JP2007211096A - Pyrolysis facility - Google Patents

Pyrolysis facility Download PDF

Info

Publication number
JP2007211096A
JP2007211096A JP2006031368A JP2006031368A JP2007211096A JP 2007211096 A JP2007211096 A JP 2007211096A JP 2006031368 A JP2006031368 A JP 2006031368A JP 2006031368 A JP2006031368 A JP 2006031368A JP 2007211096 A JP2007211096 A JP 2007211096A
Authority
JP
Japan
Prior art keywords
charging
thermal decomposition
workpiece
pyrolysis
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006031368A
Other languages
Japanese (ja)
Inventor
Katsunori Ide
勝記 井手
Kazutaka Koshiro
和高 小城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006031368A priority Critical patent/JP2007211096A/en
Publication of JP2007211096A publication Critical patent/JP2007211096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide pyrolysis equipment which can charge an object to be treated into a pyrolysis furnace stably and also safely at all times. <P>SOLUTION: The pyrolysis equipment is the one which charges the object to be treated into the pyrolysis furnace with a charging apparatus to carry out the pyrolysis treatment. The charging apparatus is equipped with a charge hopper which stores the treated object to a predetermined height of stack and a charging mechanism which is communicant with the lower part of this charge hopper, has a compression section to perform compression while transferring the treated object stored in the hopper, and charges the treated object compressed in this compression section into the pyrolysis furnace. By the stacking part of the treated object in the charge hopper and the compression section for the treated object in the charging mechanism, a material seal is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、未分別で未処理の様々な材質や形状からなる物質を含む都市ごみ、産業廃棄物あるいは特殊廃棄物等を、熱分解によって処理する廃棄物処理システムの熱分解装置に関する。   The present invention relates to a thermal decomposition apparatus for a waste treatment system that treats municipal waste, industrial waste, special waste, and the like containing various materials and shapes that are unsorted and untreated by thermal decomposition.

従来から、様々な汚染物質を含む未分別でかつ未処理の廃棄物を処理して使用可能な物質に変質させる廃棄物処理システムとして、廃棄物を熱分解により処理する熱分解処理システムが知られている。(例えば、特許文献1参照)。   Conventionally, as a waste treatment system that processes unsorted and untreated waste containing various pollutants into a usable material, a thermal decomposition treatment system that treats waste by pyrolysis is known. ing. (For example, see Patent Document 1).

図4は、このような熱分解処理システムの一例を示すブロック図である。図4において、廃棄物等の被処理物61は、前処理装置62を介して廃棄物供給装置63により熱分解炉64内へ供給され、この熱分解炉64において熱分解処理される。熱分解炉64での熱分解により発生した有機性の高分子ガスは、ガス改質器65により改質されて低分子の可燃性ガスとなり、ガス浄化装置66により浄化されて改質ガス67となる。この改質ガス67は、当該熱分解処理システム内のエネルギー源として再利用される。一方、熱分解炉64で発生した残さは、残さ排出装置68により外部へ排出され、造粒装置69で選別と造粒を施し再資源化70される。   FIG. 4 is a block diagram showing an example of such a thermal decomposition processing system. In FIG. 4, an object to be processed 61 such as waste is supplied into a pyrolysis furnace 64 by a waste supply apparatus 63 via a pretreatment apparatus 62, and is pyrolyzed in the pyrolysis furnace 64. The organic polymer gas generated by the thermal decomposition in the pyrolysis furnace 64 is reformed by the gas reformer 65 to become a low-molecular combustible gas, and is purified by the gas purification device 66 to be converted into the reformed gas 67. Become. The reformed gas 67 is reused as an energy source in the thermal decomposition processing system. On the other hand, the residue generated in the pyrolysis furnace 64 is discharged to the outside by a residue discharging device 68, and sorted and granulated by a granulating device 69 to be recycled 70.

ここで、図4における熱分解炉64としては、例えば、回転ドラムを外部から加熱する外熱式回転キルンが一般的に用いられる。図5は、この外熱式回転キルン71及びこれに隣接する機器構成を示している。図5において、外熱式回転キルン71の回転ドラム72の入り口側には、廃棄物投入装置73(例えば、特許文献2参照)が配置されており、この廃棄物投入装置73により回転ドラム72内へ廃棄物が供給される。   Here, as the pyrolysis furnace 64 in FIG. 4, for example, an externally heated rotary kiln that heats the rotary drum from the outside is generally used. FIG. 5 shows the externally heated rotary kiln 71 and the equipment configuration adjacent thereto. In FIG. 5, a waste input device 73 (see, for example, Patent Document 2) is disposed on the entrance side of the rotary drum 72 of the externally heated rotary kiln 71. Waste is supplied to

一方、回転ドラム72の出口側には出口フード74が配置されており、この出口フード74により、回転ドラム72内で熱分解された廃棄物が、熱分解ガス75と熱分解残さ76とに分離され、排出される。熱分解ガス75は、連結ガス管77を通ってガス改質器(クラッカ)65に送られガス改質処理される。一方、熱分解残さ76は残さ排出装置68に送られる。   On the other hand, an outlet hood 74 is disposed on the outlet side of the rotary drum 72, and the waste thermally decomposed in the rotary drum 72 is separated into a pyrolysis gas 75 and a pyrolysis residue 76 by the outlet hood 74. And discharged. The pyrolysis gas 75 is sent to the gas reformer (cracker) 65 through the connecting gas pipe 77 and subjected to gas reforming treatment. On the other hand, the pyrolysis residue 76 is sent to a residue discharge device 68.

円筒構造の回転ドラム72は支持ローラ78で回転可能に支持されている。また、回転ドラム72は燃焼室79内に納められ、バーナ80により外熱加熱される。
特開2000−202419号公報 特開2001−279264号公報
A cylindrical rotating drum 72 is rotatably supported by a support roller 78. The rotating drum 72 is housed in the combustion chamber 79 and is heated by the burner 80 from the outside heat.
JP 2000-202419 A JP 2001-279264 A

ところで、被処理物である廃棄物には、多種の物質が含まれており、形状も多岐にわたる。このため、特に熱分解炉の投入部において、廃棄物の絡まりによる閉塞状態などが発生することがあり、熱分解炉の安定運転上問題になる場合が想定される。また、投入装置部から熱分解炉へ空気が流入し、熱分解処理性能が低下したり、あるいは、熱分解炉内で発火して異常な高温に至る場合がある。さらには、逆流ガスが外気に漏れ出す状態にいたる可能性もある。   By the way, the waste to be treated includes various substances and has various shapes. For this reason, in particular, a clogged state due to tangling of waste may occur in the input portion of the pyrolysis furnace, which may be a problem in stable operation of the pyrolysis furnace. In addition, air may flow from the charging device into the pyrolysis furnace, and the thermal decomposition performance may be reduced, or may ignite in the pyrolysis furnace and reach an abnormally high temperature. Furthermore, there is a possibility that the backflow gas leaks to the outside air.

