JP2007209199A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2007209199A
JP2007209199A JP2007128114A JP2007128114A JP2007209199A JP 2007209199 A JP2007209199 A JP 2007209199A JP 2007128114 A JP2007128114 A JP 2007128114A JP 2007128114 A JP2007128114 A JP 2007128114A JP 2007209199 A JP2007209199 A JP 2007209199A
Authority
JP
Japan
Prior art keywords
stator
rotor
winding
motor
reference example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007128114A
Other languages
Japanese (ja)
Other versions
JP4499764B2 (en
Inventor
Hiroshi Murakami
浩 村上
Toshiyuki Tamamura
俊幸 玉村
Yukio Honda
幸夫 本田
Masayuki Shindo
正行 神藤
Hisakazu Kataoka
久和 片岡
Naoaki Morino
修明 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP20863099A priority Critical patent/JP3983423B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007128114A priority patent/JP4499764B2/en
Publication of JP2007209199A publication Critical patent/JP2007209199A/en
Application granted granted Critical
Publication of JP4499764B2 publication Critical patent/JP4499764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact motor having high efficiency and low vibration, by improving the deterioration of motor efficiency due to increase of loss of copper. <P>SOLUTION: The motor comprises an annular yoke portion 113; a plurality of inner teeth portions 112 formed in an inner diameter portion of the yoke portion 113; a plurality of outer teeth portions 117, arranged in the same circumferential position as each of the inner teeth portions 112 in the outer diameter portion of the yoke portion 113; a plurality of toroidally-wound coil portions 6 in the yoke portion 113; an inner rotor 24 corresponding to the inner teeth portion 112; and an outer rotor 25 corresponding to the outer teeth portion 117. The plurality of coil portions 6 are connected in a three-phase star or delta shape, and the inner rotor 24 is an embedded magnet type rotor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ステータコアの各スロット部に個別のコイルが施されているステータを備え、各スロット部の巻線が、ステータヨークを取り囲む方向に巻線されてコイルを構成し、各コイルが3相スターもしくはデルタ状に結線されている電動機。   The present invention includes a stator in which individual slots are provided in each slot portion of a stator core, and windings in each slot portion are wound in a direction surrounding a stator yoke to form a coil, and each coil has three phases. An electric motor wired in a star or delta shape.

図13に従来の代表的なステータの外観図、図14にステータの結線図を示す。図13において11はステータコア、12は巻線である。この構成のステータの巻線方式は一般に分布巻と呼ばれ、図14に示すように各スロットに巻線されたコイルが、3相スター状もしくはデルタ状に結線され、電気角で120度位相のずれた電流を個々の相に流すことで回転磁界を発生し、この回転磁界により、ステータ内部のロータに回転力を発生させていた。図13に示す従来型の分布巻ステータは理想的な回転磁界を発生させるため、なめらかにロータを回転させることが可能で、低振動で低騒音なモータを構成することが可能である。   FIG. 13 is an external view of a typical conventional stator, and FIG. 14 is a connection diagram of the stator. In FIG. 13, 11 is a stator core and 12 is a winding. The winding method of the stator having this configuration is generally called distributed winding. As shown in FIG. 14, the coils wound in the slots are connected in a three-phase star shape or a delta shape, and the electrical angle is 120 degrees in phase. A rotating magnetic field is generated by causing the shifted current to flow through each phase, and the rotating magnetic field is generated by the rotating magnetic field in the rotor inside the stator. Since the conventional distributed winding stator shown in FIG. 13 generates an ideal rotating magnetic field, the rotor can be smoothly rotated, and a motor with low vibration and low noise can be configured.

上記従来技術によるステータ構成は理想的な回転磁界を発生させる事が特徴であるが、図13の13に示すコイルエンド部の体積が非常に大きくなる欠点がある。コイルエンド部に流れる電流はモータのトルク発生には寄与しないため、その部分で発生する銅損が増大してモータ効率を低下させる。また、コイルの材料は銅であるため、コイルエンドの体積が大きくなると材料費も高価になってくる。このように分布巻ステータには、コイルエンドの体積が大きくなるので、モータの小型化が困難で、材料費も高価になり、銅損の増大によるモータ効率低下といった課題が存在する。   The stator structure according to the above prior art is characterized by generating an ideal rotating magnetic field, but has a drawback that the volume of the coil end portion shown in 13 of FIG. 13 becomes very large. Since the current flowing through the coil end portion does not contribute to the torque generation of the motor, the copper loss generated in that portion increases and the motor efficiency is lowered. Further, since the coil material is copper, the material cost increases as the volume of the coil end increases. Thus, since the volume of the coil end becomes large, the distributed winding stator has a problem that it is difficult to miniaturize the motor, the material cost is expensive, and the motor efficiency is reduced due to an increase in copper loss.

