加工する工程等が挙げられる。そうすることによって、ガラス基板前駆体の平行度、平坦度および厚みを調整することができる。また、このラッピング工程は、1回であってもよいし、2回以上であってもよい。たとえば、2回行なう場合、1回目のラッピング工程(第1ラッピング工程)で、ガラス基板前駆体の平行度、平坦度および厚みを予備調整し、2回目のラッピング工程(第2ラッピング工程)で、ガラス基板前駆体の平行度、平坦度および厚みを微調整する。 The so-called lapping process including the first lapping process and the second lapping process is a process of processing the glass substrate precursor to a predetermined plate thickness. Specifically, for example, a step of grinding (lapping) both surfaces of the glass substrate precursor can be mentioned. By doing so, the parallelism, flatness, and thickness of the glass substrate precursor can be adjusted. Further, this lapping step may be performed once or twice or more. For example, in the case of performing twice, in the first lapping step (first lapping step), the parallelism, flatness and thickness of the glass substrate precursor are preliminarily adjusted, and in the second lapping step (second lapping step), Finely adjust the parallelism, flatness and thickness of the glass substrate precursor.
 より具体的には、上記第1ラッピング工程としては、ガラス基板前駆体の表面全体が略均一の表面粗さとなるようにした工程等が挙げられる。たとえば、平面研削機による遊離砥粒研磨を用いる機械的方法等を適用することができる。その際、たとえば、ガラス基板前駆体表面の算術平均粗さRaを複数個所において測定した際に、得られたRaの最小値と最大値との差が0.01~0.4μm程度にすることが好ましい。 More specifically, examples of the first lapping step include a step in which the entire surface of the glass substrate precursor has a substantially uniform surface roughness. For example, a mechanical method using loose abrasive polishing by a surface grinder can be applied. At that time, for example, when the arithmetic average roughness Ra of the glass substrate precursor surface is measured at a plurality of locations, the difference between the minimum value and the maximum value of Ra obtained should be about 0.01 to 0.4 μm. Is preferred.
 また、上記第2ラッピング工程としては、ガラス基板前駆体表面の算術平均粗さRaを0.1μm以下、平坦度を7μm以下となるようにした工程が好ましい。なお、本発明の効果を得るという観点からは、上記表面粗さRaは0.1μm以下であり、それが低ければ低いほど好ましいが、表面粗さRaが低すぎると、表面が平滑になりすぎてラッピング工程では加工が難しくなるため、0.01μmが限度であると考えられる。 The second lapping step is preferably a step in which the arithmetic average roughness Ra of the glass substrate precursor surface is 0.1 μm or less and the flatness is 7 μm or less. From the viewpoint of obtaining the effects of the present invention, the surface roughness Ra is 0.1 μm or less, and it is preferable that the surface roughness Ra is as low as possible. However, if the surface roughness Ra is too low, the surface becomes too smooth. Since the processing becomes difficult in the lapping process, it is considered that 0.01 μm is the limit.
 このようなガラス基板前駆体の表面品質を得るためには、たとえば、固定砥粒研磨パッドをラッピング装置にセットして研削する方法等が適用できる。固定砥粒研磨パッドは、たとえば、市販のものを使用することができ、トライザクト(ダイヤモンドタイルの大きさが2μm、住友3M株式会社製)2μmのような表面模様付きの三次元固定研磨物等が使用できる。 In order to obtain the surface quality of such a glass substrate precursor, for example, a method of grinding with a fixed abrasive polishing pad set in a lapping apparatus can be applied. As the fixed abrasive polishing pad, for example, a commercially available one can be used, such as a three-dimensional fixed abrasive with a surface pattern such as Trizacto (diamond tile size 2 μm, manufactured by Sumitomo 3M Co., Ltd.) 2 μm. Can be used.
 第2ラッピング工程を終えた時点で、大きなうねり、欠け、ひび等の欠陥は除去され、ガラス基板前駆体の記録面の面粗さは、最大高さRmaxが1.0μm、算術平均粗さRaが0.1μm以下になることが好ましい。より好ましくはRaが0.05μm以下であることが好適である。このような面状態にしておくことで、後述の化学強化層形成工程を経て化学強化層除去工程で研磨(化学強化層の除去)を効率よく行なうことができる。 When the second lapping process is completed, defects such as large waviness, chipping, and cracks are removed, and the surface roughness of the recording surface of the glass substrate precursor has a maximum height Rmax of 1.0 μm and an arithmetic average roughness Ra. Is preferably 0.1 μm or less. More preferably, Ra is 0.05 μm or less. By having such a surface state, polishing (removal of the chemical strengthening layer) can be efficiently performed in the chemical strengthening layer removing step through the chemical strengthening layer forming step described later.
 したがって、本発明は、後述の化学強化層を形成する工程の前に、ガラス基板前駆体の表面を研削する工程(すなわち上記でいうラッピング工程)を含み、このガラス基板前駆体の表面を研削する工程の後(ラッピング工程が上記のように第1ラッピング工程および第2ラッピング工程を含む場合は第2ラッピング工程の後)、該ガラス基板前駆体の表面は、算術平均粗さRaが0.1μm以下であることが好ましい。 Therefore, the present invention includes a step of grinding the surface of the glass substrate precursor (that is, the lapping step described above) before the step of forming a chemical strengthening layer described later, and the surface of the glass substrate precursor is ground. After the process (when the lapping process includes the first lapping process and the second lapping process as described above), the surface of the glass substrate precursor has an arithmetic average roughness Ra of 0.1 μm. The following is preferable.
 一方、ガラス基板前駆体の内周および外周の端面は、内周および外周端面加工工程でブラシ研磨によるポリッシング加工を行なうことが好ましい。ブラシは、φ0.2からφ0.3mm程度のナイロン、ポリプロピレン等を使用するのが好ましい。また、研磨液は、粒径が数μm程度の酸化セリウム(CeO2)を含むことが好ましい。ブラシ研磨の結果、内周および外周の端面の面粗さは、Rmaxが0.2μm~0.4μmで、Raが0.02μm~0.04μm程度とすることが好ましい。内・外径加工工程および、内周および外周端面加工工程を経たガラス基板前駆体の端面の形状は、主表面と端面とが成す角部が取り除かれ、外周端面から0.2mm~0.5mm程度の位置から主表面よりダレた状態となる。 On the other hand, it is preferable that the inner peripheral and outer peripheral end faces of the glass substrate precursor are polished by brush polishing in the inner peripheral and outer peripheral end face processing steps. The brush is preferably made of nylon, polypropylene or the like having a diameter of about 0.2 to 0.3 mm. The polishing liquid preferably contains cerium oxide (CeO 2 ) having a particle size of about several μm. As a result of brush polishing, the surface roughness of the inner and outer peripheral end faces is preferably such that Rmax is 0.2 μm to 0.4 μm and Ra is about 0.02 μm to 0.04 μm. The shape of the end surface of the glass substrate precursor that has undergone the inner and outer diameter processing steps and the inner and outer peripheral end surface processing steps is such that the corner formed by the main surface and the end surface is removed, and 0.2 mm to 0.5 mm from the outer end surface It will be in a state of sagging from the main surface from a certain position.