本発明の目的は、被処理物を常に安定して、しかも、安全に熱分解炉に投入することが可能な熱分解装置を提供することにある。   An object of the present invention is to provide a thermal decomposition apparatus capable of always stably and safely throwing a workpiece into a thermal decomposition furnace.

本発明の熱分解設備は、被処理物を投入装置により熱分解炉内に投入して熱分解処理を行う熱分解設備であって、前記投入装置は、被処理物を所定の積層高さに貯留させる投入ホッパと、この投入ホッパの下部に連通し、ホッパ内に貯留された被処理物を搬送しながら圧縮する圧縮部分を有し、この圧縮部分で圧縮された被処理物を前記熱分解炉内に投入する投入機構とを備え、前記投入ホッパ内の被処理物の積層部分と前記投入機構における被処理物の圧縮部分とでマテリアルシールを形成することを特徴とする。   A thermal decomposition facility according to the present invention is a thermal decomposition facility that performs a thermal decomposition process by putting an object to be processed into a pyrolysis furnace using an input device, and the input device is configured to bring the object to be processed to a predetermined stacking height. A charging hopper that is stored, and a compression portion that communicates with a lower portion of the charging hopper and compresses the processing object stored in the hopper, and compresses the processing object compressed in the compression portion. And a charging mechanism for charging into the furnace, and a material seal is formed by the layered portion of the workpiece in the charging hopper and the compressed portion of the workpiece in the charging mechanism.

本発明では、投入機構は、投入ホッパの下部に連通し、かつ、内部軸方向に反って搬送用のスクリュー機構を設け、このスクリュー機構の下流側の周囲断面積を縮小して圧縮部分としたシリンダ部を備えている。   In the present invention, the charging mechanism communicates with the lower part of the charging hopper and is provided with a screw mechanism for conveyance in the direction of the internal axis, and the peripheral sectional area on the downstream side of the screw mechanism is reduced to form a compression portion. A cylinder part is provided.

また、本発明では、投入ホッパ内における被処理物の積層高さ検出手段を有し、この検出結果により被処理物の積層高さが予定の範囲となるように制御する積層高さ制御手段を設けるとよい。   In the present invention, the stack height control means for controlling the stack height of the workpiece in the charging hopper is controlled according to the detection result. It is good to provide.

また、本発明では、積層高さ制御手段は、積層高さ検出手段の検出結果に応じて、投入機構による被処理物の投入速度を制御する。   Further, in the present invention, the stack height control means controls the input speed of the object to be processed by the input mechanism according to the detection result of the stack height detection means.

また、本発明では、スクリュー機構の主軸内には、投入機構外の一端から投入機構内の圧縮部分まで達し、この圧縮部分の内側に開放するガス注入路が形成され、このガス注入路の前記投入機構外の一端は窒素ガス供給装置に連結され、この窒素ガス連結装置から前記ガス注入路を通して前記圧縮部内に窒素ガスを供給するように構成するとよい。   Further, in the present invention, a gas injection path is formed in the main shaft of the screw mechanism from one end outside the input mechanism to the compression portion in the input mechanism and opens to the inside of the compression portion. One end outside the charging mechanism is connected to a nitrogen gas supply device, and nitrogen gas may be supplied from the nitrogen gas connection device through the gas injection path into the compression section.

また、本発明では、窒素ガス供給装置からガス注入路を経て供給される窒素ガスの流量または圧力を測定し、この測定値が、通常時に比べ設定値を越えて変化した場合、圧縮部分のスクリュウー軸周りに被処理物が存在せず空間状態となっていると判断し、投入機構を緊急停止させる緊急停止手段を備えるとよい。   Further, in the present invention, the flow rate or pressure of nitrogen gas supplied from the nitrogen gas supply device through the gas injection path is measured, and when this measured value changes beyond the set value compared to the normal time, the screw of the compression portion is It is preferable to provide an emergency stop means that determines that the object to be processed does not exist around the shaft and is in a spatial state, and stops the input mechanism urgently.

また、本発明では、投入ホッパ内のCO濃度を測定し、このCO濃度が、通常時に比べ設定値を越えて上昇した場合、圧縮部分のスクリュウー軸周りに被処理物が存在せず空間状態となっていると判断し、投入機構を緊急停止させる緊急停止手段を備えるとよい。   Further, in the present invention, the CO concentration in the charging hopper is measured, and when this CO concentration rises beyond the set value compared to the normal time, there is no object to be processed around the screw shaft of the compressed portion and the space state It is good to provide the emergency stop means which judges that it has become, and makes an input mechanism stop urgently.

また、本発明では、投入機構の圧縮部分の出側と熱分解炉内への投入部分との間の連通路に常時開状態の緊急シャッタを設け、緊急停止手段は投入機構の緊急停止時、前記緊急シャッタを閉動作させ前記連通路を閉塞させるとよい。   Further, in the present invention, an emergency shutter that is normally open is provided in the communication path between the outlet side of the compression portion of the charging mechanism and the charging portion into the pyrolysis furnace, and the emergency stop means is used when the charging mechanism is in an emergency stop. The emergency shutter may be closed to close the communication path.

さらに、本発明では、投入ホッパ内の被処理物の状態を可視可能な監視カメラを設けてもよい。   Furthermore, in this invention, you may provide the monitoring camera which can visually recognize the state of the to-be-processed object in a charging hopper.

本発明によれば、投入ホッパ内の被処理物の積層部分と投入機構における被処理物の圧縮部分とでマテリアルシールを形成するなど、熱分解炉装置の投入装置部分での外部からの空気の漏れこみを低減し、さらには、熱分解ガスが逆流する状態を防止できるので、被処理物を常に安定して、しかも、安全に熱分解炉に投入することができる。   According to the present invention, a material seal is formed by the laminated portion of the workpieces in the charging hopper and the compressed portion of the workpieces in the charging mechanism. Leakage can be reduced, and furthermore, since the state in which the pyrolysis gas flows backward can be prevented, the object to be treated can be always stably and safely put into the pyrolysis furnace.

以下、本発明による熱分解装置の一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a thermal decomposition apparatus according to the present invention will be described in detail with reference to the drawings.

図1では、被処理物1を投入装置2により、熱分解炉30内に投入して熱分解処理を行う熱分解設備の、特に、投入装置2部分について詳細に示している。   In FIG. 1, the charging device 2 is shown in detail, particularly in the pyrolysis equipment in which the workpiece 1 is charged into the thermal decomposition furnace 30 by the charging device 2 and subjected to the thermal decomposition treatment.

投入装置2は、投入ホッパ13と、投入機構とからなり、さらに投入機構は、第1の投入機構10と第2の投入機構20とで構成されている。   The charging device 2 includes a charging hopper 13 and a charging mechanism, and the charging mechanism includes a first charging mechanism 10 and a second charging mechanism 20.