一方、このような課題を解決するために集中巻構造のステータが存在する。図15は集中巻ステータの外観図、図16に巻線図を示す。集中巻構造のステータは、図16に示すようにステータの各ティース部2の周囲を囲む方向に巻線を施し、これらのコイルを3相デルタおよびスター結線したものである。このように結線することで、集中巻のステータは図15の13に示すようにコイルエンドの体積が小さくなるので分布巻に比べてモータの小型化が可能である。しかしながら、集中巻構造の発生する磁界分布は分布巻のように理想的な均一回転磁界にはならない。図17と図18に分布巻と集中巻の磁束の流れを表した図を示す。図17は4極分布巻のステータに4極埋め込み磁石型ロータを組み込んだ場合の磁束の流れを示しており、図18は4極集中巻のステータに、図17と同じロータを組み込んだ場合の磁束の流れを示している。図17より分布巻ステータの発生する磁界は、N極とS極が90度毎に分布しているが、集中巻ステータでは図18に示すように巻線に流れる電流が発生する磁界が90度毎に均一にならない。以上のように、集中巻ステータは、コイルエンドが小さくできるが、発生磁界が不均一になるため振動騒音が大きくなるといった欠点がある。また、集中巻はステータの巻線コイル1極当たりの角度が、ロータ1極当たりの角度より小さくなる。例えば、図18の例では、ロータが4極であるため1極当たり90度であるが、ステータティースに巻かれた巻線1相当たりは60度になる。その結果、巻線の有効利用率が分布巻よりも悪くなるので、消費電流が増大するという欠点も存在する。   On the other hand, in order to solve such problems, there is a concentrated winding stator. FIG. 15 is an external view of the concentrated winding stator, and FIG. 16 is a winding diagram. As shown in FIG. 16, the stator having the concentrated winding structure is such that windings are provided in a direction surrounding each tooth portion 2 of the stator, and these coils are three-phase delta and star-connected. By connecting in this way, the concentrated winding stator has a smaller coil end volume as shown at 13 in FIG. 15, and therefore the motor can be made smaller than the distributed winding. However, the magnetic field distribution generated by the concentrated winding structure is not an ideal uniform rotating magnetic field as in the distributed winding. 17 and 18 show the flow of magnetic flux in the distributed winding and concentrated winding. FIG. 17 shows the flow of magnetic flux when a 4-pole embedded magnet type rotor is incorporated in a 4-pole distributed winding stator, and FIG. 18 shows the case where the same rotor as FIG. 17 is incorporated in a 4-pole concentrated winding stator. The flow of magnetic flux is shown. As shown in FIG. 17, the magnetic field generated by the distributed winding stator has N and S poles distributed every 90 degrees. However, in the concentrated winding stator, the magnetic field generated by the current flowing through the winding is 90 degrees as shown in FIG. Not uniform every time. As described above, the concentrated winding stator can reduce the coil end, but has a drawback that vibration noise increases because the generated magnetic field becomes non-uniform. In the concentrated winding, the angle per winding coil of the stator is smaller than the angle per rotor pole. For example, in the example of FIG. 18, since the rotor has four poles, it is 90 degrees per pole, but it is 60 degrees per phase of the winding wound around the stator teeth. As a result, since the effective utilization rate of the windings is worse than that of the distributed windings, there is a disadvantage that the current consumption increases.

本発明は上記課題を解決するため、環状のヨーク部と、このヨーク部の内径部に設けた複数の内側ティース部と、前記ヨーク部の外径部に前記内側ティース部のそれぞれと同一周方向位置に設けた複数の外側ティース部と、前記内側ティース部に対応する内側ロータと、前記外側ティース部に対応する外側ロータと、前記ヨーク部にトロイダル巻きを施した複数のコイル部とを備え、前記複数のコイル部は3相スター若しくはデルタ状に結線されたものであり、前記内側ロータは、埋め込み磁石型ロータである電動機に係るものである。   In order to solve the above problems, the present invention provides an annular yoke portion, a plurality of inner teeth portions provided on the inner diameter portion of the yoke portion, and the same circumferential direction as each of the inner teeth portions on the outer diameter portion of the yoke portion. A plurality of outer teeth portions provided at positions; an inner rotor corresponding to the inner teeth portion; an outer rotor corresponding to the outer teeth portion; and a plurality of coil portions subjected to toroidal winding on the yoke portion; The plurality of coil portions are connected in a three-phase star or delta shape, and the inner rotor relates to an electric motor that is an embedded magnet type rotor.