 ここで、算術平均粗さRa(中心線平均粗さ)および最大高さRmaxは、JIS B0601:2001で規定される。これらは、原子間力顕微鏡(AFM)等により測定することができる。これらの規定および測定方法は、特に断らない限り本願明細書の他のRaおよびRmaxについて共通である。 Here, the arithmetic average roughness Ra (centerline average roughness) and the maximum height Rmax are defined in JIS B0601: 2001. These can be measured by an atomic force microscope (AFM) or the like. These rules and measurement methods are common to the other Ra and Rmax in this specification unless otherwise specified.
 なお、第1ラッピング工程および第2ラッピング工程で使用する研削機は、同一構成ではあるがそれぞれの工程専用に用意された別の研削機を用いて研削加工を行なうことが好ましい。これは、専用のダイヤモンドペレットを貼り付けているため交換が大掛かりな作業となり、また、研削条件を再設定する等の煩雑な作業が必要となり、製造効率が低下するためである。 It should be noted that the grinding machines used in the first lapping process and the second lapping process have the same configuration, but it is preferable to perform grinding using separate grinding machines prepared exclusively for each process. This is because the dedicated diamond pellets are pasted, so that the replacement is a large-scale operation, and complicated operations such as resetting the grinding conditions are required, resulting in a decrease in manufacturing efficiency.
 <化学強化層形成工程>
 本発明の化学強化層形成工程は、上記のガラス基板前駆体準備工程を経て準備されたガラス基板前駆体の表面に対して化学強化層を形成する工程である。かかる工程は、通常、ガラス基板前駆体の表面を化学強化処理液を用いて強化するものである。このような化学強化層形成工程は、記録媒体用ガラス基板の製造方法において化学強化工程として知られる従来公知の方法を特に限定することなく採用することができる。
<Chemical strengthening layer formation process>
The chemical strengthening layer forming step of the present invention is a step of forming a chemical strengthening layer on the surface of the glass substrate precursor prepared through the glass substrate precursor preparing step. Such a process usually reinforces the surface of the glass substrate precursor using a chemical strengthening treatment liquid. Such a chemically strengthened layer forming step can be employed without any particular limitation to a conventionally known method known as a chemical strengthening step in the method for producing a glass substrate for recording medium.
 具体的には、たとえば、ガラス基板前駆体を化学強化処理液に浸漬させる工程等を挙げることができる。これにより、ガラス基板前駆体の表面および端面において、表面から数μmの領域、好ましくは5μm程度の領域に化学強化層が形成される。なお、本発明において「ガラス基板前駆体の表面に対して化学強化層を形成する」との表現における「ガラス基板前駆体の表面」には、記録面、内周端面、および外周端面が含まれる。 Specifically, for example, a step of immersing the glass substrate precursor in a chemical strengthening treatment liquid can be exemplified. Thereby, a chemical strengthening layer is formed in the area | region of several micrometers from the surface, Preferably about 5 micrometers in the surface and end surface of a glass substrate precursor. In the present invention, “the surface of the glass substrate precursor” in the expression “to form the chemical strengthening layer on the surface of the glass substrate precursor” includes a recording surface, an inner peripheral end surface, and an outer peripheral end surface. .
 より詳しくは、このような化学強化層形成工程は、加熱された化学強化処理液にガラス基板前駆体を浸漬させることによって、ガラス基板前駆体に含まれるリチウムイオンやナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンに置換するイオン交換法によって行なわれる。イオン半径の違いによって生じる歪みにより、イオン交換された領域に圧縮応力が発生し、その領域においてガラス基板前駆体の表面が強化される。このような化学強化処理液としては、たとえば、硝酸塩が挙げられる。具体的には、硝酸ナトリウムと硝酸カリウムとを混合した塩を加熱し、溶融した液にガラス基板前駆体を浸漬する。ガラス基板前駆体は、このような化学強化処理液で処理された後、中性洗剤および純水にて洗浄し乾燥させることが好ましい。 More specifically, in such a chemical strengthening layer forming step, the alkali metal ions such as lithium ions and sodium ions contained in the glass substrate precursor are immersed by immersing the glass substrate precursor in a heated chemical strengthening treatment liquid. It is carried out by an ion exchange method that substitutes alkali metal ions such as potassium ions having a larger ion radius. Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and the surface of the glass substrate precursor is strengthened in the region. Examples of such chemical strengthening treatment liquid include nitrate. Specifically, a salt obtained by mixing sodium nitrate and potassium nitrate is heated, and the glass substrate precursor is immersed in the molten liquid. The glass substrate precursor is preferably washed with a neutral detergent and pure water and dried after being treated with such a chemical strengthening treatment solution.
 なお、化学強化層と化学強化されていない領域との界面は、イオン交換により導入されたイオンが存在するか否かにより判断するものとし、通常、SEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分光法)を用いてガラス基板前駆体の断面を測定し、ナトリウムとカリウムの比率がガラス組成と同一となった地点を界面とするものとする。このため、後述の工程により、化学強化層が除去されているか否かの判断も、同様の測定によるものとし、イオン交換により導入されたイオンが存在しない場合、化学強化層が除去されたものと判断する。 The interface between the chemically strengthened layer and the non-chemically strengthened region is determined based on whether or not ions introduced by ion exchange are present, and is usually SEM-EDX (scanning electron microscope-energy dispersive type). The cross section of the glass substrate precursor is measured using X-ray spectroscopy, and the point where the ratio of sodium and potassium is the same as the glass composition is taken as the interface. For this reason, the determination as to whether or not the chemical strengthening layer has been removed by the process described later is also based on the same measurement, and in the absence of ions introduced by ion exchange, the chemical strengthening layer has been removed. to decide.
 このような化学強化層は、耐衝撃性、耐振動性および耐熱性等を向上させる作用を有する。しかしながら、このような作用は、ガラス基板前駆体の端面(すなわち外周端面および内周端面)のみに化学強化層を形成することによって得ることができるため、本発明においては、後の工程においてこの化学強化層はガラス基板前駆体の表面(すなわち記録面)から除去されることになる。このように記録面から化学強化層を除去することにより、加工時に発生する傷や凹みなどを発生させないという利点を得ることができるためである。 Such a chemically strengthened layer has an effect of improving impact resistance, vibration resistance, heat resistance and the like. However, such an effect can be obtained by forming a chemical strengthening layer only on the end face (that is, the outer peripheral end face and the inner peripheral end face) of the glass substrate precursor. The reinforcing layer is removed from the surface (that is, the recording surface) of the glass substrate precursor. This is because, by removing the chemical strengthening layer from the recording surface in this way, it is possible to obtain an advantage of not generating scratches or dents that occur during processing.
