JP2007210837A - Apparatus for producing porous glass preform - Google Patents

Apparatus for producing porous glass preform Download PDF

Info

Publication number
JP2007210837A
JP2007210837A JP2006032686A JP2006032686A JP2007210837A JP 2007210837 A JP2007210837 A JP 2007210837A JP 2006032686 A JP2006032686 A JP 2006032686A JP 2006032686 A JP2006032686 A JP 2006032686A JP 2007210837 A JP2007210837 A JP 2007210837A
Authority
JP
Japan
Prior art keywords
base material
deposition chamber
porous glass
glass base
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032686A
Other languages
Japanese (ja)
Other versions
JP4993337B2 (en
Inventor
Makoto Yoshida
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006032686A priority Critical patent/JP4993337B2/en
Publication of JP2007210837A publication Critical patent/JP2007210837A/en
Application granted granted Critical
Publication of JP4993337B2 publication Critical patent/JP4993337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus that enables production of a porous glass preform by a VAD method, efficiently discharges fine glass particles which are not deposited on the porous preform, can stably deposit the fine glass particles without causing turbulent air flow in a chamber and have less generation of bubbles or foreign materials. <P>SOLUTION: In the production apparatus, a reaction vessel has an upper deposition chamber having the air supply and discharge openings, a lower deposition chamber having an air supply opening, and an upper chamber in which the porous preform formed by deposition is pulled and stored. The floor face of the upper deposition chamber is set in height between the lower end of a straight body and the tip part of deposition of the depositing preform, and a connection opening for connecting the upper and lower deposition chambers is set on the floor of the upper chamber. Assuming that the diameter of the connection opening is A, and the diameter of the porous preform passing through the connection opening is B, the ratio of B/A satisfies the inequality, 0.05≤B/A≤0.6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ファイバの製造に用いられる大型の光ファイバ用ガラス母材(以下、単に光ファイバ母材と称する)、特にはバーナ火炎中でのガラス原料の火炎加水分解反応によって生成するガラス微粒子を堆積させて製造する、多孔質ガラス母材の製造装置に関する。   The present invention relates to a glass base material for a large optical fiber (hereinafter simply referred to as an optical fiber base material) used for manufacturing an optical fiber, in particular, glass fine particles generated by a flame hydrolysis reaction of a glass raw material in a burner flame. It is related with the manufacturing apparatus of the porous glass base material which deposits and manufactures.

光ファイバ母材の製造方法としては、VAD法が良く知られている。この方法は、装置の上部構造に支持された、回転しつつ上昇するシャフトに出発部材を取り付けて反応室内に垂下し、反応室内に設置したコア堆積バーナとクラッド堆積バーナにより生成させたガラス微粒子を出発部材の先端に堆積させることで、コア層とクラッド層からなる多孔質ガラス母材(以下、単に多孔質母材と称する)が製造される。   The VAD method is well known as a method for manufacturing an optical fiber preform. This method attaches a starting member to a rotating and rising shaft supported by the upper structure of the apparatus and hangs down in a reaction chamber, and generates glass particles generated by a core deposition burner and a cladding deposition burner installed in the reaction chamber. By depositing on the tip of the starting member, a porous glass base material (hereinafter simply referred to as a porous base material) composed of a core layer and a clad layer is manufactured.

生成したガラス微粒子は、その全てが堆積されるわけではなく、堆積されなかった未付着のガラス微粒子が製造中を通して発生している。この未付着のガラス微粒子の大部分は、排気ガス等の他の気体とともに反応室に別途設けられた排気口より反応室外に排出される。   Not all of the generated glass particles are deposited, and undeposited glass particles that have not been deposited are generated throughout the production. Most of the unadhered glass particles are discharged out of the reaction chamber through an exhaust port separately provided in the reaction chamber together with other gases such as exhaust gas.

しかしながら、バーナ火炎で生成してから排出されるまでの間に、ガラス微粒子の一部は反応室内の天井や側壁に付着する。この天井や側壁に付着・堆積したガラス微粒子が剥離・落下して製造中の多孔質母材に付着し、透明ガラス化後の光ファイバ母材に気泡や異物を生じる原因となることがあった。   However, part of the glass particles adheres to the ceiling and side walls in the reaction chamber after being generated by the burner flame and discharged. The fine glass particles adhering / depositing on the ceiling or side wall may peel off and drop and adhere to the porous base material being manufactured, which may cause bubbles and foreign matter in the optical fiber base material after forming into a transparent glass. .

近年、低コスト化が要求され、光ファイバ母材の大型化が急務となっている。製造する光ファイバ母材を大きくしようとすると、原料投入量を増やす必要があるが、原料供給量が増えると堆積効率が変化しなくても、堆積しなかった余剰のガラス微粒子量は増加する。その結果、反応室の内壁に付着したガラス微粒子が剥離・落下する頻度も増す。   In recent years, cost reduction has been demanded, and there is an urgent need to increase the size of optical fiber preforms. In order to increase the optical fiber preform to be manufactured, it is necessary to increase the raw material input amount. However, as the raw material supply amount increases, even if the deposition efficiency does not change, the amount of excess glass fine particles not deposited increases. As a result, the frequency with which the glass particles adhering to the inner wall of the reaction chamber are peeled off and dropped also increases.