本発明によれば、内側ロータは埋め込み磁石型ロータであるので、マグネットトルクを主とし、リラクタンストルクを補助とする総合トルクにより内側ロータを回転駆動でき、またヨーク部にトロイダル巻きしたコイル部の内側に流れる電流で内側ティース部を通して内側ロータに磁力を及ぼして内側ロータを回転させ、前記コイル部の外側に流れる電流で外側ティース部を通して外側ロータに磁力を及ぼして外側ロータを回転させることができるので、銅損の低い、高効率の電動機を実現でき、しかもトロイダル巻きコイル部の採用によって、小型、低振動、低騒音電動機を実現できる。   According to the present invention, since the inner rotor is an embedded magnet type rotor, the inner rotor can be rotationally driven by a total torque mainly composed of magnet torque and supplemented by reluctance torque, and the inner side of the coil portion wound toroidally around the yoke portion. Because the current flows through the inner teeth portion, the inner rotor rotates through the inner teeth, and the inner rotor rotates, and the current flowing outside the coil portions applies the magnetic force to the outer rotor through the outer teeth, thereby rotating the outer rotor. In addition, a high-efficiency motor with low copper loss can be realized, and a small, low-vibration, and low-noise motor can be realized by adopting a toroidal coil portion.

本発明を実施するための最良の形態を、以下に示す参考例、実施例に基づき具体的に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be specifically described based on the following reference examples and examples.

(参考例1)
図1は第1の参考例を示した図である。図1において、1がステータコア、2がステータコアのティース部、3がヨーク部、4がスロット部である。各スロット部には、巻線をトロイダル状に施したコイル6が配置され3相結線されている。5は、非磁性体からなるスペーサ部であり、コイル6が他の部分隣りのコイル6と接しないようにするため、ヨーク部3に設ける。図2に図1で示すステータの巻線結線図を示す。
(Reference Example 1)
FIG. 1 is a diagram showing a first reference example. In FIG. 1, 1 is a stator core, 2 is a teeth portion of the stator core, 3 is a yoke portion, and 4 is a slot portion. In each slot portion, a coil 6 having windings formed in a toroidal shape is arranged and connected in a three-phase manner. Reference numeral 5 denotes a spacer portion made of a non-magnetic material, and is provided in the yoke portion 3 so that the coil 6 does not contact the coil 6 adjacent to another portion. FIG. 2 shows a winding connection diagram of the stator shown in FIG.

図2に示すようにステータコアのヨーク部に巻線する事で、コイルエンドの体積を分布巻に比べて非常に小さくすることができる。図3は本参考例のステータに電流を流したときの発生する磁束の流れを示した図である。本参考例のステータでは、従来例で示した図20の分布巻の磁束分布と全く同一になる。したがって、従来例で説明した集中巻ステータのように、巻線に流れる電流が発生する磁束分布が不均一になることがないため、小型化しても振動、騒音を非常に小さなレベルにおさえることが可能である。   As shown in FIG. 2, the volume of the coil end can be made much smaller than that of the distributed winding by winding around the yoke portion of the stator core. FIG. 3 is a diagram showing the flow of magnetic flux generated when a current is passed through the stator of this reference example. In the stator of this reference example, the magnetic flux distribution of the distributed winding of FIG. 20 shown in the conventional example is exactly the same. Therefore, unlike the concentrated winding stator described in the conventional example, the distribution of magnetic flux generated by the current flowing through the winding does not become non-uniform, so that vibration and noise can be kept at a very small level even if the size is reduced. Is possible.

図4は本参考例のステータに永久磁石ロータを組み込んだときの電流―トルク特性を示した図である。またこの図には、同一のロータを組み込んだ時の分布巻ステータと集中巻ステータの特性も示している。   FIG. 4 is a diagram showing current-torque characteristics when a permanent magnet rotor is incorporated in the stator of this reference example. This figure also shows the characteristics of the distributed winding stator and the concentrated winding stator when the same rotor is incorporated.

本参考例のステータは巻線が発生する磁束分布が分布巻と同一になるため、トルク定数も分布巻と全く同一であり、集中巻のようにコイルエンドの体積を小さくした結果、トルク定数が低下してしまうこともない。表1は本参考例のステータと従来型の分布巻ステータ、集中巻ステータの積厚を同一にしたときのステータ高さの比較を示した図である。表1よりステータ高さは集中巻と同一寸法まで小型化できる。以上のように本参考例のステータはトルク定数を低下させることなく、コイルエンドの体積を小さくできると同時に、低振動、騒音のモータが実現できるため、従来型のステータである分布巻、集中巻ステータの課題を解決できる大きな効果を得ることができる。   In the stator of this reference example, the distribution of the magnetic flux generated by the winding is the same as that of the distributed winding, so the torque constant is also exactly the same as that of the distributed winding. There is no decline. Table 1 shows a comparison of stator heights when the thicknesses of the stator of this reference example, the conventional distributed winding stator, and the concentrated winding stator are the same. From Table 1, the stator height can be reduced to the same size as concentrated winding. As described above, the stator of this reference example can reduce the volume of the coil end without reducing the torque constant, and at the same time, can realize a motor with low vibration and noise. The great effect which can solve the subject of a stator can be acquired.