 <化学強化層除去工程>
 本発明の化学強化層除去工程は、第1研磨液を用いて、ガラス基板前駆体の記録面から化学強化層を除去する工程である。ここで、第1研磨液は、水と第1研磨剤とを含み、第1研磨剤は、CeO2(酸化セリウム)を含む。そして、本発明においては、この化学強化層除去工程における実効CeO2量が0.05~0.5μg/cm2であることを特徴とする。これにより、記録媒体用ガラス基板のうねりを可能な限り低減することに成功したものである。
<Chemical strengthening layer removal process>
The chemical strengthening layer removing step of the present invention is a step of removing the chemical strengthening layer from the recording surface of the glass substrate precursor using the first polishing liquid. Here, the first polishing liquid contains water and a first abrasive, and the first abrasive contains CeO 2 (cerium oxide). In the present invention, the effective CeO 2 amount in the chemical strengthening layer removing step is 0.05 to 0.5 μg / cm 2 . Thereby, it succeeded in reducing the wave | undulation of the glass substrate for recording media as much as possible.
 このような化学強化層除去工程は、ガラス基板前駆体の記録面から化学強化層を除去するとともに、ガラス基板前駆体の記録面を精密に仕上げ、かつ記録面の外周端部の形状を所望の形状に仕上げる作用を奏するものである。さらに、この化学強化層除去工程は、後述の研磨工程で最終的に必要とされる面粗さを効率よく得ることができるように面粗さを向上させるとともに、最終的な形状を効率よく得ることができるようにその形状を整えるという作用も有する。 Such a chemical strengthening layer removing step removes the chemical strengthening layer from the recording surface of the glass substrate precursor, precisely finishes the recording surface of the glass substrate precursor, and has a desired shape of the outer peripheral edge of the recording surface. It has the effect of finishing into a shape. Furthermore, this chemical strengthening layer removing step improves the surface roughness and efficiently obtains the final shape so that the surface roughness finally required in the polishing step described later can be efficiently obtained. It also has the effect of adjusting its shape so that it can be made.
 このような化学強化層除去工程は、具体的には、第1研磨液を保持したパッドを用いて、化学強化層が形成されているガラス基板前駆体の記録面を研磨することにより、化学強化層が除去される。ここで、第1研磨液には、少なくとも水と第1研磨剤が含まれ、第1研磨剤は、少なくともCeO2を含む。第1研磨剤は、このようにCeO2を含む限り、他の研磨剤を含んでいても差し支えない。このような他の研磨剤としては、たとえば、ケイ酸ジルコニウム、ジルコニア、アルミナ、コロイダルシリカ等を挙げることができる。 Specifically, the chemical strengthening layer removing step is performed by polishing the recording surface of the glass substrate precursor on which the chemical strengthening layer is formed, using a pad holding the first polishing liquid. The layer is removed. Here, the first polishing liquid contains at least water and a first abrasive, and the first abrasive contains at least CeO 2 . The first abrasive may contain other abrasives as long as it contains CeO 2 in this way. Examples of such other abrasives include zirconium silicate, zirconia, alumina, colloidal silica, and the like.
 また、第1研磨液中の第1研磨剤の濃度は、1~9質量%とすることが好ましく、3~7質量%とすることがより好ましい。1質量%未満では、十分な研磨作用を得ることができず、また9質量%を超えると上記の実効CeO2量が上記の範囲を超えてしまい、うねりが発生する場合がある。 Further, the concentration of the first abrasive in the first polishing liquid is preferably 1 to 9% by mass, and more preferably 3 to 7% by mass. If the amount is less than 1% by mass, sufficient polishing action cannot be obtained. If the amount exceeds 9% by mass, the effective CeO 2 amount exceeds the above range, and undulation may occur.
 また、第1研磨液は、固形分全量に対してCeO2を60質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。CeO2が60質量%未満では十分な研磨作用を得ることができず、この点、CeO2の濃度は高ければ高いほど好ましいが、CeO2を高濃度に含むものは高価であるため、経済的に不利となる。なお、第1研磨液に含まれる固形分は、通常第1研磨剤で占められるが、界面活性剤、分散剤、キレート剤等が含まれていてもよい。 The first polishing liquid may preferably include CeO 2 60 wt% or more based on the total solid content, more preferably it contains more than 90 wt%. When CeO 2 is less than 60% by mass, a sufficient polishing action cannot be obtained. In this respect, the higher the concentration of CeO 2 , the better. However, since the one containing CeO 2 at a high concentration is expensive, it is economical. Disadvantageous. In addition, although the solid content contained in a 1st polishing liquid is normally occupied with a 1st abrasive | polishing agent, surfactant, a dispersing agent, a chelating agent, etc. may be contained.
 また、上記第1研磨剤は、レーザ回折散乱法で測定された粒度分布において、最大値が3.5μm以下であり、かつ累積50体積%径D50が0.5~1.5μmであることが好ましい。上記最大値は、2.5μm以下であることがより好ましく、累積50体積%径D50は、0.5~1.2μmであることがより好ましい。最大値が3.5μmを超えると、記録面に傷が発生するため好ましくない場合がある。また、累積50体積%径D50が0.5μm未満では、加工が行ないにくいので生産効率が悪くなり、1.5μmを超えると、加工後の粗さが粗くなるため好ましくない場合がある。 The first abrasive has a maximum value of 3.5 μm or less and a cumulative 50 volume% diameter D50 of 0.5 to 1.5 μm in a particle size distribution measured by a laser diffraction scattering method. preferable. The maximum value is more preferably 2.5 μm or less, and the cumulative 50 volume% diameter D50 is more preferably 0.5 to 1.2 μm. If the maximum value exceeds 3.5 μm, scratches may occur on the recording surface, which may not be preferable. Further, if the cumulative 50 volume% diameter D50 is less than 0.5 μm, the processing is difficult to perform and the production efficiency is deteriorated, and if it exceeds 1.5 μm, the roughness after processing becomes rough, which is not preferable.
 また、化学強化層除去工程における実効CeO2量とは、当該工程におけるガラス基板前駆体の記録面に対する第1研磨剤の作用の多寡または強弱を示す指標となるものであり、これを0.05~0.5μg/cm2の範囲に制御することにより、ガラス基板に発生するうねりを可能な限り低減することが可能となったものである。実効CeO2量は、より好ましくは、0.1~0.4μg/cm2である。実効CeO2量が0.05μg/cm2未満では、化学強化層を十分に除去することができなかったり、十分な研磨作用を得ることができなくなる。一方、実効CeO2量が0.5μg/cm2を超えると、ガラス基板にうねりが発生してしまう。以上の知見は、本発明者の研究によりはじめて得られたものであり、本発明の最大の特徴を構成するものである。このような実効CeO2量は、上記のように第1研磨液中の第1研磨剤濃度および固形分全量に占めるCeO2含有量を制御することにより達成することができる。 Further, the effective CeO 2 amount in the chemical strengthening layer removing step is an index indicating the degree or strength of the action of the first abrasive on the recording surface of the glass substrate precursor in the step, which is 0.05. By controlling in the range of ˜0.5 μg / cm 2 , the undulation generated on the glass substrate can be reduced as much as possible. The effective CeO 2 amount is more preferably 0.1 to 0.4 μg / cm 2 . The effective amount of CeO 2 is less than 0.05 [mu] g / cm 2, or could not be sufficiently removed chemically strengthened layer, it becomes impossible to obtain a sufficient polishing effect. On the other hand, when the effective CeO 2 amount exceeds 0.5 μg / cm 2 , undulation occurs in the glass substrate. The above knowledge was obtained for the first time by the inventor's research and constitutes the greatest feature of the present invention. Such an effective CeO 2 amount can be achieved by controlling the first abrasive concentration in the first polishing liquid and the CeO 2 content in the total solid content as described above.