このような問題を解決するために、特許文献1によれば、バーナが設置されている反応室側壁面の天井付近に沿ってスリット状の給気口を設け、この給気口と対向する側壁面に排気口を設けることによって、天井に付着するガラス微粒子、つまりススの付着を低減する方法が示されている。
特開2002-193633
In order to solve such a problem, according to Patent Document 1, a slit-like air supply port is provided along the vicinity of the ceiling of the reaction chamber side wall surface on which the burner is installed, and the side facing this air supply port A method of reducing the adhesion of glass particles, that is, soot adhering to the ceiling by providing an exhaust port on the wall surface is shown.
JP2002-193633

しかしながら特許文献1による方法は、給気口側から見て、多孔質母材の裏側にあたる天井へのススの付着は避けられず、堆積したススの剥離を解消するのは困難であった。そこで、排気効率を上げ給排気量を増すことでススの付着を避けようとすると、チャンバー内の気流に乱れを生じ、コア堆積用バーナの火炎が乱され、安定して堆積することができず、得られる光ファイバ母材に脈理が生じたり、その長手方向に光学特性が変動する、という新たな問題が発生する。   However, the method according to Patent Document 1 cannot avoid the soot adhesion to the ceiling, which is the back side of the porous base material, as viewed from the air supply port side, and it is difficult to eliminate the peeling of the accumulated soot. Therefore, if you try to avoid soot adhesion by increasing the exhaust efficiency and increasing the supply and exhaust volume, the airflow in the chamber will be disturbed, the flame of the core deposition burner will be disturbed, and stable deposition will not be possible. As a result, a new problem arises that striae occur in the obtained optical fiber preform and the optical characteristics fluctuate in the longitudinal direction.

本発明の目的は、VAD法により多孔質母材を製造する装置において、多孔質母材に付着しなかったガラス微粒子の排出効率が高く、かつチャンバー内の気流に乱れを生じることなく、ガラス微粒子を安定して堆積させることができ、気泡や異物の発生が少ない多孔質母材の製造装置を提供することにある。   An object of the present invention is to provide a glass base material in a device for producing a porous base material by the VAD method, which has a high discharge efficiency of glass fine particles not attached to the porous base material and does not cause turbulence in the air flow in the chamber. It is an object of the present invention to provide an apparatus for producing a porous base material that can be stably deposited and has less generation of bubbles and foreign matters.

本発明の多孔質母材の製造装置は、ガラス用原料、可燃性ガス及び助燃性ガスをバーナに供給し、ガラス原料の火炎加水分解反応によって生成するガラス微粒子を堆積させて多孔質母材を製造する装置において、給気口と排気口を有する上部堆積室と、給気口を有する下部堆積室と、上部堆積室の上部にあって、堆積によって形成された多孔質母材を引上げ格納する上室とを有する反応容器において、上部堆積室の床面が、堆積中の多孔質ガラス母材の直胴部下端と堆積先端部との間の高さに設置され、上部堆積室の床部に上部堆積室と下部堆積室を接続する接続口が設けられ、接続口の開口径をA、接続口を通過する多孔質母材の径をBとするとき、B/Aが式0.05≦B/A≦0.6を満たすことを特徴としている。   The apparatus for producing a porous base material of the present invention supplies a raw material for glass, a combustible gas, and an auxiliary combustible gas to a burner, and deposits fine glass particles generated by a flame hydrolysis reaction of the glass raw material to form a porous base material. In an apparatus to be manufactured, an upper deposition chamber having an air supply port and an exhaust port, a lower deposition chamber having an air supply port, and a porous base material formed by deposition are pulled up and stored above the upper deposition chamber. In a reaction vessel having an upper chamber, the floor surface of the upper deposition chamber is installed at a height between the lower end of the straight body of the porous glass base material being deposited and the deposition tip portion, Is provided with a connection port for connecting the upper deposition chamber and the lower deposition chamber, where the opening diameter of the connection port is A and the diameter of the porous base material passing through the connection port is B, B / A is expressed by the formula 0.05 ≦ B It is characterized by satisfying /A≦0.6.