Figure 2007209199
Figure 2007209199

図5はステータの外径Rと積厚Lとの比に対する巻線の線間抵抗の関係を示した図であ
る。図中には本参考例のステータと分布巻ステータの比較を示している。本参考例のステータは、ステータの外径Rと積厚Lとの比、L/Rが0.5以下の場合、分布巻ステータより巻線の線間抵抗が小さくなる為、巻線に電流が流れることにより発生する銅損が小さくできるので、小型で有ると同時に高効率なモータが実現できる。このようにL/Rが0.5以下の場合、本参考例の効果が最もよくあらわれる。
FIG. 5 is a graph showing the relationship between the resistances of the windings with respect to the ratio of the outer diameter R and the thickness L of the stator. In the figure, a comparison between the stator of this reference example and the distributed winding stator is shown. In the stator of this reference example, when the ratio of the outer diameter R of the stator to the stacking thickness L, L / R is 0.5 or less, the line resistance of the winding is smaller than that of the distributed winding stator. Since the copper loss generated by the flow of the current can be reduced, a motor that is small and at the same time highly efficient can be realized. Thus, when L / R is 0.5 or less, the effect of the present reference example is most apparent.

(参考例2)
図6は第2の参考例を示した図である。図6は第1の参考例で示したステータに永久磁石ロータを組み込んだ、永久磁石型同期モータである。本参考例のステータに永久磁石ロータを組み込むことにより、永久磁石の磁束でトルクを発生できるため、巻線抵抗が小さいと同時に小型で高トルク、高効率モータを実現できる。また、図7の様に、ロータを埋め込み磁石型ロータにすることで、マグネットトルクに加えてリラクタンストルクも有効利用できるので更に銅損の小さい永久磁石同期モータを実現することが可能である。
(Reference Example 2)
FIG. 6 is a diagram showing a second reference example. FIG. 6 shows a permanent magnet type synchronous motor in which a permanent magnet rotor is incorporated in the stator shown in the first reference example. By incorporating a permanent magnet rotor into the stator of this reference example, torque can be generated by the magnetic flux of the permanent magnet, so that a small, high torque and high efficiency motor can be realized at the same time as the winding resistance is small. Further, as shown in FIG. 7, by using an embedded magnet rotor as the rotor, a reluctance torque can be effectively used in addition to a magnet torque, so that a permanent magnet synchronous motor with a smaller copper loss can be realized.

(参考例3)
図8は第3の参考例を示した図である。図8において111はステータコア、112は内側ティース部、113はヨーク部、114は内側スロット部、117は外側ティース部、118は外側スロット部である。図9は第1の参考例で示したステータの外径側にも外側ティース117を構成した構造のステータコアである。
(Reference Example 3)
FIG. 8 shows a third reference example. In FIG. 8, 111 is a stator core, 112 is an inner tooth portion, 113 is a yoke portion, 114 is an inner slot portion, 117 is an outer tooth portion, and 118 is an outer slot portion. FIG. 9 shows a stator core having a structure in which outer teeth 117 are also formed on the outer diameter side of the stator shown in the first reference example.

図1に示した第1の参考例では、ステータ外径側にあるコイル6はモータのトルク発生に全く寄与しないが、図8の様にステータの外側にも外側ティース117を設けることで、ステータ外径側のコイルもトルク発生の磁界が発生できるため、同一の電流で2倍のトルクを発生する事が可能である。   In the first reference example shown in FIG. 1, the coil 6 on the outer diameter side of the stator does not contribute to the torque generation of the motor at all. However, by providing the outer teeth 117 outside the stator as shown in FIG. Since the coil on the outer diameter side can also generate a magnetic field for generating torque, it is possible to generate twice the torque with the same current.

(参考例4)
図9は第4の参考例を示した図である。本参考例は図8に示す第3の参考例のステータに対して、内側ロータと外側ロータに表面磁石型ロータを組み込んだ例である。このような構成にすることで、内側スロット部114にある巻線に流れる電流で、内側ロータ20にトルクが発生し、外側スロット部118に流れる電流で外側ロータ21にトルクが発生するため、同一の電流で2倍のトルクが発生し、小型、大トルク、高効率モータを得ることができる。
(Reference Example 4)
FIG. 9 is a diagram showing a fourth reference example. This reference example is an example in which a surface magnet type rotor is incorporated in the inner rotor and the outer rotor in the stator of the third reference example shown in FIG. With this configuration, torque is generated in the inner rotor 20 by the current flowing through the winding in the inner slot portion 114, and torque is generated in the outer rotor 21 by the current flowing in the outer slot portion 118. Twice as much torque is generated by this current, and a small, large torque, high efficiency motor can be obtained.

図10は図9に示すモータの外側ロータと、内側ロータの磁極の境目の位置を、任意の角度αずらせた構造のモータである、外側ロータ23と、内側ロータ22の磁極の境目の位置を任意の角度ずらすことで、コギングトルクが低減でき、更に低騒音なモータにすることが可能である。   FIG. 10 shows the position of the boundary between the magnetic poles of the outer rotor 23 and the inner rotor 22, which is a motor in which the position of the magnetic boundary between the outer rotor and the inner rotor of the motor shown in FIG. By shifting the angle arbitrarily, the cogging torque can be reduced and a motor with lower noise can be obtained.