 ここで、本発明において実効CeO2量とは、以下のようにして測定した数値をいう。まず、化学強化層除去工程を経た直後のガラス基板前駆体を、硝酸50mlと35質量%の過酸化水素水10mlとの混合液に、液温80℃の条件下で30分間浸漬させる。通常、化学強化層除去工程の終了後にガラス基板前駆体を洗浄するリンス工程が行なわれるが、当該測定には、このような洗浄を行なう前(すなわち化学強化層除去工程を経た直後)のガラス基板前駆体を用いる必要がある。 Here, in the present invention, the effective CeO 2 amount refers to a numerical value measured as follows. First, the glass substrate precursor immediately after the chemical strengthening layer removing step is immersed in a mixed solution of 50 ml of nitric acid and 10 ml of 35 mass% hydrogen peroxide solution for 30 minutes at a liquid temperature of 80 ° C. Usually, a rinsing step for cleaning the glass substrate precursor is performed after the chemical strengthening layer removing step is completed. For the measurement, the glass substrate before such cleaning (that is, immediately after the chemical strengthening layer removing step) is performed. It is necessary to use a precursor.
 そして、上記30分間の浸漬後、ガラス基板前駆体を上記混合液から取り出した後、その混合液に含有されているCeの質量を、誘導結合プラズマ質量分析装置(ICP-MS)を用いて測定する。誘導結合プラズマ質量分析装置(ICP-MS)としては、アジレントテクノロジー社製の「7700s」(商品名)を用いることができる。そして、この測定されたCeの質量から、化学強化層除去工程時のガラス基板前駆体の記録面にあるCeO2の質量を算出する。そして、この算出されたCeO2の質量とガラス基板前駆体の記録面(表裏両面)の面積とから求めたものが実効CeO2量である。 Then, after the immersion for 30 minutes, the glass substrate precursor is taken out of the mixed solution, and then the mass of Ce contained in the mixed solution is measured using an inductively coupled plasma mass spectrometer (ICP-MS). To do. As the inductively coupled plasma mass spectrometer (ICP-MS), “7700s” (trade name) manufactured by Agilent Technologies can be used. Then, from the mass of the measured Ce, it calculates the CeO 2 mass in the recording surface of the glass substrate precursor during chemical strengthening layer removing step. Then, it is the effective amount of CeO 2 as determined from the area of the mass and the glass substrate precursor of the recording surface of the calculated CeO 2 (both sides).
 以下、本発明の化学強化層除去工程についてさらに説明する。
 まず、第1研磨液を保持するパッドとしては、硬度Aで80~90程度の硬質パッドであって、たとえば発泡ウレタン製のパッドを使用することが好ましい。パッドの硬度が研磨による発熱により柔らかくなると研磨面の形状変化が大きくなるため硬質パッドを用いることが好ましい。
Hereinafter, the chemical strengthening layer removing step of the present invention will be further described.
First, the pad for holding the first polishing liquid is a hard pad having a hardness A of about 80 to 90. For example, a pad made of urethane foam is preferably used. When the hardness of the pad becomes soft due to the heat generated by polishing, the shape change of the polished surface increases, so it is preferable to use a hard pad.
 そして、このような化学強化層除去工程は、通常、上記で説明した研削機と同様の構造を有する研磨装置を用いて行なうことができるが、研磨装置の定盤によるガラス基板前駆体への加重は、90g/cm2~110g/cm2とすることが好ましい。定盤によるガラス基板前駆体への加重は、外周端部の形状に大きく影響する。加重を大きくしていくと、外周端部の内側が下がり外側に向かって上がる傾向を示す。また、加重を小さくしていくと、外周端部は平面に近くなるとともに面ダレが大きくなる傾向を示す。このような傾向を観察しながら加重を決定することができる。 Such a chemically strengthened layer removing step can be normally performed using a polishing apparatus having a structure similar to that of the grinding machine described above. However, the weight applied to the glass substrate precursor by the surface plate of the polishing apparatus. Is preferably 90 g / cm 2 to 110 g / cm 2 . The load applied to the glass substrate precursor by the surface plate greatly affects the shape of the outer peripheral edge. As the weight is increased, the inner side of the outer peripheral end portion tends to decrease and increase toward the outer side. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases. The weight can be determined while observing such a tendency.
 また、面粗さを向上させるために、定盤の回転数を25rpm~50rpmとし、上の定盤の回転数を下の定盤回転数よりも30%~40%遅くすることが好ましい。 In order to improve the surface roughness, it is preferable that the rotation speed of the surface plate is 25 rpm to 50 rpm, and the rotation speed of the upper surface plate is 30% to 40% slower than the rotation speed of the lower surface plate.
 上記のような研磨条件を採用し、研磨量を30μm~40μmとする(すなわち化学強化層が完全に除去できるように表面から30μm~40μmの深さまでの領域を除去する)ことが好ましい。30μm未満では、キズや欠陥を十分に除去することができない場合がある。また40μmを超えると、Rmaxが2nm~60nm、Raが2nm~4nmの範囲である面粗さとすることができるが、必要以上に研磨を行なうことになり製造効率が低下する。これにより、ガラス基板前駆体の記録面の化学強化層を完全に除去することができる。 It is preferable to employ the above polishing conditions and set the polishing amount to 30 μm to 40 μm (that is, to remove the region from the surface to a depth of 30 μm to 40 μm so that the chemical strengthening layer can be completely removed). If it is less than 30 μm, scratches and defects may not be sufficiently removed. On the other hand, when the thickness exceeds 40 μm, it is possible to obtain a surface roughness in which Rmax is in the range of 2 to 60 nm and Ra is in the range of 2 to 4 nm. Thereby, the chemical strengthening layer on the recording surface of the glass substrate precursor can be completely removed.
 なお、第1研磨液には、ポリカルボン酸を主成分とする分散剤を加え第1研磨剤の分散性を高めることが好ましい。ポリカルボン酸を主成分とする分散剤は、第1研磨剤1質量部に対して0.25~5質量部程度であることが好ましい。これは分散性を高めるのに十分な濃度であるからである。また、主成分のポリカルボン酸は平均分子量が1000~2000程度であることが好ましい。これは粘度が影響しないようにするためである。同様の分散性を得ることができれば、他の分散剤を使用することもできる。たとえばスルホン酸系、ホスホン酸系等の分散剤を用いることができる。 In addition, it is preferable to add the dispersing agent which has polycarboxylic acid as a main component to a 1st polishing liquid, and to improve the dispersibility of a 1st polishing agent. The dispersant containing polycarboxylic acid as a main component is preferably about 0.25 to 5 parts by mass with respect to 1 part by mass of the first abrasive. This is because the concentration is sufficient to enhance dispersibility. The main component polycarboxylic acid preferably has an average molecular weight of about 1000 to 2000. This is to prevent the viscosity from affecting. Other dispersing agents can be used as long as the same dispersibility can be obtained. For example, a sulfonic acid-based or phosphonic acid-based dispersant can be used.