投入ホッパ13は、被処理物1を所定の積層高さに貯留させるもので、別途設けられた貯留ホッパ17内の被処理物1が、定量フィーダ18および搬送コンベア19により、一定流量で投入される。投入機構は、投入ホッパ13内に貯留された被処理物1を搬送しながら圧縮し、この圧縮された被処理物1を熱分解炉30の回転ドラム30a内に投入するもので、第1の投入機構10と第2の投入機構20とで構成されている。   The charging hopper 13 stores the workpiece 1 at a predetermined stacking height, and the workpiece 1 in the separately provided storage hopper 17 is fed at a constant flow rate by the quantitative feeder 18 and the transport conveyor 19. The The charging mechanism compresses the workpiece 1 stored in the charging hopper 13 while transporting it, and feeds the compressed workpiece 1 into the rotary drum 30a of the pyrolysis furnace 30. The charging mechanism 10 and the second charging mechanism 20 are configured.

第1の投入機構10は、投入ホッパ13の下部に連通するシリンダ部11と、このシリンダ部11の内部に、その軸方向に沿って設けられた搬送用のスクリュー機構12を有する。このシリンダ部11及びスクリュー機構12は、図示のように横向き構成されており、シリンダ部11の図示右側部分、すなわち、スクリュー機構12による搬送方向の下流側の部分には、周囲断面積を縮小した、被処理物1の圧縮部分11aが形成されている。   The first charging mechanism 10 has a cylinder part 11 communicating with the lower part of the charging hopper 13, and a conveying screw mechanism 12 provided along the axial direction inside the cylinder part 11. The cylinder part 11 and the screw mechanism 12 are configured sideways as shown in the figure, and the peripheral cross-sectional area is reduced in the right side part of the cylinder part 11 in the figure, that is, the downstream part in the conveying direction by the screw mechanism 12. A compressed portion 11a of the workpiece 1 is formed.

また、第2の投入機構20は、上記第1の投入機構10の出口側と熱分解炉30の回転ドラム30aとの間に設けられる。すなわち、第1の投入機構10を構成するシリンダ部11の圧縮部分11aの出口部分と、縦向きの連通路11bを介して連通する横向きのシリンダ部21を有する。このシリンダ部21内には、その軸方向に反って搬送用のスクリュー機構22が設けられている。   The second charging mechanism 20 is provided between the outlet side of the first charging mechanism 10 and the rotary drum 30 a of the pyrolysis furnace 30. That is, it has the side cylinder part 21 which communicates through the exit part of the compression part 11a of the cylinder part 11 which comprises the 1st injection | throwing-in mechanism 10, and the vertical communication path 11b. In the cylinder part 21, a screw mechanism 22 for conveyance is provided in the axial direction.

第1の投入機構10に設けられたスクリュー機構12は、スクリュー羽根12bを一体に取り付けたスクリュー主軸12aと、このスクリュー主軸12aを回転させる駆動部12cとを有する。スクリュー主軸12aは、シリンダ部11の一端部に、軸受を兼ねるシール部12dを貫通して回転可能に軸支されている。駆動部12cは、インバータ16により可変速制御可能なモータ、及びこのモータとスクリュー主軸12aとを連結するギア機構からなり、シリンダ部11の外部に設けられている。   The screw mechanism 12 provided in the first input mechanism 10 includes a screw main shaft 12a integrally attached with a screw blade 12b, and a drive unit 12c that rotates the screw main shaft 12a. The screw main shaft 12a is rotatably supported at one end of the cylinder portion 11 through a seal portion 12d that also serves as a bearing. The drive unit 12 c includes a motor that can be controlled at a variable speed by the inverter 16 and a gear mechanism that connects the motor and the screw main shaft 12 a, and is provided outside the cylinder unit 11.

シリンダ部11には、前述のように、被処理物1の移送方向に対して、その下流側に周囲断面積が狭まった形状の圧縮部分11aが設けられている。この圧縮部分11aは、スクリュー羽根12bの回転により被処理物1を図示右方に搬送しながら圧縮するものである。また、この圧縮部分11aに相当するスクリュー羽根12bは、シリンダ部11の形状に合わせて、被処理物1の移送方向(図示右方)に向って先細りの形状となっている。   As described above, the cylinder portion 11 is provided with the compression portion 11a having a shape in which the peripheral cross-sectional area is narrowed on the downstream side in the transfer direction of the workpiece 1. The compression portion 11a compresses the workpiece 1 while conveying the workpiece 1 to the right in the drawing by the rotation of the screw blade 12b. Further, the screw blade 12 b corresponding to the compression portion 11 a has a tapered shape toward the transfer direction (right side in the drawing) of the workpiece 1 in accordance with the shape of the cylinder portion 11.

この圧縮部分11aで圧縮された被処理物1と、前記投入ホッパ13内に積層された被処理物1とでマテリアルシールを形成し、外気の熱分解炉30内への侵入や、熱分解炉30からの熱分解ガスの逆流を防止している。   A material seal is formed by the workpiece 1 compressed by the compression portion 11a and the workpiece 1 stacked in the charging hopper 13, and the outside air enters the pyrolysis furnace 30 or the pyrolysis furnace. The backflow of the pyrolysis gas from 30 is prevented.

第2の投入機構20も、前述のように、シリンダ部21と、このシリンダ部21内に回転可能に設けられたスクリュー機構22を有する。スクリュー機構22は、スクリュー羽根22bを一体に取り付けたスクリュー主軸22aと、スクリュー主軸22aを回転させる駆動部22cとを有している。スクリュー主軸22は、シリンダ部21の一端部に、軸受を兼ねるシール部22dを貫通して回転可能に軸支されている。駆動部22cは、モータ、及びこのモータとスクリュー主軸22aとを連結するギア機構からなり、シリンダ部21の外部に設けられている。このシリンダ21の他端側は、シール部32により、熱分解炉30の回転ドラム30aに、気密かつ回転可能に接続されている。   As described above, the second input mechanism 20 also includes the cylinder portion 21 and the screw mechanism 22 that is rotatably provided in the cylinder portion 21. The screw mechanism 22 includes a screw main shaft 22a integrally attached with screw blades 22b, and a drive unit 22c that rotates the screw main shaft 22a. The screw main shaft 22 is rotatably supported at one end portion of the cylinder portion 21 through a seal portion 22d that also serves as a bearing. The drive unit 22 c includes a motor and a gear mechanism that connects the motor and the screw main shaft 22 a, and is provided outside the cylinder unit 21. The other end of the cylinder 21 is connected to the rotary drum 30a of the pyrolysis furnace 30 in an airtight and rotatable manner by a seal portion 32.

第2の投入機構20のシリンダ部21の上方、すなわち、第1の投入機構10との連通路11bの中間部に緊急シャッタ31が設けられている。この緊急シャッタ31は、常時開状態に構成されており、投入機構10,20の後述する緊急停止時、閉動作して連通路11bを閉塞させ、熱分解炉30側からの熱分解ガスの逆流を防止する。   An emergency shutter 31 is provided above the cylinder portion 21 of the second input mechanism 20, that is, in an intermediate portion of the communication path 11 b with the first input mechanism 10. The emergency shutter 31 is configured to be normally open, and closes to close the communication passage 11b during an emergency stop, which will be described later, of the charging mechanisms 10 and 20, and backflow of pyrolysis gas from the pyrolysis furnace 30 side. To prevent.