(実施例)
図11は本発明の実施例を示す図である。本実施例は内側ロータに埋め込み磁石型ロータ、外側ロータに表面磁石型ロータを組み込んだ永久磁石型同期モータである。このように本発明のモータは、内側ロータ24と外側ロータ25に異なる種類のロータを構成する事が可能である。また、表面磁石型同期モータと埋め込み磁石型同期モータでは、同一電流で発生するトルクが最大値になるときの電流位相が異なる。
(Example)
FIG. 11 is a diagram showing an embodiment of the present invention. This embodiment is a permanent magnet type synchronous motor in which an embedded magnet type rotor is incorporated in the inner rotor and a surface magnet type rotor is incorporated in the outer rotor. Thus, the motor of the present invention can constitute different types of rotors for the inner rotor 24 and the outer rotor 25. The surface magnet type synchronous motor and the embedded magnet type synchronous motor have different current phases when the torque generated with the same current reaches the maximum value.

そこで、図11に示すように、内側ロータ24と外側ロータ25の磁極の境目の位置を任意の角度βずらすことで、個々のロータが発生するトルクを最大とする事ができるため、非常に高効率なモータを実現する事が可能になる。なお図11に示すステータは図8〜図10に示すものと同様の構成である。   Therefore, as shown in FIG. 11, the torque generated by each rotor can be maximized by shifting the position of the boundary between the magnetic poles of the inner rotor 24 and the outer rotor 25 by an arbitrary angle β. An efficient motor can be realized. The stator shown in FIG. 11 has the same configuration as that shown in FIGS.

上記ステータコア111は、図12に示すような製造方法を用いて製作できる。すなわち、ステータコアを円周方向に複数個のブロックに分割して、各分割ブロックのヨーク部に個別に巻線を行い、巻線後に分割ブロックを合体させて、各巻線を3相スターもしくはデルタ結線を行えばよい。図12ではステータコアを2分割した例である。このようにステータを分割する事で、巻線工程が簡単になり、一体コアのまま巻線するよりも、高占積率巻線が可能になる効果が得られる。図12では各分割ブロックのヨーク部に個別に巻線を行い分割ブロックのA−A’面とB−B’面をあわせて、溶接等の手段を用いて合体させ、その後、各ヨーク部に巻線されたコイルを3相スターもしくはデルタ結線を行うことでステータを完成させる。   The stator core 111 can be manufactured using a manufacturing method as shown in FIG. That is, the stator core is divided into a plurality of blocks in the circumferential direction, individual windings are performed on the yoke portions of the respective divided blocks, and the divided blocks are combined after the winding, and each winding is connected to a three-phase star or delta connection. Can be done. FIG. 12 shows an example in which the stator core is divided into two parts. By dividing the stator in this way, the winding process is simplified, and the effect of enabling a high space factor winding is obtained rather than winding with a single core. In FIG. 12, winding is individually performed on the yoke portion of each divided block, the AA ′ surface and the BB ′ surface of the divided block are combined, and combined by means such as welding, and then, each yoke portion is combined. The stator is completed by performing three-phase star or delta connection on the wound coil.

第1の参考例を示した図。The figure which showed the 1st reference example. 第1の参考例を示すステータの巻線結線図。The stator winding connection diagram showing the first reference example. 第1の参考例のステータによる磁束分布を示した図。The figure which showed magnetic flux distribution by the stator of a 1st reference example. 第1の参考例のステータと従来型ステータのトルク定数を比較した図。The figure which compared the torque constant of the stator of a 1st reference example, and the conventional type stator. 第1の参考例のステータ従来型ステータの線間抵抗を比較した図。The figure which compared the line resistance of the stator conventional type stator of the 1st reference example. 第2の参考例を示した図。The figure which showed the 2nd reference example. 第2の参考例の他の例を示した図。The figure which showed the other example of the 2nd reference example. 第3の参考例を示した図。The figure which showed the 3rd reference example. 第4の参考例を示した図。The figure which showed the 4th reference example. 第4の参考例の他の例を示した図。The figure which showed the other example of the 4th reference example. 本発明の実施例を示した図。The figure which showed the Example of this invention. 本発明の実施例の他の例を示した図。The figure which showed the other example of the Example of this invention. 従来の分布巻ステータの外観を示す図。The figure which shows the external appearance of the conventional distributed winding stator. 従来の分布巻ステータの巻線図を示す図。The figure which shows the coil | winding figure of the conventional distributed winding stator. 従来の集中巻ステータの外観を示す図。The figure which shows the external appearance of the conventional concentrated winding stator. 従来の集中巻ステータの巻線図を示す図。The figure which shows the winding diagram of the conventional concentrated winding stator. 従来の分布巻ステータによる磁束分布を示した図。The figure which showed the magnetic flux distribution by the conventional distributed winding stator. 従来の集中巻ステータによる磁束分布を示した図。The figure which showed the magnetic flux distribution by the conventional concentrated winding stator.