 なお、上記の実効CeO2量は、第1研磨剤の濃度、固形分全量に対するCeO2の含有量に加え、ガラス基板前駆体への加重、研磨装置の回転数、その回転数の上下面差、などを適宜調整することによっても調整することが可能である。たとえば、ガラス基板前駆体への加重を大きくすれば実効CeO2量は多くなる傾向を示し、研磨装置の回転数を高くしても実効CeO2量は多くなる傾向を示し、回転数の上下面差を大きくしても実効CeO2量は多くなる傾向を示す。 The effective CeO 2 amount is not only the concentration of the first abrasive and the content of CeO 2 with respect to the total solid content, but also the load on the glass substrate precursor, the rotational speed of the polishing apparatus, and the difference between the upper and lower surfaces of the rotational speed. It is also possible to make adjustments by appropriately adjusting the above. For example, if the load on the glass substrate precursor is increased, the effective CeO 2 amount tends to increase, and the effective CeO 2 amount tends to increase even if the rotational speed of the polishing apparatus is increased. Even if the difference is increased, the effective CeO 2 amount tends to increase.
 <研磨工程>
 本発明は、上記化学強化層除去工程の後に、上記第1研磨液とは異なる第2研磨液を用いて、ガラス基板前駆体の記録面を研磨する工程(以下、「研磨工程」ともいう)を含むことが好ましい。
<Polishing process>
In the present invention, after the chemical strengthening layer removing step, the recording surface of the glass substrate precursor is polished using a second polishing liquid different from the first polishing liquid (hereinafter also referred to as “polishing step”). It is preferable to contain.
 このような研磨工程は、上記化学強化層除去工程後のガラス基板前駆体の記録面をさらに精密に研磨する工程である。具体的には、上記の第1研磨液とは異なる第2研磨液を保持したパッドを用いて、化学強化層が除去されたガラス基板前駆体の記録面を研磨する工程である。 Such a polishing step is a step of further precisely polishing the recording surface of the glass substrate precursor after the chemical strengthening layer removing step. Specifically, it is a step of polishing the recording surface of the glass substrate precursor from which the chemical strengthening layer has been removed, using a pad holding a second polishing liquid different from the first polishing liquid.
 ここで、第2研磨液としては、水と第2研磨剤とを含むものを用いることができる。第2研磨剤としては、第1研磨剤と同様にCeO2(酸化セリウム)を含むことができるが、ガラス基板前駆体の記録面をより滑らかにするために、第1研磨剤に比し粒径がより細かくバラツキが少ない研磨剤を用いることが好ましい。第2研磨剤の粒径は、平均粒子径が20nm程度とすることが好ましい。そして、このような第2研磨剤を水に分散させてスラリー状とすることにより第2研磨液とすることができる。このような第2研磨液は、水と第2研磨剤との混合比率が、1:9~3:7程度とすることが好ましい。なお、第2研磨剤において、CeO2以外の成分は、第1研磨剤で挙げた成分と同様の成分を含むことができる。 Here, as the second polishing liquid, one containing water and a second abrasive can be used. As the second abrasive, CeO 2 (cerium oxide) can be contained in the same manner as the first abrasive, but in order to make the recording surface of the glass substrate precursor more smooth, the grains are smaller than the first abrasive. It is preferable to use an abrasive having a finer diameter and less variation. The average particle size of the second abrasive is preferably about 20 nm. And it can be set as a 2nd polishing liquid by disperse | distributing such a 2nd abrasive | polishing agent in water, and making it a slurry form. In such a second polishing liquid, the mixing ratio of water and the second abrasive is preferably about 1: 9 to 3: 7. In the second abrasive, components other than CeO 2 can include the same components as those mentioned for the first abrasive.
 また、第2研磨液を保持するパッドとしては、上記の化学強化層除去工程で使用されるパッドより柔らかい硬度65~80(Asker-C)程度の軟質パッドであって、たとえば発泡ウレタン製やスウェード製のパッドを使用することが好ましい。 The pad for holding the second polishing liquid is a soft pad having a hardness of about 65 to 80 (Asker-C) that is softer than the pad used in the chemical strengthening layer removing step. For example, the pad is made of urethane foam or suede. It is preferable to use a pad made of metal.
 このような研磨工程は、通常、上記と同様の研磨装置を用いて行なうことができるが、研磨装置の定盤によるガラス基板への加重は、90g/cm2~110g/cm2とすることが好ましい。定盤によるガラス基板への加重は、化学強化層除去工程と同様に外周端部の形状に大きく影響するが、研磨速度が遅いため化学強化層除去工程ほど効率的に形状を変化させることはできない。加重の加減による外周端部の形状の変化は、化学強化層除去工程と同様であり、加重を大きくしていくと、外周端部の内側が下がり外側に向かって上がる傾向を示す。また、加重を小さくしていくと、外周端部は平面に近くなるとともに面ダレが大きくなる傾向を示す。外周端部の形状を所望のものとするためには、こうした傾向を観察しながら加重を決定することが好ましい。定盤の回転数を15rpm~35rpmとし、上定盤の回転数を下定盤の回転数より30%~40%遅くすることが好ましい。 Such a polishing step can usually be performed using a polishing apparatus similar to the above, but the weight applied to the glass substrate by the surface plate of the polishing apparatus should be 90 g / cm 2 to 110 g / cm 2. preferable. The load applied to the glass substrate by the surface plate greatly affects the shape of the outer peripheral edge as in the chemical strengthening layer removal process, but the shape cannot be changed as efficiently as the chemical strengthening layer removal process because the polishing rate is slow. . The change in the shape of the outer peripheral end due to the increase / decrease of the weight is the same as in the chemical strengthening layer removing step. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases. In order to obtain the desired shape of the outer peripheral edge, it is preferable to determine the weight while observing such a tendency. The rotation speed of the surface plate is preferably 15 rpm to 35 rpm, and the rotation speed of the upper surface plate is preferably 30% to 40% slower than the rotation speed of the lower surface plate.
 このように本研磨工程での研磨条件を調整することにより本発明の外周端部の形状を得るとともに、記録面の面粗さをRmaxが2nm~6nm、Raが0.2nm~0.4nmの範囲とすることができる。 Thus, by adjusting the polishing conditions in this polishing step, the shape of the outer peripheral edge of the present invention is obtained, and the surface roughness of the recording surface is Rmax 2 nm to 6 nm and Ra is 0.2 nm to 0.4 nm. It can be a range.
 研磨量は、1μm~5μmとする(すなわち表面から1μm~5μmの深さまで研磨除去する)ことが好ましい。研磨量をこの範囲とすることにより、表面に発生した微小な荒れやうねり、およびこれまでの工程で生じた微小な傷痕といった微小な欠陥を効率良く除去することができる。 The polishing amount is preferably 1 μm to 5 μm (that is, polished and removed from the surface to a depth of 1 μm to 5 μm). By setting the polishing amount within this range, it is possible to efficiently remove minute defects such as minute roughness and undulation generated on the surface, and minute scratches generated in the steps so far.