また、前記第1の投入機構10には、窒素ガスを被処理物1の圧縮部分11a封入し、被処理物1に混入した空気を逆流させて、外部からの空気の漏れこみを低減している。そのための構成として、スクリュー主軸12a内には、外部に位置する一端(図示左端)から圧縮部分11aまで達し、この圧縮部分11aの内側に開放するガス注入路34、35が形成されている。このガス注入路34,35の一端(図示左端)は窒素ガス供給装置36に連結され、この窒素ガス連結装置36からガス注入路34、35を通して圧縮部分11a内に窒素ガスを供給する。   In addition, nitrogen gas is sealed in the compressed portion 11a of the workpiece 1 in the first charging mechanism 10, and air mixed in the workpiece 1 is caused to flow backward to reduce air leakage from the outside. Yes. As a configuration for this purpose, in the screw main shaft 12a, gas injection passages 34 and 35 are formed which reach from the one end (the left end in the drawing) located outside to the compression portion 11a and open to the inside of the compression portion 11a. One end (the left end in the figure) of the gas injection paths 34 and 35 is connected to a nitrogen gas supply device 36, and nitrogen gas is supplied from the nitrogen gas connection device 36 through the gas injection paths 34 and 35 into the compression portion 11 a.

すなわち、スクリュー主軸12aの駆動側軸端部に回転自在カップリング33を設けている。また、スクリュー軸12aには、前記ガス注入路として、圧縮部分11aまでの軸方向に沿う通路部分34と、その先に放射状に開口する噴射口35を設けている。窒素ガスは、その供給装置36から流量計37を通して回転自在カップリング33によりガス注入路34,35に定圧供給される。このように、被処理物1の圧縮部分11aに窒素を噴射させることから、被処理物1に混入した空気を逆流させ、外部からの空気の漏れこみを低減する。   That is, the rotatable coupling 33 is provided at the drive side shaft end portion of the screw main shaft 12a. Further, the screw shaft 12a is provided with a passage portion 34 extending in the axial direction to the compression portion 11a and an injection port 35 opening radially at the tip thereof as the gas injection path. Nitrogen gas is supplied from the supply device 36 through the flow meter 37 to the gas injection passages 34 and 35 through the rotatable coupling 33. Thus, since nitrogen is injected to the compression part 11a of the to-be-processed object 1, the air mixed into the to-be-processed object 1 is made to flow backward, and the leakage of the air from the outside is reduced.

前記投入ホッパ13には、その内部における被処理物1の積層高さ検出手段14を設ける。この積層高さ検出手段14としては、例えば、非接触超音波形式の高さセンサ(以下、高さセンサ14と呼ぶ)を用い、投入ホッパ13内の、被処理物1の溜まった上層面と対向するように設置される。   The charging hopper 13 is provided with a stacking height detecting means 14 for the workpiece 1 inside. For example, a non-contact ultrasonic height sensor (hereinafter referred to as a height sensor 14) is used as the stacked height detection unit 14, and the upper surface of the input hopper 13 in which the workpiece 1 is accumulated is used. Installed to face each other.

この高さセンサ14の測定結果は中央制御手段15におくられ、この中央制御手段15内に構成される積層高さ制御手段15aに入力される。この積層高さ制御手段15aは、積層高さ検出手段14の検出結果に応じて、熱分解炉30に対する被処理物1の投入速度を制御するもので、高さセンサ14の検出結果により被処理物1の積層高さが予定の範囲となるようにスクリュー機構12の回転速度を制御する。すなわち、図2で示すように、高さセンサ14からの測定信号に応動する積層高さ検出回路41と、測定信号に含まれるスパイク波形の切捨て処理回路42と、測定波形を整形する移動平均処理回路43と、この測定波形から第1スクリュー機構12の軸回転速度を演算する演算回路44とを有する。そして、この演算回路44の演算結果によりインバータ16を制御し、スクリュー機構12による搬送速度を変化させる。   The measurement result of the height sensor 14 is sent to the central control means 15 and input to the stack height control means 15a configured in the central control means 15. This stacking height control means 15a controls the input speed of the workpiece 1 to the pyrolysis furnace 30 according to the detection result of the stacking height detection means 14, and the processing target is determined based on the detection result of the height sensor 14. The rotational speed of the screw mechanism 12 is controlled so that the stacking height of the objects 1 is within a predetermined range. That is, as shown in FIG. 2, a stacked height detection circuit 41 that responds to a measurement signal from the height sensor 14, a spike waveform truncation processing circuit 42 included in the measurement signal, and a moving average process that shapes the measurement waveform A circuit 43 and an arithmetic circuit 44 for calculating the shaft rotational speed of the first screw mechanism 12 from the measured waveform are included. Then, the inverter 16 is controlled by the calculation result of the calculation circuit 44, and the conveying speed by the screw mechanism 12 is changed.

また、中央制御装置15には、投入ホッパ13内のCO濃度や前記窒素ガスの異常供給状態に応じて、投入機構を緊急停止させる緊急停止手段15bが設けられている。   In addition, the central controller 15 is provided with an emergency stop means 15b for stopping the charging mechanism in an emergency depending on the CO concentration in the charging hopper 13 or the abnormal supply state of the nitrogen gas.

ここで、投入ホッパ13内にはセンサ38設け、このセンサ38で検出したCOの濃度をCO濃度計39で測定している。緊急停止手段15bは、このCO濃度が、通常時に比べ設定値を越えて上昇した場合は、圧縮部分11aのスクリュウー主軸12aの周りに被処理物が1存在せず、空間状態となっている(マテリアルシールが機能していない)と判断し、投入機構を緊急停止させる。   Here, a sensor 38 is provided in the charging hopper 13, and the CO concentration detected by the sensor 38 is measured by a CO concentration meter 39. The emergency stop means 15b is in a space state when the CO concentration increases beyond the set value compared to the normal time, and there is no object to be processed around the screw main shaft 12a of the compressed portion 11a ( It is determined that the material seal is not functioning) and the loading mechanism is stopped urgently.

また、この緊急停止手段15bは、窒素ガス供給装置36から供給される窒素ガスの流量を、流量計37の測定値から入力している。そして、この測定値が、通常時に比べ設定値を越えて大きく増大した場合、やはり圧縮部分11aのスクリュウー主軸12aの周りに被処理物1が存在せず、空間状態となっていると判断し、投入機構3を緊急停止させる。   Further, the emergency stop means 15 b inputs the flow rate of the nitrogen gas supplied from the nitrogen gas supply device 36 from the measured value of the flow meter 37. Then, when this measured value greatly increases beyond the set value compared to the normal time, it is determined that the workpiece 1 does not exist around the screw main shaft 12a of the compressed portion 11a and is in a spatial state. The charging mechanism 3 is stopped urgently.

