JP2003054957A - Method for manufacturing porous glass preform - Google Patents

Method for manufacturing porous glass preform

Info

Publication number
JP2003054957A
JP2003054957A JP2001249120A JP2001249120A JP2003054957A JP 2003054957 A JP2003054957 A JP 2003054957A JP 2001249120 A JP2001249120 A JP 2001249120A JP 2001249120 A JP2001249120 A JP 2001249120A JP 2003054957 A JP2003054957 A JP 2003054957A
Authority
JP
Japan
Prior art keywords
porous glass
producing
front chamber
reaction
glass preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001249120A
Other languages
Japanese (ja)
Inventor
Haruhiko Aikawa
晴彦 相川
Katsuyuki Tsuneishi
克之 常石
Shinji Nakahara
慎二 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001249120A priority Critical patent/JP2003054957A/en
Publication of JP2003054957A publication Critical patent/JP2003054957A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous glass preform by which inflow of outdoor air in a reaction vessel and an anterior chamber of the reaction vessel can be prevented by comparatively simple device constitution and there is no fear of generating flame turbulence. SOLUTION: A burner for synthesizing a glass fine particle is arranged near a starting rod in the reaction vessel and glass fine particles are deposited around the staring rod by relatively moving the starting rod or the burner while rotating the starting rod. The method for manufacturing the porous glass preform is characterized in that the glass fine particles are deposited while holding inner pressure in the anterior chamber of the reaction vessel which is provided via a partitioning member at a side before a growing side top end of the glass fine particles deposited layer in the reaction vessel at a level being equal to or higher than external pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、出発ロッドの周囲
にガラス微粒子を堆積させた多孔質ガラス母材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous glass base material in which glass particles are deposited around a starting rod.

【0002】[0002]

【従来の技術】光ファイバ用母材等の前駆材料となる多
孔質ガラス母材を製造する方法として、反応容器内に支
持された出発ロッドの近傍にガラス微粒子合成用バーナ
ーを配置し、前記出発ロッドを回転させつつ前記出発ロ
ッド又はバーナーを相対的に移動させながら出発ロッド
の周囲にガラス微粒子を堆積させてガラス微粒子堆積層
を形成させて多孔質ガラス母材を製造する方法がある。
2. Description of the Related Art As a method for producing a porous glass preform which is a precursor material for an optical fiber preform or the like, a burner for synthesizing fine glass particles is arranged near a starting rod supported in a reaction vessel, There is a method of producing a porous glass preform by depositing glass fine particles around the starting rod while forming a glass fine particle deposition layer while relatively moving the starting rod or the burner while rotating the rod.

【0003】 図2はその多孔質ガラス母材の製造工程
を模式的に示す説明図であり、21は出発ロッド、22
はガラス微粒子堆積層、23は多孔質ガラス母材、24
は反応容器、25は排気管、26は反応容器前室、27
はバーナー(ガラス微粒子合成用バーナー)、28はガ
ラス微粒子の流れである。反応容器24内に設置された
バーナー27にSiCl4 などの原料ガス、水素、酸素
等の燃料ガス及びシールガスとしての不活性ガスを供給
してガラス微粒子を合成する。このガラス微粒子を出発
ロッド21の周囲に堆積させてガラス微粒子堆積層を形
成させることによって多孔質ガラス母材を製造する。
FIG. 2 is an explanatory view schematically showing the manufacturing process of the porous glass base material, in which 21 is a starting rod and 22 is a starting rod.
Is a glass particle deposition layer, 23 is a porous glass base material, 24
Is a reaction vessel, 25 is an exhaust pipe, 26 is a reaction vessel front chamber, 27
Is a burner (burner for synthesizing glass particles), and 28 is a flow of glass particles. A raw material gas such as SiCl 4 , a fuel gas such as hydrogen and oxygen, and an inert gas as a seal gas are supplied to a burner 27 installed in the reaction vessel 24 to synthesize glass particles. A porous glass base material is manufactured by depositing the glass particles around the starting rod 21 to form a glass particle deposition layer.

【0004】このような方法において、出発ロッドにダ
ストが付着しているとそのダストは異物として多孔質ガ
ラス母材中に残留し、その多孔質ガラス母材によって製
造された光ファイバの伝送特性を悪化させたり、強度を
劣化させるなどの問題を生じる。また、上記の製造方法
においては、反応容器内の燃焼終了後のガス等をブロア
によって排気管から排気しており、通常反応容器内は負
圧となっている。そのため、バーナーや排気管の反応容
器への取り付け部の隙間や、反応容器と反応容器前室と
の接続部の隙間、また、反応容器と反応容器前室とが一
体に形成されている場合であっても長期間の使用の間に
反応容器と反応容器前室との境界部分などに生じやすい
亀裂などから外気が流入し、外部からのダストの混入の
ほか、火炎の乱れによる多孔質ガラス母材プロファイル
の変動、容器の内部に付着したガラス微粒子が再浮遊し
てガラス微粒子堆積層に付着するなどの問題があった。
In such a method, when dust adheres to the starting rod, the dust remains as foreign matter in the porous glass preform, and the transmission characteristics of the optical fiber manufactured by the porous glass preform are measured. It causes problems such as deterioration and deterioration of strength. Further, in the above manufacturing method, the gas and the like after the combustion in the reaction container is exhausted from the exhaust pipe by the blower, and the inside of the reaction container is usually at a negative pressure. Therefore, in the case of the gap between the burner and the exhaust pipe where it is attached to the reaction vessel, the gap between the reaction vessel and the reaction vessel front chamber, and when the reaction vessel and the reaction vessel front chamber are formed integrally. Even if there is a long-term use, outside air flows in from the cracks that tend to occur at the boundary between the reaction vessel and the reaction chamber front chamber, etc., and dust from the outside is mixed in, and the porous glass matrix is disturbed by flame disturbance. There have been problems such as fluctuations in material profile and glass fine particles adhering to the inside of the container re-suspending and adhering to the glass fine particle deposition layer.

