JPH11292558A - Reactor for production of glass fine particle deposit for optical fiber glass - Google Patents

Reactor for production of glass fine particle deposit for optical fiber glass

Info

Publication number
JPH11292558A
JPH11292558A JP9447598A JP9447598A JPH11292558A JP H11292558 A JPH11292558 A JP H11292558A JP 9447598 A JP9447598 A JP 9447598A JP 9447598 A JP9447598 A JP 9447598A JP H11292558 A JPH11292558 A JP H11292558A
Authority
JP
Japan
Prior art keywords
wall
gas
glass
reactor
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9447598A
Other languages
Japanese (ja)
Inventor
Masahide Kuwabara
正英 桑原
Tetsuo Wada
哲郎 和田
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9447598A priority Critical patent/JPH11292558A/en
Publication of JPH11292558A publication Critical patent/JPH11292558A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress such a problem that detection of the top end of a glass deposit by a laser detector is inhibited by deposition of glass fine particles on the inner wall of a VAD reactor when porous glass fine particles are deposited on the top end of a rotating seed rod while the rod is drawn to grow a porous glass fine particle deposited body, by adding a gas permeating function to the reactor. SOLUTION: The wall of the reactor is composed of a two-layer structure, and the inner wall 22 of the reactor 21 is composed of a material having gas-permeability (such as a PTFE porous material) and a clean gas is passed between the inner wall and the outer wall 23. The supply pressure of the clean gas is controlled higher by about 10 mm Aq than the inner pressure of the reactor 21 so that the gas can flow into the inside of the reactor 21. Since the outer wall 23 is not exposed to high temp. or hydrochloric gas, it may be made of plastics or general metals. The source gas and H2 , O2 are supplied from burners 3 to deposit glass fine particles on the top end of a seed rod 4, and the rod is drawn to grow the deposit of the glass fine particles. In this device, fine particles hardly deposit on the light-transmitting part or observation window of a top end laser detector 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回転する種棒の先端
に多孔質ガラス微粒子を堆積させつつ種棒を引き上げて
多孔質ガラス微粒子堆積体を成長させる、いわゆるVA
D法で光ファイバ用ガラス微粒子堆積体を製造するため
の反応容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called VA in which porous glass fine particles are deposited on the tip of a rotating seed rod and the seed rod is pulled up to grow a porous glass fine particle deposit.
The present invention relates to a reaction vessel for producing a glass fine particle deposit for an optical fiber by a method D.

【0002】[0002]

【従来技術】光ファイバ用ガラス微粒子堆積体の製造方
法の一つにVAD法がある。このVAD法によるガラス
微粒子堆積体の製造は図3に示すようにガラス原料(S
iCl4 ,GeCl4 等)と燃焼用ガス(H2 ,O2
をバーナー31から噴出させ、火炎中でガラス原料を加
水分解させ、生成するガラス微粒子を回転する種棒32
の先端に堆積させつつ種棒を引き上げて成長させる方法
である。このようにしてガラス微粒子堆積体を製造する
容器33は、次のような基準で選定される。即ち、 1.加水分解反応により生成する200°〜300°C
の高温塩素、高温塩酸雰囲気で劣化しないこと、 2.容器内が清浄な雰囲気に保たれること、 3.内部が観察可能なこと、 である。このような条件を満足する材料としては石英ガ
ラス製の反応容器が一般的であった。図中34はレーザ
ー先端検出器で、反応容器33の外部からレーザー光を
堆積中のガラス微粒子堆積体35の最下端にあて、微粒
子35の成長をキャッチして種棒32の上昇を制御する
ものである。なお、図中36は排気ダクト、37は覗き
窓である。また、VAD装置の大型化に伴い、水冷ジャ
ケットを有する金属製容器の内表面をテフロン加工し、
石英ガラス製の覗き窓を設けた大掛かりな装置も試用さ
れてきている。
2. Description of the Related Art A VAD method is one of the methods for producing a glass particle deposit for an optical fiber. As shown in FIG. 3, the production of a glass fine particle deposit by the VAD method is performed using a glass material (S
iCl 4 , GeCl 4 etc.) and combustion gas (H 2 , O 2 )
Is spouted from the burner 31 to hydrolyze the glass raw material in the flame, and the seed rod 32 which rotates the generated glass fine particles
This is a method in which a seed rod is pulled up and grown while being deposited on the tip of the seed. The container 33 for producing the glass particle deposit in this manner is selected based on the following criteria. That is, 1. 200 ° C to 300 ° C generated by hydrolysis reaction
1. Does not deteriorate in high temperature chlorine or high temperature hydrochloric acid atmosphere. 2. The inside of the container is kept in a clean atmosphere; The inside can be observed. As a material satisfying such conditions, a reaction vessel made of quartz glass was generally used. In the drawing, reference numeral 34 denotes a laser tip detector, which controls the rise of the seed rod 32 by catching the growth of the fine particles 35 by applying the laser light from the outside of the reaction vessel 33 to the lowermost end of the glass fine particle deposit body 35. It is. In the figure, 36 is an exhaust duct, and 37 is a viewing window. In addition, with the increase in the size of the VAD device, the inner surface of a metal container having a water cooling jacket is processed with Teflon,
Large-scale devices provided with quartz glass viewing windows have also been used.