なお、窒素ガスの異常供給状態の検出は、上述した供給流量の増大だけでなく、窒素ガスの供給圧力を測定し、その大幅な減少によって検出してもよい。   The detection of the abnormal supply state of nitrogen gas may be detected not only by increasing the supply flow rate described above but also by measuring the supply pressure of nitrogen gas and greatly decreasing it.

さらに、投入ホッパ13には、この投入ホッパ13内における被処理物1の状態を可視可能な監視カメラ40を設け、その状態を中央監視制御装置15の図示しないモニタに表示させている。   Further, the charging hopper 13 is provided with a monitoring camera 40 that can visually check the state of the workpiece 1 in the charging hopper 13, and the state is displayed on a monitor (not shown) of the central monitoring control device 15.

次に、このような熱分解装置の作用について説明する。まず、中央制御装置15より指令された処理量に従って、貯留ホッパ17から定量フィーダ18により定量の被処理物1が切り出され、搬送コンベア19によって投入ホッパ13に送られる。投入ホッパ13に溜まった被処理物1は、第1の投入機構10のスクリュー機構12により図示右方に送られ、圧縮部分11a圧縮される。この圧縮により、気密が十分確保されながら切り出され、第2の投入機構20に送られる。   Next, the operation of such a thermal decomposition apparatus will be described. First, according to the processing amount instructed by the central control device 15, the fixed amount of the processing object 1 is cut out from the storage hopper 17 by the fixed amount feeder 18 and sent to the input hopper 13 by the transport conveyor 19. The workpiece 1 accumulated in the charging hopper 13 is sent rightward in the drawing by the screw mechanism 12 of the first charging mechanism 10 and compressed by the compression portion 11a. By this compression, it is cut out while ensuring sufficient airtightness and sent to the second input mechanism 20.

このとき、スクリュー軸12aのガス注入路34,35に対して、窒素ガス供給装置36から流量計37を経て回転自在カップリング33により窒素ガスが定圧供給されている。この窒素ガスはガス供給路を構成する通路部分34と、その先に放射状に開口する噴射口35を経て圧縮部分11aの内側に噴射される。このように、被処理物1の圧縮部分11aに窒素ガスが噴射されることから、被処理物1に混入した空気を逆流させ、外部からの空気の漏れこみを低減する。   At this time, nitrogen gas is supplied at a constant pressure from the nitrogen gas supply device 36 through the flow meter 37 to the gas injection passages 34 and 35 of the screw shaft 12a by the rotatable coupling 33. This nitrogen gas is injected into the inside of the compression portion 11a through a passage portion 34 constituting a gas supply passage and an injection port 35 opening radially ahead. Thus, since nitrogen gas is injected to the compression part 11a of the to-be-processed object 1, the air mixed into the to-be-processed object 1 is made to flow backward, and the leakage of the air from the outside is reduced.

第2の投入機構20では、第1の投入機構10から送られてきた被処理物1が停滞しないように、スクリュー主軸22aが十分早い速度で回転し、熱分解炉30の回転ドラム30a内に被処理物1を投入する。回転ドラム30a内に投入された被処理物1は、この内部で熱分解処理される。   In the second charging mechanism 20, the screw main shaft 22 a rotates at a sufficiently high speed so that the workpiece 1 sent from the first charging mechanism 10 does not stagnate, and enters the rotary drum 30 a of the pyrolysis furnace 30. The workpiece 1 is charged. The workpiece 1 put into the rotary drum 30a is pyrolyzed inside.

一方、投入ホッパ13に溜まった被処理物1の積層量は、高さセンサ14により検出され、中央制御装置15に送られる。中央制御装置15の積層高さ制御手段15aは、高さセンサ14からの検出波形について波形処理を行い、投入ホッパ13内における被処理物1の積層高さを、常に所定の高さに保つように演算処理する。そして、その演算結果にしたがって、第1の投入機構10のスクリュー機構12の回転速度を制御する。つまり、投入ホッパ13に溜めた被処理物1の積層高さを、常に所定の高さに保つことでこの部分にマテリアルシールを形成し、スクリュー機構12による圧縮部分11aに形成された被処理物1のマテリアルシールとで外界との通気を断った状態で、被処理物1を熱分解炉30内に投入する。   On the other hand, the stacking amount of the workpiece 1 accumulated in the charging hopper 13 is detected by the height sensor 14 and sent to the central controller 15. The stacking height control means 15a of the central controller 15 performs waveform processing on the detection waveform from the height sensor 14 so as to always keep the stacking height of the workpiece 1 in the charging hopper 13 at a predetermined height. To compute. Then, the rotational speed of the screw mechanism 12 of the first input mechanism 10 is controlled according to the calculation result. In other words, a material seal is formed in this portion by always maintaining the stacking height of the workpiece 1 stored in the charging hopper 13 at a predetermined height, and the workpiece formed in the compression portion 11 a by the screw mechanism 12. The material to be processed 1 is put into the pyrolysis furnace 30 in a state in which ventilation with the outside is cut off with the material seal 1.

このように、投入ホッパ13内に滞留させた被処理物1と、圧縮部分11aの被処理物1によってマテリアルシールを形成できることから、外部からの空気の漏れこみを低減し、さらには、熱分解ガスの逆流状態を防止できる。したがって、被処理物を常に安定して、しかも、安全に熱分解炉30に投入することができる。   In this way, since the material seal can be formed by the workpiece 1 retained in the charging hopper 13 and the workpiece 1 of the compression portion 11a, the leakage of air from the outside is reduced, and further, thermal decomposition is performed. Gas backflow can be prevented. Therefore, the object to be processed can always be stably and safely put into the pyrolysis furnace 30.

ここで、高さセンサ14で検出される波形はスパイク波や高周波を含んでいるので、積層高さ制御手段15aでは、図3で示すように波形整形を行う。すなわち、高さセンサ14は、投入ホッパ13内における被処理物1の落下や浮遊の状態を検出してスパイク状波形45や高周波状波形46が混在する波形を検出する。そこで、先ず、図2で示したスパイク波形切捨て処理回路42により、この波形からスパイク状の波形を切り捨てた一次処理波形47を作る。次に、移動平均処理回路43により、高周波の細かい動きの波形を取り去った二次処理波形48を作る。この二次処理波形48を用い、演算回路44によって第1のスクリュー主軸12aの回転速度制御波形49を作り、この波形49をもとにインバータ16によりスクリュー機構12の搬送速度を制御する。   Here, since the waveform detected by the height sensor 14 includes spike waves and high frequencies, the stacked height control means 15a performs waveform shaping as shown in FIG. That is, the height sensor 14 detects a state in which the workpiece 1 falls or floats in the charging hopper 13 and detects a waveform in which spike-like waveforms 45 and high-frequency waveforms 46 are mixed. Therefore, first, the spike waveform truncation processing circuit 42 shown in FIG. 2 creates a primary processing waveform 47 obtained by discarding the spike-like waveform from this waveform. Next, the moving average processing circuit 43 creates a secondary processing waveform 48 from which high-frequency fine movement waveforms are removed. Using this secondary processing waveform 48, the arithmetic circuit 44 creates a rotational speed control waveform 49 of the first screw spindle 12a, and the inverter 16 controls the conveying speed of the screw mechanism 12 based on this waveform 49.

