JPS60210540A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS60210540A
JPS60210540A JP6598184A JP6598184A JPS60210540A JP S60210540 A JPS60210540 A JP S60210540A JP 6598184 A JP6598184 A JP 6598184A JP 6598184 A JP6598184 A JP 6598184A JP S60210540 A JPS60210540 A JP S60210540A
Authority
JP
Japan
Prior art keywords
optical fiber
air
vessel
glass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6598184A
Other languages
Japanese (ja)
Inventor
Tetsuo Miyanochi
宮後 哲夫
Hiroaki Takimoto
滝本 弘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6598184A priority Critical patent/JPS60210540A/en
Publication of JPS60210540A publication Critical patent/JPS60210540A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Abstract

PURPOSE:To obtain the titled base material contg. no impurities and causing no increase in transmission loss and no reduction in tensile strength by spouting a gaseous starting material for glass from an oxyhydrogen flame burner while feeding clean air into a protective vessel. CONSTITUTION:Air is passed through an air feeding inlet 10 and a filter box 9 contg. a built-in filter 8 having high performance by suction with a suction blower connected to an exhaust pipe 1 to remove dust of >=0.5mum particle size by 99.97%, and the resulting clean air is fed into a protective vessel 2. Gaseous starting materials for glass and a dopant are spouted from an oxyhydrogen flame burner 3 fixed in the bottom of the vessel 2, and glass particles produced by hydrolysis in a flame are deposited on the lower end of a support rod 4 suspended from the ceiling of the vessel 2 and connected to a lifting and rotating device 5 to form a porous base material 6 for an optical fiber.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はVAD法において、保護容器内へ供給する空気
を清浄にすることにより、製造されるファイバーの伝送
損失の上昇及び引張強度の低下を防止した光フアイバー
用母材の製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention cleans the air supplied into the protective container in the VAD method to reduce the increase in transmission loss and decrease in tensile strength of the manufactured fiber. The present invention relates to a method of manufacturing a base material for optical fiber that prevents the above-mentioned problems.

〈従来技術〉 光フアイバー用母材の代表的な製造法として、従来から
肉付法、外付法及びVAD法(気相軸付法)が知られて
おり、このVAD法は通常第1図に示すように行なオ〕
れている。
<Prior art> As typical manufacturing methods for optical fiber base materials, the filling method, external deposition method, and VAD method (vapor phase attachment method) have been known, and this VAD method is usually shown in Fig. 1. Proceed as shown in
It is.

即ち、保護容器(マツフルという)2の底面には、気体
のガラス原料及びドーパント原料と共に酸素や水素等を
所定の空間分布となるように噴出する酸水素炎バーナ3
が設けられており、核酸水素炎バーナ3から噴出したガ
ラス原料等が火炎加水分解して粒状ガラスが生成できる
ようになっている。この粒状ガラスを堆積させる支持棒
4が保護容器3の天井から吊り下げられており、この支
持棒4の下端には粒状ガラスが堆積して多孔質母材6が
形成されている。支持棒4は昇降回転装置5に連結され
ており、回転しながら昇降できるようになっている。ま
た、保護容器2の図中左側下部の側壁には排気管1が連
結されると共にこの排気管1には図示しない吸引プロア
−が接続している。保護容器20図中右側上部の側壁に
は給気管7が連結され、この給気管7は大気に開口して
いる。従って、吸引フロア−により吸引すると、給気管
7を通して保護容3g2内に空気が供給されると同時に
、付着しなかった粒状ガラスや塩化水素等の反応余剰物
が排気管1からtJIE気される。尚、排気琶1及び給
気管7が保シ1に容器2に対し対角的に連結されている
のは保護容器2内のカスの流れに安定した方向性を鋳−
持t、:せるためである。
That is, on the bottom of the protective container (referred to as Matsufuru) 2, there is an oxyhydrogen flame burner 3 that spouts out gaseous glass raw materials and dopant raw materials as well as oxygen, hydrogen, etc. in a predetermined spatial distribution.
is provided so that glass raw materials etc. ejected from the nucleic acid-hydrogen flame burner 3 can be flame-hydrolyzed to produce granular glass. A support rod 4 on which the granular glass is deposited is suspended from the ceiling of the protective container 3, and the granular glass is deposited on the lower end of the support rod 4 to form a porous base material 6. The support rod 4 is connected to an elevating and rotating device 5, so that it can be moved up and down while rotating. Further, an exhaust pipe 1 is connected to a side wall of the protective container 2 at the lower left side in the drawing, and a suction blower (not shown) is connected to the exhaust pipe 1. An air supply pipe 7 is connected to the upper right side wall of the protective container 20 in the figure, and this air supply pipe 7 is open to the atmosphere. Therefore, when suction is performed by the suction floor, air is supplied into the protective container 3g2 through the air supply pipe 7, and at the same time, reaction surpluses such as granular glass and hydrogen chloride that have not adhered are exhausted from the exhaust pipe 1. The reason why the exhaust pipe 1 and the air supply pipe 7 are connected to the protection container 1 diagonally with respect to the container 2 is to ensure a stable flow of waste inside the protection container 2.
Mochit: To make it happen.

