JP4019595B2 - Rotating electric machine for vehicles - Google Patents

Rotating electric machine for vehicles Download PDF

Info

Publication number
JP4019595B2
JP4019595B2 JP2000072973A JP2000072973A JP4019595B2 JP 4019595 B2 JP4019595 B2 JP 4019595B2 JP 2000072973 A JP2000072973 A JP 2000072973A JP 2000072973 A JP2000072973 A JP 2000072973A JP 4019595 B2 JP4019595 B2 JP 4019595B2
Authority
JP
Japan
Prior art keywords
stator
rotor
concentrated winding
core
support frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000072973A
Other languages
Japanese (ja)
Other versions
JP2001268870A (en
Inventor
請司 香田
瀬口  正弘
繁則 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000072973A priority Critical patent/JP4019595B2/en
Priority to DE60027840T priority patent/DE60027840T2/en
Priority to US09/714,875 priority patent/US6590312B1/en
Priority to EP00125139A priority patent/EP1102385B1/en
Publication of JP2001268870A publication Critical patent/JP2001268870A/en
Application granted granted Critical
Publication of JP4019595B2 publication Critical patent/JP4019595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、車輪の駆動に好適な車両用回転電機に関する。
【0002】
【従来の技術】
従来の回転電機において、出力、トルク発生に無効なコイルエンド部を短縮するために、コアを分割するなどして電機子巻線をコアに集中巻きすることが提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記したコア分割コイル集中巻き型の電機子では、磁気抵抗の増大により出力、トルクの向上は困難であった。
【0004】
本発明は上記の問題点に鑑みなされたものであり、小型高出力の車両用回転電機を提供することをその目的としている。
【0005】
【課題を解決するための手段】
上記課題を解決する請求項1記載の車両用回転電機は車軸にトルクを伝達する回転子と、前記回転子の周面に対面する周面を有してハウジングに固定される固定子とを備え、前記回転子は、内周面が前記固定子の外周面に電磁結合する外側ロータ部と、外周面が前記固定子の内周面に電磁結合する内側ロータ部とを有し前記外側ロータ部及び内側ロータ部は、前記固定子に対面する周面上に周方向略同位置に同一極性で周方向へ極性交互に所定ピッチで形成された磁極をそれぞれ有し前記固定子は、前記内側ロータ部及び外側ロータ部との間に配置される固定子鉄心と、前記固定子に巻装されて前記両ロ−タ部と電磁結合する1セットの多相巻線からなる固定子巻線とを有し前記固定子鉄心は、コアバックと、前記コアバックの径方向外側に周方向所定ピッチで形成された多数の外周側スロット及びティースと、前記コアバックの径方向内側に周方向所定ピッチで形成された多数の内周側スロット及びティースとを有し前記固定子巻線は、互いに近接する前記外周側スロット及び前記内周側スロットの各対にそれぞれ集中巻きされた各集中巻きコイル部を接続して構成されている
【0006】
すなわち、この車両用回転電機は、円筒状の固定子鉄心の外周側スロット及びそれと周方向略同位置(ここでは1スロットピッチ以下をいう)の内周側スロットにコイルを集中巻きして集中巻きコイル部を形成し、この固定子(ステータともいう)の両周面に個別に対面して一対の回転子(ロ−タともいう)を設け、径外側の回転子を外側ロータ部、径内側の回転子を内側ロータ部という。
【0007】
このようにすれば、固定子鉄心を分割しなくても、周方向略同位置に存在するその径方向内外の一対のスロットに容易に集中巻きコイル部を巻装することができ、この集中巻きコイル部の径方向へ延在するコイルエンド長を最小とすることができる。更に、この集中巻きコイル部の一対の軸方向延在部分は有効に外側ロータ部及び内側ロータ部に個別に電磁結合するので、それぞれトルクを発生することができる。その結果、コイルエンドの軸方向飛び出し量の短縮及び固定子鉄心の両周面の利用により従来に比較して格段の短軸長化を実現できるとともに、磁気抵抗が小さく、かつ、電機子コイルの漏れインダクタンスや電気抵抗を低減できるため従来と比較して格段の高出力化、高効率化が可能となる。更に、従来の集中巻き電機子コイルをもつ回転電機に比べて分割型固定子鉄心を採用する必要がないので、その剛性が低下することがなく、格段に堅牢な回転電機を実現することができる。
【0008】
なお、外側ロータ部及び内側ロータ部としては、埋め込み永久磁石型、表面配置永久磁石型、リラクタンスモ−タ(突極鉄心型又は誘導子型とも呼ばれる)、かご型(誘導機ロータ型)などを採用できることはもちろんである。
【0009】
好適には、前記外側ロータ部及び内側ロータ部は、前記固定子に対面する周面上に周方向同位置に同一極性で周方向へ極性交互に所定ピッチで形成された永久磁極面をそれぞれ有する
【0010】
これにより、各集中巻きコイル部のコイルエンド部は径方向へ最短距離で延在することになるため最小距離とすることができ、電機子コイルの漏れインダクタンスや電気抵抗を最小とし、出力及び効率を向上することができ、コイルエンド部に必要な軸方向必要寸法も短縮することができる。周方向同位置は、周方向スロットピッチの2%程度の製造公差は当然許容するものである。
【0011】
なお、ここでいう永久磁極面とは、動作時に、外側ロータ部及び内側ロータ部の周面に生じるN型又はS型の磁極面であり、埋め込み永久磁石型、表面配置永久磁石型の他、リラクタンスモ−タ型の突極鉄心部もいう。
【0012】
本発明によれば更に、前記固定子鉄心が、輪板形状をもつ多数の電磁鋼板を軸方向に積層してなるとともに、互いに周方向に隣接する一対の前記集中巻きコイル部の間に位置して前記コアバックを貫通する棒状支持部材を通じて軸方向一端側で固定子支持フレ−ムに一端支持される。また、前記固定子支持フレ−ムに固定された樹脂スリーブに互いに軸方向へ所定間隔を隔てて支持された略同心の輪板状導体からなる各相の相端子部と、前記固定子支持フレ−ムに固定された樹脂スリーブに前記相端子部の径方向内側にて支持された輪板状導体からなる中性点端子部とが設けられ、前記集中巻きコイル部の一端は前記相端子部に接続され、前記集中巻きコイル部の他端は前記中性点端子部に接続される。
このようにすればそれぞれが輪板形状をもつ電磁鋼板を軸方向に積層して固定子鉄心を形成することができるので、固定子鉄心を分割する必要がなく、かつ、固定子支持フレ−ムが固定子鉄心の軸方向一端側に近接するので、両者を機械的に結合する棒状支持部材を短縮することができ、堅牢な構成とすることができる。
【0013】
更に、本構成では、固定子鉄心に巻装された電機子コイルの各集中巻きコイル部は、上述したように径方向に延在するコイルエンド部をもち、このコイルエンド部は周方向へ延在しないため、大きなスペ−スが周方向に隣接する一対のコイルエンド部間に生じる。したがって、このスペ−スを利用して棒状支持部材を固定子支持フレ−ム側へ楽に突出させることができ、この固定子鉄心の固定作業が格段に容易となるという優れた効果を奏する。
【0014】
本発明では、前記回転子は、前記内側ロータ部及び外側ロータ部の軸方向同一端側を一端支持する回転子支持フレ−ムを通じて回転軸に固定されている
【0015】
すなわち、本構成の電機子コイルが集中巻きコイル部をもつ回転電機では、電機子コイルのコイルエンドの軸方向長が短縮できるため、外側ロータ部及び内側ロータ部と、それを支承するために、これら両ロータ部及び固定子の軸方向一端側にて径方向へ延在する回転子支持フレ−ムをこれら外側ロータ部及び内側ロータ部に近接して配置することができる。
【0016】
このため、両ロータ部に生じるトルクにより,回転子支持フレ−ムの径方向延在部(円盤部)を基端とする両ロータ部のねじれが減少し、回転子の剛性を強化することができる。
【0017】
本発明では、各前記集中巻きコイル部は、前記固定子支持フレ−ム側に突出する巻き初め端及び巻き終わり端を有する
【0018】
このようにすれば、各集中巻きコイル部の巻き初め端及び巻き終わり端の結線の作業性が容易となり、この結線(渡り線)と回転子支持フレ−ムとの干渉も回避することができる。
【0019】
本発明では、前記固定子巻線は、同相の前記各集中巻きコイル部を並列接続してそれぞれ構成されて互いに位相が異なる多数の相巻線を接続してなる
【0020】
すなわち、本構成では同相の各集中巻きコイル部は全て並列接続されるので、結線が簡単となり、かつ結線用の渡り線と棒状支持部材との干渉回避も容易となる。
【0021】
好適には、前記集中巻きコイル部は、周方向に同位置に形成された前記外周側スロット及び内周側スロットに巻装されている。これにより、各集中巻きコイル部のコイルエンド部は径方向へ最短距離で延在することになるため最小距離とすることができ、電機子コイルの漏れインダクタンスや電気抵抗を最小とし、出力及び効率を向上することができ、コイルエンド部に必要な軸方向必要寸法も短縮することができる。周方向同位置は、周方向スロットピッチの2%程度の製造公差は当然許容するものである。
【0022】
好適には、所定相の奇数番目の前記集中巻きコイル部の巻き初め端及び偶数番目の前記集中巻きコイル部の巻き終わり端は前記所定相の相端子部に接続され、前記所定相の偶数番目の前記集中巻きコイル部の巻き初め端及び奇数番目の前記集中巻きコイル部の巻き終わり端は中性点をなす中性点端子部に接続されるこのようにすれば、星型配線構造を簡素に実現することができる。
【0023】
好適には、前記相端子部及び中性点端子部は、前記固定子支持フレ−ムに近接して略同心の輪状導体からなる。このようにすれば、星型配線構造を簡素に実現することができる。なお、この輪状導体は、固定子鉄心を固定子支持フレ−ムに連結する棒状支持部材と径方向に重ならない位置に配置されることが好適であり、これにより、両者の干渉を回避することができる。
【0024】
【発明の実施の形態】
本発明の車両用回転電機の好適な実施形態を図面を参照して以下に説明する。
【0025】
【実施例1】
本発明の車両用回転電機を内燃機関駆動車に適用した実施例を以下に説明する。
【0026】
(全体構造)
図1は、この内燃機関駆動車のパワートレインの車両用回転電機近傍を示す軸方向断面図を示し、
100はハウジング、101はエンジンのクランクシャフト、102はクラッチ機構、103は図示しないギヤ機構の入力軸、1は車両用回転電機である。
【0027】
車両用回転電機1は、固定子2、外側ロータ部3、内側ロータ部4、回転子支持フレ−ム5、固定子支持フレ−ム6、棒状支持部材7を有している。
【0028】
外側ロータ部3及び内側ロータ部4は本発明で言う回転子を構成しており、外側ロータ部3の内周面は小電磁ギャップを隔てて固定子2の外周面に電磁結合し、内側ロータ部4の外周面は小電磁ギャップを隔てて固定子2の外周面に電磁結合している。
【0029】
両ロ−タ部3、4は内部に永久磁石30、40が埋設された積層電磁鋼板31、41からなる公知の埋め込み永久磁石型ロ−タである。薄板状に形成された永久磁石30は積層電磁鋼板31内に軸方向に周方向等ピッチで貫設された多数の永久磁石収容溝に個別に埋設され、薄板状に形成された永久磁石40は積層電磁鋼板41内に軸方向に周方向等ピッチで貫設された多数の永久磁石収容溝に個別に埋設されている。
【0030】
永久磁石30、40は厚さ方向すなわち略径方向に磁化されている。永久磁石30と永久磁石40は周方向等位置に埋設されており、同位置の永久磁石30、40は固定子2側に同極性の磁極を有する。これにより、積層電磁鋼板31の内周面及び積層電磁鋼板41の内周面には永久磁石と周方向同位置にて磁極面が周方向所定ピッチで生じ、外側ロータ部3の磁極面と内側ロータ部4の磁極面とは周方向同位置にて同一極性となっている。
【0031】
回転子支持フレ−ム5は、外側ロータ部3の外周面が固定される外側筒部51と、内側ロータ部4の内周面が固定される内側筒部52と、径方向へ延在して両筒部51、52のリア側の端部同士を連結する円盤部53とを有し、内側筒部52の前端はクランクシャフト101に締結されている。
【0032】
固定子2は、外側ロータ部3及び内側ロータ部4の間の径方向隙間に配置される固定子鉄心20に巻装されて両ロ−タ部3、4と電磁結合する固定子巻線(電機子コイル)21とからなる。
【0033】
固定子鉄心20は、輪板形状をもつ多数の電磁鋼板を軸方向に積層してなる積層電磁鋼板からなり、図2の部分展開図を参照して説明すれば、コアバック201と、コアバック201の径方向外側に周方向所定ピッチで形成された多数の外周側スロット202及びティース203と、コアバック201の径方向内側に周方向所定ピッチで形成された多数の内周側スロット204及びティース205とを有している。
【0034】
固定子鉄心20は、ティースの周方向位置に等しい周方向位置にてコアバック201を軸方向に貫通する多数の棒状支持部材(ボルト)7により固定子支持フレ−ム6に固定されている。
【0035】
固定子支持フレ−ム6は、環状の段差をもつ輪板からなり、固定子鉄心20のフロント側に近接してハウジング100に締結されている。
【0036】
固定子巻線21は、図2の部分展開図を参照して説明すれば、周方向同位置の外周側スロット202及び内周側スロット204にそれぞれ集中巻きされた集中巻きコイル部210を外周側スロット202のスロット数(=内周側スロット204のスロット数)だけ有している。ただし、図2では、U相の集中巻きコイル部210だけを図示している。したがって、棒状支持部材7は、周方向に隣接する2つの集中巻きコイル部210の間に位置してコアバック201を貫通している。
【0037】
各集中巻きコイル部210の巻き初め端2101及び巻き終わり端2102は軸方向フロント側に突出され、星型接続の固定子巻線21の各相巻線は、同相のすべての集中巻きコイル部210を並列接続して構成されている(図3参照)。なお、U相の各集中巻きコイル部210は、3スロットごとに巻装されている。ただし、奇数番目の集中巻きコイル部210と偶数番目の集中巻きコイル部210との通電方向を逆とするために、図2に示すように、奇数番目の集中巻きコイル部210の巻き初め端2101及び偶数番目の集中巻きコイル部210の巻き終わり端2102がU相出力端部91に接続され、同様に偶数番目の集中巻きコイル部210の巻き初め端2101及び奇数番目の集中巻きコイル部の巻き終わり端2102が中性点をなす中性点端子部94に接続されている。
【0038】
(固定子巻線接続構造)
固定子巻線接続構造を図4を参照して更に詳しく説明する。
【0039】
図1に示す固定子支持フレ−ム6には、円筒状の三相タ−ミナル9が固定されている。この三相タ−ミナル9は、固定子支持フレ−ム6に周方向所定間隔で図示しないボルトにより締結される多数の樹脂スリ−ブ90と、これら樹脂スリ−ブ90の径内側に軸方向へ一定間隔で凹設されたそれぞれ3つの出力端部収容溝に外周部がそれぞれ嵌めこまれて支持されるU相出力端部91、V相出力端部92、W相出力端部93を有している。これら出力端部91〜93は銅輪片からなる。
【0040】
U相出力端部91を軸方向にみた正面図を図5に示す。U相出力端部91は、リング部910と、U相の外周側スロット202及び内周側スロット204と周方向同位置にてリング部910の内周縁から径内側へ突出する係止部911と、リング部910の外周縁から径外側へ突出する出力端子912とを有している。各係止部911には、上述したU相の各集中巻きコイル部210の巻き終わり端2102又は巻き初め端2101が係止されている。V相出力端部92及びW相出力端部93はU相出力端部91と等しい構造をもち、それぞれV相の集中巻きコイル部210、W相の集中巻きコイル部210に接続されている。各相の出力端部91〜93の係止部911はそれぞれ1スロットピッチだけ周方向へずれて設けられている。
【0041】
中性点端子部94は、図4に示すように、樹脂スリ−ブ90とともに締結固定されて径内側へ延在する固定金具10の径内側の部分に周方向所定間隔で図示しないねじにより締結される多数の樹脂スリ−ブ95と、これら樹脂スリ−ブ95の径内側に凹設された中性点端子部収容溝に外周部が嵌めこまれて支持される中性点端子部94とを有している。
【0042】
銅輪板からなる中性点端子部94を軸方向にみた正面図を図6に示す。中性点端子部94は、リング部940と、リング部940の内周縁から径内側へ突出する係止部941とを有している。係止部940は、U相出力端部91の係止部911の3倍の個数設けられている。
(動作)
次に、この車両用回転電機の動作を説明する。
【0043】
この車両用回転電機1は三相同期機であり、回転子の位置は図示しない回転センサで検出される。回転子の位置に応じた位相をもつ三相交流電圧を星型接続の固定子巻線21に通電すると、固定子巻線21がそれぞれ形成する回転磁界により外側ロータ部3及び内側ロータ部4にトルクが生じ、車両用回転電機1はクランクシャフト101を通じて内燃機関を始動する。その後、この車両用回転電機1は、トルクアシスト又は回生制動又は発電を行うのは従来の車両用回転電機と同じである。
【0044】
この実施例の車両用回転電機によれば、小型で高出力の車両用回転電機を実現することができ、特に、固定子鉄心20を分割することなく固定子巻線21のコイルエンド部を従来より格段に縮小することができ、固定子鉄心20の一端支持も容易となる。
【0045】
【実施例2】
本発明の車両用回転電機を内燃機関駆動車に適用した実施例を図7、図8を参照して以下に説明する。ただし、実施例1の構成要素と主要機能が共通する構成要素には同一符号を付して理解を容易とする。
【0046】
この車両用回転電機は実施例1の車両用回転電機において、固定子2を径方向へ三段に重ねたものであり、したがって、4段のロータ部201〜204が配置されている。ただし、図8では簡素化のためにロータ部203と固定子を一段図示省略し、固定子鉄心20を図示省略し、固定子巻線21を模式的に図示する。
【0047】
各固定子2は、本質的に実施例1と同一構造をもつが、各外周側スロット202及び内周側スロット204は、軸方向両端部において外側に向かうにつれて次第に深く形成されている。このようにすれば、固定子巻線21のコイルエンド部の軸方向突出幅を短縮することができるので、その分だけ軸方向長が短い車両用回転電機を実現することができる。また、コイルエンド部の総延長距離を減らすことができるので、その漏れインダクタンス及び電気抵抗を減らすことができ、効率及び出力を改善することができる。
【0048】
4段に重ねられたロータ部201〜204は、永久磁石界磁ロ−タ構造をもつ点で実施例1と同じであるが、この実施例では、ロータ部201〜204は、円筒セラミック磁石を成型中及び成型後に図8に示すパタ−ンに着磁して構成している。もちろん、実施例1と同様に永久磁石埋めこみ型のロータ部201〜204や永久磁石表面配置型のロ−タなど種々のロ−タを採用することができる。
【0049】
ただし、この実施例では、図8に示すように、ロータ部201〜204のうち、固定子2を挟んで対向する二つのロータ部は、周方向同位置にて同一極性の磁極面を有する。ここでいう磁極面とは、Nで示すN極面と、Sで示すS極面とをいう。更に、この実施例では、2つの固定子2により径方向に挟まれる中間のロータ部202、203の内周面と外周面とは周方向同位置で逆極性の磁極面をもつ。
【0050】
このようにすれば、中間のロータ部202、203は主として径方向に着磁することができるので、ロ−タ部202、203は本質的にヨ−ク部を必要としないことがわかる。ただし、中間のロータ部202、203は径方向両側の電磁結合面をもつのでそのATはロータ部201、204の二倍とすることが好適である。いずれにせよ、この車両用回転電機は径方向へ合計6個の電磁結合面をもち、実施例1の単段構成に比較して原理的に3倍のトルクを発生することができる。
【0051】
つまり、中間の固定子202、203としての各円筒セラミック磁石は各N極磁極面Nと各S極磁極面Sとの周方向中間部において、大きな磁路断面積をもつ必要がない。そこで、この実施例ではこの周方向中間部に通風用の軸方向貫通孔300を設けている。原理的にはこの周方向中間部は非磁性とすることも可能である。当然、一部の軸方向貫通孔300を、固定子202、203としての各円筒セラミック磁石を回転子支持フレ−ム5の円盤部53に固定する棒状支持部材挿通のために用いてもよい。ただし、この実施例では、円筒セラミック磁石で一体に形成された各ロータ部201〜204の回転子支持フレ−ム5側の端部は径方向に薄く形成され、回転子支持フレ−ム5に凹設された凹部に差し込まれて固定されている。
【0052】
この実施例では、最径小側及び最径大側のロータ部201、204は、回転子支持フレ−ム5の円筒状ヨ−ク部51、52により磁路を形成しているが、ロータ部201、204自身で磁路を形成すれば、回転子支持フレ−ム5はアルミダイキャストなどの軽量品とすることができる。なお、このじっしれいでは、ロータ部201、204は周方向に隣接する2つの磁極面間を省略することができる。実施例1と同様、ロータ部201〜204は、埋めこみ磁石型又は表面磁石型とすることができ、後者の場合、ロータ部202、203は径内側と径外側とに永久磁石を設けることが必要となる。
【0053】
この実施例によれば、径方向へ多段にロータ部201〜204及び固定子2を重ねたので実施例1より更に小型高出力化を実現できる。このような多段構造は、固定子巻線21におけるスロット内の導体部に対するコイルエンド部の割合が増大することによる弊害が従来は大きかったが、本構成の集中巻きコイル部210を用いる方式では、コイルエンド部の総延長距離を従来より格段に低減できるため、コイルエンド部数増大の弊害を抑止しつつ、多段化による回転電機の軸方向長短縮及び出力増大を図ることができるものである。
【0054】
また、この実施例では、径方向中間のロータ部202、203は主として軸方向に磁束が流れる構成とすることができるので、1個の中間のロ−タ部は実施例1における実質2個のロータ部に相当し、かつ、中間のロータ部202、203は磁束を周方向へ流すヨ−ク部をもつ必要がない。このため、更に小型高出力化を実現することができる。
【図面の簡単な説明】
【図1】実施例1の車両用回転電機を用いたパワ−トレインの車両用回転電機近傍の軸方向断面図である。
【図2】図1に示す車両用回転電機の固定子の部分展開図である。
【図3】図1に示す車両用回転電機のU相固定子巻線の配線図である。
【図4】図1に示す車両用回転電機の固定子巻線の配線構造を示す軸方向断面図である。
【図5】図4に示すU相出力端子部の正面図である。
【図6】図4に示す中性点端子部の正面図である。
【図7】実施例2の車両用回転電機の軸方向断面図である。
【図8】図7に示す車両用回転電機の部分展開図である。
【符号の説明】
1 車両用回転電機
2 固定子
3 外側ロータ部(回転子)
4 内側ロータ部(回転子)
5 回転子支持フレ−ム
6 固定子支持フレ−ム
7 棒状支持部材
100 ハウジング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicular rotating electrical machine suitable for driving wheels.
[0002]
[Prior art]
In conventional rotating electrical machines, in order to shorten the coil end portion that is ineffective for output and torque generation, it has been proposed to concentrate the armature winding around the core, for example, by dividing the core.
[0003]
[Problems to be solved by the invention]
However, in the above-described core-divided coil concentrated winding type armature, it is difficult to improve output and torque due to an increase in magnetic resistance.
[0004]
The present invention has been made in view of the above-described problems, and an object thereof is to provide a small and high-output vehicular rotating electrical machine.
[0005]
[Means for Solving the Problems]
The vehicle rotary electric machine according to claim 1, wherein solving the above problems includes a rotor for transmitting torque to the axle, a stator fixed to the housing has a circumferential surface facing the peripheral surface of the rotor comprising, before Symbol rotor has an outer rotor portion whose inner peripheral surface is electromagnetically coupled to the outer peripheral surface of the stator and an inner rotor portion outer peripheral surface is electromagnetically coupled to the inner peripheral surface of said stator, said The outer rotor portion and the inner rotor portion each have magnetic poles formed on the circumferential surface facing the stator at substantially the same position in the circumferential direction with the same polarity and alternately in the circumferential direction at a predetermined pitch, and the stator is A stator iron core disposed between the inner rotor portion and the outer rotor portion, and a set of multiphase windings wound around the stator and electromagnetically coupled to the rotor portions. and a winding, wherein the stator core includes a core back, radially above the core back Includes a plurality of outer circumferential side slots and teeth formed in the outer in the circumferential direction by a predetermined pitch, and a number of inner peripheral side slots and teeth formed in the radially inner side of the core back in the circumferential direction by a predetermined pitch, the fixed The child winding is configured by connecting concentrated winding coil portions that are concentratedly wound around each pair of the outer circumferential slot and the inner circumferential slot that are close to each other .
[0006]
That is, in this rotating electrical machine for a vehicle, concentrated winding is performed by concentrating coils around an outer peripheral side slot of a cylindrical stator core and an inner peripheral side slot at the same position in the circumferential direction (here, 1 slot pitch or less). A coil portion is formed, and a pair of rotors (also referred to as rotors) are provided on both circumferential surfaces of the stator (also referred to as a stator), and a rotor on the outer diameter side is provided as an outer rotor portion and a radially inner side. This rotor is called the inner rotor part.
[0007]
In this way, even if the stator core is not divided, the concentrated winding coil portion can be easily wound around the pair of radially inner and outer slots present at substantially the same position in the circumferential direction. The coil end length extending in the radial direction of the coil portion can be minimized. Further, since the pair of axially extending portions of the concentrated winding coil portion are effectively electromagnetically coupled to the outer rotor portion and the inner rotor portion individually, torque can be generated respectively. As a result, it is possible to realize a much shorter shaft length than before by shortening the axial protrusion amount of the coil end and using both peripheral surfaces of the stator core, and also having a small magnetic resistance and an armature coil. Leakage inductance and electrical resistance can be reduced, which makes it possible to achieve significantly higher output and higher efficiency compared to the conventional case. Furthermore, since it is not necessary to employ a split stator core as compared with a conventional rotating electric machine having concentrated winding armature coils, the rigidity thereof does not decrease, and an extremely robust rotating electric machine can be realized. .
[0008]
In addition, as an outer rotor part and an inner rotor part, an embedded permanent magnet type, a surface arrangement permanent magnet type, a reluctance motor (also called salient pole core type or inductor type), a cage type (induction machine rotor type), etc. Of course, it can be adopted.
[0009]
Preferably, the outer rotor portion and the inner rotor portion each have permanent magnetic pole surfaces formed at a predetermined pitch alternately in the circumferential direction and with the same polarity at the same position in the circumferential direction on the circumferential surface facing the stator. .
[0010]
As a result, the coil end portion of each concentrated winding coil portion extends in the radial direction with the shortest distance, so that the minimum distance can be achieved, and the leakage inductance and electrical resistance of the armature coil are minimized, and the output and efficiency are reduced. The axial dimension required for the coil end portion can also be shortened. The same position in the circumferential direction naturally allows a manufacturing tolerance of about 2% of the circumferential slot pitch.
[0011]
The term “permanent magnetic pole surface” as used herein refers to an N-type or S-type magnetic pole surface generated on the peripheral surfaces of the outer rotor portion and the inner rotor portion during operation. Also called reluctance motor type salient pole core.
[0012]
Further, according to the present invention, the stator core is formed by laminating a large number of electromagnetic steel plates having a ring plate shape in the axial direction, and is positioned between a pair of the concentrated winding coil portions adjacent to each other in the circumferential direction. Then, it is supported by the stator support frame at one end in the axial direction through a rod-like support member penetrating the core back. A phase terminal portion of each phase comprising substantially concentric ring-shaped conductors supported at a predetermined interval in the axial direction on a resin sleeve fixed to the stator support frame; and the stator support frame. A neutral point terminal portion made of a ring-shaped conductor supported on the inside of the phase terminal portion in the radial direction on the resin sleeve fixed to the core, and one end of the concentrated winding coil portion is the phase terminal portion The other end of the concentrated winding coil portion is connected to the neutral point terminal portion.
In this way, it is possible to form the stator core by laminating electromagnetic steel plates each having a ring shape in the axial direction, so there is no need to divide the stator core and the stator support frame Is close to one end of the stator core in the axial direction, the rod-like support member that mechanically couples them can be shortened, and a robust configuration can be achieved.
[0013]
Furthermore, in this configuration, each concentrated winding coil portion of the armature coil wound around the stator core has a coil end portion extending in the radial direction as described above, and this coil end portion extends in the circumferential direction. Therefore, a large space is generated between a pair of coil end portions adjacent in the circumferential direction. Therefore, the bar-shaped support member can be easily protruded toward the stator support frame by utilizing this space, and the excellent effect of facilitating the fixing operation of the stator core can be achieved.
[0014]
In this invention, the said rotor is being fixed to the rotating shaft through the rotor support frame which supports the axial direction same end side of the said inner side rotor part and an outer side rotor part at one end .