このように、投入ホッパ13に溜まった被処理物1の積層量は、高さセンサ14を用いて検出し、この検出結果を中央制御装置15に送り、積層高さ制御手段15aにより図3で示すように波形処理を行う。その結果、投入ホッパ13内の被処理物1の積層高さを常に所定の高さを保つように演算処理され、第1の投入機構10のスクリュー機構12による搬送速度(投入速度)、すなわち、スクリュー軸12aの回転速度を制御する。つまり、投入ホッパ13に溜めた被処理物1のマテリアルシールとスクリュー機構12の圧縮部分11aにおける被処理物1のマテリアルシールを形成しながら投入制御する。したがって、これらのマテリアルシールを形成できることから、外部からの空気の漏れこみを低減し、さらには、熱分解ガスが逆流する状態を防止でき、被処理物を常に安定して、しかも、安全に熱分解炉に投入することが可能な熱分解炉装置を提供することができる。   In this way, the stacking amount of the workpiece 1 accumulated in the charging hopper 13 is detected by using the height sensor 14, and the detection result is sent to the central controller 15, and the stacking height control means 15a is used in FIG. Perform waveform processing as shown. As a result, the stacking height of the workpieces 1 in the charging hopper 13 is calculated so as to always maintain a predetermined height, and the conveying speed (the charging speed) by the screw mechanism 12 of the first charging mechanism 10, that is, The rotational speed of the screw shaft 12a is controlled. That is, the charging control is performed while forming the material seal of the workpiece 1 stored in the charging hopper 13 and the material seal of the workpiece 1 in the compression portion 11 a of the screw mechanism 12. Therefore, since these material seals can be formed, the leakage of air from the outside can be reduced, and furthermore, the state in which the pyrolysis gas flows backward can be prevented, and the object to be treated can be stably and safely heated. It is possible to provide a thermal cracking furnace apparatus that can be charged into a cracking furnace.

図1の熱分解装置において、例えば、圧縮部分11aにおけるスクリュー主軸12aの周りに被処理物1が存在せず空間になった場合、すなわち、マテリアルシールとして機能しない場合、そのままにしておくと外部空気が熱分解炉30内に漏れこんで炉内で燃焼したり、熱分解ガスが逆流して投入ホッパ13内で火災が生じる等の可能性がある。しかし、この実施の形態では、上述のような事態を早期に検出して対応することができる。   In the thermal decomposition apparatus of FIG. 1, for example, when the workpiece 1 does not exist around the screw main shaft 12a in the compressed portion 11a and becomes a space, that is, when it does not function as a material seal, the external air can be left as it is. May leak into the pyrolysis furnace 30 and burn in the furnace, or the pyrolysis gas may flow backward to cause a fire in the charging hopper 13. However, in this embodiment, the above situation can be detected and dealt with early.

すなわち、圧縮部分11aにおけるスクリュー主軸12aの周りに被処理物1が存在せず空間になった場合、スクリュー主軸12aに設けられた窒素噴射口35の流動抵抗が低下し、窒素ガス流量が急激に増大する。中央監視制御装置15の緊急停止手段15bはこの流量の急激な変化をとらえ、投入機構を緊急停止させるべく、スクリュー主軸12aの回転を停止させると同時に、緊急シャッタ31を閉じる。つまり、緊急停止手段15bは上記一連の緊急停止処理を実行する自動シーケンスを設けている。   That is, when the workpiece 1 does not exist around the screw main shaft 12a in the compression portion 11a and becomes a space, the flow resistance of the nitrogen injection port 35 provided in the screw main shaft 12a decreases, and the nitrogen gas flow rate rapidly increases. Increase. The emergency stop means 15b of the central monitoring control device 15 captures this rapid change in the flow rate, and stops the rotation of the screw spindle 12a and closes the emergency shutter 31 in order to stop the closing mechanism in an emergency. That is, the emergency stop means 15b has an automatic sequence for executing the series of emergency stop processes.

このように、スクリュー主軸12aの周りに被処理物1がなくなり、外部空気が漏れこみやすい状態、或いは熱分解ガスが逆流し易い状態を早期に検知し、投入機構の緊急停止処理により緊急シャッタ31を閉める。このため、安全に外部よりの空気漏れこみ防止及び燃焼ガスの逆流防止処置を施すことができる。   In this way, the object to be processed 1 disappears around the screw main shaft 12a, and a state in which external air easily leaks or a state in which pyrolysis gas easily flows back is detected at an early stage, and an emergency shutter 31 is executed by an emergency stop process of the input mechanism. Close. For this reason, it is possible to safely take measures to prevent external air leakage and combustion gas backflow.

なお、窒素ガスから異常を検出する手法としては、上述のように流量の変化だけでなく、窒素ガスの供給圧力の変化から検出するようにしてもよい。すなわち、スクリュー主軸12aの周りに被処理物1が存在せず空間になった場合、窒素ガスの供給圧力が急激に低下するので、この圧力の急激な低下から、上述した異常状態を検出できる。   In addition, as a method of detecting abnormality from nitrogen gas, you may make it detect not only from the change of flow volume as mentioned above but from the change of the supply pressure of nitrogen gas. That is, when the workpiece 1 does not exist around the screw main shaft 12a and becomes a space, the supply pressure of the nitrogen gas rapidly decreases, and thus the above-described abnormal state can be detected from this rapid decrease in pressure.

また、投入ホッパ13内にCOセンサ38を設け、このホッパ13内のCOを検出し、CO濃度計39でその濃度を測定しているので、このCO濃度の変化からも異常状態を検出できる。すなわち、投入ホッパ13内の、CO濃度が急上昇した場合は、熱分解炉30側から熱分解ガスが逆流していることになる。したがって、緊急停止手段15bは、CO濃度計39の測定値を入力しその変化を監視することにより、圧縮部分11aのスクリュー主軸11aの周りに被処理物1が存在せず空間になって熱分解ガスが逆流していると判断する。そして、投入機構を緊急停止させるべく、スクリュー主軸12aの回転を停止させると同時に緊急シャッタ31を閉じる。   Further, since the CO sensor 38 is provided in the charging hopper 13, the CO in the hopper 13 is detected, and the concentration is measured by the CO concentration meter 39, the abnormal state can be detected from the change in the CO concentration. That is, when the CO concentration in the charging hopper 13 suddenly increases, the pyrolysis gas flows backward from the pyrolysis furnace 30 side. Therefore, the emergency stop means 15b inputs the measurement value of the CO concentration meter 39 and monitors the change thereof, so that the workpiece 1 does not exist around the screw main shaft 11a of the compression portion 11a and becomes a space and is thermally decomposed. Judge that the gas is flowing backward. Then, the emergency shutter 31 is closed at the same time as the rotation of the screw spindle 12a is stopped in order to stop the closing mechanism in an emergency.