このようなVAD法においては、保護容器2内に酸水素
炎バーナ3とは別に給気管7から電気を供給して、付着
しなかった粒状ガラスや反応余剰物を排気するようにし
−Cいろので、0(給される空気の不純物か多孔質のガ
シスI′1.祠6にン昆入し、又は15祠表向に付着す
ることにより、光ファイバーの伝送損失が上昇し、引張
強度が低下するおそれかあった。現在の技術水準では、
VAD法以外の工程においても不純物が混入し、VAD
法における不純物の混入も偶発的であるので、VAD法
において完全に不純物の混入を防止しtことしても、伝
送損失の顕著な低下ばみられないともいえるが、技術の
進歩に伴いVAD法以外の工程が改善された睨には、V
AD法において不純物が混入することは伝送損失の上昇
に多大な影響を及はずと考えられる。
In such a VAD method, electricity is supplied into the protective container 2 from an air supply pipe 7 in addition to the oxyhydrogen flame burner 3 to exhaust unattached particulate glass and reaction surplus materials. , 0 (impurities in the supplied air or porous gas I'1. If impurities enter the 6 or adhere to the 15 surface, the transmission loss of the optical fiber increases and the tensile strength decreases. There was a fear.At the current technological level,
Impurities are mixed in in processes other than the VAD method, and VAD
Since the contamination of impurities in the VAD method is also accidental, it can be said that even if the contamination of impurities is completely prevented in the VAD method, there will not be a noticeable reduction in transmission loss. V
It is considered that the inclusion of impurities in the AD method would have a great effect on the increase in transmission loss.

〈発明の目的〉 本発明は上記実状に鑑み、保護容器に供給する空気を清
浄とすることにより、技術的進歩に伴い将来必ず生じる
であろうVAD法の問題点を予め未然に解決することを
目的とする。
<Object of the Invention> In view of the above-mentioned circumstances, the present invention aims to solve the problems of the VAD method that will surely arise in the future with technological progress by purifying the air supplied to the protective container. purpose.

〈発明の構成〉 上記目的を達成する本発明の構成は気体のガラス原料ガ
スを酸水素炎バーナから噴出させて火炎加水分解し、生
成する粒状ガラスを棒状に堆積させて多孔質の光フアイ
バー用はIを保護容器内で製造するに際し、前記酸水素
炎バーナとは別に1)if記保護容器内へ清浄な空気を
供給することを特徴とする。
<Configuration of the Invention> The configuration of the present invention that achieves the above-mentioned object is to eject gaseous frit gas from an oxyhydrogen flame burner, perform flame hydrolysis, and deposit the resulting granular glass in a rod shape to form a porous optical fiber. When manufacturing I in a protective container, the method is characterized in that, in addition to the oxyhydrogen flame burner, clean air is supplied into the protective container as described in (1) if.

〈発明の効果〉 従って、本発明では保護容器内へ清浄な空気を供給する
ようにしたのて、光フ7・イバー用は材に不純物が混入
したす、ホ材表面に不純物がイづ眉することがなくなり
、このlこめ光フ7・イハーの伝送損失が上昇すること
もなく、引張強度が低下することもない。
<Effects of the Invention> Therefore, in the present invention, although clean air is supplied into the protective container, impurities may be mixed into the material for optical fibers, and impurities may be formed on the surface of the material. Therefore, the transmission loss of this optical fiber does not increase, and the tensile strength does not decrease.

く実 施 例〉 以下、本発明の一実施例を図1n1を参照して詳細に説
明する。尚、1′IiJ述した従来技術と同一部分には
同一番号を付して、重複する説明を省略する。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. 1n1. Note that the same parts as those in the prior art described in 1'IiJ are given the same numbers and redundant explanations will be omitted.