【0003】[0003]

【発明が解決しようとする課題】近年、光ファイバの需
要が伸び、それにともない生産設備も大型化し、ガラス
微粒子堆積体の製造時間も大幅に長くなりつつある。V
AD法によるガラス微粒子堆積体の製造で最も問題とな
る点の一つにバーナー(火炎)中で加水分解されたガラ
ス微粒子がターゲットである種棒または成長中の多孔質
ガラス微粒子堆積体に付着せず、また容器外へも排出さ
れずに、反応容器の内壁面に付着することである。上述
したようにガラス微粒子堆積体の製造時間が長くなると
それに比例して反応容器内壁面への微粒子の付着量が増
え、前記したレーザー先端検出器34のレーザー光を遮
って堆積中の成長度をキャッチ出来なくなり、一様な品
質の堆積体35が製造できなくなる。また、この付着し
た微粒子が内壁面から剥がれて成長中のガラス微粒子堆
積体に混入することで製品に気泡が残存する等の不具合
が発生するため、長時間の製造が不可能となる。このた
め、頻繁に反応容器内壁面を清掃する必要があり、ガラ
ス微粒子堆積体の生産性を極めて悪くしていた。本発明
は、かかる従来の問題点を解消し、長時間の反応にも対
処でき、ガラス微粒子堆積体への悪影響もない反応容器
を提供するものである。
In recent years, the demand for optical fibers has increased, and accordingly, the production equipment has become larger, and the manufacturing time of the glass fine particle deposit has been greatly increased. V
One of the most problematic points in the production of a glass particle deposit by the AD method is that glass particles hydrolyzed in a burner (flame) adhere to a seed rod as a target or a growing porous glass particle deposit. And adheres to the inner wall surface of the reaction vessel without being discharged outside the vessel. As described above, as the manufacturing time of the glass fine particle deposit increases, the amount of the fine particles attached to the inner wall surface of the reaction vessel increases in proportion thereto, and the laser beam of the laser tip detector 34 is blocked to reduce the growth rate during the deposition. The catch 35 cannot be obtained, and a deposit 35 of uniform quality cannot be manufactured. In addition, since the adhered fine particles are peeled off from the inner wall surface and mixed into the growing glass fine particle deposit, a problem such as a bubble remaining in the product occurs, so that it is impossible to manufacture for a long time. For this reason, it is necessary to frequently clean the inner wall surface of the reaction vessel, and the productivity of the glass particle deposit is extremely deteriorated. The present invention has been made to solve the conventional problems and to provide a reaction vessel capable of coping with a long-time reaction and having no adverse effect on the glass fine particle deposit.