 なお、研磨工程では、化学強化層除去工程で使用した研磨装置をそのまま用いるのではなく、同一構成ではあるがそれぞれの工程専用に用意された別の研磨装置を用いて研磨を行なうことが好ましい。これは、化学強化層除去工程で使用した研磨装置をそのまま用いると化学強化層除去工程で残留した第1研磨剤等により研磨工程での研磨精度が低下したり、研磨条件を再設定する等の煩雑な作業が必要となり、製造効率が低下するためである。 In the polishing process, it is preferable not to use the polishing apparatus used in the chemical strengthening layer removing process as it is, but to perform polishing using another polishing apparatus having the same configuration but prepared for each process. This is because, if the polishing apparatus used in the chemical strengthening layer removal process is used as it is, the polishing accuracy in the polishing process decreases due to the first abrasive remaining in the chemical strengthening layer removal process, or the polishing conditions are reset. This is because complicated work is required and the production efficiency is lowered.
 本発明の記録媒体用ガラス基板は、このような研磨工程の終了後、ガラス基板前駆体を酸やアルカリで洗浄し、引き続き検査を行なうことにより製造することができる。 The glass substrate for recording medium of the present invention can be produced by washing the glass substrate precursor with acid or alkali after the completion of such a polishing step and subsequently conducting inspection.
 <他の工程>
 本発明の記録媒体用ガラス基板を製造する方法においては、上記以外の種々の工程を有していてもよい。たとえば、記録媒体用ガラス基板の強度の信頼性確認のためのヒートショック工程、ガラス基板の表面に残った研磨剤や化学強化処理液等の異物を除去する洗浄工程、種々の検査・評価工程等を有していてもよい。
<Other processes>
The method for producing a glass substrate for recording medium of the present invention may have various steps other than those described above. For example, heat shock process for confirming strength reliability of glass substrate for recording media, cleaning process for removing foreign substances such as abrasives and chemical strengthening treatment liquid remaining on the surface of glass substrate, various inspection / evaluation processes, etc. You may have.
 <磁気記録媒体>
 本発明の記録媒体用ガラス基板を用いた磁気記録媒体について、その一例である磁気ディスクを例にとり、以下説明する。
<Magnetic recording medium>
A magnetic recording medium using the glass substrate for recording medium of the present invention will be described below by taking a magnetic disk as an example.
 まず、このような磁気ディスクは、円板状の記録媒体用ガラス基板の表面に磁性膜が直接形成される。磁性膜の形成方法としては、従来公知の方法を用いることができ、たとえば磁性粒子を分散させた熱硬化性樹脂を記録媒体用ガラス基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法等が挙げられる。スピンコート法での膜厚は約0.3μm~1.2μm程度、スパッタリング法での膜厚は0.04μm~0.08μm程度、無電解めっき法での膜厚は0.05μm~0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。 First, in such a magnetic disk, a magnetic film is directly formed on the surface of a disk-shaped recording medium glass substrate. As a method for forming the magnetic film, a conventionally known method can be used. For example, a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a glass substrate for a recording medium, sputtering, electroless Examples include a method of forming by plating. The film thickness by spin coating is about 0.3 μm to 1.2 μm, the film thickness by sputtering is about 0.04 μm to 0.08 μm, and the film thickness by electroless plating is 0.05 μm to 0.1 μm. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.
 磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(たとえば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(たとえば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄-希土類系や、SiO2、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散した構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。 The magnetic material used for the magnetic film is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Ni having a high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise. In addition to the above-mentioned magnetic materials, there may be a granular structure in which magnetic particles such as Fe, Co, FeCo, CoNiPt are dispersed in a non-magnetic film made of ferrite, iron-rare earth, SiO 2 , BN, or the like. Good. Further, the magnetic film may be either an inner surface type or a vertical type recording format.
 また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば、液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In addition, a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
 さらに必要により下地層や保護層を設けてもよい。下地層は、記録媒体用ガラス基板と磁性膜との間に形成されるものであり、保護層は、磁性膜上に形成されるものである。 Further, if necessary, an underlayer or a protective layer may be provided. The underlayer is formed between the glass substrate for recording medium and the magnetic film, and the protective layer is formed on the magnetic film.
 磁気ディスクにおける下地層は、磁性膜に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一または異種の層を積層した複数層構造としてもよい。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。 The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics. The underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁性膜の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層や磁性膜などとともにインライン型スパッタ装置で連続して形成することができる。また、このような保護層は、単層としてもよく、あるいは、同一または異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、Cr層の上に、テトラアルコキシシランをアルコール系の溶媒で希釈した溶液中に、コロイダルシリカ微粒子を分散させた分散液を塗布し、さらに焼成して二酸化ケイ素(SiO2)層を形成してもよい。 Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed with an underlayer, a magnetic film, and the like by an in-line sputtering apparatus. Further, such a protective layer may be a single layer, or may be a multilayer structure composed of the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, a dispersion liquid in which colloidal silica fine particles are dispersed in a solution obtained by diluting tetraalkoxysilane with an alcohol solvent is applied on the Cr layer, and further fired to obtain silicon dioxide ( A SiO 2 ) layer may be formed.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1~10および比較例1~3>
 ガラス材料としてアルミノシリケートガラス(Tg:500℃)を用いて、上記のガラス溶融工程(1500℃にて溶融)、プレス成形工程(溶融したガラスを平面形状の金型に流し込み、その金型で溶融ガラスを挟みプレス成形することにより厚み1.00mmのガラスブランクスを得た)、コアリング加工工程(ガラスブランクスの表面の中心部にダイヤモンドコアドリルを用いて貫通孔を形成し、ドーナツ状の孔あきブランクス材を作製した)、第1ラッピング工程(ダイヤモンドペレットを貼り付けたプレートを保持した両面研削機にて、ブランクス材を研削加工し、平行度、平坦度、および厚さを予備調整する)、内・外径加工工程(#325の砥石を使用して研削し、さらに#500の砥石にて面取りして、ブランクス材の外径寸法および真円度、並びに孔の内径寸法等を微調整した)、内周端面加工工程(内周端面をナイロン製の研磨ブラシと酸化セリウムにて研磨し、鏡面化する)、第2ラッピング工程(後述のように条件を変化させた)、外周端面加工工程(外端部を内周部と同様にナイロン製研磨ブラシと酸化セリウムにて研磨し、鏡面化する)を経ることにより、外径65mm、内径20mm、厚み0.8mmのガラス基板前駆体を得た。
<Examples 1 to 10 and Comparative Examples 1 to 3>
Using aluminosilicate glass (Tg: 500 ° C.) as the glass material, the glass melting step (melting at 1500 ° C.), the press molding step (the molten glass is poured into a flat mold, and the mold melts. Glass blanks with a thickness of 1.00 mm were obtained by sandwiching glass and press forming), coring process (through holes were formed in the center of the surface of the glass blanks using a diamond core drill, and donut-shaped perforated blanks 1st lapping step (Blank material is ground with a double-side grinding machine holding a plate with diamond pellets, and the parallelism, flatness, and thickness are pre-adjusted),・ Outer diameter processing step (grinding using # 325 grindstone and chamfering with # 500 grindstone, outer diameter of blanks material Method, roundness, inner diameter of the hole, etc.), inner peripheral end surface processing step (polishing the inner peripheral end surface with a nylon polishing brush and cerium oxide to make a mirror surface), second lapping step (The conditions were changed as will be described later), outer diameter end surface processing step (outer end portion is polished with a nylon polishing brush and cerium oxide and mirrored like the inner peripheral portion) A glass substrate precursor having a thickness of 65 mm, an inner diameter of 20 mm, and a thickness of 0.8 mm was obtained.