第2図に本発明の一実施例を実施する装置を示す。同図
に示すように、給気管7には、高性能フィルタ8を内蔵
したフィルタホックス9がイ」設されている。従って、
排気管1に接続する吸気フロヮー(図示省略)により吸
気すると、フィルタボックス9の給気口10から吸い込
まれた空気がフィルタ8を経由して保護容器2内に供給
され、同時に酸水素炎バーナ3から噴出されたHCl等
の反応余剰ガス及び4材6に堆積することのできなかっ
た粒状ガラス(S、 O2)が排気管1を通して排気さ
れる。高性能フィルタ8としてはHEPAという名称で
一般に市販されているものを使用すると良い。このHE
PAと称される高性能フィルタは05μm以上の粒径の
ゴミを9997%除去する性能を有し、しかも入手容易
、品質安定、高性能で空調業界でクリーンルーム用とし
て広く使用されており、フィルタボックスも市販されて
いるからである。
FIG. 2 shows an apparatus for carrying out an embodiment of the present invention. As shown in the figure, a filter hook 9 containing a high-performance filter 8 is installed in the air supply pipe 7. Therefore,
When air is taken in through the intake flow (not shown) connected to the exhaust pipe 1, the air sucked in from the air supply port 10 of the filter box 9 is supplied into the protective container 2 via the filter 8, and at the same time, the air is supplied to the protective container 2 through the oxyhydrogen flame burner 3. Reaction surplus gas such as HCl ejected from the reactor and granular glass (S, O2) that could not be deposited on the 4 materials 6 are exhausted through the exhaust pipe 1. As the high-performance filter 8, it is preferable to use one that is generally commercially available under the name HEPA. This HE
A high-performance filter called PA has the ability to remove 9997% of dust with a particle size of 05 μm or more, and is widely used in the air conditioning industry for clean rooms due to its easy availability, stable quality, and high performance. This is because they are also commercially available.

上記構成の装置により実際に光ファイバーを100本製
造し、その伝送損失について調へたところ第4図に示す
結果を得た。また、比較例として第1図に示す従来の装
置により光ファイバーを100本製造し、その伝送損失
について調べたところ第3図に示す結果を得た。いずれ
の場合も、遷移金属の混入による影響の表われやすい1
3μmnの波長により測定した。現在の技術水準ではV
AD法以外の工程における技術的欠陥の影響が伝送損失
に強く表われるので、本発明方法に係る光ファイバーが
従来のものに比へ伝送損失か顕著に低i1tしたのかど
うかを確認することはてきなかったが、第3図及び第4
図に示す結果から明らかなように、わずかながら全体的
に仏滅したと認められる。特に、第3図に示されるよう
に、従来技術では偶発的な原因により特別に高い伝送損
失(09〜0.95 dB/km 1を示すファイバー
が2本製造されているのに対し、本発明方法に係ろ光フ
ーiイハーは第4図に示すように伝送損失が0.65 
dB/km以上のものは全くなく、この結果から、本発
明は、偶発的原因により不NJL物原子か混入すること
を確実に防止することが判る。
When 100 optical fibers were actually manufactured using the apparatus having the above configuration and the transmission loss thereof was investigated, the results shown in FIG. 4 were obtained. Further, as a comparative example, 100 optical fibers were manufactured using the conventional apparatus shown in FIG. 1, and the transmission loss thereof was investigated, and the results shown in FIG. 3 were obtained. In either case, the effects of transition metal contamination are likely to appear1.
Measurement was performed at a wavelength of 3 μm. At the current technological level, V
Since the influence of technical defects in processes other than the AD method is strongly reflected in transmission loss, it is not possible to confirm whether the optical fiber according to the method of the present invention has significantly lower transmission loss or i1t than the conventional one. However, Figures 3 and 4
As is clear from the results shown in the figure, it is recognized that there was a slight but overall loss of Buddhahood. In particular, as shown in FIG. 3, two fibers were manufactured in the prior art exhibiting particularly high transmission losses (09 to 0.95 dB/km 1 due to accidental causes), whereas the present invention Regardless of the method, the optical fiber has a transmission loss of 0.65 as shown in Figure 4.
There was nothing above dB/km, and this result shows that the present invention reliably prevents non-NJL atoms from being mixed in due to accidental causes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のVAD法を実施ずろ装置の概略構成図、
第2図は本発明の一実施例を行う具体的な装置の概略構
成図、第3図及び第4図は伝送損失に対するファイバー
数を各々示すヒストダラムであり、第3図は従来技術に
関し、また第4図は本発明に関する。 図 面 中、 1は排気管、 2は保護容器、 3は酸水素炎バーナ、 4は支持棒、 5は昇降回転装置、 5は多孔質4材、 7は給気管、 8は高性能フィルタ、 9はフィルタボックス、 10は給気口である。 特 許 出 願 人 住友電気工業株式会社 代 理 人 弁理士 光 石 士 部 (仙1名) 第2図
Figure 1 is a schematic diagram of the conventional VAD method implementation apparatus;
FIG. 2 is a schematic configuration diagram of a specific device for carrying out an embodiment of the present invention, FIGS. 3 and 4 are histograms showing the number of fibers with respect to transmission loss, and FIG. FIG. 4 relates to the present invention. In the drawing, 1 is an exhaust pipe, 2 is a protective container, 3 is an oxyhydrogen flame burner, 4 is a support rod, 5 is an elevating and rotating device, 5 is a porous 4 material, 7 is an air supply pipe, 8 is a high-performance filter, 9 is a filter box, and 10 is an air supply port. Patent application Representative of Sumitomo Electric Industries, Ltd. Patent attorney Mitsuishi Shibu (1 person) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 気体のガラス原料を酸水素炎バーナから噴出させて火炎
加水分解し、生成する粒状ガラスを棒状に堆積させて多
孔質の光フアイバー用は材を保護容器内で製造するに際
し、前記酸水素炎バーナとは別に前記保護容器内へ清浄
な空気を供給することを特徴とずろ光フアイバー用は材
の製造方法。
When a gaseous glass raw material is ejected from an oxyhydrogen flame burner and subjected to flame hydrolysis, and the resulting granular glass is deposited in a rod shape to produce porous optical fiber material in a protective container, the oxyhydrogen flame burner A method for manufacturing a material for a diagonal optical fiber, which is characterized by supplying clean air into the protective container separately.
JP6598184A 1984-04-04 1984-04-04 Production of base material for optical fiber Pending JPS60210540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6598184A JPS60210540A (en) 1984-04-04 1984-04-04 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6598184A JPS60210540A (en) 1984-04-04 1984-04-04 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS60210540A true JPS60210540A (en) 1985-10-23