【0004】[0004]

【課題を解決するための手段】本発明は、回転する種棒
の先端に多孔質ガラス微粒子を堆積させつつ種棒を引き
上げて多孔質ガラス微粒子堆積体を成長させ、光ファイ
バ用ガラス微粒子堆積体を製造する多孔質ガラス微粒子
堆積反応容器において、該反応容器がガス透過機能を有
することを特徴とする光ファイバ用ガラス微粒子堆積体
製造用反応容器を提供することにある。また、本発明
は、前記反応容器を二重壁とし、外壁は実質的にガスを
透過せず、内壁はガス透過機能を有することを特徴とす
る光ファイバ用ガラス微粒子堆積体製造用反応容器を提
供することにある。
SUMMARY OF THE INVENTION According to the present invention, there is provided a glass particle deposit for an optical fiber, wherein a porous glass particle deposit is grown by pulling up the seed rod while depositing porous glass particles on the tip of a rotating seed rod. The object of the present invention is to provide a reaction vessel for producing a glass fine particle deposit for an optical fiber, wherein the reaction vessel has a gas permeation function in the reaction vessel for producing a porous glass fine particle. Further, the present invention provides a reaction container for producing a glass microparticle deposit for an optical fiber, wherein the reaction container has a double wall, an outer wall does not substantially transmit gas, and an inner wall has a gas transmission function. To provide.

【0005】[0005]

【発明の実施の形態】図1は本発明の一実施形態を示す
説明図である。この実施形態はVAD法を例えばクリー
ンルームのような雰囲気が清浄かつ制御されている部屋
へ設置する場合で、1は雰囲気が清浄かつ制御されてい
る部屋、2は該部屋1に設置された反応容器、3はバー
ナー、4は回転しつつ上方へ移動可能な種棒、5はガラ
ス微粒子が堆積したガラス微粒子堆積体、6はガラス微
粒子堆積体の最下点を検知し、種棒の上方への移動を制
御するレーザー先端検出装置で、必要により反応容器2
にレーザー光透過窓を設けておく。図中11は種棒また
はガラス微粒子堆積体に堆積しなかったガラス微粒子を
反応容器2の外に追い出すダクト、12は覗き窓であ
る。本発明における反応容器2はガス透過性のある材質
で作られている。ガス透過性のある材料としては、ポリ
四フッ化エチレン(PTFE)の多孔質材がVAD容器
としての条件を満足し適している。
FIG. 1 is an explanatory view showing an embodiment of the present invention. In this embodiment, the VAD method is installed in a room where the atmosphere is clean and controlled, such as a clean room. 1 is a room where the atmosphere is clean and controlled, and 2 is a reaction container installed in the room 1. Reference numeral 3 denotes a burner, 4 denotes a seed rod that can move upward while rotating, 5 denotes a glass fine particle deposit on which glass fine particles are deposited, 6 denotes a lowermost point of the glass fine particle deposit, and the upper part of the seed rod is detected. A laser tip detection device that controls the movement.
Is provided with a laser light transmission window. In the figure, reference numeral 11 denotes a seed rod or a duct for driving out glass particles that have not been deposited on the glass particle deposit, out of the reaction vessel 2, and 12 denotes a viewing window. The reaction vessel 2 in the present invention is made of a material having gas permeability. As a gas-permeable material, a porous material of polytetrafluoroethylene (PTFE) satisfies the conditions as a VAD container and is suitable.

【0006】ポリ四フッ化エチレン(PTFE)の多孔
質材で作成した反応容器2をクリーンルーム1内にセッ
トし、反応容器2内の圧力を外部の圧力に対して−10
mmAqに保ち、反応容器2の外部から清浄な空気が流
入するようにし、バーナー3にSiCl4 、GeCl4
等の原料ガスとH2 、O2 の燃料ガス、並びに必要によ
り不活性ガスを供給して加水分解反応によりガラス微粒
子を生成し、該ガラス微粒子を種棒4の先端に堆積さ
せ、種棒4を回転しつつ引き上げることでガラス微粒子
堆積体5を成長させる。この実施例では、反応容器2の
壁面をガスが通過するので壁面の温度はそれほど上昇せ
ず、最高で90°Cであった。また、内壁面にガラス微
粒子の付着はなく、レーザー光透過部、覗き窓12への
付着も従来の反応容器に比べて極端に少なく、長期の製
造を可能とした。また、長時間製造した結果、従来は管
壁に付着したガラス微粒子の脱落でガラス微粒子堆積体
が汚損され、ガラス化時点で泡が残留する事故が生じて
いたが、本実施例ではそのような不具合は生じなかっ
た。上述したように、本発明では反応容器の外側から清
浄なガスを容器内に供給するため、反応容器壁面の温度
がさほど上がらず、また、加水分解反応で発生する塩素
や塩酸が反応容器の内壁面に接触しないので反応容器と
しては上述したPTFEの他にガラス繊維フィルタ材、
ポリプロピレン多孔質材、カーボン繊維性フィルタ材等
を使用することができる。
A reaction vessel 2 made of a porous material of polytetrafluoroethylene (PTFE) is set in a clean room 1, and the pressure in the reaction vessel 2 is reduced by -10 with respect to the external pressure.
mmAq, clean air was allowed to flow in from outside the reaction vessel 2, and SiCl 4 and GeCl 4 were supplied to the burner 3.
Raw material gas and H 2 equal, fuel gas O 2, and if necessary by supplying an inert gas to generate glass particles by hydrolysis, depositing the glass particles on the tip of the seed rod 4, the seed rod 4 The glass fine particle deposit 5 is grown by pulling up while rotating. In this example, the temperature of the wall surface did not rise so much because the gas passed through the wall surface of the reaction vessel 2 and was 90 ° C. at the maximum. Further, there was no adhesion of glass particles on the inner wall surface, and the adhesion to the laser beam transmitting portion and the observation window 12 was extremely small as compared with the conventional reaction vessel, thereby enabling long-term production. In addition, as a result of manufacturing for a long time, conventionally, the glass fine particle deposits were stained by falling off of the glass fine particles attached to the tube wall, and an accident that bubbles remained at the time of vitrification occurred, but in the present embodiment, such an accident occurred. No problems occurred. As described above, in the present invention, since a clean gas is supplied into the vessel from the outside of the reaction vessel, the temperature of the wall surface of the reaction vessel does not rise so much, and chlorine and hydrochloric acid generated by the hydrolysis reaction are generated in the reaction vessel. Since it does not come in contact with the wall surface, a glass fiber filter material,
A polypropylene porous material, a carbon fiber filter material or the like can be used.

【0007】図2は本発明の第2の実施形態を示す説明
図である。本実施形態は清浄度に心配のある雰囲気の場
所でVAD法を実施する例で、反応容器の壁を二重構造
とし、外壁と内壁との間にクリーンエアーまたは不活性
ガスを投入し、該ガスを内壁を通して反応容器内へ吹き
込む構成としたものである。即ち、図中21は反応容器
で、該反応容器21は内壁22と外壁23とからなり、
内壁21と外壁22との間には清浄なガスが流れる空間
24となっている。なお、図1と同じ部分には同一符号
を付して説明を省略する。反応容器21の内壁22はガ
ス透過性を有する材料(例えばPTFEの多孔質材等)
で構成され、外壁23との間の空間24には清浄ガスを
流す。清浄なガスの供給圧力はガスが反応容器の内部に
流れ込む程度に反応容器21内の圧力より若干高い圧力
(10mmAq程度)とする。このように、清浄なガス
が反応容器内に流入するように構成することにより外壁
23は高温に曝されたり、腐食性ガスである塩素や塩酸
に曝されることもないので、外壁23の材質としてはプ
ラスチック、鉄、アルミニウム等を使用することができ
る。
FIG. 2 is an explanatory view showing a second embodiment of the present invention. This embodiment is an example in which the VAD method is performed in an atmosphere where there is concern about cleanliness. The wall of the reaction vessel has a double structure, and clean air or an inert gas is injected between the outer wall and the inner wall. The gas is blown into the reaction vessel through the inner wall. That is, in the figure, reference numeral 21 denotes a reaction vessel, which comprises an inner wall 22 and an outer wall 23,
Between the inner wall 21 and the outer wall 22, there is a space 24 through which clean gas flows. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. The inner wall 22 of the reaction vessel 21 is made of a material having gas permeability (for example, PTFE porous material).
, And a clean gas flows in the space 24 between the outer wall 23. The supply pressure of the clean gas is set to a pressure (about 10 mmAq) slightly higher than the pressure in the reaction vessel 21 such that the gas flows into the reaction vessel. Since the outer wall 23 is not exposed to a high temperature or exposed to corrosive gas such as chlorine or hydrochloric acid by forming the clean gas to flow into the reaction vessel in this manner, the material of the outer wall 23 is not required. For example, plastic, iron, aluminum or the like can be used.

【0008】本発明は上述したように反応容器の少なく
とも内壁面にガス透過機能を持たせたものである。この
ように、内壁面にガス透過機能を持たせることにより内
壁面が腐食性ガスに曝されることなく、高温にもならな
いために長時間にわたる堆積体の製造が可能となり、大
型のガラス微粒子堆積体の製造が可能となる。また、壁
面へのガラス微粒子の付着が殆ど抑制されるので堆積体
への異物の混入がなくなり高品質のガラス微粒子堆積体
を製造することができる。
In the present invention, as described above, at least the inner wall surface of the reaction vessel has a gas permeation function. As described above, by providing the inner wall surface with a gas permeation function, the inner wall surface is not exposed to corrosive gas and the temperature does not become high, so that it is possible to manufacture a deposit for a long time, and it is possible to deposit large glass fine particles. Body production becomes possible. Further, since the adhesion of the glass particles to the wall surface is substantially suppressed, foreign matter is not mixed into the deposit, and a high-quality glass particle deposit can be manufactured.

【0009】[0009]

【発明の効果】以上詳述したように、本発明によれば、
VAD法の反応容器の内壁にガス透過性機能を持たせる
ことことで壁面の温度上昇が抑えられ、従って反応容器
を大きくして大型のガラス微粒子堆積体を製造する装置
であっても壁面に冷却装置を設ける必要がなく、また、
内部へのガスの流入により内壁面へのガラス微粒子の付
着が防止でき、掃除に左右さることなく高品質のガラス
微粒子堆積体を製造することができる。
As described in detail above, according to the present invention,
By providing a gas permeable function to the inner wall of the reaction vessel of the VAD method, the temperature rise on the wall can be suppressed. Therefore, even in a device for manufacturing a large-sized glass particle deposit by enlarging the reaction vessel, the wall can be cooled. There is no need to install equipment,
Adhesion of glass particles to the inner wall surface can be prevented by the gas flowing into the inside, and a high-quality glass particle deposit can be manufactured without being affected by cleaning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の第2の実施形態を示す説明図。FIG. 2 is an explanatory view showing a second embodiment of the present invention.

【図3】従来のVAD法を説明する説明図。FIG. 3 is an explanatory diagram illustrating a conventional VAD method.

【符号の説明】[Explanation of symbols]

1 雰囲気が清浄な部屋 2 反応容器 3 バーナー 4 種棒 5 ガラス微粒子堆積体 6 レーザー先端検出器 21 反応容器 22 内壁 23 外壁 DESCRIPTION OF SYMBOLS 1 Room with clean atmosphere 2 Reaction vessel 3 Burner 4 Seed stick 5 Glass fine particle deposit 6 Laser tip detector 21 Reaction vessel 22 Inner wall 23 Outer wall

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転する種棒の先端に多孔質ガラス微粒
子を堆積させつつ種棒を引き上げて多孔質ガラス微粒子
堆積体を成長させ、光ファイバ用ガラス微粒子堆積体を
製造する多孔質ガラス微粒子堆積反応容器において、該
反応容器がガス透過機能を有することを特徴とする光フ
ァイバ用ガラス微粒子堆積体製造用反応容器。
1. A porous glass particle deposition for producing an optical fiber glass particle deposit by growing a porous glass particle deposit by pulling up the seed rod while depositing porous glass particles on the tip of a rotating seed rod. A reaction vessel for producing a glass fine particle deposit for an optical fiber, wherein the reaction vessel has a gas permeation function.
【請求項2】 前記反応容器を二重壁とし、外壁は実質
的にガスを透過せず、内壁はガス透過機能を有すること
を特徴とする請求項1記載の光ファイバ用ガラス微粒子
堆積体製造用反応容器。
2. The method according to claim 1, wherein the reaction vessel has a double wall, the outer wall is substantially impermeable to gas, and the inner wall has a gas permeable function. For reaction vessel.
JP9447598A 1998-04-07 1998-04-07 Reactor for production of glass fine particle deposit for optical fiber glass Pending JPH11292558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9447598A JPH11292558A (en) 1998-04-07 1998-04-07 Reactor for production of glass fine particle deposit for optical fiber glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9447598A JPH11292558A (en) 1998-04-07 1998-04-07 Reactor for production of glass fine particle deposit for optical fiber glass

Publications (1)

Publication Number Publication Date
JPH11292558A true JPH11292558A (en) 1999-10-26

Family

ID=14111311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9447598A Pending JPH11292558A (en) 1998-04-07 1998-04-07 Reactor for production of glass fine particle deposit for optical fiber glass

Country Status (1)

Country Link
JP (1) JPH11292558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042940A (en) * 2008-08-08 2010-02-25 Sumitomo Electric Ind Ltd Apparatus and method for producing glass parent material
CN103739196A (en) * 2012-12-06 2014-04-23 成都富通光通信技术有限公司 Equipment and method for preparing porous core rod by VAD
CN110818246A (en) * 2019-12-20 2020-02-21 杭州永通智造科技有限公司 Flow field stabilizing device of clean reaction chamber for preform cladding deposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042940A (en) * 2008-08-08 2010-02-25 Sumitomo Electric Ind Ltd Apparatus and method for producing glass parent material
CN103739196A (en) * 2012-12-06 2014-04-23 成都富通光通信技术有限公司 Equipment and method for preparing porous core rod by VAD
CN110818246A (en) * 2019-12-20 2020-02-21 杭州永通智造科技有限公司 Flow field stabilizing device of clean reaction chamber for preform cladding deposition
CN110818246B (en) * 2019-12-20 2023-12-26 杭州永通智造科技有限公司 Stable flow field device of clean reaction chamber for preform cladding deposition

Similar Documents

Publication Publication Date Title
CN104445915B (en) A kind of VAD methods prepare the device and method of preform
JP4043768B2 (en) Manufacturing method of optical fiber preform
JPH0351663B2 (en)
JPH10245242A (en) Apparatus for producing porous glass base material for optical fiber
JPH11292558A (en) Reactor for production of glass fine particle deposit for optical fiber glass
JP4423068B2 (en) Method for producing porous preform for optical fiber and glass preform
JP2803510B2 (en) Method and apparatus for manufacturing glass preform for optical fiber
AU739089B2 (en) Method of manufacturing a porous glass preform for an optical fiber
JP2012017240A (en) Method for manufacturing silica glass crucible for pulling silicon single crystal
JPH09188523A (en) Production of silica glass and device for producing the same
KR940011120B1 (en) Method of producing glass soot deposit
JP2006306652A (en) Method for manufacturing porous glass preform and burner for deposition used in the same
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP2603472B2 (en) Manufacturing method of porous quartz glass base material
JP2003054957A (en) Method for manufacturing porous glass preform
JPH0222137A (en) Production of synthetic quartz preform
JP2005281025A (en) Apparatus for manufacturing porous glass preform
JP3143445B2 (en) Manufacturing method of synthetic quartz
JPH05319849A (en) Production of silica porous preform
JPS62162646A (en) Production of glass fine particle deposit
JP2006232638A (en) Method and apparatus for manufacturing porous quartz glass preform
JPH04187547A (en) Device for preparing hermetic-coated optical fiber
JPH06316421A (en) Producing device for glass preform
JP2002284533A (en) Method for producing glass preform and device used for the same
JP3199657B2 (en) Equipment for manufacturing glass preforms for optical fibers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050311