 このガラス基板前駆体の表面は、第2ラッピング工程(すなわち化学強化層を形成する工程の前に行われるガラス基板前駆体の表面を研削する工程)の条件を、ダイヤモンドタイル(Diamond Tile)のような表面模様付きの三次元固定研磨物を用いるという条件とすることで、ガラス基板前駆体の表面をラッピングすることができる。具体的には、スリーエム社のトライザクト(登録商標)を用いてラッピングすることができる。ここで用いるダイヤモンドタイルは、集中度100で粒径2μmのものを使用した。ダイヤモンドタイルの集中度を変更したり、粒径を変更したりすることにより、化学強化層形成工程前のガラス基板前駆体の表面が表1(「当初Ra」の項)に記載の算術平均粗さRaとなるように調整した。この場合、ダイヤモンドタイルの集中度を高くするとRaは小さくなる傾向を示し、粒径を小さくしてもRaは小さくなる傾向を示す。 The surface of the glass substrate precursor is subjected to a second lapping step (that is, a step of grinding the surface of the glass substrate precursor that is performed before the step of forming the chemical strengthening layer) under the conditions of diamond tile (Diamond Tile). The surface of the glass substrate precursor can be lapped by using a three-dimensional fixed abrasive with a surface pattern. Specifically, lapping can be performed using Tri-act (registered trademark) of 3M. The diamond tile used here had a concentration of 100 and a particle size of 2 μm. By changing the degree of concentration of the diamond tile or changing the particle size, the surface of the glass substrate precursor before the chemical strengthening layer forming step is changed to the arithmetic average roughness described in Table 1 ("Initial Ra" section). It adjusted so that it might become Ra. In this case, Ra tends to decrease when the concentration of diamond tiles is increased, and Ra tends to decrease even if the particle size is decreased.
 次いで、上記のようにして準備されたガラス基板前駆体を、硝酸ナトリウムと硝酸カリウムの1:1という組成からなる、400℃の化学強化処理液に60分間浸漬させることにより、ガラス基板前駆体の全表面の10μmの領域に対して化学強化層を形成した。 Next, the glass substrate precursor prepared as described above is immersed in a chemical strengthening treatment liquid at 400 ° C. for 60 minutes, which is composed of a 1: 1 composition of sodium nitrate and potassium nitrate. A chemically strengthened layer was formed on the 10 μm region of the surface.
 次に、水と第1研磨剤とを含み、第1研磨剤(固形分全量に相当)の濃度が表1(「第1研磨剤濃度」の項)に記載の濃度となり、固形分全量に対するCeO2の含有量が表1(「CeO2含有量」の項)に記載の含有量となるような第1研磨液を調製した。この第1研磨剤をレーザ回折散乱法(粒度分布測定装置(商品名:「SALD-2200」、株式会社島津製作所社製)を使用)で測定し粒度分布を測定したところ、最大値が3.2μmであり、累積50体積%径D50が1.0μmであった。 Next, the concentration of the first abrasive (corresponding to the total amount of solids) containing water and the first abrasive becomes the concentration described in Table 1 (section “First Abrasive Concentration”), and is based on the total amount of solids the content of CeO 2 was prepared first polishing liquid such that the content described in Table 1 (the "CeO 2 content"). When the first abrasive was measured by a laser diffraction scattering method (using a particle size distribution measuring device (trade name: “SALD-2200”, manufactured by Shimadzu Corporation)) and the particle size distribution was measured, the maximum value was 3. The cumulative 50% by volume diameter D50 was 1.0 μm.
 そして、この第1研磨液を用いて、上記で化学強化層を形成したガラス基板前駆体の記録面から化学強化層を除去した。 And using this 1st polishing liquid, the chemical strengthening layer was removed from the recording surface of the glass substrate precursor in which the chemical strengthening layer was formed above.
 具体的には、上記で得られた第1研磨液をウレタン製パッド(商品名:「MH-C15A」、ニッタハース社製、硬度A:85)に保持し、研磨装置(スピードファム社製)を用いることにより、以下の研磨条件で研磨することにより、ガラス基板前駆体の記録面から化学強化層を除去した。 Specifically, the first polishing liquid obtained above is held on a urethane pad (trade name: “MH-C15A”, manufactured by Nita Haas Co., Ltd., hardness A: 85), and a polishing apparatus (manufactured by Speed Fem Co.) is used. By using, the chemical strengthening layer was removed from the recording surface of the glass substrate precursor by polishing under the following polishing conditions.
 研磨条件は、加重を100g/cm2、上定盤の回転数を30rpm、下定盤の回転数を24rpm、研磨量を32μmとした。 The polishing conditions were a load of 100 g / cm 2 , a rotation speed of the upper surface plate of 30 rpm, a rotation speed of the lower surface plate of 24 rpm, and a polishing amount of 32 μm.
 その後、第1研磨液とは異なる第2研磨液を用いて、上記ガラス基板前駆体の記録面を以下の研磨条件で研磨することにより、記録媒体用ガラス基板を製造した。 Thereafter, a recording substrate glass substrate was manufactured by polishing the recording surface of the glass substrate precursor under the following polishing conditions using a second polishing liquid different from the first polishing liquid.
 なお、第2研磨液の組成は、次の通りである。すなわち、水と第2研磨剤を含み、第2研磨剤は、粒径20nmのコロイダルシリカ、ポリカルボン酸を主成分とする分散剤、HEDP(キレート剤)、クエン酸からなる。また、研磨条件は、加重を110g/cm2、上定盤の回転数を30rpm、下定盤の回転数を30rpm、研磨量を1.5μmとした。 The composition of the second polishing liquid is as follows. That is, it contains water and a second abrasive, and the second abrasive consists of colloidal silica having a particle size of 20 nm, a dispersant mainly composed of polycarboxylic acid, HEDP (chelating agent), and citric acid. The polishing conditions were a load of 110 g / cm 2 , an upper surface plate rotation speed of 30 rpm, a lower surface plate rotation speed of 30 rpm, and a polishing amount of 1.5 μm.
 そして、このようにして得られた記録媒体用ガラス基板について、実効CeO2量とうねりを測定した。その結果を表1に示す。なお、実効CeO2量は、第2研磨液による研磨工程前に、上記で述べた測定方法により測定した。うねりWaは、OptiFlat(フェイズシフトテクノロジー社製)を用いて、波長10mm~0.1mmで測定することにより、次の基準で評価した。 Then, the glass substrate for a recording medium thus obtained was measured effective amount of CeO 2 and swell. The results are shown in Table 1. The effective CeO 2 amount was measured by the measurement method described above before the polishing step with the second polishing liquid. The waviness Wa was evaluated according to the following criteria by measuring at a wavelength of 10 mm to 0.1 mm using OptiFlat (manufactured by Phase Shift Technology).