【0005】これらの問題を解決するため種々の方法が
提案されており、例えば特開2000−16829号公
報には、チャンバ内にセットされた出発母材にバーナー
の火炎を吹き付けて出発母材の軸方向にガラス微粒子堆
積させる光ファイバ母材の製造方法において、チャンバ
の隙間から外気が流入して火炎が乱れたり、チャンバ内
の未付着粒子が舞い上がって堆積層に混入するのを防ぐ
ため、チャンバ全体を外側容器で囲み、この容器内の圧
力をチャンバ内と同程度の負圧か、またはチャンバ内よ
りやや圧力の低い負圧とする方法が開示されている。
Various methods have been proposed to solve these problems. For example, Japanese Unexamined Patent Application Publication No. 2000-16829 discloses a starting base metal set in a chamber by blowing a flame of a burner onto the starting base metal. In a method of manufacturing an optical fiber preform in which glass particles are deposited in the axial direction, in order to prevent external air from flowing through the gaps in the chamber to disturb the flame and to prevent unadhered particles in the chamber from rising and mixing in the deposition layer, A method is disclosed in which the whole is surrounded by an outer container and the pressure in this container is set to a negative pressure that is about the same as that in the chamber or a negative pressure that is slightly lower than that in the chamber.

【0006】また、反応容器内において、出発部材の近
くにバーナーを配置し、回転する出発部材バーナーとを
相対的に移動させながら出発部材の周囲にガラス微粒子
を堆積させる多孔質ガラス母材の製造方法において、反
応容器のガラス微粒子堆積体の成長側前方に設けた反応
容器前室内で出発部材に清浄なガス(不活性ガスあるい
は空気)を吹き付け、出発部材表面に付着したダストを
除去する方法(特開2000−109329号公報)、
さらに、反応容器内にある出発部材表面を不活性ガスで
パージし、清浄な雰囲気を保つ方法(特公平6−600
23号公報)、なども提案されている。
Further, in the reaction vessel, a burner is arranged near the starting member, and glass particles are deposited around the starting member while moving the rotating starting member burner relatively to produce a porous glass preform. In the method, a clean gas (inert gas or air) is blown to a starting member in a reaction container front chamber provided in front of a growth side of a glass particulate deposit in the reaction container to remove dust adhering to the surface of the starting member ( JP-A-2000-109329),
Furthermore, a method of purging the surface of the starting member in the reaction vessel with an inert gas to maintain a clean atmosphere (Japanese Patent Publication No. 6-600).
No. 23), etc. are also proposed.

【0007】[0007]

【発明が解決しようとする課題】上記公報で提案されて
いる方法では、いずれも反応容器に取り付けられた排気
管によって内部のガスが排気されているため、反応容器
あるいは反応容器前室の内圧は負圧の環境となってい
る。負圧の環境では、反応容器本体あるいは反応容器前
室との接続部、部品取付け部等に、経年劣化などによっ
て生じた隙間からダストを含んだ外気が流入し、火炎が
乱れたり、ロッド表面にダストが付着する可能性が残
る。上記特開2000−16829号公報の方法では、
反応容器を二重にして内側反応容器内に外気が流入しな
いようにしており、効果的と考えられるが、反応容器の
大型化に伴いそれを囲い込む装置自体も大型、大がかり
なものになってしまうという問題がある。
In any of the methods proposed in the above publications, the internal gas is exhausted by the exhaust pipe attached to the reaction vessel, so that the internal pressure of the reaction vessel or the reaction vessel front chamber is It is a negative pressure environment. In a negative pressure environment, outside air containing dust flows into the reaction container body or the connection part with the reaction chamber anterior chamber, parts mounting part, etc. from the gap caused by deterioration over time, and the flame is disturbed or the rod surface is disturbed. There is a possibility that dust will adhere. According to the method of the above-mentioned JP 2000-16829 A,
It is considered to be effective because the reaction vessel is doubled to prevent the outside air from flowing into the inner reaction vessel, but with the increase in size of the reaction vessel, the device itself that encloses it also becomes large and large-scale. There is a problem that it ends up.