符号の説明Explanation of symbols

6 コイル
24 内側ロータ
25 外側ロータ
111 ステータコア
112 内側ティース部
113 ヨーク部
114 内側スロット部
117 外側ティース部
118 外側スロット部
6 Coil 24 Inner rotor 25 Outer rotor 111 Stator core 112 Inner teeth portion 113 Yoke portion 114 Inner slot portion 117 Outer teeth portion 118 Outer slot portion

Claims (3)

環状のヨーク部と、
このヨーク部の内径部に設けた複数の内側ティース部と、
前記ヨーク部の外径部に前記内側ティース部のそれぞれと同一周方向位置に設けた複数の外側ティース部と、
前記内側ティース部に対応する内側ロータと、
前記外側ティース部に対応する外側ロータと、
前記ヨーク部にトロイダル巻きを施した複数のコイル部とを備え、
前記複数のコイル部は3相スター若しくはデルタ状に結線されたものであり、
前記内側ロータは、埋め込み磁石型ロータである電動機。
An annular yoke portion;
A plurality of inner teeth provided on the inner diameter of the yoke,
A plurality of outer teeth provided on the outer diameter of the yoke at the same circumferential position as each of the inner teeth;
An inner rotor corresponding to the inner teeth portion;
An outer rotor corresponding to the outer teeth portion;
A plurality of coil portions having a toroidal winding on the yoke portion;
The plurality of coil portions are connected in a three-phase star or delta shape,
The electric motor, wherein the inner rotor is an embedded magnet type rotor.
前記外側ロータは、表面磁石型ロータである請求項1記載の電動機。   The electric motor according to claim 1, wherein the outer rotor is a surface magnet type rotor. 前記内側ロータと前記外側ロータとの磁極の境目の位置を任意の角度ずらした請求項2記載の電動機。   The electric motor according to claim 2, wherein a position of a boundary between magnetic poles of the inner rotor and the outer rotor is shifted by an arbitrary angle.
JP2007128114A 1999-07-23 2007-05-14 Electric motor Expired - Lifetime JP4499764B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20863099A JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor
JP2007128114A JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20863099A JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor
JP2007128114A JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20863099A Division JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor

Publications (2)

Publication Number Publication Date
JP2007209199A true JP2007209199A (en) 2007-08-16
JP4499764B2 JP4499764B2 (en) 2010-07-07

Family

ID=48782795

Family Applications (2)

Application Number Title Priority Date Filing Date
JP20863099A Expired - Lifetime JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor
JP2007128114A Expired - Lifetime JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP20863099A Expired - Lifetime JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor

Country Status (1)

Country Link
JP (2) JP3983423B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016235A1 (en) * 2009-08-06 2011-02-10 パナソニック株式会社 Synchronous motor and system for driving synchronous motor
WO2011146051A1 (en) * 2010-05-18 2011-11-24 Eric Quere Composite electromechanical machines with controller
CN102664504A (en) * 2012-05-09 2012-09-12 哈尔滨工业大学 Polyphase permanent magnet motor with leakage reactance adjustable structure
CN102801268A (en) * 2012-07-31 2012-11-28 哈尔滨工业大学 Low-inductance low loss PMSM
JP2013240179A (en) * 2012-05-14 2013-11-28 Asmo Co Ltd Brushless motor
WO2014095768A3 (en) * 2012-12-20 2015-03-26 Robert Bosch Gmbh Method for producing a synchronous motor
WO2017182912A1 (en) * 2016-04-18 2017-10-26 The Trustees For The Time-Being Of The Kmn Fulfilment Trust A generator having unlike magnetic poles radially aligned
JP2018042328A (en) * 2016-09-05 2018-03-15 株式会社豊田中央研究所 Polyphase winding and rotary electric machine
EP3322074A1 (en) * 2016-11-10 2018-05-16 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
US10122306B2 (en) 2017-03-08 2018-11-06 Hamilton Sundstrand Corporation Electric power generating system with a permanent magnet generator and combination of active and passive rectifiers
JP2020512809A (en) * 2017-03-31 2020-04-23 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Motor stator and motor
US11043880B2 (en) 2016-11-10 2021-06-22 Hamilton Sunstrand Corporation Electric power generating system with a synchronous generator

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019595B2 (en) * 2000-03-15 2007-12-12 株式会社デンソー Rotating electric machine for vehicles
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
JP2003180059A (en) * 2001-12-10 2003-06-27 Denso Corp Alternating-current rotating electric machine for vehicle
KR100891657B1 (en) * 2002-01-24 2009-04-02 엘지전자 주식회사 Induction motor applied troidal winding method
JP3855839B2 (en) * 2002-05-09 2006-12-13 株式会社デンソー AC rotating electric machine for vehicles
JP2004083179A (en) * 2002-08-26 2004-03-18 Watanabe Kikai Seisakusho:Kk Transport device
JP4260492B2 (en) * 2003-01-09 2009-04-30 日本電産シバウラ株式会社 Single phase induction motor
DE10319394A1 (en) * 2003-04-30 2004-11-18 Robert Bosch Gmbh Switched reluctance machine, especially SR motor
JP2005124356A (en) * 2003-10-20 2005-05-12 Nissan Motor Co Ltd Magnetic circuit structure for rotating electric machine
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines
JP4657820B2 (en) * 2005-06-10 2011-03-23 三菱電機株式会社 Annular winding motor
JP5019149B2 (en) * 2005-06-30 2012-09-05 西芝電機株式会社 Shaft drive generator
WO2007010640A1 (en) 2005-07-20 2007-01-25 Matsushita Electric Industrial Co., Ltd. Twin rotor type motor
US7443066B2 (en) * 2005-07-29 2008-10-28 General Electric Company Methods and apparatus for cooling wind turbine generators
EP1912316A4 (en) * 2005-10-13 2013-08-21 Panasonic Corp Motor with two rotors
JP4983022B2 (en) * 2006-01-05 2012-07-25 パナソニック株式会社 motor
JP2007215397A (en) * 2006-01-13 2007-08-23 Matsushita Electric Ind Co Ltd Motor and device mounted therewith
CN101356712A (en) 2006-01-13 2009-01-28 松下电器产业株式会社 Motor and device mounted therewith
JP5287241B2 (en) * 2006-04-18 2013-09-11 パナソニック株式会社 motor
EP1879283B1 (en) * 2006-04-20 2015-09-02 Panasonic Corporation Motor
JP2008005617A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor
JP2008061377A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Motor
CN101657949B (en) * 2007-04-11 2012-05-30 松下电器产业株式会社 Drum type washing machine
JP4985770B2 (en) * 2007-05-31 2012-07-25 パナソニック株式会社 Electric motor
JP5256801B2 (en) * 2007-07-05 2013-08-07 パナソニック株式会社 Electric motor
JP5349040B2 (en) * 2008-12-26 2013-11-20 ダイハツ工業株式会社 Motor drive device
JP5487649B2 (en) 2009-03-06 2014-05-07 パナソニック株式会社 Fan motor and blower equipped with the fan motor
KR101090605B1 (en) * 2011-06-24 2011-12-08 이성근 Electric motor and generator applied concentric winding
JP5292656B1 (en) * 2012-12-05 2013-09-18 快堂 池田 "Left-handed winding-gap-right-handed winding" fitting and cooling pipe that also serves as the magnetic pole of the toroidal core
DE102013112634A1 (en) 2013-11-15 2015-05-21 Jungheinrich Aktiengesellschaft Reluctance machine and method for operating a reluctance machine
CN105471209B (en) * 2014-09-10 2019-07-26 珠海格力电器股份有限公司 Switched Reluctance Motor
CN105529888B (en) * 2014-10-27 2018-12-18 珠海格力节能环保制冷技术研究中心有限公司 Switched reluctance machines and its winding method for arranging
JP6388611B2 (en) * 2016-01-28 2018-09-12 三菱電機株式会社 Hybrid field double gap synchronous machine
CN106849404B (en) * 2016-12-12 2024-08-23 国电南京自动化股份有限公司 Stator side grooving vertical motor stator structure
CN106849398A (en) * 2016-12-15 2017-06-13 广东威灵电机制造有限公司 Stator and the motor with it
CN106877531A (en) * 2017-03-31 2017-06-20 广东威灵电机制造有限公司 Motor stator and motor
CN107317445A (en) * 2017-06-23 2017-11-03 贵州宝文电机科技有限公司 Multilayer wheel hub motor and wheel hub
FR3072517B1 (en) * 2017-10-17 2020-12-18 Moving Magnet Tech TOROIDAL POLYPHASED ELECTRIC MACHINE
DE102020115263B4 (en) 2020-06-09 2022-04-14 Gkn Sinter Metals Engineering Gmbh Electric motor and method of operating an electric motor
CN113131700B (en) * 2021-04-09 2022-03-22 台铃科技(江苏)股份有限公司 High power density in-wheel motor structure
CN114499001B (en) * 2022-02-28 2023-10-31 上海交通大学 Ring winding reluctance motor, system and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321715A (en) * 1976-08-13 1978-02-28 Hitachi Ltd Electric motor
JPH09312946A (en) * 1996-05-21 1997-12-02 Fujitsu General Ltd Winding method of motor coil
JPH10174407A (en) * 1996-12-10 1998-06-26 Daido Steel Co Ltd Electromagnet part for motor and electric motor
JPH10271782A (en) * 1997-03-28 1998-10-09 Matsushita Electric Ind Co Ltd Motor
JPH1146461A (en) * 1997-07-24 1999-02-16 Shibaura Eng Works Co Ltd Motor
JPH1198737A (en) * 1997-09-17 1999-04-09 Toshiba Corp Permanent magnet motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321715A (en) * 1976-08-13 1978-02-28 Hitachi Ltd Electric motor
JPH09312946A (en) * 1996-05-21 1997-12-02 Fujitsu General Ltd Winding method of motor coil
JPH10174407A (en) * 1996-12-10 1998-06-26 Daido Steel Co Ltd Electromagnet part for motor and electric motor
JPH10271782A (en) * 1997-03-28 1998-10-09 Matsushita Electric Ind Co Ltd Motor
JPH1146461A (en) * 1997-07-24 1999-02-16 Shibaura Eng Works Co Ltd Motor
JPH1198737A (en) * 1997-09-17 1999-04-09 Toshiba Corp Permanent magnet motor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552609B2 (en) 2009-08-06 2013-10-08 Panasonic Corporation Synchronous motor and system for driving synchronous motor
JP4828666B2 (en) * 2009-08-06 2011-11-30 パナソニック株式会社 Synchronous motor and synchronous motor drive system
CN102498645A (en) * 2009-08-06 2012-06-13 松下电器产业株式会社 Synchronous motor and system for driving synchronous motor
WO2011016235A1 (en) * 2009-08-06 2011-02-10 パナソニック株式会社 Synchronous motor and system for driving synchronous motor
JPWO2011016235A1 (en) * 2009-08-06 2013-01-10 パナソニック株式会社 Synchronous motor and synchronous motor drive system
WO2011146051A1 (en) * 2010-05-18 2011-11-24 Eric Quere Composite electromechanical machines with controller
CN102664504A (en) * 2012-05-09 2012-09-12 哈尔滨工业大学 Polyphase permanent magnet motor with leakage reactance adjustable structure
JP2013240179A (en) * 2012-05-14 2013-11-28 Asmo Co Ltd Brushless motor
CN102801268A (en) * 2012-07-31 2012-11-28 哈尔滨工业大学 Low-inductance low loss PMSM
WO2014095768A3 (en) * 2012-12-20 2015-03-26 Robert Bosch Gmbh Method for producing a synchronous motor
WO2017182912A1 (en) * 2016-04-18 2017-10-26 The Trustees For The Time-Being Of The Kmn Fulfilment Trust A generator having unlike magnetic poles radially aligned
JP2018042328A (en) * 2016-09-05 2018-03-15 株式会社豊田中央研究所 Polyphase winding and rotary electric machine
EP3322074A1 (en) * 2016-11-10 2018-05-16 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
US10498274B2 (en) 2016-11-10 2019-12-03 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
US11043880B2 (en) 2016-11-10 2021-06-22 Hamilton Sunstrand Corporation Electric power generating system with a synchronous generator
US10122306B2 (en) 2017-03-08 2018-11-06 Hamilton Sundstrand Corporation Electric power generating system with a permanent magnet generator and combination of active and passive rectifiers
JP2020512809A (en) * 2017-03-31 2020-04-23 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Motor stator and motor

Also Published As

Publication number Publication date
JP4499764B2 (en) 2010-07-07
JP2001037133A (en) 2001-02-09
JP3983423B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP4499764B2 (en) Electric motor
JP5482423B2 (en) Electric motor
JP4983022B2 (en) motor
CN101809847B (en) axial gap type coreless rotating machine
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP4926107B2 (en) Rotating electric machine
JP5542849B2 (en) Switched reluctance motor
US6879080B2 (en) High frequency electric motor or generator including magnetic cores formed from thin film soft magnetic material
JP4284981B2 (en) Permanent magnet motor
JP2007259541A (en) Permanent magnet type motor
JP2012519459A (en) Stator permanent magnet machine winding configuration
US20060038461A1 (en) Optimized air core armature
US10069365B2 (en) Three-phase electromagnetic motor with 8*n permanent magnet rotor and 6*n magnetic pole stator with 3*n windings around every other magnetic pole
JP2019004537A (en) Rotary electric machine
KR20130031006A (en) Mechanically commutated switched reluctance motor
KR20130021210A (en) Mechanically commutated switched reluctance motor
JP2008252979A (en) Axial-gap type rotating machine
JP2010284035A (en) Permanent magnet rotating electrical machine
US20190312476A1 (en) Motor
JP4491211B2 (en) Permanent magnet rotating electric machine
JP2008017541A (en) Motor
JPS62230346A (en) Winding method of brushless motor
JP5884464B2 (en) Rotating electric machine
JP2001061248A (en) Motor
WO2002082622A1 (en) Permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

EXPY Cancellation because of completion of term