JPH0222137A - Production of synthetic quartz preform - Google Patents

Production of synthetic quartz preform

Info

Publication number
JPH0222137A
JPH0222137A JP17315988A JP17315988A JPH0222137A JP H0222137 A JPH0222137 A JP H0222137A JP 17315988 A JP17315988 A JP 17315988A JP 17315988 A JP17315988 A JP 17315988A JP H0222137 A JPH0222137 A JP H0222137A
Authority
JP
Japan
Prior art keywords
burner
base material
sealing gas
flame
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17315988A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Nakamura
哲之 中村
Shigetoshi Hayashi
茂利 林
Tatsuhiko Shigematsu
重松 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17315988A priority Critical patent/JPH0222137A/en
Publication of JPH0222137A publication Critical patent/JPH0222137A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a high-quality preform in the absence of bubbles in a transparent material by surrounding a burner flame stream with a sealing gas stream and controlling fine glass particles in an atmosphere between the flame stream and the sealing gas stream so as to provide a specific value or below of concentration thereof in producing a synthetic quartz preform by a vapor axial deposition method. CONSTITUTION:A synthetic quartz preform 5 is produced by a vapor axial deposition method. In the process, the following constitution is adopted. That is a flame stream 4 of a burner 3 arranged under a reaction vessel 1 is surrounded with a sealing gas stream 13 (jetted from a nozzle 11) and the flow rate of the sealing gas stream 13 or feed rate of a glass raw material fed from the burner 3 is regulated to control the concentration of fine glass particles suspended in the atmosphere between the flame stream 4 and the sealing gas stream 13 to <=10g/Nm<3>.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、通信用、IC回路製造用などに用いられる合
成石英の多孔質母材を作製する方法である気相軸付け(
VAD)法において、高品質の多孔質母材を合成する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a porous base material of synthetic quartz used for communications, IC circuit manufacturing, etc.
The present invention relates to a method for synthesizing a high quality porous base material in the VAD) method.

(従来の技術及びその課題) 近年の情報通信、システム化の発展は目ざましいものが
あり、高度通信機器や高集積回路半導体(IC)の大量
消費時代を迎えたと言え、光フアイバ素線やICの回路
の露光工程で使用する合成石英製のフォトマスクのより
経済的な製造が待望されている。
(Conventional technology and its issues) Recent developments in information communication and systemization have been remarkable, and it can be said that we have entered an era of mass consumption of advanced communication equipment and highly integrated circuit semiconductors (ICs). There is a long-awaited ability to more economically manufacture synthetic quartz photomasks used in the circuit exposure process.

従来から、石英系の光フアイバ母材や合成石英製フォト
マスク母材の製造法として各種の方式が提案されている
が、とりわけVAD法は反応効率が高い上、母材寸法の
大型化が可能である等の理由で量産性に優れ、上述の要
求にマツチするものである。すなわち、VAD法は、第
5図に示すように反応容器1内に垂下された種棒2の下
方から、多重管構造のバーナ3に例えば5iC14、G
eCl4等のガラス原料ガス並びに0□、N2及びN2
、計等のガスを供給し、酸水素火炎中で下記0式に示す
加水分解反応を行わせてガラス微粒子を生成させる。
Various methods have been proposed to date for manufacturing quartz-based optical fiber base materials and synthetic quartz photomask base materials, but the VAD method has particularly high reaction efficiency and allows for larger base material dimensions. For these reasons, it has excellent mass productivity and meets the above requirements. That is, in the VAD method, as shown in FIG. 5, for example, 5iC14, G
Frit gas such as eCl4 and 0□, N2 and N2
, gas, etc. are supplied, and a hydrolysis reaction shown in the following formula 0 is performed in an oxyhydrogen flame to generate glass particles.

5iC14(GeCI 4) + 211 t +Oz
→S iOz (GeOz) + 4HC1−■この反
応で生成したガラス微粒子はバーナ3の火炎流4に乗っ
て出発母材である種棒2に衝突すると同時に堆積し、連
続的にこの堆積がくり返されて多孔質の合成石英ガラス
母材(以下、[母材Jと略称する)5が垂直(長軸)方
向に成長する。
5iC14 (GeCI 4) + 211 t +Oz
→S iOz (GeOz) + 4HC1- ■ The glass particles generated by this reaction ride the flame stream 4 of the burner 3 and are deposited at the same time as they collide with the seed rod 2, which is the starting base material, and this deposition is continuously repeated. Then, a porous synthetic quartz glass base material (hereinafter abbreviated as base material J) 5 grows in the vertical (long axis) direction.

バーナ3の火炎流4の中で生成したガラス微粒子のうち
母材5の底面に堆積し得なかった余剰のガラス微粒子(
以下、「ヒユーム」と略称する)6は、−旦反応容器l
内に浮遊、滞留した後その大部分は反応容器1内の雰囲
気ガスとともに排気管7を通して容器外へ排出される。
Surplus glass particles (
(hereinafter abbreviated as "Hyum") 6 is a reaction vessel l
After floating and staying in the reaction vessel 1, most of it is discharged to the outside of the vessel through the exhaust pipe 7 along with the atmospheric gas inside the reaction vessel 1.

この方法で製造した母材は、気孔率が約80%と多孔質
であるため、一般には、この母材を直ちに加熱脱泡して
透明なガラス塊(以下、「透明化材」と略称する)とす
る処理方法が採用されている。
The base material produced by this method is porous with a porosity of approximately 80%, so generally, this base material is immediately heated to defoam it to make a transparent glass lump (hereinafter abbreviated as "transparent material"). ) has been adopted.

しかし、この方法により母材を透明化すると、透明化材
中に気泡が生成し欠陥品となる場合がある。この気泡は
、特開昭62−162642号公報に開示されているよ
うに母材合成中にヒユームの一部が互いに結合して2次
粒子を形成したあと母材表面に付着し、この2次粒子付
着部分が透明化に際して焼結が不十分となって生成する
とされている。
However, when the base material is made transparent by this method, air bubbles may be generated in the transparent material, resulting in a defective product. As disclosed in JP-A No. 62-162642, some of the fumes combine with each other to form secondary particles during the synthesis of the base material, and then adhere to the surface of the base material. It is said that the part to which particles are attached is formed due to insufficient sintering during transparency.

この気泡生成防止対策としては、次の三つの方法が提案
されている。
The following three methods have been proposed as measures to prevent bubble generation.

第1の方法としては、反応容器内から雰囲気ガスを排出
する条件の改善により反応容器内に浮遊、滞留するヒユ
ームの量を低減する方法である。例えば、特開昭62−
17037号公報に開示されているように、排気口を母
材に近接してバーナ火炎の延長線上に配置し、母材に堆
積せずに飛散し始めたヒユームを直ちに排気する方式、
あるいは特開昭62−27344号公報に開示されてい
るように母材の成長端の周囲近傍に、内周に吸気口を有
するリング状の排気管を設け、上記方式と同様に発生し
たヒユームを直ちに排気する方式、等が提案されている
The first method is to reduce the amount of fume floating and staying in the reaction container by improving the conditions for discharging atmospheric gas from inside the reaction container. For example, JP-A-62-
As disclosed in Japanese Patent No. 17037, an exhaust port is placed close to the base material on the extension line of the burner flame, and fume that starts to scatter without being deposited on the base material is immediately exhausted.
Alternatively, as disclosed in Japanese Unexamined Patent Publication No. 62-27344, a ring-shaped exhaust pipe with an intake port on the inner periphery is provided near the growth end of the base material, and fumes generated in the same manner as in the above method are removed. Methods such as immediate exhaustion have been proposed.

しかしながら、このような排気条件の改善方法では、母
材の合成速度を高めるべく原料ガスの供給速度を増加し
た場合には排気しきれず、反応容器内に浮遊、滞留する
ヒユーム星が著しく増加し、気泡が生成する。
However, with this method of improving the exhaust conditions, when the raw material gas supply rate is increased to increase the synthesis rate of the base material, the exhaust cannot be fully exhausted, and the number of Huyum stars floating and staying in the reaction vessel increases significantly. Bubbles are generated.

第2の方法は、特開昭62−162642号公報に開示
されているように、反応容器を加熱して同容器内壁にヒ
ユームが付着するのを防止し、2次粒子の生成を抑制す
る方法であるが、後述するように本発明者らの調査では
、2次粒子の発生源は同容器内壁のほかに、例えば種棒
およびバーナの外面、雰囲気中でのヒユームの凝集など
があり、この方法では反応容器内壁以外の発生源に対し
ては十分な効果が得られない。
The second method, as disclosed in JP-A No. 62-162642, is a method in which the reaction vessel is heated to prevent fume from adhering to the inner wall of the vessel and to suppress the generation of secondary particles. However, as will be described later, the inventors' investigation revealed that sources of secondary particles include, in addition to the inner wall of the container, the outer surfaces of the seed rod and burner, and the agglomeration of fume in the atmosphere. This method is not sufficiently effective against sources other than the inner wall of the reaction vessel.

第3の方法としては、特開昭61−97141号公報に
開示されているように、合成した母材を加熱して透明化
するに際して、予め母材を1100〜1300’cで仮
焼して母材の径方向の密度分布を整えた後、1400〜
1600°Cで焼成し透明化する方法である。
As a third method, as disclosed in JP-A No. 61-97141, when heating the synthesized base material to make it transparent, the base material is calcined at 1100 to 1300'c in advance. After adjusting the radial density distribution of the base material, 1400 ~
This is a method of baking at 1600°C to make it transparent.

すなわち、仮焼しない場合、低密度の母材表面層と比較
的高密度の母材内部の密度差および母材表面層に高密度
のシリカ粒子(2次粒子)が入り込む。そのために、周
囲の母材との間に密度差が生じ透明化の隙に均一な焼結
と脱泡が起こらない。
That is, when calcination is not performed, there is a density difference between the low-density base material surface layer and the relatively high-density base material interior, and high-density silica particles (secondary particles) enter the base material surface layer. Therefore, a density difference occurs between the material and the surrounding base material, and uniform sintering and defoaming do not occur in the gap between transparency.

したがって透明化材の表面から5〜10mmの表面層に
数10μm程度の径の気泡が生成する。しかし、これを
仮焼すると母材全体が軽度に焼結されて母材径方向の密
度分布が一定になり、透明化の際に母材の収縮が均一化
して表面層に気泡は生成しなくなるとされている。
Therefore, bubbles with a diameter of about several tens of micrometers are generated in the surface layer 5 to 10 mm from the surface of the transparent material. However, when this is calcined, the entire base material is slightly sintered and the density distribution in the radial direction of the base material becomes constant, and when it becomes transparent, the shrinkage of the base material becomes uniform and no bubbles are generated in the surface layer. It is said that

この第3の方法は、母材内部に対して低密度の表面層の
改善に対しては有効であるが、内部組織の改善には仮焼
条件を高温又は長時間化する必要があり、このことは、
表面層の部分透明化が惹起され、かえって表面層の不均
一が生ずる。
This third method is effective for improving the low-density surface layer inside the base material, but improving the internal structure requires calcination conditions at high temperatures or for a long time. The thing is,
Partial transparency of the surface layer is caused, and on the contrary, non-uniformity of the surface layer occurs.

従って特開昭61−97141号公報に開示された透明
化処理前に仮焼する透明化方法の改善で全ての欠陥が解
消できるものではない。
Therefore, it is not possible to eliminate all defects by improving the transparency method disclosed in JP-A-61-97141, which involves calcining before the transparency treatment.

以上のように従来の気泡生成防止対策は、発生したヒユ
ームを直ちに反応容器外へ排出、あるいは2次粒子の発
生を抑制、あるいは透明化条件の改善による方法である
As described above, conventional measures to prevent bubble generation include methods such as immediately discharging the generated fume out of the reaction vessel, suppressing the generation of secondary particles, or improving the transparency conditions.

一方、バーナ火炎周辺部雰囲気のガス流れの改善に関す
るものとしては、つぎに示すバーナの構造を変更して達
成する方法が提案されている。
On the other hand, in order to improve the gas flow in the atmosphere around the burner flame, the following method has been proposed by changing the structure of the burner.

その方法は、特開昭62−143838号公報、同61
−162637号公報に開示されているように、垂直に
立設した多重管構造のバーナの長手方向に沿ってこの火
炎を取り囲む形態のフードを設け、火炎のうち母材に近
い側(先端部)の外周を覆うようにHe、 N、、11
□等のガスを前記フード先端から噴出させてバーナ火炎
の流れを安定化させるものである。
The method is disclosed in Japanese Unexamined Patent Application Publication No. 62-143838 and No. 61
As disclosed in Japanese Patent Publication No. 162637, a hood is provided to surround the flame along the longitudinal direction of a burner with a multi-tube structure that stands vertically, and a hood is provided to surround the flame on the side (tip part) of the flame that is closer to the base material. He, N,, 11 so as to cover the outer periphery of
Gas such as □ is jetted out from the tip of the hood to stabilize the flow of the burner flame.

これら発明は、光ファイバの伝送効率の向上を目的とし
て母材径方向の屈折率分布がシャープ、すなわち屈折率
が高いコア部と低いクラッド部との境界付近で屈折率が
急激に変化する母材を合成することを目的として成され
たものであり、詳しくはバーナ火炎のうちで母材例の先
端部のみの外周のガス流れをバーナ火炎流と並流とし、
このガス流れとフードによりバーナ火炎外周を覆うこと
によりバーナ火炎とこの火炎外周雰囲気とを隔離してバ
ーナ火炎流の安定化を達成しようとするものである。
These inventions aim to improve the transmission efficiency of optical fibers by creating a base material in which the refractive index distribution in the radial direction of the base material is sharp, that is, the refractive index changes rapidly near the boundary between the core portion with a high refractive index and the cladding portion with a low refractive index. Specifically, the gas flow around only the tip of the base material in the burner flame is made to flow in parallel with the burner flame flow.
By covering the outer periphery of the burner flame with this gas flow and the hood, the burner flame is isolated from the atmosphere surrounding the flame, thereby achieving stabilization of the burner flame flow.

しかし、これら発明では反応容器内のガス流れに対して
は何の改善も行い得す、合成した母材への2次粒子の付
着等による品質の劣化に対しては有効なものではない。
However, these inventions cannot improve the gas flow within the reaction vessel, but are not effective against quality deterioration due to secondary particles adhering to the synthesized base material.

本発明は、上記した従来技術の問題点を解決し、透明化
材中に気泡が発生しないようにする高品質合成石英母材
の製造方法を提供するものである。
The present invention solves the above-mentioned problems of the prior art and provides a method for manufacturing a high-quality synthetic quartz matrix in which bubbles are not generated in the transparent material.

(課題を解決するだめの手段) 本発明は、内部気泡の生成原因についての基礎調査に基
づいて成されたものである。
(Means for Solving the Problems) The present invention was accomplished based on basic research into the causes of internal bubble formation.

すなわち、本発明者らは合成時のバーナ火炎流とヒユー
ムの浮遊、滞留状況の観察およびその母材内部断面の電
子顕微鏡観察と同母材を加熱脱泡した透明化材中の気泡
観察から、バーナ火炎流が乱れた時にヒユームが多量に
発生して反応容器内壁、バーナ外周、覗窓、種棒側面等
に堆積し、このヒユーム堆積層が反応容器のシール不良
部からリークしたガス流(以下、「リークガス流」とい
う)あるいは種棒の引き上げに伴う摺動部との接触によ
り剥離し、あるいは容器内雰囲気中でヒユームが凝集し
て2次粒子を生成し、この2次粒子が火炎中に混入する
と母材底面あるいは側面に融着し、その融着点が透明化
時に気泡に変化することを見出した。
That is, the present inventors observed the burner flame flow and the floating and retention status of fume during synthesis, electron microscope observation of the internal cross section of the base material, and observation of air bubbles in the transparent material after heating and degassing the same base material. When the burner flame flow is disturbed, a large amount of fume is generated and deposited on the inner wall of the reaction vessel, the outer periphery of the burner, the viewing window, the side of the seed rod, etc., and this fume deposit layer forms the gas flow (hereinafter referred to as (referred to as "leak gas flow") or by contact with the sliding part as the seed rod is pulled up, or the fume aggregates in the atmosphere inside the container to generate secondary particles, and these secondary particles are released into the flame. It has been found that when mixed, it fuses to the bottom or side surface of the base material, and the melting point changes into bubbles when it becomes transparent.

更にこの観察により火炎流の周辺部のリークガス流が火
炎流に沿って流れている状況の場合は、ヒユームの滞留
量が減少して2次粒子の生成が減少し、更に発生した2
次粒子は上記リークガス流に乗って移動し、火炎流には
混入せず気泡生成防止効果を有することを見出した。
Furthermore, this observation shows that when the leak gas flow around the flame flow is flowing along the flame flow, the amount of accumulated fume decreases, the generation of secondary particles decreases, and the generated secondary particles decrease.
It has been found that the secondary particles move along with the leak gas flow, do not mix with the flame flow, and have the effect of preventing bubble formation.

また、2次粒子の融着点が気泡になる機構は、2次粒子
は火炎中および母材融着直後に火炎によって加熱焼結さ
れて高密度の粒子となり、上記融着2次粒子と比べて低
密度の融着2次粒子周辺部が透明化処理時にファイバ化
し、空隙すなわち気泡が生じることが判った。
In addition, the mechanism by which the fusion point of the secondary particles becomes a bubble is that the secondary particles are heated and sintered by the flame in the flame and immediately after the base material is fused, and become particles with high density, compared to the fused secondary particles mentioned above. It was found that the periphery of the low-density fused secondary particles was turned into fibers during the transparentization process, creating voids or bubbles.

本発明者らは、上記のような気泡生成機構に関する基礎
的検討から後述するように透明化材の内部に気泡が生成
しない、高品質母材を経済的に製造する方法を発明する
に至った。
The inventors of the present invention have developed a method for economically manufacturing a high-quality base material in which no air bubbles are generated inside the transparent material, as described below, based on the basic study on the bubble generation mechanism as described above. .

すなわち本発明の第1は、気相軸付は法によって合成石
英母材を製造する方法において、反応容器の下方に配設
されたバーナの火炎流をシール用ガス流によって囲み、
この該シール用ガスの流量あるいは前記バーナより供給
するガラス原料の供給速度を調節して前記火炎流とシー
ル用ガス流との間の雰囲気中に浮遊するヒユームの濃度
をLog/ N III 3以下に制御することを要旨
とするものであり、また、本発明の第2は第1の方法に
おいて、バーナの外周に設けた環状の開口部またはバー
ナの外周に環状に配置した多数のノズル孔からシールガ
スを噴射することを、さらに第3は第1の方法において
、バーナの外周に設けた環状の開口部またはバーナの外
周に環状に配した多数のノズル孔からリークするガスに
よってシール用ガス流を構成すること、および反応容器
内からの排気量を調節することによって上記シール用ガ
ス流を制御することを要旨とするものである。
That is, the first aspect of the present invention is a method for manufacturing a synthetic quartz base material by a vapor phase shafting method, in which a flame stream of a burner disposed below a reaction vessel is surrounded by a sealing gas stream;
By adjusting the flow rate of the sealing gas or the supply rate of the glass raw material supplied from the burner, the concentration of fume floating in the atmosphere between the flame flow and the sealing gas flow is reduced to Log/N III 3 or less. The second aspect of the present invention is that in the first method, sealing is performed from an annular opening provided on the outer periphery of the burner or from a large number of nozzle holes arranged annularly on the outer periphery of the burner. A third method is to inject gas, and a third method is to create a sealing gas flow using gas leaking from an annular opening provided on the outer periphery of the burner or from a large number of nozzle holes arranged annularly on the outer periphery of the burner. The gist of the present invention is to control the sealing gas flow by configuring the reactor and adjusting the amount of exhaust from the inside of the reaction vessel.

本発明において、バーナの火炎流とシール用ガス流との
間の雰囲気中のヒユーム濃度を10g/h+’(但し:
 HCI及び水分を除いた乾燥ガス中の濃度)以下とし
たのは、本発明者らの研究・実験によれば第2図に示す
ようにヒユーム濃度が10g/Nm”以下の条件ではヒ
ユーム濃度に伴って透明化材の内部気泡量が減少し、同
ヒユーム濃度がIg/Nm3以下の場合は同気泡は皆無
となるからである。ヒユーム濃度と透明化材の内部気泡
量とが上記のような関係になる理由は、前述した気泡生
成の主因であるヒユームの2次粒子の火炎内での混入量
は火炎周辺部のヒユーム濃度がLog/Nm”を超えた
場合はほぼ一定であるが、10g/Nm3以下の場合に
は濃度の低下とともに減少し、Ig/Nm”以下になる
と皆無となるためと推定される。
In the present invention, the fume concentration in the atmosphere between the burner flame flow and the sealing gas flow is set to 10 g/h+' (however:
According to the research and experiments conducted by the present inventors, as shown in Figure 2, under the conditions where the hume concentration is less than 10 g/Nm'', the This is because the amount of bubbles inside the transparent material decreases accordingly, and if the fume concentration is Ig/Nm3 or less, there are no bubbles. The reason for this relationship is that the amount of secondary particles of fume, which is the main cause of bubble generation mentioned above, mixed into the flame is almost constant when the concentration of fume around the flame exceeds Log/Nm. This is presumed to be because when the concentration is below Ig/Nm3, it decreases as the concentration decreases, and when it is below Ig/Nm'', it disappears.

なお、この第2図は、後述する第1図に示す■AD装置
によりシールガス流量を変更してバーナ火炎流とシール
用ガス流との間の雰囲気と、反応容器内のバルク雰囲気
のヒユーム濃度を測定し、合成した母材を透明化処理し
たあとの透明化材の内部気泡量との関係を調べた結果を
示した図である。
In addition, this Figure 2 shows the atmosphere between the burner flame flow and the sealing gas flow and the fume concentration in the bulk atmosphere in the reaction vessel by changing the sealing gas flow rate using the AD device shown in Figure 1, which will be described later. FIG. 3 is a diagram showing the results of measuring the relationship between the amount of bubbles inside the transparent material and the amount of internal bubbles in the transparent material after the synthesized base material was subjected to the transparent treatment.

(実 施 例) 以下本発明方法を第1図〜第4図に示す実施例に基づい
て説明する。
(Example) The method of the present invention will be explained below based on the example shown in FIGS. 1 to 4.

そのl) 第1図は本発明方法の第1の例を示した説明図であり、
第1図中11はバーナ3の外周にバーナ3を取り囲む形
態で、かつ、バーナ3の先端よりも母材5に対して後退
した位置にその先端が配置されるシールガス供給用のノ
ズル、■2はバーナ3の火炎流4と前記ノズル11から
噴射されたシール用ガス流13との間にその先端を挿入
させた雰囲気ガス採取用のチューブであり、このチュー
ブ12によってバーナ3の火炎流4周辺部のガスを吸引
してフィルター14でヒユームを採取し、これを秤量し
てヒユーム濃度を測定するのである。
l) FIG. 1 is an explanatory diagram showing a first example of the method of the present invention,
In FIG. 1, reference numeral 11 denotes a nozzle for supplying sealing gas, which surrounds the burner 3 on the outer periphery of the burner 3, and whose tip is located at a position further back from the tip of the burner 3 with respect to the base material 5; Reference numeral 2 denotes a tube for sampling atmospheric gas, the tip of which is inserted between the flame stream 4 of the burner 3 and the sealing gas stream 13 injected from the nozzle 11; The gas in the surrounding area is sucked, the fume is collected using a filter 14, and the fume is weighed to measure the hume concentration.

また、反応容器1内のバルク雰囲気のヒユーム濃度も反
応容器l内に前記チューブ12と同様のチューブ15を
挿入することにより同様の方法で測定できる。
Further, the fume concentration in the bulk atmosphere within the reaction vessel 1 can also be measured in the same manner by inserting a tube 15 similar to the tube 12 into the reaction vessel 1.

つぎに、本発明方法の第1の例の特徴を従来法のうち本
発明方法の第1の例と関連性がある前述の特開昭62−
143838号公報、同62−■62637号公報に記
載の方法(以下、「フード法」と略称する)と比較して
示す。
Next, we will discuss the characteristics of the first example of the method of the present invention, which are related to the first example of the method of the present invention among the conventional methods, by
A comparison will be made with the methods described in Japanese Patent Nos. 143838 and 62-62637 (hereinafter abbreviated as the "hood method").

−船釣にVAD法による母材合成過程のバーナ火炎の挙
動は、5iC1n等の原料ガスの供給速度を増加すると
、火炎内のガラス微粒子生成ゾーンの径が増大するとと
もに、ガラス微粒子生成ゾーンがバーナから隔れてバー
ナと母材との適正距離が長くなる。したがって、フード
法では原料ガス供給速度の変化に応じてフードの径及び
長さを変更する必要がある。これに対して本発明法では
シールガス供給用のノズルはバーナ先端よりも後退した
位置に配置されているため、ノズルの径、長さを変更す
る必要がない。更に、フード法では原料ガス供給速度の
増加に伴ってフードの長さを増すと、フード先端付近で
ヒユームが堆積しやすくなる欠点を有する。一方、本発
明法の場合は原料ガス供給速度増加時もノズル配置条件
は一定で良いため、ヒユーム堆積の恐れがなく高品質な
母材を製造できる優れた方法である。
- The behavior of the burner flame during the base material synthesis process using the VAD method in boat fishing is that when the supply rate of raw material gas such as 5iC1n is increased, the diameter of the glass particle generation zone in the flame increases, and the glass particle generation zone is The appropriate distance between the burner and the base material becomes longer. Therefore, in the hood method, it is necessary to change the diameter and length of the hood according to changes in the raw material gas supply rate. On the other hand, in the method of the present invention, the nozzle for supplying seal gas is arranged at a position recessed from the tip of the burner, so there is no need to change the diameter or length of the nozzle. Furthermore, the hood method has the disadvantage that if the length of the hood is increased as the raw material gas supply rate increases, fume tends to accumulate near the tip of the hood. On the other hand, in the case of the method of the present invention, the nozzle arrangement conditions can be kept constant even when the raw material gas supply rate is increased, so it is an excellent method that can produce a high-quality base material without the risk of fume accumulation.

第1図に示したVAD装置を用いて下記第1表中に示す
条件で、実施例■〜■を連続して操業した結果、および
従来法の第5図に示したVAD装置を用いて操業した結
果を同じく第1表に示す。
Results of continuous operation of Examples ■ to ■ using the VAD device shown in FIG. 1 under the conditions shown in Table 1 below, and results of operations using the conventional VAD device shown in FIG. The results are also shown in Table 1.

なお、母材の透明化処理も第1表に示す条件で行った。Note that the transparentization treatment of the base material was also performed under the conditions shown in Table 1.

本実施例においてはシール用ガス流とバーナの火炎流の
間の雰囲気のヒユーム濃度は、シール用ガス流星または
5iC14の供給速度(g/分)を増減することによっ
て制御した。第1表よりシール用ガス流星が多いほど、
また5iC14の供給速度が小さいほど火炎流周辺部の
雰囲気のヒユーム濃度が低いことが認められる。実施例
の場合には、いずれの条件でも火炎流周辺部の雰囲気の
ヒユーム濃度が低くlOg/Nm”以下であり、透明化
材の内部気泡量も8個/kg・インゴット以下で高品質
であることが明らかである。
In this example, the fume concentration of the atmosphere between the sealing gas stream and the burner flame stream was controlled by increasing or decreasing the feed rate (g/min) of sealing gas Meteor or 5iC14. From Table 1, the more sealing gas meteors there are, the more
It is also recognized that the lower the supply rate of 5iC14, the lower the fume concentration in the atmosphere around the flame stream. In the case of the example, under all conditions, the fume concentration in the atmosphere around the flame flow is low, less than 1Og/Nm'', and the amount of internal bubbles in the transparent material is less than 8 bubbles/kg ingot, indicating high quality. That is clear.

一方、比較例の場合には、火炎流周辺部の雰囲気のヒユ
ーム濃度が高<lOg/Nm”を超える値となっており
、透明化材の内部気泡量も多く品質としては好ましくな
い。
On the other hand, in the case of the comparative example, the fume concentration in the atmosphere around the flame flow exceeds 10g/Nm'', and the amount of internal bubbles in the transparentizing material is also large, which is not desirable in terms of quality.

なお実施例では、シール用ガスとしてN2ガスを用いた
が、Arガスなどの他の不活性ガスや圧縮空気などのガ
スも利用可能である。
In the embodiment, N2 gas was used as the sealing gas, but other inert gases such as Ar gas and compressed air may also be used.

その2) 第3図は本発明方法の第2の例を示した説明図であり、
第3図中16はバーナ3の外周に設置したエアーリーク
用チューブである。また、ヒユーム濃度の測定は、火炎
流4の外周部でチューブ16から流入したリークガス流
17内および反応容器l内のバルク雰囲気にガス採取用
のチューブ18.19を夫々挿入し、前記リークガス流
17内およびこのリークガス流17外のバルク雰囲気の
ガスを吸引してフィルタ22でヒユームを採取、秤量し
、ガス吸引量で除してヒユームの濃度を測定する方法に
よった。
Part 2) FIG. 3 is an explanatory diagram showing a second example of the method of the present invention,
Reference numeral 16 in FIG. 3 is an air leak tube installed around the outer periphery of the burner 3. The fume concentration is measured by inserting gas sampling tubes 18 and 19 into the leak gas flow 17 that has flowed in from the tube 16 at the outer periphery of the flame flow 4 and into the bulk atmosphere inside the reaction vessel l. The gas in the bulk atmosphere inside and outside the leak gas flow 17 is sucked, and the fume is collected by the filter 22, weighed, and divided by the amount of gas sucked to measure the concentration of the fume.

なお、排気管7には排気量調節器20と排気量測定器2
1を設けてリークガス流17内のヒユームの濃度値に従
って排気量ひいてはチューブ16からのエアーリーク量
を調節できるように構成している。
Note that the exhaust pipe 7 is equipped with an exhaust volume regulator 20 and an exhaust volume measuring device 2.
1 is provided so that the amount of exhaust gas and thus the amount of air leaked from the tube 16 can be adjusted in accordance with the concentration value of fume in the leak gas flow 17.

第3図に示すVAD装置により、排気量を変更して火炎
流4の外周部リークガス流17内、およびバルク雰囲気
のヒユーム濃度を測定し、合成した母材5を透明化処理
した後の透明化材の内部気泡量との関係を調べた結果を
第4図及びその代表例を第3表に示す。比較として第5
図に示す従来のVAD装置を用いた場合も併せて第3表
に示す。
Using the VAD device shown in FIG. 3, the fume concentration in the leak gas flow 17 at the outer periphery of the flame flow 4 and in the bulk atmosphere is measured by changing the exhaust volume, and the synthesized base material 5 is transparentized after being transparentized. The results of investigating the relationship with the amount of internal bubbles in the material are shown in FIG. 4, and representative examples thereof are shown in Table 3. 5th for comparison
Table 3 also shows the case where the conventional VAD device shown in the figure is used.

なお、母材5の合成条件、透明化処理条件を下記第2表
に示す。
The synthesis conditions and transparency treatment conditions for the base material 5 are shown in Table 2 below.

第3表 本発明法の実施例と比較例 これらの結果から、リークガス流17内のヒユーム濃度
がLog/Nm”(ただし、HCl2および水分を除い
た乾燥ガス中の濃度)以下の場合はヒユーム濃度の低下
に伴って透明化材の内部気泡量が減少し、同濃度が約3
g/Nm”以下の場合は内部気泡はなくなることが判っ
た。
Table 3 Examples and Comparative Examples of the Method of the Present Invention From these results, if the fume concentration in the leak gas stream 17 is less than Log/Nm'' (however, the concentration in the dry gas excluding HCl2 and moisture), the hume concentration As the concentration decreases, the amount of internal bubbles in the transparent material decreases, and the same concentration decreases to about 3
It was found that internal bubbles disappear when the amount is less than 100 g/Nm''.

すなわち、排気量を変更してチューブ16から流入する
リークガス流17の流量を調節し、火炎流4の外周部リ
ークガス流17内のヒユームの濃度をLog/Nm’以
下、望ましくは3g/Nm’以下に抑制することにより
透明化材の内部気泡量が減少、あるいは皆無とすること
ができる。
That is, the flow rate of the leak gas flow 17 flowing in from the tube 16 is adjusted by changing the exhaust volume, and the concentration of fume in the leak gas flow 17 at the outer periphery of the flame flow 4 is kept below Log/Nm', preferably below 3 g/Nm'. By suppressing the amount of bubbles inside the transparent material, the amount of bubbles inside the transparent material can be reduced or eliminated.

(発明の効果) 以上説明したように本発明によれば、バーナ周囲にシー
ルガス供給用のノズルを設けこのバーナの火炎流周辺部
のヒユーム濃度を抑制する手段により、あるいはバーナ
外周にニアリーク用チューブを設け、排気調節によりニ
アリーク流星を調整してバーナの火炎流外周部のヒユー
ム濃度を制御する手段により、透明化処理後に内部気泡
が生成しない高品質な母材を容易に得ることができる。
(Effects of the Invention) As explained above, according to the present invention, a nozzle for supplying seal gas is provided around the burner, and a means for suppressing the fume concentration around the flame flow of the burner is used, or a tube for near leakage is provided around the outer periphery of the burner. By controlling the fume concentration at the outer periphery of the flame flow of the burner by adjusting the near-leak meteor by adjusting the exhaust gas, it is possible to easily obtain a high-quality base material in which no internal bubbles are generated after the transparentization treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の本発明方法に使用するVAD装置の概略
説明図、第2図は第1表に示した条件で行った第1の本
発明法の実施例と比較例での火炎流周辺部雰囲気内のヒ
ユーム濃度と透明化材の内部気泡量との関係を示す図、
第3図は第2の本発明方法の場合の第1図と同様の図、
第4図は第2表に示した条件で行った第2の本発明法の
実施例と比較例での火炎流外周部のり−クガス流中およ
び反応容器内のバルク雰囲気中のヒユーム濃度と透明化
材の内部気泡量との関係を示す図、第5図は従来法に使
用するVAD装置の概略図である。 lは反応容器、3はバーナ、4は火炎流、5は母材、6
はヒユーム、11はノズル、12はチューブ、13はシ
ール用ガス流、16はチューブ、17はリークガス流、
2oは排気量調整器。 第1図 第2図 ヒz−4 ,11憎/4−) 内′fF先乳量 (イmaK与・化コート) 第 図 Ω
Figure 1 is a schematic explanatory diagram of the VAD device used in the first method of the present invention, and Figure 2 is the flame flow in the example and comparative example of the first method of the present invention conducted under the conditions shown in Table 1. A diagram showing the relationship between the fume concentration in the surrounding atmosphere and the amount of bubbles inside the transparent material,
FIG. 3 is a diagram similar to FIG. 1 in the case of the second method of the present invention,
Figure 4 shows the fume concentration and transparency in the gas flow at the outer periphery of the flame flow and in the bulk atmosphere in the reaction vessel in the Example and Comparative Example of the second method of the present invention carried out under the conditions shown in Table 2. FIG. 5, which is a diagram showing the relationship between the amount of internal bubbles in the chemical agent and the amount of internal bubbles, is a schematic diagram of a VAD device used in the conventional method. l is the reaction vessel, 3 is the burner, 4 is the flame stream, 5 is the base material, 6
11 is a nozzle, 12 is a tube, 13 is a sealing gas flow, 16 is a tube, 17 is a leak gas flow,
2o is the displacement regulator. Fig. 1 Fig. 2 Hz-4, 11/4-) Inner'fF foremilk amount (ImaK addition/conversion coat) Fig. Ω

Claims (3)

【特許請求の範囲】[Claims] (1)気相軸付け法によって合成石英母材を製造する方
法において、反応容器の下方に配設されたバーナの火炎
流をシール用ガス流によって囲み、このシール用ガスの
流量あるいは前記バーナより供給するガラス原料の供給
速度を調節して前記火炎流とシール用ガス流との間の雰
囲気中に浮遊するガラス微粒子の濃度を10g/Nm^
3以下に制御することを特徴とする合成石英母材の製造
方法。
(1) In a method of manufacturing a synthetic quartz base material by the vapor phase axial method, the flame stream of a burner disposed below the reaction vessel is surrounded by a sealing gas stream, and the flow rate of this sealing gas or the burner is The concentration of glass fine particles suspended in the atmosphere between the flame flow and the sealing gas flow was adjusted to 10 g/Nm^ by adjusting the supply speed of the glass raw material to be supplied.
1. A method for producing a synthetic quartz base material, characterized in that the synthetic quartz base material is controlled to 3 or less.
(2)バーナの外周に設けた環状の開口部またはバーナ
の外周に環状に配した多数のノズル孔からシールガスを
噴射することを特徴とする請求項1記載の合成石英母材
の製造方法。
(2) The method for producing a synthetic quartz base material according to claim 1, characterized in that the sealing gas is injected from an annular opening provided on the outer periphery of the burner or from a large number of nozzle holes arranged annularly on the outer periphery of the burner.
(3)バーナの外周に設けた環状の開口部またはバーナ
の外周に環状に配した多数のノズル孔からリークするガ
スによってシール用ガス流を構成すること、および反応
容器内からの排気量を調節することによって上記シール
用ガス流を制御することを特徴とする請求項1記載の合
成石英母材の製造方法。
(3) Forming a sealing gas flow using gas leaking from an annular opening provided on the outer periphery of the burner or from a large number of nozzle holes arranged annularly around the outer periphery of the burner, and adjusting the exhaust volume from inside the reaction vessel. 2. The method of manufacturing a synthetic quartz base material according to claim 1, wherein the sealing gas flow is controlled by:
JP17315988A 1988-07-11 1988-07-11 Production of synthetic quartz preform Pending JPH0222137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17315988A JPH0222137A (en) 1988-07-11 1988-07-11 Production of synthetic quartz preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17315988A JPH0222137A (en) 1988-07-11 1988-07-11 Production of synthetic quartz preform

Publications (1)

Publication Number Publication Date
JPH0222137A true JPH0222137A (en) 1990-01-25

Family

ID=15955194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17315988A Pending JPH0222137A (en) 1988-07-11 1988-07-11 Production of synthetic quartz preform

Country Status (1)

Country Link
JP (1) JPH0222137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019439A (en) * 1999-07-01 2001-01-23 Shin Etsu Chem Co Ltd Production of accumulated body of fine particles of glass
JP2006193352A (en) * 2005-01-11 2006-07-27 Fujikura Ltd Apparatus for manufacturing optical fiber preform
JP2015059055A (en) * 2013-09-18 2015-03-30 住友電気工業株式会社 Manufacturing method of glass fine particle deposition body
KR20190039637A (en) * 2017-10-05 2019-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing porous glass deposit for optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019439A (en) * 1999-07-01 2001-01-23 Shin Etsu Chem Co Ltd Production of accumulated body of fine particles of glass
JP2006193352A (en) * 2005-01-11 2006-07-27 Fujikura Ltd Apparatus for manufacturing optical fiber preform
JP2015059055A (en) * 2013-09-18 2015-03-30 住友電気工業株式会社 Manufacturing method of glass fine particle deposition body
KR20190039637A (en) * 2017-10-05 2019-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing porous glass deposit for optical fiber
JP2019064897A (en) * 2017-10-05 2019-04-25 信越化学工業株式会社 Method of manufacturing porous glass layered product for optical fiber
US10829405B2 (en) 2017-10-05 2020-11-10 Shin-Etsu Chemical Co., Ltd. Method for producing porous glass deposit for optical fiber

Similar Documents

Publication Publication Date Title
EP2762456B1 (en) Methods for manufacturing glass fine particle deposit and glass base material
JPS62171939A (en) Apparatus for production of porous optical fiber preform
TWI237624B (en) Apparatus for fabricating soot preform for optical fiber
KR19980079932A (en) Porous glass base material manufacturing equipment for optical fiber
JPH0222137A (en) Production of synthetic quartz preform
WO2004083139A1 (en) Method for producing glass material
JP2009091194A (en) Method for producing glass particle deposit
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JPH1053430A (en) Device for producing base material for optical fiber and its production
JP4449272B2 (en) Method for producing glass particulate deposit
JPS60215515A (en) Preparation of synthetic quartz mass and device therefor
JP2020128321A (en) Method for manufacturing optical fiber porous glass preform
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit
JPS62162646A (en) Production of glass fine particle deposit
JP2012041227A (en) Method for producing porous glass preform
JPS6041627B2 (en) Manufacturing method of optical fiber base material
JP5136106B2 (en) Method for producing quartz glass
JP5168772B2 (en) Method for producing glass particulate deposit
JP3788073B2 (en) Manufacturing method of optical fiber preform
JP2008174445A (en) Manufacturing apparatus and manufacturing process of glass preform for optical fiber
JPH0640750A (en) Producing device for hermetic coat optical fiber
JP2003119034A (en) Manufacturing method and manufacturing apparatus for glass particulate deposit
JP2006219309A (en) Method and apparatus for producing porous quartz glass preform
JP2003160342A (en) Method of manufacturing glass fine particle deposit and manufacturing device
JP3188515B2 (en) Burner for synthesis of silica fine particles