このように、熱分解炉30側からの熱分解ガスの逆流を早期に検知し、緊急シャッタ30を閉めるため、熱分解ガスの逆流および外部の空気漏れこみの防止処置を施すことができる。   Thus, since the back flow of the pyrolysis gas from the pyrolysis furnace 30 side is detected at an early stage and the emergency shutter 30 is closed, it is possible to take measures to prevent the back flow of the pyrolysis gas and external air leakage.

さらに、図1の熱分解装置では、投入ホッパ13に監視カメラ40を設け、投入ホッパ13内の被処理物1の有無もしくは積層高さを撮影し、中央監視装置15に設けた図示しないモニタにより可視可能な状態で表示することができる。一般に、スクリュー機構12による切り出し状態が異常になった場合、この状態を人間が近寄って直視することは危険であるが、監視カメラ40により、遠隔で投入ホッパ13の中を監視できるため、異常状態を容易に確認することができる。   Further, in the thermal decomposition apparatus of FIG. 1, a monitoring camera 40 is provided in the charging hopper 13, the presence / absence or stacking height of the workpiece 1 in the charging hopper 13 is photographed, and a monitor (not shown) provided in the central monitoring apparatus 15. It can be displayed in a visible state. In general, when the cut-out state by the screw mechanism 12 becomes abnormal, it is dangerous for a person to approach and look directly at this state, but the monitoring camera 40 can monitor the inside of the closing hopper 13 remotely, so that the abnormal state Can be easily confirmed.

このように、投入ホッパ13の内部状況を視覚により確認できるため、投入ホッパ13内における被処理物1の異常状態後の回復処置に有効な情報を与えてくれる。   As described above, since the internal state of the charging hopper 13 can be visually confirmed, it provides effective information for the recovery treatment after the abnormal state of the workpiece 1 in the charging hopper 13.

本発明による熱分解装置の一実施の形態を示す構成図である。It is a block diagram which shows one Embodiment of the thermal decomposition apparatus by this invention. 同上一実施の形態における積層高さ制御手段の機能を説明するブロック図である。It is a block diagram explaining the function of the lamination | stacking height control means in one Embodiment same as the above. 同上一実施の形態における高さセンサにより検出された波形処理を説明するは系図である。It is a system diagram explaining the waveform processing detected by the height sensor in the same embodiment as above. 一般的な熱分解設備の機能を説明するブロック図である。It is a block diagram explaining the function of a general thermal decomposition equipment. 一般的な熱分解設備の構成を示す構造図である。It is a block diagram which shows the structure of a general thermal decomposition equipment.

符号の説明Explanation of symbols

1 被処理物
2 投入装置
10,20 投入機構
11、21 シリンダ部
12,22スクリュー機構
11a 圧縮部分
13 投入ホッパ
14 積層高さ検出手段
15a 積層高さ制御手段
15b 緊急停止手段
30 熱分解炉
31 緊急シャッタ
34,35 ガス供給路
36 窒素ガス供給装置
37 窒素ガス流量計
38 COセンサ
39 CO濃度計
40 監視カメラ
DESCRIPTION OF SYMBOLS 1 To-be-processed object 2 Input device 10,20 Input mechanism 11,21 Cylinder part 12,22 Screw mechanism 11a Compression part 13 Input hopper 14 Stack height detection means 15a Stack height control means 15b Emergency stop means 30 Pyrolysis furnace 31 Emergency Shutter 34, 35 Gas supply path 36 Nitrogen gas supply device 37 Nitrogen gas flow meter 38 CO sensor 39 CO concentration meter 40 Surveillance camera

Claims (9)

被処理物を投入装置により熱分解炉内に投入して熱分解処理を行う熱分解設備であって、
前記投入装置は、
被処理物を所定の積層高さに貯留させる投入ホッパと、
この投入ホッパの下部に連通し、ホッパ内に貯留された被処理物を搬送しながら圧縮する圧縮部分を有し、この圧縮部分で圧縮された被処理物を前記熱分解炉内に投入する投入機構とを備え、
前記投入ホッパ内の被処理物の積層部分と前記投入機構における被処理物の圧縮部分とでマテリアルシールを形成することを特徴とする熱分解設備。
A thermal decomposition facility for performing a thermal decomposition process by putting an object to be processed into a thermal decomposition furnace with a charging device,
The charging device is
A charging hopper for storing the workpieces at a predetermined stacking height;
A charging portion that communicates with the lower portion of the charging hopper and compresses the workpiece to be processed stored in the hopper while being compressed, and that charges the workpiece compressed in the compressing portion into the pyrolysis furnace. With a mechanism,
A thermal decomposition facility characterized in that a material seal is formed by a layered portion of the workpiece in the charging hopper and a compressed portion of the workpiece in the charging mechanism.
投入機構は、投入ホッパの下部に連通し、かつ、内部軸方向に反って搬送用のスクリュー機構を設け、このスクリュー機構の下流側の周囲断面積を縮小して圧縮部分としたシリンダ部を備えたことを特徴とする請求項1に記載の熱分解設備。   The charging mechanism includes a cylinder portion that communicates with the lower portion of the charging hopper, is provided with a screw mechanism for conveyance in the direction of the internal axis, and has a compression section by reducing the peripheral sectional area on the downstream side of the screw mechanism. The thermal decomposition equipment according to claim 1, wherein 投入ホッパ内における被処理物の積層高さ検出手段を有し、この検出結果により被処理物の積層高さが予定の範囲となるように制御する積層高さ制御手段を有することを特徴とする請求項1に記載の熱分解設備。   It is characterized by having a stack height detecting means for the workpiece in the charging hopper, and having a stack height control means for controlling the stack height of the workpiece to be within a predetermined range based on the detection result. The pyrolysis equipment according to claim 1. 積層高さ制御手段は、積層高さ検出手段の検出結果に応じて、投入機構による被処理物の投入速度を制御することを特徴とする請求項3に記載の熱分解設備。   4. The thermal decomposition equipment according to claim 3, wherein the stack height control means controls the input speed of the object to be processed by the input mechanism according to the detection result of the stack height detection means. スクリュー機構の主軸内には、投入機構外の一端から投入機構内の圧縮部分まで達し、この圧縮部分の内側に開放するガス注入路が形成され、このガス注入路の前記投入機構外の一端は窒素ガス供給装置に連結され、この窒素ガス連結装置から前記ガス注入路を通して前記圧縮部内に窒素ガスを供給するように構成されていることを特徴とする請求項2に記載の熱分解設備。   A gas injection path is formed in the main shaft of the screw mechanism from one end outside the input mechanism to the compression portion in the input mechanism, and opens to the inside of the compression portion. One end of the gas injection path outside the input mechanism is The thermal decomposition equipment according to claim 2, wherein the thermal decomposition equipment is connected to a nitrogen gas supply device and is configured to supply nitrogen gas from the nitrogen gas connection device through the gas injection path into the compression section. 窒素ガス供給装置からガス注入路を経て供給される窒素ガスの流量または圧力を測定し、この測定値が、通常時に比べ設定値を越えて変化した場合、圧縮部分のスクリュウー軸周りに被処理物が存在せず空間状態となっていると判断し、投入機構を緊急停止させる緊急停止手段を備えたことを特徴とする請求項5に記載の熱分解設備。   Measure the flow rate or pressure of nitrogen gas supplied from the nitrogen gas supply device through the gas injection path, and if this measured value changes beyond the set value compared to the normal value, the object to be processed around the screw shaft of the compressed part The thermal decomposition equipment according to claim 5, further comprising an emergency stop unit that determines that there is no space and is in a space state and stops the charging mechanism in an emergency. 投入ホッパ内のCO濃度を測定し、このCO濃度が、通常時に比べ設定値を越えて上昇した場合、圧縮部分のスクリュウー軸周りに被処理物が存在せず空間状態となっていると判断し、投入機構を緊急停止させる緊急停止手段を備えたことを特徴とする請求項2に記載の熱分解設備。   When the CO concentration in the charging hopper is measured and this CO concentration rises above the set value compared to the normal time, it is determined that there is no object to be processed around the screw shaft in the compressed portion and the space is in the state. The pyrolysis equipment according to claim 2, further comprising emergency stop means for emergency stop of the charging mechanism. 投入機構の圧縮部分の出側と熱分解炉内への投入部分との間の連通路に常時開状態の緊急シャッタを設け、緊急停止手段は投入機構の緊急停止時、前記緊急シャッタを閉動作させ前記連通路を閉塞させることを特徴とする請求項6または請求項7に記載の熱分解設備。   An emergency shutter that is normally open is provided in the communication path between the outlet side of the compression portion of the input mechanism and the input portion into the pyrolysis furnace, and the emergency stop means closes the emergency shutter when the input mechanism is in an emergency stop The thermal decomposition equipment according to claim 6 or 7, wherein the communication path is closed. 投入ホッパ内の被処理物の状態を可視可能な監視カメラを設けたことを特徴とする請求項1乃至請求項8のいずれかに記載の熱分解設備。   The pyrolysis equipment according to any one of claims 1 to 8, wherein a monitoring camera capable of visualizing a state of an object to be processed in the charging hopper is provided.
JP2006031368A 2006-02-08 2006-02-08 Pyrolysis facility Pending JP2007211096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006031368A JP2007211096A (en) 2006-02-08 2006-02-08 Pyrolysis facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006031368A JP2007211096A (en) 2006-02-08 2006-02-08 Pyrolysis facility