本発明の装置は、接続口の中心から上部堆積室の内壁までの距離をA以上とし、接続口の中心から下部堆積室の内壁までの距離を0.7A以上とするのが好ましい。上部堆積室と下部堆積室の接続口は、その内面を面取りまたは曲面に加工し、上部堆積室床部から取り外し可能な構造とする。また、上部堆積室の排気口および給気口は、排気口上端からこれと対向する壁に設けられた給気口上端を見上げたときの角度をθとするとき、θが式5°≦θ≦50°を満たす位置にそれぞれ設けられる。
なお、給気口から供給する気体は、フィルタを通した室内空気を使用する。反応容器内の圧力は、排気口の下流に設置された自動圧力制御装置によって制御される。
In the apparatus of the present invention, the distance from the center of the connection port to the inner wall of the upper deposition chamber is preferably A or more, and the distance from the center of the connection port to the inner wall of the lower deposition chamber is preferably 0.7 A or more. The connection port between the upper deposition chamber and the lower deposition chamber has a structure in which the inner surface thereof is chamfered or curved to be removable from the upper deposition chamber floor. Further, when the angle when the exhaust port and the air supply port of the upper deposition chamber look up from the upper end of the exhaust port to the upper end of the air supply port provided on the opposite wall is assumed to be θ, the equation 5 ° ≦ θ Each is provided at a position satisfying ≦ 50 °.
The gas supplied from the air supply port uses indoor air that has passed through a filter. The pressure in the reaction vessel is controlled by an automatic pressure control device installed downstream of the exhaust port.

本発明の多孔質母材の製造装置によれば、大型の多孔質母材を製造する場合においても、堆積用バーナの火炎が安定しているために、長手方向に安定した光学特性が得られ、かつガラス微粒子の排出効率が高いために、気泡や異物の発生が少ない光ファイバ母材が得られる。   According to the porous base material manufacturing apparatus of the present invention, even when a large porous base material is manufactured, since the flame of the deposition burner is stable, stable optical characteristics can be obtained in the longitudinal direction. In addition, since the discharge efficiency of the glass fine particles is high, an optical fiber preform with less generation of bubbles and foreign matters can be obtained.

鋭意検討の結果、未付着のガラス微粒子の排出効率を高め、かつチャンバー内の気流が速くなった場合でも、堆積用バーナの火炎を安定させるには、上下堆積室の接続口の開口部の高さと開口径の条件が重要であることが判明した。
本発明は、これらの条件を明らかにしたものである。
As a result of intensive studies, in order to increase the discharge efficiency of unadhered glass particles and stabilize the flame of the deposition burner even when the air flow in the chamber becomes faster, the height of the opening at the connection port of the upper and lower deposition chambers can be increased. It was found that the condition of the aperture diameter is important.
The present invention clarifies these conditions.

以下、図1〜6を用いて本発明を詳細に説明する。
図1は、本発明の製造装置の概略を示す縦断面図であり、多孔質母材1の製造装置は、排気口5と給気口6を有する上部堆積室2と、給気口7を有する下部堆積室3と、上部堆積室2の上部にあって、堆積によって形成された多孔質母材1を引上げ格納する上室4とを有する反応容器16を備えている。上部堆積室2の床面11は、堆積中の多孔質母材1の直胴部下端13と堆積先端部14との間の高さ位置にくるように設置され、上部堆積室2の床部に上部堆積室2と下部堆積室3を接続する接続口12が設けられている。
なお、多孔質母材1は、下部堆積室3のコア堆積用バーナ8によりそのコア部が堆積され、クラッド堆積用バーナ9によりクラッドの一部が堆積される。さらに、上部堆積室2ではクラッド堆積用バーナ10によりクラッド部が所定の径に達するまで堆積される。
Hereinafter, the present invention will be described in detail with reference to FIGS.
FIG. 1 is a longitudinal sectional view schematically showing a production apparatus of the present invention. A production apparatus for a porous base material 1 includes an upper deposition chamber 2 having an exhaust port 5 and an air supply port 6, and an air supply port 7. A reaction vessel 16 having a lower deposition chamber 3 and an upper chamber 4 in the upper portion of the upper deposition chamber 2 for pulling up and storing the porous base material 1 formed by deposition is provided. The floor surface 11 of the upper deposition chamber 2 is installed at a height position between the lower end 13 of the straight body portion and the deposition tip portion 14 of the porous base material 1 being deposited, A connection port 12 for connecting the upper deposition chamber 2 and the lower deposition chamber 3 is provided.
The core of the porous base material 1 is deposited by the core deposition burner 8 in the lower deposition chamber 3, and a part of the cladding is deposited by the cladding deposition burner 9. Further, in the upper deposition chamber 2, the cladding is deposited by the cladding deposition burner 10 until the cladding reaches a predetermined diameter.

図2は、接続口12の開口径と多孔質母材1の径との関係を示す拡大概略縦断面図であり、接続口12の開口径をA 、接続口12を通過する多孔質母材1の径をBとするとき、B/Aが式0.05≦B/A≦0.6を満たすように接続口12が設けられている。なお、多孔質母材1は、堆積によるその成長に合わせて引き上げられるため、接続口12を通過する多孔質母材1の径Bは、製造中ほぼ一定に保たれる。
これによって、多孔質母材1の先端部から直胴部にかけて、多孔質母材1の形状に沿った整った気流が形成される。この結果、付着しなかった余剰のガラス微粒子の排気効率を高めるために、上部堆積室2の給排気量を増やした場合でも、上部堆積室2の気流が下部堆積室3に侵入する頻度を効果的に低減でき、コア堆積用バーナ8の火炎を安定化させることが可能となる。さらに、上部堆積室2と下部堆積室3との接続口12近傍への余剰のガラス微粒子の付着を抑制することができる。なお、B/Aが0.05未満であると、上部堆積室2の乱れた気流が下部堆積室3に侵入する頻度が増す。また、B/Aが0.6を超えると、多孔質母材1と接続口12との隙間が狭いため、下部堆積室3で発生した未付着のガラス微粒子が接続口12に付着しやすくなる。
FIG. 2 is an enlarged schematic longitudinal sectional view showing the relationship between the opening diameter of the connection port 12 and the diameter of the porous base material 1, where the opening diameter of the connection port 12 is A and the porous base material passing through the connection port 12. When the diameter of 1 is B, the connection port 12 is provided so that B / A satisfies the formula 0.05 ≦ B / A ≦ 0.6. Since the porous base material 1 is pulled up in accordance with its growth due to deposition, the diameter B of the porous base material 1 passing through the connection port 12 is kept substantially constant during manufacture.
As a result, a uniform air flow is formed along the shape of the porous base material 1 from the front end portion of the porous base material 1 to the straight body portion. As a result, even when the supply / exhaust amount of the upper deposition chamber 2 is increased in order to increase the exhaust efficiency of the excessive glass fine particles that have not adhered, the frequency at which the air flow in the upper deposition chamber 2 enters the lower deposition chamber 3 is effective. Therefore, the flame of the core deposition burner 8 can be stabilized. Furthermore, it is possible to suppress the adhesion of excess glass particles near the connection port 12 between the upper deposition chamber 2 and the lower deposition chamber 3. If B / A is less than 0.05, the frequency of the turbulent airflow in the upper deposition chamber 2 entering the lower deposition chamber 3 increases. On the other hand, when B / A exceeds 0.6, the gap between the porous base material 1 and the connection port 12 is narrow, so that unadhered glass particles generated in the lower deposition chamber 3 are likely to adhere to the connection port 12.

また、接続口12の中心から上部堆積室2の内壁までの距離をA以上とし、接続口12の中心から下部堆積室3の内壁までの距離を0.7A以上とするのが好ましく、これにより、上部堆積室2の気流が下部堆積室3に流れ込んだ場合においても、下部堆積室3の室内容量が大きいためにバッファとしての役割を果たし、コア堆積用バーナ8の火炎への影響を小さくすることが可能となる。
また、接続口12の中心から上部堆積室2の内壁までの距離をA以上としたことにより、光ファイバ母材の大型化に伴って原料供給量を増加させ、余剰のガラス微粒子が増加した場合でも、上部堆積室内壁への余剰のガラス微粒子の付着が効果的に抑えられる。
The distance from the center of the connection port 12 to the inner wall of the upper deposition chamber 2 is preferably A or more, and the distance from the center of the connection port 12 to the inner wall of the lower deposition chamber 3 is preferably 0.7 A or more, Even when the air flow in the upper deposition chamber 2 flows into the lower deposition chamber 3, it serves as a buffer due to the large volume of the lower deposition chamber 3, and the influence of the core deposition burner 8 on the flame is reduced. Is possible.
In addition, when the distance from the center of the connection port 12 to the inner wall of the upper deposition chamber 2 is set to A or more, the supply amount of raw materials increases with the increase in the size of the optical fiber preform, and surplus glass particles increase. However, the adhesion of excess glass particles to the upper deposition chamber wall can be effectively suppressed.

気流中には、多孔質母材に付着しなかったガラス微粒子が含まれているため、接続口12を通過する気流によって接続口12にもガラス微粒子が付着・堆積するが、図3に示すように、接続口12の内面に面取り17もしくは曲面18を設けることによって、接続口12の内面に余剰のガラス微粒子が付着し成長するのを抑制することができる。
図3は、上部堆積室2の床部に設けられた接続口12の開口部に面取り17を行った例を示し、図4は、接続口12の開口部に曲面18を設けた例を示している。
Since the glass particles that have not adhered to the porous base material are included in the airflow, the glass particles adhere to and accumulate on the connection port 12 by the airflow passing through the connection port 12, as shown in FIG. Furthermore, by providing the chamfer 17 or the curved surface 18 on the inner surface of the connection port 12, it is possible to suppress the excessive glass fine particles from adhering to the inner surface of the connection port 12 and growing.
FIG. 3 shows an example in which chamfering 17 is performed on the opening of the connection port 12 provided on the floor of the upper deposition chamber 2, and FIG. 4 shows an example in which a curved surface 18 is provided on the opening of the connection port 12. ing.

また、図5にその一例を示すように、取り外し式接続口15を設けて接続口12を構成する部分を取り外し・交換できるようにしておくことで、簡単に掃除や洗浄を行うことができる。また、この部品を交換するだけで、反応容器16を交換することなく、製造する多孔質母材のサイズに合わせて簡単に接続口12の開口径や接続口12の高さを変更することが可能となる。   Further, as shown in FIG. 5 as an example, by providing a detachable connection port 15 so that a portion constituting the connection port 12 can be removed and replaced, cleaning and washing can be easily performed. In addition, by simply exchanging these parts, the opening diameter of the connection port 12 and the height of the connection port 12 can be easily changed according to the size of the porous base material to be manufactured without replacing the reaction vessel 16. It becomes possible.

さらに、図6に示すように、上部堆積室2において、排気口5の上端から、これと対向するバーナ側の壁に設けられた給気口6の上端を見上げたときの角度θが 5°≦θ≦50°となるように排気口5と給気口6を設けることにより、多孔質母材1に付着しなかった余剰のガラス微粒子を排気口側の天井19にまで到達させることなく、排気口5から排出させることができるようになり、バーナ側から見て、多孔質母材1の裏側にあたる天井に付着する余剰のガラス微粒子を低減することができる。   Furthermore, as shown in FIG. 6, in the upper deposition chamber 2, the angle θ when looking up from the upper end of the exhaust port 5 to the upper end of the air supply port 6 provided on the wall on the burner side facing this is 5 °. By providing the exhaust port 5 and the air supply port 6 so as to satisfy ≦ θ ≦ 50 °, excessive glass fine particles not attached to the porous base material 1 do not reach the ceiling 19 on the exhaust port side, It becomes possible to discharge from the exhaust port 5, and it is possible to reduce excess glass fine particles adhering to the ceiling on the back side of the porous base material 1 when viewed from the burner side.

また、反応容器内の圧力は、燃焼フレームやチャンバ内の気流の状態に影響を与えるため、容器内を所定の圧力を保持するように管理する必要があり、これには、自動圧力制御装置(図示を省略)を排気口5の下流に設置して制御するのが好ましい。
なお、給気口6,7から供給する気体は、フィルタを通した室内空気を使用する。
以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されるものではなく、様々な態様が可能である。
In addition, since the pressure in the reaction vessel affects the state of the airflow in the combustion frame and the chamber, it is necessary to manage the inside of the vessel so as to maintain a predetermined pressure. For this, an automatic pressure control device ( It is preferable to install and control the exhaust port 5 downstream of the exhaust port 5.
In addition, the room air which passed the filter is used for the gas supplied from the air inlets 6 and 7. FIG.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these, Various aspects are possible.

(実施例1)
図1に示した反応容器を用いて、以下の条件で、光ファイバ用多孔質母材の製造を行った。
上部堆積室2の給気口6から2[m3/min]のAirを供給し、下部堆積室3の給気口7からは100[l/min]のAirを供給し、コア堆積用バーナ8には原料ガスとして、SiCl4450[ml/min]とGeCl425[ml/min]を供給した。クラッド堆積用バーナ9,10には原料ガスとしてそれぞれSiCl41.0[l/min]、3.0[l/min]を供給した。さらに、各堆積用バーナには、それぞれ燃焼ガスとしてH2、助燃ガスとしてO2を供給した。
Example 1
Using the reaction vessel shown in FIG. 1, a porous preform for optical fiber was manufactured under the following conditions.
2 [m 3 / min] of air is supplied from the air inlet 6 of the upper deposition chamber 2, and 100 [l / min] of air is supplied from the air inlet 7 of the lower deposition chamber 3, and the core deposition burner 8 was supplied with SiCl 4 450 [ml / min] and GeCl 4 25 [ml / min] as source gases. SiCl 4 1.0 [l / min] and 3.0 [l / min] were supplied to the cladding deposition burners 9 and 10 as source gases, respectively. Further, each deposition burner was supplied with H 2 as a combustion gas and O 2 as an auxiliary combustion gas.

上部堆積室2の床面11を、多孔質母材1の直胴部下端13と堆積先端部14との間の高さにあるように設置した。接続口12の開口部は、開口径をA[mm]、接続口12を通過する部分の多孔質母材1の径をB[mm]とするとき、B/Aが0.05≦B/A≦0.6の範囲にあるように設定した。   The floor surface 11 of the upper deposition chamber 2 was placed so as to be at a height between the lower end 13 of the straight body portion and the deposition tip portion 14 of the porous base material 1. When the opening of the connection port 12 has an opening diameter of A [mm] and the diameter of the porous base material 1 passing through the connection port 12 is B [mm], B / A is 0.05 ≦ B / A ≦ It was set to be in the range of 0.6.

ガラス微粒子の堆積を24hrs行った後、上室4及び上下堆積室内の天井や壁面・接続口へのガラス微粒子の付着・堆積状態を調べたところ、いずれも堆積量は少なく、これが剥離・落下するようなことは無かった。
得られた多孔質母材1を脱水・透明ガラス化したところ、気泡や異物の存在は認められなかった。このようにして得られた光ファイバ母材の屈折率分布を測定したところ、長手方向で安定しており、優れた光学特性を有していた。
After depositing glass particles for 24 hours, the amount of deposited glass particles on the ceiling, wall, and connection port in the upper chamber 4 and the upper and lower deposition chambers was examined. There was no such thing.
When the obtained porous base material 1 was dehydrated and made into a transparent glass, the presence of bubbles and foreign matters was not recognized. When the refractive index distribution of the optical fiber preform thus obtained was measured, it was stable in the longitudinal direction and had excellent optical characteristics.

(比較例1)
実施例1と同様のガス条件でガラス微粒子の堆積を行った。このとき、上部堆積室2の床面11を多孔質母材1の直胴部下端よりも上方に設置した場合、もしくは、接続口12の開口径をB/A>0.6にした場合は、コア堆積用バーナの火炎は安定していたものの、接続口近傍に余剰のススが大量に付着し剥離した。また、透明ガラス化したところ、多数の気泡が発生した。
(Comparative Example 1)
Glass particulates were deposited under the same gas conditions as in Example 1. At this time, if the floor surface 11 of the upper deposition chamber 2 is installed above the lower end of the straight body of the porous base material 1 or if the opening diameter of the connection port 12 is B / A> 0.6, the core Although the flame of the deposition burner was stable, a large amount of excess soot adhered to the vicinity of the connection port and peeled off. Moreover, when it was transparent vitrified, many bubbles were generated.

(比較例2)
実施例1と同様のガス条件でガラス微粒子の堆積を行った。このとき、上部堆積室2の床面11を多孔質母材1の堆積先端部よりも下方に設置した場合、もしくは、接続口12の開口径をB/A<0.05にした場合は、接続口近傍での余剰のススの付着量は少なく抑えられ、剥離・落下は無く、透明ガラス化後の泡の発生も無かった。
しかしながら、上部堆積室2の気流の下部堆積室3への侵入を防ぐことができず、コア堆積用バーナ8の火炎は、大きく乱されていた。そのため、屈折率分布を測定したところ、長手方向に分布特性に変化があり、また強い脈理を生じていた。
(Comparative Example 2)
Glass particulates were deposited under the same gas conditions as in Example 1. At this time, when the floor surface 11 of the upper deposition chamber 2 is installed below the deposition tip of the porous base material 1 or when the opening diameter of the connection port 12 is B / A <0.05, the connection port The amount of surplus soot attached in the vicinity was kept small, there was no peeling / falling, and there was no generation of bubbles after vitrification.
However, it was not possible to prevent the air flow in the upper deposition chamber 2 from entering the lower deposition chamber 3, and the flame of the core deposition burner 8 was greatly disturbed. Therefore, when the refractive index distribution was measured, the distribution characteristics changed in the longitudinal direction, and strong striae were generated.

(実施例2)
上部堆積室2の床面11を多孔質母材直胴部下端と堆積先端部との中間点の高さにあるように設置し、実施例1と同様のガス条件で、B/A=0.3として24hrsの堆積を行った。
ここで、上部堆積室2の排気口5の上端から、バーナ側の壁に設けられた給気口6上端を見上げたときの角度θが 5°≦θ≦50°となるように排気口5および給気口6を設けたところ、余剰のガラス微粒子が天井19まで浮遊することなく、排気口5から排出することができ、バーナ側から見て多孔質母材裏側の天井19へのガラス微粒子の付着厚さは、従来の10mmから2mmに大幅に減少した。また、ガラス微粒子が上部堆積室下部で滞留することもないため、上部堆積室側壁下部への付着は認められなかった。
(Example 2)
The floor surface 11 of the upper deposition chamber 2 is installed so that it is at the height of the intermediate point between the lower end of the straight body portion of the porous base material and the deposition tip portion. Under the same gas conditions as in Example 1, B / A = 0.3 As a deposit for 24hrs.
Here, the exhaust port 5 has an angle θ of 5 ° ≦ θ ≦ 50 ° when looking up from the upper end of the exhaust port 5 of the upper deposition chamber 2 to the upper end of the air supply port 6 provided on the burner side wall. When the air supply port 6 is provided, surplus glass particles can be discharged from the exhaust port 5 without floating up to the ceiling 19, and the glass particles to the ceiling 19 on the back side of the porous base material as viewed from the burner side. The thickness of the adhesive was greatly reduced from the conventional 10 mm to 2 mm. Further, since the glass particles do not stay in the lower part of the upper deposition chamber, adhesion to the lower part of the upper deposition chamber side wall was not recognized.

(比較例3)
実施例2と同様のガス条件でガラス微粒子の堆積を行った。このとき、上部堆積室2の排気口上端からバーナ側給気口上端を見上げる角度θが、5°>θとなるように排気口5および給気口6を設けたところ、余剰のガラス微粒子が排気口5から排出されるまでに上部堆積室2の天井19まで浮遊するため、天井19、特に、バーナ側から見て多孔質母材裏側の天井19にガラス微粒子が大量に付着し、厚さ8mmに達した。
(Comparative Example 3)
Glass particulates were deposited under the same gas conditions as in Example 2. At this time, when the exhaust port 5 and the air supply port 6 are provided so that the angle θ at which the burner side air supply port upper end is looked up from the exhaust port upper end of the upper deposition chamber 2 is 5 °> θ, excessive glass fine particles are formed. Since it floats to the ceiling 19 of the upper deposition chamber 2 before being discharged from the exhaust port 5, a large amount of glass particles adhere to the ceiling 19, especially the ceiling 19 on the back side of the porous base material when viewed from the burner side. Reached 8mm.

(比較例4)
実施例2と同様のガス条件でガラス微粒子の堆積を行った。このとき、θ>50°としたところ、天井19に付着する余剰のガラス微粒子は無くなったものの、余剰のガラス微粒子が上部堆積室2の下部に滞留し、上部堆積室2の側壁下側に余剰のガラス微粒子が付着し、厚さ4mmに達した。
(Comparative Example 4)
Glass particulates were deposited under the same gas conditions as in Example 2. At this time, when θ> 50 °, the surplus glass fine particles adhering to the ceiling 19 disappeared, but the surplus glass fine particles stayed in the lower part of the upper deposition chamber 2 and surplus below the side wall of the upper deposition chamber 2. Glass fine particles adhered, and the thickness reached 4 mm.

光ファイバ母材の品質向上およびコスト低減に寄与する。   Contributes to quality improvement and cost reduction of optical fiber preform.

本発明の製造装置の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the manufacturing apparatus of this invention. 接続口の開口径と多孔質母材の径との関係を示す拡大概略縦断面図である。It is an expansion schematic longitudinal cross-sectional view which shows the relationship between the opening diameter of a connection port, and the diameter of a porous preform | base_material. 接続口の開口部に面取りを行った例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the example which chamfered to the opening part of the connection port. 接続口の開口部に曲面加工を施した例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the example which gave the curved surface process to the opening part of the connection port. 取り外し可能な接続口を有する製造装置の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the manufacturing apparatus which has a detachable connection port. 排気口と給気口の関係を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the relationship between an exhaust port and an air supply port.

符号の説明Explanation of symbols

1:多孔質母材、
2:上部堆積室、
3:下部堆積室、
4:上室、
5:排気口、
6,7:給気口、
8:コア堆積用バーナ、
9,10:クラッド堆積用バーナ、
11:床面、
12:接続口、
13:直胴部下端、
14:堆積先端部、
15:取り外し式接続口、
16:反応容器、
17:面取り、
18:曲面、
19:天井。
1: porous matrix,
2: Upper deposition chamber,
3: Lower deposition chamber,
4: Upper room,
5: Exhaust port
6, 7: Air inlet,
8: Burner for core deposition,
9, 10: Clad deposition burner,
11: floor surface,
12: Connection port
13: Straight barrel lower end,
14: Deposition tip
15: Detachable connection port,
16: reaction vessel,
17: Chamfering,
18: curved surface,
19: Ceiling.

Claims (8)

ガラス用原料、可燃性ガス及び助燃性ガスをバーナに供給し、ガラス原料の火炎加水分解反応によって生成するガラス微粒子を堆積させて多孔質ガラス母材を製造する装置において、給気口と排気口を有する上部堆積室と、給気口を有する下部堆積室と、上部堆積室の上部にあって、堆積によって形成された多孔質ガラス母材を引上げ格納する上室とを有する反応容器において、上部堆積室の床面が、堆積中の多孔質ガラス母材の直胴部下端と堆積先端部との間の高さに設置され、上部堆積室の床部に上部堆積室と下部堆積室を接続する接続口が設けられ、接続口の開口径をA、接続口を通過する多孔質ガラス母材の径をBとするとき、B/Aが式0.05≦B/A≦0.6を満たすことを特徴とする多孔質ガラス母材の製造装置。   In an apparatus for supplying a glass raw material, a flammable gas and a combustible gas to a burner, and depositing glass fine particles produced by a flame hydrolysis reaction of the glass raw material to produce a porous glass base material, an air supply port and an exhaust port A reaction vessel having an upper deposition chamber having a lower deposition chamber having an air supply port, and an upper chamber at the upper portion of the upper deposition chamber for pulling up and storing a porous glass base material formed by deposition. The floor of the deposition chamber is installed at a height between the bottom of the straight body of the porous glass base material being deposited and the top of the deposition chamber, and the upper and lower deposition chambers are connected to the floor of the upper deposition chamber. A connection port is provided, and when the opening diameter of the connection port is A and the diameter of the porous glass base material passing through the connection port is B, B / A satisfies the formula 0.05 ≦ B / A ≦ 0.6 An apparatus for producing a porous glass base material. 前記接続口の中心から、上部堆積室の内壁までの距離がA以上である請求項1に記載の多孔質ガラス母材の製造装置。   The apparatus for producing a porous glass base material according to claim 1, wherein the distance from the center of the connection port to the inner wall of the upper deposition chamber is A or more. 前記接続口の中心から、下部堆積室の内壁までの距離が0.7A以上である請求項1又は2に記載の多孔質ガラス母材の製造装置。   The apparatus for producing a porous glass base material according to claim 1 or 2, wherein a distance from the center of the connection port to the inner wall of the lower deposition chamber is 0.7 A or more. 前記接続口の内面が、面取りまたは曲面に加工されている請求項1乃至3のいずれかに記載の多孔質ガラス母材の製造装置。   The manufacturing apparatus of the porous glass base material in any one of the Claims 1 thru | or 3 by which the inner surface of the said connection port was processed into the chamfering or the curved surface. 前記接続口が、上部堆積室床部から取り外し可能な構造を有する請求項1乃至4のいずれかに記載の多孔質ガラス母材の製造装置。   The manufacturing apparatus of the porous glass base material in any one of Claims 1 thru | or 4 with which the said connection port has a structure removable from an upper deposition chamber floor part. 前記上部堆積室の排気口および給気口が、排気口上端からこれと対向する壁に設けられた給気口上端を見上げたときの角度をθとするとき、θが式5°≦θ≦50°を満たす位置にそれぞれ設けられている請求項1に記載の多孔質ガラス母材の製造装置。   When the angle when the exhaust port and the air supply port of the upper deposition chamber look up from the upper end of the exhaust port to the upper end of the air supply port is θ, θ is expressed by the equation 5 ° ≦ θ ≦ The apparatus for producing a porous glass base material according to claim 1, which is provided at a position satisfying 50 °. 前記給気口より供給される気体が、フィルタを通した室内空気である請求項1に記載の多孔質ガラス母材の製造装置。   The apparatus for producing a porous glass base material according to claim 1, wherein the gas supplied from the air supply port is room air that has passed through a filter. 前記反応容器内の圧力が、排気口の下流に設置された自動圧力制御装置によって制御される請求項1に記載の多孔質ガラス母材の製造装置。
The apparatus for producing a porous glass base material according to claim 1, wherein the pressure in the reaction vessel is controlled by an automatic pressure control device installed downstream of the exhaust port.
JP2006032686A 2006-02-09 2006-02-09 Porous glass base material manufacturing equipment Active JP4993337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032686A JP4993337B2 (en) 2006-02-09 2006-02-09 Porous glass base material manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032686A JP4993337B2 (en) 2006-02-09 2006-02-09 Porous glass base material manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2007210837A true JP2007210837A (en) 2007-08-23
JP4993337B2 JP4993337B2 (en) 2012-08-08