Family

ID=13302687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6598184A Pending JPS60210540A (en) 1984-04-04 1984-04-04 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60210540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210837A (en) * 2006-02-09 2007-08-23 Shin Etsu Chem Co Ltd Apparatus for producing porous glass preform
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100933A (en) * 1980-12-12 1982-06-23 Nippon Telegr & Teleph Corp <Ntt> Preparation of base material for optical fiber
JPS5845132A (en) * 1981-09-14 1983-03-16 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing base material for optical fiber by vad method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100933A (en) * 1980-12-12 1982-06-23 Nippon Telegr & Teleph Corp <Ntt> Preparation of base material for optical fiber
JPS5845132A (en) * 1981-09-14 1983-03-16 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing base material for optical fiber by vad method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210837A (en) * 2006-02-09 2007-08-23 Shin Etsu Chem Co Ltd Apparatus for producing porous glass preform
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Similar Documents

Publication Publication Date Title
EP0032594B1 (en) Method for producing silica glass
EP0360479B1 (en) Method of producing a glass body
TW201733932A (en) Steam treatment of silicon dioxide powder in the preparation of quartz glass
JPS60210540A (en) Production of base material for optical fiber
JP3998450B2 (en) Porous optical fiber preform manufacturing equipment
CN110981182B (en) Optical fiber preform pickling equipment and pickling method thereof
JP2557651B2 (en) Optical fiber base material manufacturing method
JP4494325B2 (en) Manufacturing method of glass preform for optical fiber
EP0976690B1 (en) Porous preform for optical fibres and its production method
KR100538668B1 (en) Method of manufacturing a porous preform of glass for an optical fiber
CN216236709U (en) Pressure stabilizing system for optical fiber drawing furnace
JPS5842136B2 (en) Manufacturing method of optical fiber base material
JP2002104830A (en) Method of manufacturing glass preform
JP2003040626A (en) Method for producing fine glass particle heap
KR20220046471A (en) Fabrication method of porous glass deposit for optical fiber
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
JP2003160342A (en) Method of manufacturing glass fine particle deposit and manufacturing device
JP2957171B1 (en) Optical fiber preform, optical fiber preform, and methods for producing them
CN218169090U (en) Metal plate marking device
JPS5924094B2 (en) Method for manufacturing optical fiber base material
JP4099987B2 (en) Method for producing glass particulate deposit
JP2003054957A (en) Method for manufacturing porous glass preform
KR830002196B1 (en) Manufacturing method of glass material for optical fiber
JP2957170B1 (en) Optical fiber preform, optical fiber preform, and methods for producing them
JPS62202832A (en) Production device for optical fiber parent material