Publications (1)

Publication Number Publication Date
JP2007211096A true JP2007211096A (en) 2007-08-23

Family

ID=38489820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006031368A Pending JP2007211096A (en) 2006-02-08 2006-02-08 Pyrolysis facility

Country Status (1)

Country Link
JP (1) JP2007211096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128349A (en) * 2013-05-02 2014-11-05 周鼎力 Device for production of fuel oil and fuel gas and/or flue gas power generation through household garbage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899873A (en) * 1972-03-06 1973-12-17 Atw Systems Inc
JPS5318265A (en) * 1976-07-31 1978-02-20 Ebara Corp Apparatus for feeding raw material to high-temperature operation furnace
JPS5662882A (en) * 1979-10-30 1981-05-29 Agency Of Ind Science & Technol Feeding of raw material to pyrolysis plant and its device
JPS5662879A (en) * 1979-10-30 1981-05-29 Agency Of Ind Science & Technol Pyrolysis and its device
JPS57117722A (en) * 1981-01-13 1982-07-22 Agency Of Ind Science & Technol Supplying of raw material and device therefor
JP2001279264A (en) * 2000-03-29 2001-10-10 Toshiba Corp Thermal cracking furnace unit
JP2005131511A (en) * 2003-10-29 2005-05-26 Kobelco Eco-Solutions Co Ltd Waste feed device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899873A (en) * 1972-03-06 1973-12-17 Atw Systems Inc
JPS5318265A (en) * 1976-07-31 1978-02-20 Ebara Corp Apparatus for feeding raw material to high-temperature operation furnace
JPS5662882A (en) * 1979-10-30 1981-05-29 Agency Of Ind Science & Technol Feeding of raw material to pyrolysis plant and its device
JPS5662879A (en) * 1979-10-30 1981-05-29 Agency Of Ind Science & Technol Pyrolysis and its device
JPS57117722A (en) * 1981-01-13 1982-07-22 Agency Of Ind Science & Technol Supplying of raw material and device therefor
JP2001279264A (en) * 2000-03-29 2001-10-10 Toshiba Corp Thermal cracking furnace unit
JP2005131511A (en) * 2003-10-29 2005-05-26 Kobelco Eco-Solutions Co Ltd Waste feed device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128349A (en) * 2013-05-02 2014-11-05 周鼎力 Device for production of fuel oil and fuel gas and/or flue gas power generation through household garbage

Similar Documents

Publication Publication Date Title
US9360253B2 (en) Metal kiln temperature control system and method
EP1920028B1 (en) Pyrolysis system
JP7195181B2 (en) Roasting equipment for waste lithium-ion batteries
TW201348669A (en) Method and apparatus for heating metals
CN115003435A (en) Passivation of the filter residue
EP3631331A1 (en) Fluid temperature control system and method for decoating kiln
JP5544832B2 (en) Vertical mill
KR101531024B1 (en) Recycling equipment of waste electric wire and waste tire
JP2007211096A (en) Pyrolysis facility
JP2001279264A (en) Thermal cracking furnace unit
JP3377359B2 (en) Waste treatment equipment
JP6801295B2 (en) Sludge treatment equipment
KR100989939B1 (en) Pyrolysis plant for waste rubber
JP4908914B2 (en) Processing equipment such as aluminum chips
KR101523648B1 (en) Charging apparatus and method
JPH10324880A (en) Bridge-detecting and bridge-breaking apparatuses of thermal decomposition residue discharge apparatus in waste treatment apparatus
JP4528434B2 (en) Waste plastic processing equipment
JP2008255244A (en) Apparatus for cooling carbonized product
JP2007155231A (en) Cooling method and device for waste thermal decomposition char
KR970074945A (en) Dust cutting device and cutting method
KR101424631B1 (en) Pyrolysis oil recovery apparatus with movableblocking wall using waste material
KR100460636B1 (en) Apparatus for supplying solid state wastes for a waste gasification furnace
CN114877663B (en) Incinerator slag drying system
CN109373753B (en) Continuous high-low section roller furnace
KR101143169B1 (en) Apparatus for discharging coke powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011