 <うねりの評価>
 A:うねりWaが5Å未満
 B:うねりWaが5Å以上7Å未満
 C:うねりWaが7Å以上9Å未満
 D:うねりWaが9Å以上
 なお、うねりWaの数値が小さいほど、うねりが低減されていることを示す。
<Evaluation of swell>
A: Waviness Wa is less than 5 mm B: Waviness Wa is 5 mm or more and less than 7 mm C: Waviness Wa is 7 mm or more and less than 9 mm D: Waviness Wa is more than 9 mm Show.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、実効CeO2量を0.05~0.5μg/cm2の範囲とすることにより、うねりが低減されていることが確認できた。したがって、本発明の製造方法に従って製造された記録媒体用ガラス基板は、うねりが低減されていることが明らかである。 As is apparent from Table 1, it was confirmed that the undulation was reduced by setting the effective CeO 2 amount in the range of 0.05 to 0.5 μg / cm 2 . Therefore, it is clear that the waviness of the glass substrate for recording medium manufactured according to the manufacturing method of the present invention is reduced.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (6)

  1.  ガラス基板前駆体を用いて記録媒体用ガラス基板を製造する方法であって、
     前記ガラス基板前駆体の表面に対して化学強化層を形成する工程と、
     第1研磨液を用いて、前記ガラス基板前駆体の記録面から前記化学強化層を除去する工程と、を含み、
     前記第1研磨液は、水と第1研磨剤とを含み、
     前記第1研磨剤は、CeO2を含み、
     前記化学強化層を除去する工程における実効CeO2量は、0.05~0.5μg/cm2である、記録媒体用ガラス基板を製造する方法。
    A method for producing a glass substrate for a recording medium using a glass substrate precursor,
    Forming a chemically strengthened layer on the surface of the glass substrate precursor;
    Using the first polishing liquid, removing the chemical strengthening layer from the recording surface of the glass substrate precursor,
    The first polishing liquid contains water and a first abrasive,
    The first abrasive comprises CeO 2 ;
    A method for producing a glass substrate for a recording medium, wherein an effective amount of CeO 2 in the step of removing the chemical strengthening layer is 0.05 to 0.5 μg / cm 2 .
  2.  前記化学強化層を除去する工程の後に、前記第1研磨液とは異なる第2研磨液を用いて、前記ガラス基板前駆体の記録面を研磨する工程を含む、請求項1記載の記録媒体用ガラス基板を製造する方法。 The recording medium according to claim 1, further comprising a step of polishing the recording surface of the glass substrate precursor using a second polishing liquid different from the first polishing liquid after the step of removing the chemical strengthening layer. A method for producing a glass substrate.
  3.  前記第1研磨液中の前記第1研磨剤の濃度は、1~9質量%である、請求項1または2記載の記録媒体用ガラス基板を製造する方法。 The method for producing a glass substrate for a recording medium according to claim 1 or 2, wherein the concentration of the first abrasive in the first polishing liquid is 1 to 9% by mass.
  4.  前記化学強化層を形成する工程の前に、前記ガラス基板前駆体の表面を研削する工程を含み、
     前記ガラス基板前駆体の表面を研削する工程の後、前記ガラス基板前駆体の表面は、算術平均粗さRaが0.1μm以下である、請求項1~3のいずれかに記載の記録媒体用ガラス基板を製造する方法。
    Before the step of forming the chemical strengthening layer, the step of grinding the surface of the glass substrate precursor,
    4. The recording medium according to claim 1, wherein after the step of grinding the surface of the glass substrate precursor, the surface of the glass substrate precursor has an arithmetic average roughness Ra of 0.1 μm or less. A method for producing a glass substrate.
  5.  前記第1研磨剤は、レーザ回折散乱法で測定された粒度分布において、最大値が3.5μm以下であり、かつ累積50体積%径D50が0.5~1.5μmである、請求項1~4のいずれかに記載の記録媒体用ガラス基板を製造する方法。 2. The first abrasive has a maximum value of 3.5 μm or less and a cumulative 50 volume% diameter D50 of 0.5 to 1.5 μm in a particle size distribution measured by a laser diffraction scattering method. 5. A method for producing a glass substrate for a recording medium according to any one of items 1 to 4.
  6.  前記第1研磨液は、固形分全量に対してCeO2を60質量%以上含む、請求項1~5のいずれかに記載の記録媒体用ガラス基板を製造する方法。 6. The method for producing a glass substrate for a recording medium according to claim 1, wherein the first polishing liquid contains 60% by mass or more of CeO 2 with respect to the total solid content.
PCT/JP2011/068061 2010-12-24 2011-08-08 Method of manufacturing glass substrate for recording medium WO2012086256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-287855 2010-12-24
JP2010287855 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086256A1 true WO2012086256A1 (en) 2012-06-28

Family

ID=46313543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068061 WO2012086256A1 (en) 2010-12-24 2011-08-08 Method of manufacturing glass substrate for recording medium

Country Status (1)

Country Link
WO (1) WO2012086256A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174500A (en) * 2003-12-12 2005-06-30 Hoya Corp Manufacturing method of glass substrate for information recording medium
JP2007217204A (en) * 2006-02-14 2007-08-30 Konica Minolta Opto Inc Glass substrate for magnetic recording medium and method for producing the same
WO2010041536A1 (en) * 2008-10-07 2010-04-15 コニカミノルタオプト株式会社 Process for producing glass substrate, and process for producing magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174500A (en) * 2003-12-12 2005-06-30 Hoya Corp Manufacturing method of glass substrate for information recording medium
JP2007217204A (en) * 2006-02-14 2007-08-30 Konica Minolta Opto Inc Glass substrate for magnetic recording medium and method for producing the same
WO2010041536A1 (en) * 2008-10-07 2010-04-15 コニカミノルタオプト株式会社 Process for producing glass substrate, and process for producing magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4998095B2 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JPWO2008004471A1 (en) Manufacturing method of glass substrate, magnetic disk and manufacturing method thereof
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP2009076167A (en) Method of manufacturing glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
WO2011033948A1 (en) Glass substrate for information recording medium, information recording medium, and method for producing glass substrate for information recording medium
JP2008287779A (en) Method for manufacturing glass substrate for information recording medium, glass substrate for information recording medium, and magnetic recording medium
WO2010041536A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2010041537A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP4952311B2 (en) Glass substrate for information recording medium and magnetic recording medium
JP2008217918A (en) Glass substrate for magnetic recording medium, and magnetic recording medium
JP2008204499A (en) Glass substrate for information recording medium and magnetic recording medium
JP5706250B2 (en) Glass substrate for HDD
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP2012079365A (en) Method for manufacturing glass substrate for information recording medium
JP2012203960A (en) Manufacturing method for glass substrate for magnetic information recording medium
WO2013001722A1 (en) Method for producing hdd glass substrate
JP5636243B2 (en) Manufacturing method of glass substrate for information recording medium
JP2013016214A (en) Glass substrate for hdd, process for producing glass substrate for hdd, and magnetic recording medium for hdd
WO2012086256A1 (en) Method of manufacturing glass substrate for recording medium
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium
JP2012203959A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP2013012282A (en) Method for manufacturing glass substrate for hdd
JP5600321B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP