JP2012041227A - Method for producing porous glass preform - Google Patents

Method for producing porous glass preform Download PDF

Info

Publication number
JP2012041227A
JP2012041227A JP2010183091A JP2010183091A JP2012041227A JP 2012041227 A JP2012041227 A JP 2012041227A JP 2010183091 A JP2010183091 A JP 2010183091A JP 2010183091 A JP2010183091 A JP 2010183091A JP 2012041227 A JP2012041227 A JP 2012041227A
Authority
JP
Japan
Prior art keywords
gas
porous glass
flow rate
base material
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010183091A
Other languages
Japanese (ja)
Inventor
Kanta Yagi
幹太 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010183091A priority Critical patent/JP2012041227A/en
Publication of JP2012041227A publication Critical patent/JP2012041227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high quality porous glass preform free from cracking without flickering a flame from an oxyhydrogen flame burner.SOLUTION: The method for producing a porous glass preform 11 comprises subjecting a glass raw material blown off from an oxyhydrogen flame burner 17 to flame hydrolysis at the inside 15a of a vessel 15, and depositing formed porous glass 11 on a starting member 13, wherein a flow rate of a seal gas is controlled so that the total amount of the gaseous glass raw material, a combustible gas, a combustion supporting gas and the seal gas each supplied to the oxyhydrogen flame burner 17 is made constant during porous glass deposition, and the inside 15a of the vessel 15 is kept under a constant negative pressure.

Description

本発明は、ガラス原料を酸水素火炎バーナから噴出させて反応容器内で火炎加水分解し、生成される多孔質ガラスを出発部材に堆積させる多孔質ガラス母材の製造方法に関し、特に反応容器内の圧力の変動を抑制し、かつ製品歩留まりの向上が図れる多孔質ガラス母材の製造方法に関する。   The present invention relates to a method for producing a porous glass base material in which a glass raw material is ejected from an oxyhydrogen flame burner and flame-hydrolyzed in a reaction vessel, and the produced porous glass is deposited on a starting member. It is related with the manufacturing method of the porous glass base material which can suppress the fluctuation | variation of the pressure of this and can aim at the improvement of a product yield.

VAD法によるシリカ多孔質ガラス母材を製造する方法として、気体のガラス原料、水素ガス、酸素ガス及び不活性ガスをバーナに供給し、反応容器内で火炎加水分解反応させてシリカ微粒子を生成し、このシリカ微粒子を石英製等の出発部材に付着、堆積させるシリカ多孔質ガラス母材の製造方法が知られている。この製造方法では、気体のガラス原料の火炎加水分解反応において、水、塩化水素、未反応のガラス原料、その他窒素等からなる未付着シリカ微粒子を含んだ高温ガスが生じるため、シリカ多孔質ガラス母材が外部と隔離された反応容器の内部で製造される。反応容器の内部では火炎加水分解反応にて高温の排気ガスが生じるが、この排気ガスを排気する方法が、シリカ多孔質ガラス母材の物性及び生産性に大きな影響を与える。   As a method for producing a silica porous glass base material by the VAD method, gaseous glass raw material, hydrogen gas, oxygen gas and inert gas are supplied to a burner, and a silica particle is produced by a flame hydrolysis reaction in a reaction vessel. A method for producing a silica porous glass base material in which the silica fine particles are attached to and deposited on a starting member made of quartz or the like is known. In this production method, in the flame hydrolysis reaction of the gaseous glass raw material, high temperature gas containing unattached silica fine particles composed of water, hydrogen chloride, unreacted glass raw material, other nitrogen, etc. is generated. The material is manufactured inside a reaction vessel that is isolated from the outside. High-temperature exhaust gas is generated in the reaction vessel by the flame hydrolysis reaction, and the method of exhausting this exhaust gas greatly affects the physical properties and productivity of the silica porous glass base material.

例えば特許文献1に開示されるシリカ多孔質母材の製造方法は、容器の内部に二次ガス(クリーンエア)を送入し、火炎加水分解の際に発生する排気ガスを排気する。この製造方法では、バーナに供給する総ガス流量の標準状態換算で7.5〜15倍の排気ガス流量を一定量排気することにより、排気ガス流量が小さい場合のシリカ微粒子の再付着による母材側面の亀裂や、排気ガス流量が大きい場合の火炎の乱れに起因する瞬間的な母材温度変化による亀裂・剥離を抑制し、シリカ多孔質母材の製造における合成の再現性や安定性及び合成収率の向上を図っている。   For example, in a method for producing a porous silica base material disclosed in Patent Document 1, a secondary gas (clean air) is fed into a container and exhaust gas generated during flame hydrolysis is exhausted. In this manufacturing method, by exhausting a certain amount of the exhaust gas flow rate 7.5 to 15 times in terms of the standard state of the total gas flow rate supplied to the burner, the base material due to the reattachment of silica fine particles when the exhaust gas flow rate is small Suppression of cracks and delamination due to instantaneous base material temperature changes caused by cracks on the sides and flame disturbance when the exhaust gas flow rate is large, reproducibility and stability of synthesis in the production of silica porous base material, and synthesis The yield is improved.

特開平5−155630号公報JP-A-5-155630

しかしながら、多孔質ガラス母材の製造中には割れの生じる問題が依然課題としてある。すなわち、上記製造方法のように、排気ガスを一定量で排気することはある程度の効果は期待できるものの、排気量の調整時に生じる流量変動や、その際の排気に伴うクリーンエア導入量の変動により、バーナ火炎が乱れるためである。
また、多孔質ガラス堆積時には、ガラス原料が外部に漏洩しないよう、容器の内部を負圧に保つことが必要であるが、一方でバーナに供給する原料・酸水素の流量は、ガラス母材の母材径の成長に応じて増量させる必要がある。このため、クリーンエア、排気圧の条件を堆積中一定とするならば、初期の圧力は負圧度の高い状態になってしましい、負圧が高すぎると装置内に外気が混入しやすくなり、ダストが付着し、不良部となる頻度が増大する。この場合の対策として、上記製造方法のように、装置の内部に入れるクリーンエアの流量を制御することで圧力を一定にすることも可能であるが、クリーンエアの流量を変えると、バーナ火炎の乱れが生じやすくなる。また、エア流量を多くすると多孔質ガラス母材が冷やされることになり、母材の割れが生じる虞もある。その一方で、排気量の調整に応じクリーンエアの流量制御を厳密に行うことは困難であり、設備コストも増大する。また、温度変化による母材の割れ対策としてクリーンエアの温度管理を行えば、更に設備コストが嵩むこととなる。
However, the problem of cracking during the production of the porous glass base material remains a problem. In other words, as in the above manufacturing method, exhausting exhaust gas at a constant amount can be expected to have some effect, but due to fluctuations in the flow rate that occurs when adjusting the exhaust amount, and fluctuations in the amount of clean air introduced due to exhaust at that time This is because the burner flame is disturbed.
In addition, when porous glass is deposited, it is necessary to keep the inside of the container at a negative pressure so that the glass raw material does not leak to the outside. On the other hand, the flow rate of the raw material / oxyhydrogen supplied to the burner is the same as that of the glass base material. It is necessary to increase the amount according to the growth of the base material diameter. For this reason, if the conditions of clean air and exhaust pressure are kept constant during deposition, the initial pressure will be in a high negative pressure state. If the negative pressure is too high, outside air will easily enter the device. , Dust adheres and the frequency of defective parts increases. As a countermeasure in this case, as in the above manufacturing method, it is possible to make the pressure constant by controlling the flow rate of clean air entering the apparatus, but if the flow rate of clean air is changed, Disturbance is likely to occur. Further, when the air flow rate is increased, the porous glass base material is cooled, and the base material may be cracked. On the other hand, it is difficult to strictly control the flow rate of clean air according to the adjustment of the exhaust amount, and the equipment cost also increases. Further, if clean air temperature control is performed as a countermeasure against cracking of the base material due to temperature change, the equipment cost will be further increased.

本発明は上記状況に鑑みてなされたもので、その目的は、酸水素火炎バーナの火炎を乱さずに、割れることのない高品質な多孔質ガラス母材を製造し、低コストで製品歩留まりの良い多孔質ガラス母材の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to produce a high-quality porous glass base material that does not break without disturbing the flame of the oxyhydrogen flame burner, and achieves low product yield. The object is to provide a method for producing a good porous glass base material.

本発明に係る上記目的は、下記構成により達成される。
(1) ガラス原料を酸水素火炎バーナから噴出させて容器の内部で火炎加水分解し、生成される多孔質ガラスを出発部材に堆積させる多孔質ガラス母材の製造方法において、前記酸水素火炎バーナに供給するガラス原料ガス、可燃性ガス、助燃性ガス、及びシールガスの総量が、多孔質ガラス堆積中に一定となるように前記シールガスの流量を制御し、前記容器の内部の圧力が一定の負圧になるようにすることを特徴とする多孔質ガラス母材の製造方法。
The above object of the present invention is achieved by the following configuration.
(1) In the method for producing a porous glass base material, in which a glass raw material is ejected from an oxyhydrogen flame burner, flame is hydrolyzed inside the container, and the generated porous glass is deposited on a starting member, the oxyhydrogen flame burner The flow rate of the sealing gas is controlled so that the total amount of the glass raw material gas, the flammable gas, the auxiliary combustion gas, and the sealing gas supplied to the gas is constant during the porous glass deposition, and the pressure inside the container is constant. A method for producing a porous glass base material, wherein the negative pressure is set to a negative pressure.

この多孔質ガラス母材の製造方法によれば、製造初期からの原料ガスの増加に伴い、バーナ内に流す不活性ガス、または窒素ガスであるシールガスを減少させることにより、容器の内部の圧力を一定に保つことができる。従来のように容器の内部に入れるクリーンエアの流量を制御するものではないので、火炎の乱れ(クリーンエアの流量変動に伴う条件の変化)を生じることも無い。また、従来のように、クリーンエアの給気や、排気に調整機能を付加する必要がないので、設備コストを下げることも可能となる。   According to this method for producing a porous glass base material, the pressure inside the container is reduced by reducing the inert gas flowing in the burner or the seal gas that is nitrogen gas as the raw material gas increases from the initial stage of production. Can be kept constant. Since the flow rate of clean air to be put into the container is not controlled as in the prior art, flame disturbance (changes in conditions accompanying the flow rate variation of clean air) does not occur. In addition, since it is not necessary to add an adjustment function to clean air supply and exhaust as in the prior art, it is possible to reduce equipment costs.

(2) (1)に記載の多孔質ガラス母材の製造方法において、
前記酸水素火炎バーナとして多重管バーナを用い、前記多重管バーナの複数の層から前記シールガスを流し、前記多孔質ガラス堆積中の、前記多重管バーナの外側の層における前記シールガスの流量の変化を、前記多重管バーナの内側の層の前記シールガスの流量の変化より大きくすることを特徴とする多孔質ガラス母材の製造方法。
(2) In the method for producing a porous glass base material according to (1),
A multi-tube burner is used as the oxyhydrogen flame burner, the seal gas is flowed from a plurality of layers of the multi-tube burner, and the flow rate of the seal gas in the outer layer of the multi-tube burner during the porous glass deposition The method for producing a porous glass base material, wherein the change is made larger than the change in the flow rate of the seal gas in the inner layer of the multi-tube burner.

この多孔質ガラス母材の製造方法によれば、多孔質ガラス製造中の多重管バーナにおけるシールガス流量を、外側の層ほど変化させることにより、母材の割れをより防止できる。これは、内側のシールガスの流速を抑制することで、堆積に重要となる中心の火炎温度を低下させずに済み、品質に影響を及ぼすことなくシールガスを増量することができるためである。   According to this method for manufacturing a porous glass base material, cracking of the base material can be further prevented by changing the seal gas flow rate in the multiple tube burner during the manufacture of the porous glass toward the outer layer. This is because by suppressing the flow rate of the inner sealing gas, it is not necessary to lower the central flame temperature important for deposition, and the amount of sealing gas can be increased without affecting the quality.

本発明に係る多孔質ガラス母材の製造方法によれば、酸水素火炎バーナに供給するシールガス流量で反応容器の内部圧力を調整するので、クリーンエアの条件を変えずに、内圧を一定に保つことができ、酸水素火炎バーナの火炎を乱さず、低コストで、割れの生じない高品質な多孔質ガラス母材を製造できる。   According to the method for producing a porous glass base material of the present invention, the internal pressure of the reaction vessel is adjusted by the seal gas flow rate supplied to the oxyhydrogen flame burner, so that the internal pressure is kept constant without changing the clean air conditions. It is possible to maintain a high quality porous glass base material that does not disturb the flame of the oxyhydrogen flame burner, is low-cost, and does not crack.

本発明に係る製造方法を実施する多孔質ガラス母材の製造装置を概念的に表した側面図である。It is the side view which represented notionally the manufacturing apparatus of the porous glass base material which enforces the manufacturing method which concerns on this invention. 本発明に係る製造方法を実施する酸水素火炎バーナの一例の正面図である。It is a front view of an example of the oxyhydrogen flame burner which enforces the manufacturing method concerning the present invention. 比較例における原料ガス流量とシールガス流量と装置内外差圧との相関を表したグラフで、(A)は比較例1を、(B)は比較例2を示す。It is the graph showing the correlation with the raw material gas flow volume in a comparative example, a seal gas flow volume, and an apparatus internal / external pressure difference, (A) shows the comparative example 1, (B) shows the comparative example 2. FIG. 実施例における原料ガス流量とシールガス流量と装置内外差圧との相関を表したグラフである。It is the graph showing the correlation with the raw material gas flow volume in an Example, a seal gas flow volume, and the internal / external differential pressure | voltage.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係る製造方法を実施する多孔質ガラス母材の製造装置を概念的に表した側面図である。
多孔質ガラス母材11の製造装置100は、回転する出発部材13を収容する反応容器15と、ガラス原料ガスと、可燃性ガス及び助燃性ガスと、から火炎加水分解反応により生成するガラス微粒子を出発部材13に向けて噴き付ける酸水素火炎バーナ17と、出発部材13を昇降させる不図示の昇降手段と、反応容器15の中に清浄化ガスであるクリーンエア19を供給するためのクリーンエア供給装置(クリーンエアジェネレータ)21とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side view conceptually showing a porous glass base material manufacturing apparatus for carrying out the manufacturing method according to the present invention.
The manufacturing apparatus 100 for the porous glass base material 11 generates fine glass particles generated by a flame hydrolysis reaction from a reaction vessel 15 that houses a rotating starting member 13, a glass raw material gas, a combustible gas, and an auxiliary combustible gas. An oxyhydrogen flame burner 17 sprayed toward the starting member 13, lifting means (not shown) for lifting and lowering the starting member 13, and clean air supply for supplying clean air 19, which is a cleaning gas, into the reaction vessel 15 And a device (clean air generator) 21.

反応容器15の上壁には不図示の貫通穴が設けられており、出発部材13がこの貫通穴を上下方向に挿通するように配置される。出発部材13は、上端が回転チャック23に把持されて回転されるとともに、昇降手段により上下に昇降するようになっている。出発部材13を回転させながらその軸方向に沿って引き上げることにより、出発部材13にガラス微粒子を軸方向に堆積させて多孔質ガラス母材11を製造するようにしている。すなわち、多孔質ガラス母材11の製造装置100は、VAD(Vapor-phase Axial Deposition)法により多孔質ガラス母材11を製造する装置構成となっている。   A through hole (not shown) is provided on the upper wall of the reaction vessel 15, and the starting member 13 is disposed so as to pass through the through hole in the vertical direction. The starting member 13 is rotated while being gripped by the rotary chuck 23 at the upper end, and is moved up and down by the lifting means. By pulling up the starting member 13 along the axial direction while rotating the starting member 13, glass particulates are deposited on the starting member 13 in the axial direction to manufacture the porous glass base material 11. That is, the manufacturing apparatus 100 for the porous glass base material 11 has an apparatus configuration for manufacturing the porous glass base material 11 by a VAD (Vapor-phase Axial Deposition) method.

反応容器15には出発部材13を挟んで、クリーンエア19の給気口25と反対側に、排気口27が設けられている。排気口27には不図示の排気ラインが接続され、排気ラインは容器内壁へのスス付着を防ぐために、給気口25よりエアを効率よく排気するよう構成されている。本実施の形態では、クリーンエア供給装置21から供給されるクリーンエア19の供給量は一定である。また、排気口27を介して排気ラインから排気される排気量も一定である。   The reaction vessel 15 is provided with an exhaust port 27 on the side opposite to the air supply port 25 of the clean air 19 with the starting member 13 interposed therebetween. An exhaust line (not shown) is connected to the exhaust port 27, and the exhaust line is configured to efficiently exhaust air from the air supply port 25 in order to prevent soot from adhering to the inner wall of the container. In the present embodiment, the supply amount of the clean air 19 supplied from the clean air supply device 21 is constant. Further, the exhaust amount exhausted from the exhaust line via the exhaust port 27 is also constant.

酸水素火炎バーナ17は、多孔質ガラス母材の製造に使用するもので、H2ガスを可燃性ガスとし、O2ガスを助燃性ガスとし、N2ガス、又はArガスなどの不活性ガスをキャリアガス又はシールガスとして、SiCl4、ドープ剤としてのGeCl4などの各種の原料ガスによる火炎の加水分解反応により生じたガラス微粒子を、堆積基準点に設置した出発部材13に向けて噴出・堆積させる。 The oxyhydrogen flame burner 17 is used for manufacturing a porous glass base material, and H 2 gas is used as a flammable gas, O 2 gas is used as a combustion gas, N 2 gas, or an inert gas such as Ar gas. As a carrier gas or seal gas, glass fine particles generated by the hydrolysis reaction of flame with various source gases such as SiCl 4 and GeCl 4 as a dopant are ejected toward the starting member 13 installed at the deposition reference point. Deposit.

図2は本発明に係る製造方法を実施する酸水素火炎バーナの一例(8重管)の正面図である。
この酸水素火炎バーナ17は、各種の原料ガス用に複数のガス導入路17a〜71hを備えたバーナ本体と、バーナ本体の各ガス導入路17a〜17hに接続される不図示の複数個のガス供給用枝管とを備えている。バーナ本体は、径の異なる複数本の石英管29,31,33,35,37,39,41,43の相互を同心状に嵌合配置すると共に、隣接する石英管同士は内側石英管の外周に外側石英管の基端部を溶接することで、同心状多重管構造に形成されている。
FIG. 2 is a front view of an example of an oxyhydrogen flame burner (eight tubes) for carrying out the manufacturing method according to the present invention.
The oxyhydrogen flame burner 17 includes a burner body provided with a plurality of gas introduction paths 17a to 71h for various source gases, and a plurality of gases (not shown) connected to the gas introduction paths 17a to 17h of the burner body. And a supply branch pipe. In the burner body, a plurality of quartz tubes 29, 31, 33, 35, 37, 39, 41, and 43 having different diameters are concentrically fitted to each other, and adjacent quartz tubes are arranged on the outer periphery of the inner quartz tube. A base end portion of the outer quartz tube is welded to a concentric multiple tube structure.

多重管バーナは、同心状多重管構造を成したバーナ本体の先端に、複数種の原料ガスによる火炎を形成する。図2の例では、第1の火炎を形成する内側3本の石英管29,31,33が、第2の火炎を形成する外側5本の石英管35,37,39,41,43の先端より後退した8重管2重火炎バーナを構成している。
なお、多重管バーナは、上記の8重管2重火炎バーナに限らず、3重火炎となる12重管バーナや4重火炎となる16重管バーナなど、他の多重管バーナとすることもできる。
The multi-tube burner forms a flame with a plurality of kinds of source gases at the tip of a burner body having a concentric multi-tube structure. In the example of FIG. 2, the inner three quartz tubes 29, 31, 33 that form the first flame are the tips of the outer five quartz tubes 35, 37, 39, 41, 43 that form the second flame. This constitutes an 8-pipe double-flame burner that is further retracted.
The multi-tube burner is not limited to the above-mentioned 8-fold double flame burner, but may be other multi-tube burners such as a 12-fold tube burner that forms a triple flame and a 16-fold tube burner that forms a quadruple flame. it can.

各ガス導入路17a〜17hに接続される不図示のガス供給用枝管には、不図示のガス供給装置が接続され、ガス供給装置は各ガス導入路17a〜17hに供給するガスの供給量を高精度に調整可能としている。本実施の形態の一例としては、ガス導入路17aにはSiCl4及びH2が供給され、17bにはH2が供給され、17cにはN2(又はAr)が供給され、17dにはO2が供給され、17eにはN2(又はAr)が供給され、17fにはH2が供給され、17gにはN2(又はAr)が供給され、17hにはO2が供給される。本製造装置100の構成では、ガス導入路17c,17e,17gに供給されるシールガスであるN2(又はAr)の供給量も高精度に調整できるようになされている。 A gas supply device (not shown) is connected to a gas supply branch tube (not shown) connected to each gas introduction path 17a to 17h, and the gas supply apparatus supplies the gas supplied to each gas introduction path 17a to 17h. Can be adjusted with high accuracy. As an example of this embodiment, the gas inlet passage 17a is supplied with SiCl 4 and H 2, 17b is H 2 is supplied to, N 2 (or Ar) is supplied to 17c, the 17d O 2 is supplied, N 2 (or Ar) is supplied to 17e, H 2 is supplied to 17f, N 2 (or Ar) is supplied to 17g, and O 2 is supplied to 17h. In the configuration of the manufacturing apparatus 100, the supply amount of N 2 (or Ar), which is a seal gas supplied to the gas introduction paths 17c, 17e, and 17g, can be adjusted with high accuracy.

製造装置100では、酸水素火炎バーナ17に供給する原料・酸水素の流量が、多孔質ガラス母材11の母材径が初期に比べ増大するため増量される。一方、シールガスの流量は、この原料・酸水素の増量分だけ、減量制御されるようになされている。   In the manufacturing apparatus 100, the flow rate of the raw material / oxyhydrogen supplied to the oxyhydrogen flame burner 17 is increased because the base material diameter of the porous glass base material 11 is increased compared to the initial stage. On the other hand, the flow rate of the seal gas is controlled to be decreased by the increased amount of the raw material / oxyhydrogen.

また、酸水素火炎バーナ17の複数の層(ガス導入路17c,17e,17g)から流されるシールガスは、多孔質ガラス母材11の母材径の成長に応じて、外側の層17gにおけるシールガスの流量の変化を、内側の層17c,17eのシールガスの流量の変化より大きくすることが望ましい。   Further, the seal gas flowing from the plurality of layers (gas introduction passages 17c, 17e, 17g) of the oxyhydrogen flame burner 17 is sealed in the outer layer 17g according to the growth of the base material diameter of the porous glass base material 11. It is desirable to make the change in the gas flow rate larger than the change in the flow rate of the sealing gas in the inner layers 17c and 17e.

次に、上記構成の製造装置100による多孔質ガラス母材の製造方法について説明する。
多孔質ガラス母材11の製造では、ガラス原料を酸水素火炎バーナ17から噴出させ、反応容器15の内部で火炎加水分解し、生成される多孔質ガラスを出発部材13に堆積させて多孔質ガラス母材11を製造する。本発明は、この製造時に、酸水素火炎バーナ17に供給するガラス原料ガス、可燃性ガス、助燃性ガス、及びシールガスの総量が、多孔質ガラス堆積中に一定となるように、シールガスの流量を制御し、反応容器15の内部の圧力が一定の負圧となる構成を有している。
Next, the manufacturing method of the porous glass preform | base_material by the manufacturing apparatus 100 of the said structure is demonstrated.
In the production of the porous glass base material 11, glass raw material is ejected from the oxyhydrogen flame burner 17, flame hydrolysis is performed inside the reaction vessel 15, and the produced porous glass is deposited on the starting member 13 to form the porous glass. The base material 11 is manufactured. In the present invention, the seal gas is supplied so that the total amount of the glass raw material gas, the combustible gas, the auxiliary combustible gas, and the seal gas supplied to the oxyhydrogen flame burner 17 during the production is constant during the deposition of the porous glass. The flow rate is controlled so that the pressure inside the reaction vessel 15 becomes a constant negative pressure.

本実施の形態では、クリーンエア19の供給量は上述したように一定である。一方、酸水素火炎バーナ17に供給する原料・酸水素の流量は、多孔質ガラス母材11の母材径の成長に応じて増量される。すなわち、製造装置100では、原料・酸水素の流量が増量されるに伴って、シールガスの流量が徐々に減量制御されるようになされている。したがって、クリーンエア、排気圧の条件を堆積中一定とし、原料・酸水素の増量によって生じようとする圧力の変動分は、シールガスの流量制御(減量)によってキャンセルされることになる。その結果、堆積開始から堆積中、堆積終了までの製造工程の間、反応容器15の内部15aと外部の差圧が一定に維持されるように運転がなされる。   In the present embodiment, the supply amount of the clean air 19 is constant as described above. On the other hand, the flow rate of the raw material / oxyhydrogen supplied to the oxyhydrogen flame burner 17 is increased according to the growth of the base material diameter of the porous glass base material 11. That is, in the manufacturing apparatus 100, the flow rate of the seal gas is gradually controlled to decrease as the flow rate of the raw material / oxyhydrogen is increased. Accordingly, the conditions of clean air and exhaust pressure are kept constant during deposition, and the pressure fluctuation caused by the increase of the raw material / oxyhydrogen is canceled by the flow control (decrease) of the seal gas. As a result, the operation is performed so that the differential pressure between the inside 15a and the outside of the reaction vessel 15 is kept constant during the manufacturing process from the start of deposition to the end of deposition.

また、酸水素火炎バーナ17の複数の層から流されるシールガスは、外側の層17gの流量の変化が、内側の層17c,17eの流量の変化より大きくなるように流量制御される。これにより、内側のシールガスの流速を抑制でき、堆積に重要となる中心の火炎温度を低下させずに済み、品質に影響を及ぼすことなくシールガスを増量することができるようになされている。   The flow rate of the seal gas flowing from the plurality of layers of the oxyhydrogen flame burner 17 is controlled so that the change in the flow rate of the outer layer 17g is larger than the change in the flow rate of the inner layers 17c and 17e. As a result, the flow rate of the inner seal gas can be suppressed, the central flame temperature important for deposition can be prevented from being lowered, and the amount of the seal gas can be increased without affecting the quality.

このように、本製造方法では、製造初期からの原料ガスの増加に伴い、シールガスを減少させることにより、反応容器15の内部15aの圧力を一定に保つことができる。従来のように反応容器15の内部に入れるクリーンエアの流量を制御するものではないので、火炎の乱れ(クリーンエアの流量変動に伴う条件の変化)を生じることも無い。また、従来のように、クリーンエアの給気や、排気に調整機能を付加する必要がないので、設備コストを下げることも可能となる。また、多孔質ガラス製造中の多重管バーナにおけるシールガス流量を、外側の層ほど変化させることにより、より火炎を安定にでき、母材の割れをより防止できる。   Thus, in this production method, the pressure in the interior 15a of the reaction vessel 15 can be kept constant by reducing the seal gas as the raw material gas increases from the initial stage of production. Since the flow rate of clean air to be introduced into the reaction vessel 15 is not controlled as in the prior art, flame disturbance (changes in conditions associated with fluctuations in the flow rate of clean air) does not occur. In addition, since it is not necessary to add an adjustment function to clean air supply and exhaust as in the prior art, it is possible to reduce equipment costs. Further, by changing the seal gas flow rate in the multiple tube burner during the production of porous glass toward the outer layer, the flame can be made more stable and the base material can be further prevented from cracking.

したがって、本実施の形態による多孔質ガラス母材11の製造方法によれば、酸水素火炎バーナ17に供給するシールガス流量で反応容器15の内部15aの圧力を調整するので、クリーンエアの条件を変えずに、内圧を一定に保つことができ、酸水素火炎バーナ17の火炎を乱さず、割れの生じない高品質な多孔質ガラス母材11を製造できる。   Therefore, according to the method for manufacturing the porous glass preform 11 according to the present embodiment, the pressure of the inside 15a of the reaction vessel 15 is adjusted by the flow rate of the seal gas supplied to the oxyhydrogen flame burner 17, so the condition of clean air is set. Without changing, the internal pressure can be kept constant, the flame of the oxyhydrogen flame burner 17 is not disturbed, and a high-quality porous glass base material 11 that does not crack can be manufactured.

また、シールガスを製造初期で増量するので、従来方法に比べ、製造初期に必要以上の負圧となることを回避でき、外気流入の虞を低減させ、これによっても、割れの生じない高品質な多孔質ガラス母材11が製造できるようになる。   In addition, since the amount of seal gas is increased at the initial stage of manufacture, compared to the conventional method, it is possible to avoid a negative pressure more than necessary at the initial stage of manufacture, reducing the risk of inflow of outside air, and high quality without cracking. A porous glass base material 11 can be manufactured.

次に、上記した実施の形態と同様の構成にて実際に多孔質ガラス母材を製造した実施例と、従前どおりシールガスの供給量を一定として実際に多孔質ガラス母材を製造した比較例と、を評価した結果を説明する。
図3(A)は比較例1における原料ガス流量とシールガス流量と装置内外差圧との相関を表したグラフ、図3(B)は比較例2における原料ガス流量とシールガス流量と装置内外差圧との相関を表したグラフ、図4は実施例1,実施例2における原料ガス流量とシールガス流量と装置内外差圧との相関を表したグラフである。
図3(A),3(B)に示すように、比較例1,比較例2は、シールガスであるArガスの供給量を一定とした。原料・酸水素の流量は、開始から時間tまで徐々に増量し、その後一定とした。図3(A)の比較例1では、徐々に原料・酸水素の流量を増量しているので、装置内外圧力差は開始から時間tまで徐々に小さくなり、その後一定となった。図3(B)の比較例2では、原料・酸水素の流量が増量するのに対してクリーンエアの量を調節しているので、開始から終了まで装置内外圧力差が一定となった。
Next, an example in which a porous glass base material was actually manufactured with the same configuration as the above-described embodiment, and a comparative example in which a porous glass base material was actually manufactured with a constant supply amount of seal gas as before The results of evaluating the above will be described.
FIG. 3A is a graph showing the correlation among the raw material gas flow rate, the seal gas flow rate, and the internal / external differential pressure in Comparative Example 1, and FIG. 3B is the raw material gas flow rate, the seal gas flow rate, and the internal / external pressure in Comparative Example 2. FIG. 4 is a graph showing the correlation between the raw material gas flow rate, the seal gas flow rate, and the internal / external differential pressure in Example 1 and Example 2.
As shown in FIGS. 3 (A) and 3 (B), in Comparative Examples 1 and 2, the supply amount of Ar gas, which is a seal gas, was constant. The flow rate of the raw material and oxyhydrogen was gradually increased from the start to time t and then kept constant. In Comparative Example 1 in FIG. 3A, the flow rate of the raw material / oxyhydrogen was gradually increased, so that the pressure difference between the inside and outside of the apparatus gradually decreased from the start to time t, and then became constant. In Comparative Example 2 in FIG. 3B, the amount of clean air was adjusted while the flow rate of the raw material / oxyhydrogen increased, so the pressure difference inside and outside the apparatus became constant from the start to the end.

図4に示すように、実施例1,実施例2は、シールガスであるArガスの供給量を、原料・酸水素の流量増加分をキャンセルするように開始時から時間tまで徐々に減量し、その後一定とした。原料・酸水素の流量は、開始から時間tまで徐々に増量し、その後一定とした。装置内外圧力差は、開始から終了まで一定となった。   As shown in FIG. 4, in the first and second embodiments, the supply amount of the Ar gas, which is the seal gas, is gradually reduced from the start to the time t so as to cancel the increase in the flow rate of the raw material / oxyhydrogen. And then constant. The flow rate of the raw material and oxyhydrogen was gradually increased from the start to time t and then kept constant. The pressure difference between the inside and outside of the apparatus was constant from the start to the end.

比較例1,比較例2,実施例1,実施例2において、製造開始から製造終了までの原料・酸水素ガスの各流量、3,5層目のArガスの流量、7層目のArガスの流量、全ガスの合計流量、原料・酸水素ガスの合計流量、Arガスの合計流量、装置内外圧力差を表1,表2,表3,表4に示す。   In Comparative Example 1, Comparative Example 2, Example 1 and Example 2, each flow rate of raw materials and oxyhydrogen gas from the start of production to the end of production, the flow rate of Ar gas in the third and fifth layers, Ar gas in the seventh layer Table 1, Table 2, Table 3, and Table 4 show the total flow rate, the total flow rate of all the gases, the total flow rate of the raw materials and oxyhydrogen gas, the total flow rate of Ar gas, and the internal / external pressure difference.

Figure 2012041227
Figure 2012041227

Figure 2012041227
Figure 2012041227

Figure 2012041227
Figure 2012041227

Figure 2012041227
Figure 2012041227

上記表1〜4の条件により製造した比較例と実施例による各々N=100本の多孔質ガラス母材において、内部異常点の個数と、多孔質ガラス母材の割れ発生率とを調べた。その結果を表5に示す。   In each of N = 100 porous glass base materials according to the comparative examples and examples manufactured under the conditions in Tables 1 to 4, the number of internal abnormal points and the crack occurrence rate of the porous glass base material were examined. The results are shown in Table 5.

Figure 2012041227
Figure 2012041227

比較例1
酸水素火炎バーナに供給するシールガスを一定流量とした場合、製造初期に相当する多孔質ガラス母材の内部に異常点が多く発生した。
比較例2
多孔質ガラス母材の製造初期に製造装置内に供給するクリーンエアの量を増やしたところ、製造装置内の圧力の変動を抑制することはできたが、多孔質ガラス母材が冷やされることによると思われる多孔質ガラス母材の割れる頻度が1.5%に増加した。
Comparative Example 1
When the sealing gas supplied to the oxyhydrogen flame burner was set at a constant flow rate, many abnormal points were generated inside the porous glass base material corresponding to the initial stage of production.
Comparative Example 2
When the amount of clean air supplied into the manufacturing apparatus was increased in the initial stage of manufacturing the porous glass base material, the pressure fluctuation in the manufacturing apparatus could be suppressed, but the porous glass base material was cooled. The cracking frequency of the porous glass base material, which seems to have increased, increased to 1.5%.

実施例1
酸水素火炎バーナに供給する原料、水素、シールガスの総量が製造中に一定となるように、シールガスの流量を制御して製造装置内の圧力を維持したところ、製造初期で異常点が多い問題が解消した。
実施例2
酸水素火炎バーナに供給する原料、水素、シールガスの総量が製造中に一定となるようにシールガスの流量を制御して製造装置内の圧力を維持する際、バーナの外側ほどシールガスの流量の変化が大きくなるようにしたところ、製造初期で異常点が多い問題が解消し、製造中に多孔質ガラス母材が割れる頻度が0.5%に改善した。
Example 1
When the pressure inside the production equipment is maintained by controlling the flow rate of the seal gas so that the total amount of raw material, hydrogen, and seal gas supplied to the oxyhydrogen flame burner is constant during production, there are many abnormalities at the initial stage of production. The problem has been resolved.
Example 2
When maintaining the pressure inside the production equipment by controlling the flow rate of the seal gas so that the total amount of raw material, hydrogen, and seal gas supplied to the oxyhydrogen flame burner is constant during production, the flow rate of the seal gas is increased toward the outside of the burner. As a result, the problem of many abnormal points at the initial stage of manufacturing was solved, and the frequency of cracking of the porous glass base material during the manufacturing was improved to 0.5%.

なお、上記の実施の形態では、VAD法により多孔質ガラス母材を製造する方法を対象として説明したが、本発明に係る製造方法は、ガラス微粒子合成用バーナと、軸回りに回転する棒状の出発材とを相対的に往復移動させて出発材にガラス微粒子を堆積させるOVD法や、複数本のガラス微粒子合成用バーナで構成されたバーナ列と、軸回りに回転する棒状の出発材とを相対的に往復移動させ、各バーナで合成されたガラス微粒子をそれぞれ出発部材の長さ方向の一部を覆うように堆積させ、かつ隣合うバーナにてガラス微粒子を堆積させた範囲が連続して一つのガラス微粒子堆積体を形成する多孔質ガラス母材の製造方法(MMD法;多バーナ多層付け法)においても同様に採用することができるものである。   In the above embodiment, the method for producing a porous glass base material by the VAD method has been described. However, the production method according to the present invention includes a burner for synthesizing glass fine particles and a rod-like shape rotating around an axis. An OVD method in which glass particles are deposited on the starting material by relatively reciprocating the starting material, a burner row composed of a plurality of glass particle synthesizing burners, and a rod-shaped starting material that rotates around an axis. The range in which the glass particles synthesized by each burner are deposited so as to cover a part of the length direction of the starting member and the glass particles are deposited by the adjacent burner continuously is reciprocated relatively. It can be similarly employed in a method for producing a porous glass base material (MMD method; multi-burner multilayer attaching method) for forming one glass fine particle deposit.

11 多孔質ガラス母材
13 出発部材
15 反応容器
15a 内部
17 酸水素火炎バーナ
29,31,33,35,37,39,41,43 管
11 Porous glass base material 13 Starting member 15 Reaction vessel 15a Inside 17 Oxyhydrogen flame burner 29, 31, 33, 35, 37, 39, 41, 43 Tube

Claims (2)

ガラス原料を酸水素火炎バーナから噴出させて容器の内部で火炎加水分解し、生成される多孔質ガラスを出発部材に堆積させる多孔質ガラス母材の製造方法において、
前記酸水素火炎バーナに供給するガラス原料ガス、可燃性ガス、助燃性ガス、及びシールガスの総量が、多孔質ガラス堆積中に一定となるように前記シールガスの流量を制御し、前記容器の内部の圧力が一定の負圧になるようにすることを特徴とする多孔質ガラス母材の製造方法。
In a method for producing a porous glass base material, in which a glass raw material is jetted from an oxyhydrogen flame burner, flame hydrolyzed inside a container, and the generated porous glass is deposited on a starting member.
The flow rate of the sealing gas is controlled so that the total amount of the glass raw material gas, the flammable gas, the auxiliary combustion gas, and the sealing gas supplied to the oxyhydrogen flame burner is constant during the porous glass deposition, A method for producing a porous glass base material, characterized in that the internal pressure becomes a constant negative pressure.
請求項1に記載の多孔質ガラス母材の製造方法において、
前記酸水素火炎バーナとして多重管バーナを用い、前記多重管バーナの複数の層から前記シールガスを流し、前記多孔質ガラス堆積中の、前記多重管バーナの外側の層における前記シールガスの流量の変化を、前記多重管バーナの内側の層の前記シールガスの流量の変化より大きくすることを特徴とする多孔質ガラス母材の製造方法。
In the manufacturing method of the porous glass base material of Claim 1,
A multi-tube burner is used as the oxyhydrogen flame burner, the seal gas is flowed from a plurality of layers of the multi-tube burner, and the flow rate of the seal gas in the outer layer of the multi-tube burner during the porous glass deposition The method for producing a porous glass base material, wherein the change is made larger than the change in the flow rate of the seal gas in the inner layer of the multi-tube burner.
JP2010183091A 2010-08-18 2010-08-18 Method for producing porous glass preform Pending JP2012041227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183091A JP2012041227A (en) 2010-08-18 2010-08-18 Method for producing porous glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183091A JP2012041227A (en) 2010-08-18 2010-08-18 Method for producing porous glass preform

Publications (1)

Publication Number Publication Date
JP2012041227A true JP2012041227A (en) 2012-03-01

Family

ID=45897961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183091A Pending JP2012041227A (en) 2010-08-18 2010-08-18 Method for producing porous glass preform

Country Status (1)

Country Link
JP (1) JP2012041227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050152A (en) * 2014-09-01 2016-04-11 住友電気工業株式会社 Production method of glass preform for optical fiber
CN111548002A (en) * 2019-02-12 2020-08-18 信越化学工业株式会社 Method for manufacturing porous glass base material for optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050152A (en) * 2014-09-01 2016-04-11 住友電気工業株式会社 Production method of glass preform for optical fiber
CN111548002A (en) * 2019-02-12 2020-08-18 信越化学工业株式会社 Method for manufacturing porous glass base material for optical fiber
JP2020128321A (en) * 2019-02-12 2020-08-27 信越化学工業株式会社 Method for manufacturing optical fiber porous glass preform
JP7170555B2 (en) 2019-02-12 2022-11-14 信越化学工業株式会社 Manufacturing method of porous glass base material for optical fiber
US11518704B2 (en) 2019-02-12 2022-12-06 Shin-Etsu Chemical Co., Ltd. Fabrication method for porous glass base material for optical fiber

Similar Documents

Publication Publication Date Title
US9032761B2 (en) Porous glass matrix producing burner and porous glass matrix producing method
US20140165656A1 (en) Method of fabricating an optical fiber preform and a burner therefor
JP5589744B2 (en) Manufacturing method of quartz glass base material
EP0231022A2 (en) Apparatus for the production of porous preform of optical fiber
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JP2012041227A (en) Method for producing porous glass preform
JP4498917B2 (en) Method for producing glass rod
US10829405B2 (en) Method for producing porous glass deposit for optical fiber
JP4663605B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP2014125359A (en) Production apparatus and production method of glass porous body, and production method of optical fiber preform
JP2009091194A (en) Method for producing glass particle deposit
US8459063B2 (en) Burner for producing porous glass preform
JP4196700B2 (en) Manufacturing method of glass particulate deposits
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP5168772B2 (en) Method for producing glass particulate deposit
US20170096363A1 (en) Apparatus for producing porous glass preform
JP7128172B2 (en) Burner for synthesizing silica glass and apparatus for manufacturing synthetic silica glass using this burner
CN116062985B (en) Movable blowtorch for external vapor deposition method
JP4449272B2 (en) Method for producing glass particulate deposit
CN116081938B (en) Blowtorch for external vapor deposition method
JPH0222137A (en) Production of synthetic quartz preform
WO2020116521A1 (en) Burner for producing glass fine particle deposited body, and device and method for producing glass fine particle deposited body
US8312744B2 (en) Burner for producing glass fine particles and method for manufacturing porous glass base material using the same
JP3785120B2 (en) Method for producing silica porous matrix

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120928