【0008】本発明はこのような従来技術の問題点を解
消し、比較的簡単な装置構成により反応容器及び反応容
器前室内への外気の流入を防止し、出発ロッドへのダス
ト付着を防止することができ、しかも火炎の乱れを生じ
させる恐れのない、多孔質ガラス母材の製造方法を提供
することを目的とする。
The present invention solves the above problems of the prior art, prevents the inflow of outside air into the reaction vessel and the reaction chamber front chamber, and prevents dust from adhering to the starting rod with a relatively simple device configuration. It is an object of the present invention to provide a method for producing a porous glass base material, which is capable of producing a porous glass base material and which is free from the risk of flame disturbance.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
する手段として、次の(1)〜(11)に示す構成を採
るものである。 (1)反応容器内の出発ロッドの近傍にガラス微粒子合
成用バーナーを配置し、前記出発ロッドを回転させつつ
前記出発ロッド又はバーナーを相対的に移動させながら
出発ロッドの周囲にガラス微粒子を堆積させる多孔質ガ
ラス母材の製造方法において、前記反応容器のガラス微
粒子堆積層の成長側先端前方側に、仕切り部材を介して
設けられた反応容器前室内の内圧を、外部の圧力と同じ
か又はそれよりも高く保持しながらガラス微粒子の堆積
を行うことを特徴とする多孔質ガラス母材の製造方法。 (2)前記反応容器前室内の内圧を、外部の圧力よりも
0〜50Pa高くなるように保持することを特徴とする
前記(1)の多孔質ガラス母材の製造方法。 (3)前記反応容器前室内の内圧を、外部の圧力よりも
1〜10Pa高くなるように保持することを特徴とする
前記(2)の多孔質ガラス母材の製造方法。
The present invention adopts the following constitutions (1) to (11) as means for solving the above problems. (1) A burner for synthesizing glass particles is arranged in the vicinity of a starting rod in a reaction container, and while the starting rod is being rotated, the starting rod or burner is relatively moved to deposit glass particles around the starting rod. In the method for producing a porous glass preform, on the growth side tip front side of the glass particle deposition layer of the reaction vessel, the internal pressure of the reaction vessel front chamber provided via a partition member, the same as the external pressure or it A method for producing a porous glass preform, which comprises depositing glass particles while maintaining the temperature higher than that. (2) The method for producing a porous glass preform according to the above (1), characterized in that the internal pressure in the reaction chamber front chamber is maintained at 0 to 50 Pa higher than the external pressure. (3) The method for producing a porous glass preform according to (2), characterized in that the internal pressure in the reaction chamber front chamber is maintained so as to be 1 to 10 Pa higher than the external pressure.

【0010】(4)前記反応容器前室内へ清浄な空気、
不活性ガス、又はこれらの混合ガスを導入することによ
って、前記反応容器前室内の内圧を外部の圧力と同じか
又はそれよりも高く保持することを特徴とする前記
(1)〜(3)のいずれか1つの多孔質ガラス母材の製
造方法。 (5)前記反応容器前室内へ導入するガスの流量が、1
00リットル/分以上であることを特徴とする前記
(4)の多孔質ガラス母材の製造方法。
(4) Clean air in the reaction chamber front chamber,
By introducing an inert gas or a mixed gas thereof, the internal pressure in the reaction chamber front chamber is kept equal to or higher than the external pressure, and the above (1) to (3) are provided. Any one of the methods for producing a porous glass preform. (5) The flow rate of the gas introduced into the reaction chamber front chamber is 1
The method for producing a porous glass preform according to the above (4), which is at least 100 liters / minute.

【0011】(6)前記反応容器前室の反応容器との境
界部近傍に、前記反応容器前室のガスが外部へ流出する
機構を設けたことを特徴とする前記(1)〜(5)のい
ずれか1つの多孔質ガラス母材の製造方法。 (7)前記反応容器前室内における雰囲気が、大きさ
0.3μm以上の粒子数が1CF当たり1000個以下
であることを特徴とする前記(1)〜(6)のいずれか
1つの多孔質ガラス母材の製造方法。 (8)前記反応容器前室内における雰囲気が、大きさ
0.5μm以上の粒子数が1CF当たり50個以下であ
ることを特徴とする前記(7)の多孔質ガラス母材の製
造方法。
(6) The above-mentioned (1) to (5) are characterized in that a mechanism for allowing the gas in the reaction chamber front chamber to flow out is provided in the vicinity of the boundary between the reaction chamber front chamber and the reaction container. 1. A method for producing a porous glass preform according to any one of 1. (7) The porous glass according to any one of (1) to (6), wherein the atmosphere in the reaction chamber front chamber has a number of particles having a size of 0.3 μm or more of 1000 or less per CF. Base material manufacturing method. (8) The method for producing a porous glass preform according to the above (7), wherein the atmosphere in the reaction chamber front chamber is such that the number of particles having a size of 0.5 μm or more is 50 or less per 1 CF.

【0012】(9)前記反応容器前室内における雰囲気
が、大きさ1μm以上の粒子数が1CF当たり10個以
下であることを特徴とする前記(8)の多孔質ガラス母
材の製造方法。 (10)前記反応容器前室内における雰囲気が、大きさ
2μm以上の粒子数が1CF当たり5個以下であること
を特徴とする前記(9)の多孔質ガラス母材の製造方
法。 (11)前記反応容器前室内における雰囲気が、大きさ
5μm以上の粒子数が1CF当たり1個以下であること
を特徴とする前記(10)の多孔質ガラス母材の製造方
法。
(9) The method for producing a porous glass preform according to the above (8), wherein the atmosphere in the reaction chamber front chamber has 10 or less particles having a size of 1 μm or more per CF. (10) The method for producing a porous glass preform according to the above (9), wherein the atmosphere in the reaction chamber front chamber has a number of particles having a size of 2 μm or more of 5 or less per CF. (11) The method for producing a porous glass preform according to the above (10), wherein the atmosphere in the reaction chamber front chamber has a number of particles having a size of 5 μm or more of 1 or less per 1 CF.

【0013】[0013]

【発明の実施の形態】以下、本発明の方法について図面
を参照して説明する。図1は本発明の方法を実施するた
めの装置の1例を模式的に示す説明図である。図1にお
いて1は出発ロッド、2はガラス微粒子堆積層、3は多
孔質ガラス母材、4はバーナー、5は反応容器、6は前
室、7は接続部、8は仕切り部材、9は排気管、10は
清浄ガス導入管、11は清浄ガス発生装置、12は流量
調整器、13は圧力計、14は通気窓、15はガラス微
粒子の流れである。
DETAILED DESCRIPTION OF THE INVENTION The method of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing an example of an apparatus for carrying out the method of the present invention. In FIG. 1, 1 is a starting rod, 2 is a glass particle deposition layer, 3 is a porous glass base material, 4 is a burner, 5 is a reaction vessel, 6 is a front chamber, 7 is a connecting portion, 8 is a partition member, and 9 is an exhaust. A pipe, 10 is a clean gas introduction pipe, 11 is a clean gas generator, 12 is a flow controller, 13 is a pressure gauge, 14 is a ventilation window, and 15 is a flow of glass particles.

【0014】反応容器5内に設置されたバーナー4に四
塩化珪素等の原料ガス、水素、酸素等の燃料ガス及びシ
ールガスとしての不活性ガスを供給してガラス微粒子を
合成する。このガラス微粒子を出発ロッド1の周囲に堆
積させてガラス微粒子堆積層2を形成させることによっ
て多孔質ガラス母材3を製造する。バーナー4から出た
ガラス微粒子の流れ13はガラス微粒子堆積層2の成長
側先端付近に達し、出発ロッド1を上方向に引き上げる
ことによってガラス微粒子堆積層2は出発ロッド1の外
周に同軸状、かつ軸方向に成長する。なお、この例では
バーナー4の位置を固定し、出発ロッド1の方を上方に
移動させているが、出発ロッドの位置を固定し、バーナ
ーの方を移動させる方式とすることもできる。
A raw material gas such as silicon tetrachloride, a fuel gas such as hydrogen and oxygen, and an inert gas as a seal gas are supplied to a burner 4 installed in a reaction vessel 5 to synthesize glass fine particles. The porous glass base material 3 is manufactured by depositing the glass particles around the starting rod 1 to form the glass particle deposition layer 2. The flow 13 of the glass fine particles emitted from the burner 4 reaches the vicinity of the growth-side tip of the glass fine particle deposition layer 2, and the glass particulate deposition layer 2 is coaxial with the outer circumference of the starting rod 1 by pulling the starting rod 1 upward. Grow axially. In this example, the position of the burner 4 is fixed and the starting rod 1 is moved upward, but the position of the starting rod is fixed and the burner is moved.

【0015】ガラス微粒子堆積層2の成長側先端前方側
には出発ロッド1を挿入する反応容器前室6が設けられ
ている。反応容器5の内部と前室6の内部は仕切り部材
8で仕切られており、該仕切り部材8の貫通孔を通して
出発ロッド1が前室6側から反応容器5側へ引き上げら
れる。前室6には清浄ガス導入管10が取付けられてお
り、清浄ガス発生装置11から流量調整器12を介して
清浄ガスを導入できるようになっている。本発明の最大
の目的は出発ロッド1の表面にダストが付着するのを防
止することにあるので、出発ロッド1の表面が露出して
いる領域である前室6でのダスト付着防止が効果的であ
る。
A reaction chamber front chamber 6 into which the starting rod 1 is inserted is provided in front of the growth side tip of the glass particle deposition layer 2. The interior of the reaction container 5 and the interior of the front chamber 6 are partitioned by a partition member 8, and the starting rod 1 is pulled up from the front chamber 6 side to the reaction container 5 side through a through hole of the partition member 8. A clean gas introduction pipe 10 is attached to the front chamber 6 so that the clean gas can be introduced from the clean gas generator 11 through the flow rate controller 12. Since the greatest object of the present invention is to prevent dust from adhering to the surface of the starting rod 1, it is effective to prevent dust from adhering to the front chamber 6, which is an area where the surface of the starting rod 1 is exposed. Is.

【0016】本発明の方法においては、前記目的を達成
するためガラス微粒子の堆積を行う間、反応容器前室6
内の内圧を、外部の圧力と同じか又はそれよりも高く保
持しながらガラス微粒子の堆積を行う。これにより、バ
ーナー4や排気管9の反応容器5への取り付け部の隙間
や、反応容器5と反応容器前室6との接続部7近傍の隙
間、また、反応容器5と反応容器前室6とが一体に形成
されている場合であっても長期間の使用の間に反応容器
と反応容器前室との境界部分などに生じる亀裂などから
外気が流入し、外部からのダストの混入を防ぐことがで
きる。また、反応容器内部のガラス微粒子が浮遊して前
室内に混入し、出発ロッドに付着するなどの不都合を解
消することができる。
In the method of the present invention, the reaction chamber front chamber 6 is used during the deposition of the glass particles in order to achieve the above object.
Glass fine particles are deposited while maintaining the internal pressure equal to or higher than the external pressure. As a result, the gap between the mounting portion of the burner 4 and the exhaust pipe 9 to the reaction container 5, the gap near the connecting portion 7 between the reaction container 5 and the reaction container front chamber 6, and the reaction container 5 and the reaction container front chamber 6 Even when the and are integrally formed, outside air flows in from the cracks generated at the boundary between the reaction vessel and the reaction chamber front chamber, etc. during long-term use, preventing dust from entering from the outside. be able to. Further, it is possible to eliminate the inconvenience that the glass particles inside the reaction container float and enter the front chamber and adhere to the starting rod.

【0017】前室6内と外部との圧力差は0〜50Pa
とするのが好ましい。内圧が高いとダスト量の低減には
効果があるが、高すぎると反応容器5内のガスの流れに
対する影響が大きくなり、ガラス微粒子の堆積効率が低
下する。そのため、外部との圧力差は1〜10Paとす
るのが反応容器5内への影響がほとんどなく、より好適
な範囲である。なお、通常の場合、反応容器5内の圧力
は外部に対し−10〜−50Paの負圧となっている。
すなわち、外部、反応容器内、前室内の圧力の関係は前
室内≧外部>反応容器内となる。
The pressure difference between the inside of the front chamber 6 and the outside is 0 to 50 Pa.
Is preferred. If the internal pressure is high, it is effective in reducing the amount of dust, but if it is too high, the influence on the gas flow in the reaction vessel 5 becomes large, and the deposition efficiency of the glass particles is reduced. Therefore, it is more preferable that the pressure difference between the outside and the outside is 1 to 10 Pa, since there is almost no influence on the inside of the reaction vessel 5. In the normal case, the pressure inside the reaction vessel 5 is a negative pressure of -10 to -50 Pa with respect to the outside.
That is, the relationship between the pressure inside the reaction chamber and the pressure inside the reaction chamber is as follows.

【0018】反応容器前室6内の内圧を、外部の圧力と
同じか又はそれよりも高く保持するための手段として
は、前室6に清浄ガス導入管10を取り付け、清浄なガ
ス、例えば清浄な空気又は窒素、ヘリウム、アルゴンな
どの不活性ガスを導入する方法が好適である。清浄ガス
の導入量は、装置の大きさや前室6の気密状態(存在す
る隙間や亀裂の大きさや数)に大きく左右され一概には
言えないが、概ね100リットル/分以上とするのが好
ましい。
As a means for keeping the internal pressure in the reaction chamber front chamber 6 equal to or higher than the external pressure, a clean gas introducing pipe 10 is attached to the front chamber 6 to clean gas, for example, clean. A suitable method is to introduce air or an inert gas such as nitrogen, helium, or argon. The introduction amount of the clean gas is largely influenced by the size of the apparatus and the airtight state of the antechamber 6 (size and number of existing gaps and cracks), but it cannot be said unconditionally, but it is preferable to set it to 100 l / min or more. .

【0019】上記のように清浄ガスの導入量が多いの
で、コスト及び環境面から、清浄ガスとしては高性能フ
ィルターによりダストを除去した清浄な空気を使用する
のが好ましい。清浄空気用の高性能フィルターとしては
HEPAフィルター( High-Efficiency Particle Air
filter)と呼ばれるフィルター(大きさ0.3μm以上
の粒子の捕集効率が99.9%以上)が一般的で、この
高性能フィルターとファンをユニット化した、清浄な空
気を発生させるクリーンエアジェネレーター(CAG)
が広く市販されているので、このような装置を清浄ガス
発生装置11として利用するのが簡便で、低コストでの
装置構成が可能である。
Since a large amount of clean gas is introduced as described above, it is preferable to use clean air from which dust has been removed by a high performance filter as the clean gas from the viewpoint of cost and environment. As a high-performance filter for clean air, HEPA filter (High-Efficiency Particle Air
A filter called "filter" (collection efficiency of particles with a size of 0.3 μm or more is 99.9% or more) is generally used. A clean air generator that generates clean air by unitizing this high-performance filter and fan. (CAG)
Since it is widely marketed, it is easy to use such a device as the clean gas generator 11, and the device can be constructed at low cost.

【0020】前室6内に導入された清浄ガスは反応容器
5内に入り、燃焼ガスとともに排気管9から排気され
る。そのため、清浄ガスの導入量が多くなると反応容器
5内に流入するガス量が多くなり、ガラス微粒子の流れ
15が乱されるなど反応容器5内のガスの流れに影響
し、堆積条件が変化する恐れがある。この対策として、
反応容器5と前室6との境界部近傍に、前室6内のガス
が外部へ流出する機構を設けるのが好ましい。図1の例
では、このような機構として接続部7に、開口の大きさ
を調節できる通気窓14が設けられている。これによっ
て前室6内に導入した清浄ガスを外部に逃すことがで
き、反応容器5内のガスの流れに対する影響を最小にす
ることができる。また、反応容器5と前室6との接続部
7には開口面積を自在に変更できる仕切り部材8を設置
しておくことも有効である。
The clean gas introduced into the front chamber 6 enters the reaction vessel 5 and is exhausted from the exhaust pipe 9 together with the combustion gas. Therefore, when the amount of introduced clean gas increases, the amount of gas flowing into the reaction container 5 increases, which disturbs the flow 15 of the glass particles and affects the gas flow in the reaction container 5 to change the deposition conditions. There is a fear. As a measure against this,
It is preferable to provide a mechanism in the vicinity of the boundary between the reaction container 5 and the front chamber 6 so that the gas in the front chamber 6 flows to the outside. In the example of FIG. 1, as such a mechanism, the connecting portion 7 is provided with the ventilation window 14 capable of adjusting the size of the opening. As a result, the clean gas introduced into the front chamber 6 can be released to the outside, and the influence on the gas flow in the reaction vessel 5 can be minimized. Further, it is also effective to install a partition member 8 whose opening area can be freely changed at the connecting portion 7 between the reaction container 5 and the front chamber 6.

【0021】多孔質ガラス母材内部の気泡発生、異物混
入を防止するため、前室6内をダスト数の少ない雰囲気
に保つのが好ましい。本発明者らの検討結果によれば、
前室6内のダスト量を1CF(立方フィート:28.3
リットル)当たりで、大きさ(粒径)が0.3μm以上
のものが1000個以下とするのが好ましく、さらに好
ましくは0.5μm以上のものが50以下、さらに好ま
しくは1μm以上のものが10個以下、さらに好ましく
は2μm以上のものが5個以下、さらに好ましくは5μ
m以上のものが1個以下とするのが効果的であることが
わかった。なお、ダスト数は市販のクリーンルーム用パ
ーティクルカウンタ(Met・One社製:小型多機能
レーザパーティクルカウンタ、モデル237B)を用い
て粒子からの散乱光強度を検出して測定した。
In order to prevent the generation of air bubbles inside the porous glass base material and the inclusion of foreign matter, it is preferable to maintain the inside of the front chamber 6 in an atmosphere with a small number of dusts. According to the examination results of the present inventors,
The amount of dust in the front chamber 6 is 1 CF (cubic feet: 28.3
The number of particles having a size (particle diameter) of 0.3 μm or more is preferably 1000 or less, more preferably 0.5 or more and 50 or less, and further preferably 1 or more. No more than 5, more preferably no more than 2 μm, more preferably no more than 5 μ
It has been found that it is effective to set the number of m or more to 1 or less. The number of dusts was measured by detecting the intensity of scattered light from the particles using a commercially available particle counter for clean rooms (manufactured by Met One, Inc .: small multifunction laser particle counter, model 237B).

【0022】[0022]

【実施例】(実施例1)図1の構成の装置を使用して多
孔質ガラス母材の作製試験を行った。前室6内には0.
3μm以上の大きさのダストが10個/m3 以下の清浄
空気を0.5m 3 /分の流量で供給し、排気管9の吸気
圧力、仕切り部材8と出発ロッド1との間の隙間の大き
さ、通気窓14の開口の大きさなどを調整することによ
って、反応容器5内の圧力を外部に比べ20Pa低く設
定した(外部との差圧−20Pa)。また、前室6内の
圧力を外部より5Pa高くし(外部との差圧+5P
a)、多孔質ガラス母材3を作製した。このときの前室
6内のダスト数は1CF(28.3リットル)当たり、
0.3μm以上のものが500個、0.5μm以上のも
のが20個、1μm以上のものが3個、2μm以上のも
のは0個であった。この結果、得られた多孔質ガラス母
材3への気泡、異物混入はほとんど見られず、良好な品
質を有していた。
Example 1 Example 1 is performed by using the apparatus having the configuration shown in FIG.
A production test of a porous glass base material was conducted. In front chamber 6, 0.
10 pieces / m of dust with a size of 3 μm or more3Clean below
0.5m air 3Supply at a flow rate of / min, and intake air from the exhaust pipe 9
Pressure, size of gap between partition member 8 and starting rod 1
By adjusting the size of the opening of the ventilation window 14,
Therefore, the pressure inside the reaction vessel 5 is set to 20 Pa lower than the outside.
Was determined (differential pressure with the outside −20 Pa). In addition, in the front chamber 6
Increase the pressure by 5 Pa from the outside (differential pressure from the outside + 5 P
a), the porous glass base material 3 was produced. Anterior chamber at this time
The number of dust in 6 per 1CF (28.3 liters)
500 of 0.3 μm or more, 0.5 μm or more
20 pieces, 3 pieces of 1 μm or more, 2 pieces of 2 μm or more
Was 0. As a result, the obtained porous glass mother
It is a good product with almost no air bubbles or foreign matter mixed in the material 3.
Had quality.

【0023】(比較例1)清浄空気の導入を停止した他
は実施例1と同様にして多孔質ガラス母材の作製試験を
行った。このとき、反応容器5内の圧力を外部より20
Pa低くなるように設定したところ、前室6内の圧力の
外部との差圧は−5Paとなった。このときの前室6内
のダスト数は1CF(28.3リットル)当たり、0.
3μm以上のものが4000個、0.5μm以上のもの
が200個、1μm以上のものが15個、2μm以上の
ものが7個、5μm以上のものが2個であった。この結
果、得られた多孔質ガラス母材3への気泡、異物が混入
しているのが認められた。
(Comparative Example 1) A production test of a porous glass preform was conducted in the same manner as in Example 1 except that the introduction of clean air was stopped. At this time, the pressure inside the reaction vessel 5 is set to 20
When the pressure was set to be lower than Pa, the pressure difference between the pressure inside the front chamber 6 and the outside was −5 Pa. At this time, the number of dusts in the front chamber 6 is 0. per 1 CF (28.3 liters).
The number of particles of 3 μm or more was 4000, the number of particles of 0.5 μm or more was 200, the number of 1 μm or more was 15, the number of 2 μm or more was 7, and the number of 5 μm or more was 2. As a result, it was confirmed that air bubbles and foreign matter were mixed into the obtained porous glass base material 3.

【0024】[0024]

【発明の効果】本発明によれば、反応容器への部品取り
付け部の隙間や、反応容器と反応容器前室との接続部近
傍の隙間、また、長期間の使用の間に反応容器と反応容
器前室との境界部分などに生じる亀裂などから外気が流
入し、外部からのダストの前室内への混入を防ぐことが
できる。また、反応容器内部のガラス微粒子が浮遊して
前室内に混入し、出発ロッドに付着するのを防ぐことが
できる。さらに、火炎の乱れによる多孔質ガラス母材プ
ロファイルの変動、容器の内部に付着したガラス微粒子
が再浮遊してガラス微粒子堆積層に付着するなどの不都
合を生じることもない。
EFFECTS OF THE INVENTION According to the present invention, the gap between the parts mounting portion to the reaction container, the gap near the connecting portion between the reaction container and the reaction chamber front chamber, and the reaction with the reaction container during long-term use It is possible to prevent external dust from entering the front chamber due to inflow of outside air from a crack or the like generated at a boundary with the front chamber of the container. Further, it is possible to prevent the glass fine particles inside the reaction vessel from floating and being mixed into the front chamber and adhering to the starting rod. Further, there is no problem such as fluctuation of the porous glass base material profile due to turbulence of flame, re-suspension of glass particles adhered inside the container and adhesion to the glass particle deposition layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置の1例を模
式的に示す説明図。
FIG. 1 is an explanatory view schematically showing an example of an apparatus for carrying out the method of the present invention.

【図2】従来技術による多孔質ガラス母材の製造工程の
1例を模式的に示す説明図。
FIG. 2 is an explanatory view schematically showing an example of a manufacturing process of a porous glass base material according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 出発ロッド 2 ガラス微粒子堆積層 3 多
孔質ガラス母材 4 バーナー 5 反応容器 6 前室 7 接
続部 8 仕切り部材 9 排気管 10 清浄ガス導入
管 11 清浄ガス発生装置 12 流量調整器 13
圧力計 14 通気窓 15 ガラス微粒子の流れ 21 出発ロッド 22 ガラス微粒子堆積層 2
3 多孔質ガラス母材 24 バーナー 25 排気管 26 前室 2
7 バーナー 28 ガラス微粒子の流れ
1 Starting Rod 2 Glass Fine Particle Deposited Layer 3 Porous Glass Base Material 4 Burner 5 Reaction Vessel 6 Anterior Chamber 7 Connection Part 8 Partition Member 9 Exhaust Pipe 10 Clean Gas Introducing Pipe 11 Clean Gas Generator 12 Flow Regulator 13
Pressure gauge 14 Ventilation window 15 Flow of glass particles 21 Starting rod 22 Glass particle deposition layer 2
3 Porous glass base material 24 Burner 25 Exhaust pipe 26 Front chamber 2
7 Burner 28 Flow of fine glass particles

フロントページの続き (72)発明者 中原 慎二 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 4G014 AH14 4G021 EA01 EA02 EB18 Continued front page    (72) Inventor Shinji Nakahara             Sumitomoden 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa             Ki Industry Co., Ltd. Yokohama Works F-term (reference) 4G014 AH14                 4G021 EA01 EA02 EB18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 反応容器内の出発ロッドの近傍にガラス
微粒子合成用バーナーを配置し、前記出発ロッドを回転
させつつ前記出発ロッド又はバーナーを相対的に移動さ
せながら出発ロッドの周囲にガラス微粒子を堆積させる
多孔質ガラス母材の製造方法において、前記反応容器の
ガラス微粒子堆積層の成長側先端前方側に、仕切り部材
を介して設けられた反応容器前室内の内圧を、外部の圧
力と同じか又はそれよりも高く保持しながらガラス微粒
子の堆積を行うことを特徴とする多孔質ガラス母材の製
造方法。
1. A glass fine particle synthesizing burner is arranged in the vicinity of a starting rod in a reaction vessel, and while the starting rod is being rotated, the starting rod or burner is relatively moved and glass fine particles are provided around the starting rod. In the method for producing a porous glass base material to be deposited, in the front side of the growth side tip of the glass particulate deposition layer of the reaction vessel, the internal pressure in the reaction vessel front chamber provided via a partition member is the same as the external pressure. Alternatively, a method for producing a porous glass base material, which comprises depositing glass fine particles while maintaining the temperature higher than that.
【請求項2】 前記反応容器前室内の内圧を、外部の圧
力よりも0〜50Pa高くなるように保持することを特
徴とする請求項1に記載の多孔質ガラス母材の製造方
法。
2. The method for producing a porous glass preform according to claim 1, wherein the internal pressure in the reaction chamber front chamber is maintained so as to be higher than the external pressure by 0 to 50 Pa.
【請求項3】 前記反応容器前室内の内圧を、外部の圧
力よりも1〜10Pa高くなるように保持することを特
徴とする請求項2に記載の多孔質ガラス母材の製造方
法。
3. The method for producing a porous glass preform according to claim 2, wherein the internal pressure in the reaction chamber front chamber is maintained to be higher than the external pressure by 1 to 10 Pa.
【請求項4】 前記反応容器前室内へ清浄な空気、不活
性ガス、又はこれらの混合ガスを導入することによっ
て、前記反応容器前室内の内圧を外部の圧力と同じか又
はそれよりも高く保持することを特徴とする請求項1〜
3のいずれか1項に記載の多孔質ガラス母材の製造方
法。
4. The internal pressure of the reaction chamber is kept at the same as or higher than the external pressure by introducing clean air, an inert gas, or a mixed gas thereof into the reaction chamber. The method according to claim 1, wherein
4. The method for producing a porous glass preform according to any one of 3 above.
【請求項5】 前記反応容器前室内へ導入するガスの流
量が、100リットル/分以上であることを特徴とする
請求項4に記載の多孔質ガラス母材の製造方法。
5. The method for producing a porous glass preform according to claim 4, wherein the flow rate of the gas introduced into the reaction chamber front chamber is 100 liters / minute or more.
【請求項6】 前記反応容器前室の反応容器との境界部
近傍に、前記反応容器前室のガスが外部へ流出する機構
を設けたことを特徴とする請求項1〜5のいずれか1項
に記載の多孔質ガラス母材の製造方法。
6. A mechanism for allowing gas in the reaction chamber front chamber to flow to the outside in the vicinity of a boundary between the reaction chamber front chamber and the reaction container. The method for producing a porous glass preform according to item.
【請求項7】 前記反応容器前室内における雰囲気が、
大きさ0.3μm以上の粒子数が1CF当たり1000
個以下であることを特徴とする請求項1〜6のいずれか
1項に記載の多孔質ガラス母材の製造方法。
7. The atmosphere in the reaction chamber front chamber is
The number of particles with a size of 0.3 μm or more is 1000 per 1CF
The method for producing a porous glass preform according to any one of claims 1 to 6, wherein the number is less than or equal to one.
【請求項8】 前記反応容器前室内における雰囲気が、
大きさ0.5μm以上の粒子数が1CF当たり50個以
下であることを特徴とする請求項7に記載の多孔質ガラ
ス母材の製造方法。
8. The atmosphere in the reaction chamber front chamber is
The method for producing a porous glass preform according to claim 7, wherein the number of particles having a size of 0.5 μm or more is 50 or less per 1 CF.
【請求項9】 前記反応容器前室内における雰囲気が、
大きさ1μm以上の粒子数が1CF当たり10個以下で
あることを特徴とする請求項8に記載の多孔質ガラス母
材の製造方法。
9. The atmosphere in the reaction chamber front chamber is
9. The method for producing a porous glass preform according to claim 8, wherein the number of particles having a size of 1 μm or more is 10 or less per 1 CF.
【請求項10】 前記反応容器前室内における雰囲気
が、大きさ2μm以上の粒子数が1CF当たり5個以下
であることを特徴とする請求項9に記載の多孔質ガラス
母材の製造方法。
10. The method for producing a porous glass preform according to claim 9, wherein the atmosphere in the reaction chamber front chamber is such that the number of particles having a size of 2 μm or more is 5 or less per 1 CF.
【請求項11】 前記反応容器前室内における雰囲気
が、大きさ5μm以上の粒子数が1CF当たり1個以下
であることを特徴とする請求項10に記載の多孔質ガラ
ス母材の製造方法。
11. The method for producing a porous glass preform according to claim 10, wherein the atmosphere in the reaction chamber front chamber has one or less particles having a size of 5 μm or more per 1 CF.
JP2001249120A 2001-08-20 2001-08-20 Method for manufacturing porous glass preform Pending JP2003054957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249120A JP2003054957A (en) 2001-08-20 2001-08-20 Method for manufacturing porous glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249120A JP2003054957A (en) 2001-08-20 2001-08-20 Method for manufacturing porous glass preform

Publications (1)

Publication Number Publication Date
JP2003054957A true JP2003054957A (en) 2003-02-26

Family

ID=19078169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249120A Pending JP2003054957A (en) 2001-08-20 2001-08-20 Method for manufacturing porous glass preform

Country Status (1)

Country Link
JP (1) JP2003054957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311611B1 (en) 2006-11-22 2013-09-26 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing apparatus of porous glass preform
JP2017071513A (en) * 2015-10-05 2017-04-13 信越化学工業株式会社 Manufacturing apparatus of porous glass preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311611B1 (en) 2006-11-22 2013-09-26 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing apparatus of porous glass preform
JP2017071513A (en) * 2015-10-05 2017-04-13 信越化学工業株式会社 Manufacturing apparatus of porous glass preform

Similar Documents

Publication Publication Date Title
JPWO2002102729A1 (en) Apparatus and method for manufacturing glass fine particle deposit
US4740226A (en) Apparatus for the production of porous preform of optical fiber
TWI237624B (en) Apparatus for fabricating soot preform for optical fiber
US20040055339A1 (en) Method for producing glass-particle deposited body
JP5589744B2 (en) Manufacturing method of quartz glass base material
JP2803510B2 (en) Method and apparatus for manufacturing glass preform for optical fiber
JP2003054957A (en) Method for manufacturing porous glass preform
CN1938234B (en) Equipment for producing porous glass base material
JP2003073131A (en) Method for producing glass microparticle deposit
JP4460062B2 (en) Optical fiber preform manufacturing method
JP3651129B2 (en) Optical fiber preform manufacturing apparatus and manufacturing method
JP4494325B2 (en) Manufacturing method of glass preform for optical fiber
CN1284050A (en) Method of mfg. porous glass base material for optical fiber
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP4449272B2 (en) Method for producing glass particulate deposit
JP5416076B2 (en) Optical fiber preform manufacturing method
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
JP2003040626A (en) Method for producing fine glass particle heap
JP2603472B2 (en) Manufacturing method of porous quartz glass base material
JPH11292558A (en) Reactor for production of glass fine particle deposit for optical fiber glass
JP4099987B2 (en) Method for producing glass particulate deposit
JPH05306136A (en) Apparatus for production of optical fiber base material
JPH01242431A (en) Fine glass particle depositing device
JP4422928B2 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
JPH0660023B2 (en) Method for manufacturing glass particulate deposit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322