Family

ID=38489603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032686A Active JP4993337B2 (en) 2006-02-09 2006-02-09 Porous glass base material manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4993337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656743B2 (en) 2007-02-28 2014-02-25 Shin-Etsu Chemical Co., Ltd. Porous glass preform production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820744A (en) * 1981-07-22 1983-02-07 Nippon Telegr & Teleph Corp <Ntt> Preparation of parent material for optical fiber
JPS6090844A (en) * 1983-10-21 1985-05-22 Furukawa Electric Co Ltd:The Method for depositing fine powder of optical glass
JPS60210540A (en) * 1984-04-04 1985-10-23 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JP2002193633A (en) * 2000-10-18 2002-07-10 Shin Etsu Chem Co Ltd Apparatus for producing porous optical fiber preform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820744A (en) * 1981-07-22 1983-02-07 Nippon Telegr & Teleph Corp <Ntt> Preparation of parent material for optical fiber
JPS6090844A (en) * 1983-10-21 1985-05-22 Furukawa Electric Co Ltd:The Method for depositing fine powder of optical glass
JPS60210540A (en) * 1984-04-04 1985-10-23 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JP2002193633A (en) * 2000-10-18 2002-07-10 Shin Etsu Chem Co Ltd Apparatus for producing porous optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656743B2 (en) 2007-02-28 2014-02-25 Shin-Etsu Chemical Co., Ltd. Porous glass preform production apparatus
US9038423B2 (en) 2007-02-28 2015-05-26 Shin-Etsu Chemical Co., Ltd. Porous glass preform production apparatus

Also Published As

Publication number Publication date
JP4993337B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP3998450B2 (en) Porous optical fiber preform manufacturing equipment
KR101261095B1 (en) Fabrication Apparatus for Porous Glass Preform
JP4993337B2 (en) Porous glass base material manufacturing equipment
US9038423B2 (en) Porous glass preform production apparatus
JP5150365B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP2006306652A (en) Method for manufacturing porous glass preform and burner for deposition used in the same
JP4887270B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP5762374B2 (en) Porous glass base material manufacturing equipment
JP4444941B2 (en) Porous glass base material manufacturing equipment
KR101035432B1 (en) Method for producing optical fiber preform
JP4857172B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP5416076B2 (en) Optical fiber preform manufacturing method
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
CN103896492A (en) Device for manufacturing glass porous body, its manufacturing method and optical fiber perform manufacturing method
JP7399835B2 (en) Method for manufacturing porous glass deposit for optical fiber
JP3619637B2 (en) Porous optical fiber preform manufacturing equipment
JP4422928B2 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
JP2005179077A (en) Method and apparatus for manufacturing porous preform, and synthetic quartz glass manufactured by using the method of manufacturing porous preform
JP2000063141A (en) Production of porous glass preform for optical fiber
JP2003212560A (en) Method for manufacturing fine glass deposit
JPH0225848B2 (en)
JPH11116246A (en) Quartz glass soot deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150