[0015]
That is, in the rotating electric machine in which the armature coil of this configuration has a concentrated winding coil portion, the axial length of the coil end of the armature coil can be shortened, so that the outer rotor portion and the inner rotor portion are supported, A rotor support frame that extends in the radial direction at one axial end side of both the rotor portions and the stator can be disposed close to the outer rotor portion and the inner rotor portion.
[0016]
For this reason, the torque generated in both rotor portions reduces the torsion of both rotor portions with the radially extending portion (disk portion) of the rotor support frame as the base end, thereby enhancing the rigidity of the rotor. it can.
[0017]
In the present invention, each of the concentrated winding coil portions has a winding start end and a winding end end that protrude toward the stator support frame .
[0018]
In this way, the workability of connecting the winding start end and the winding end end of each concentrated winding coil portion becomes easy, and interference between this connection (crossover wire) and the rotor support frame can be avoided. .
[0019]
In the present invention, the stator winding is formed by connecting a large number of phase windings that are configured by connecting the concentrated winding coil portions of the same phase in parallel and having different phases .
[0020]
In other words, in this configuration, all the concentrated winding coil portions having the same phase are connected in parallel, so that the connection is simplified and it is also easy to avoid the interference between the connecting crossover wire and the rod-shaped support member.
[0021]
Preferably, the concentrated winding coil portion is wound around the outer peripheral side slot and the inner peripheral side slot formed at the same position in the circumferential direction. As a result, the coil end portion of each concentrated winding coil portion extends in the radial direction with the shortest distance, so that the minimum distance can be achieved, and the leakage inductance and electrical resistance of the armature coil are minimized, and the output and efficiency are reduced. The axial dimension required for the coil end portion can also be shortened. The same position in the circumferential direction naturally allows a manufacturing tolerance of about 2% of the circumferential slot pitch.
[0022]
Preferably, the winding start end of the odd-numbered concentrated winding coil portion of the predetermined phase and the winding end end of the even-numbered concentrated winding coil portion are connected to the phase terminal portion of the predetermined phase, and the even number of the predetermined phase The winding start end of the concentrated winding coil portion and the winding end end of the odd-numbered concentrated winding coil portion are connected to a neutral point terminal portion forming a neutral point . In this way, a star wiring structure can be realized simply.
[0023]
Preferably, the phase terminal portion and the neutral point terminal portion are formed of substantially concentric ring-shaped conductors adjacent to the stator support frame. In this way, a star wiring structure can be realized simply. The ring-shaped conductor is preferably arranged at a position that does not overlap with the rod-shaped support member that connects the stator core to the stator support frame in the radial direction, thereby avoiding interference between the two. Can do.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a vehicular rotating electrical machine of the present invention will be described below with reference to the drawings.
[0025]
[Example 1]
An embodiment in which the vehicular rotating electrical machine of the present invention is applied to an internal combustion engine driven vehicle will be described below.
[0026]
(Overall structure)
FIG. 1 shows an axial sectional view showing the vicinity of a rotating electrical machine for a vehicle of a power train of this internal combustion engine driven vehicle,
Reference numeral 100 denotes a housing, 101 denotes an engine crankshaft, 102 denotes a clutch mechanism, 103 denotes an input shaft of a gear mechanism (not shown), and 1 denotes a vehicular rotating electrical machine.
[0027]
The vehicular rotating electrical machine 1 includes a stator 2, an outer rotor portion 3, an inner rotor portion 4, a rotor support frame 5, a stator support frame 6, and a rod-like support member 7.
[0028]
The outer rotor portion 3 and the inner rotor portion 4 constitute a rotor referred to in the present invention, and the inner peripheral surface of the outer rotor portion 3 is electromagnetically coupled to the outer peripheral surface of the stator 2 with a small electromagnetic gap therebetween. The outer peripheral surface of the portion 4 is electromagnetically coupled to the outer peripheral surface of the stator 2 with a small electromagnetic gap.
[0029]
Both rotor sections 3 and 4 are known embedded permanent magnet type rotors composed of laminated electromagnetic steel sheets 31 and 41 having permanent magnets 30 and 40 embedded therein. The permanent magnet 30 formed in a thin plate shape is individually embedded in a number of permanent magnet receiving grooves that are provided in the laminated electromagnetic steel plate 31 so as to penetrate in the circumferential direction at a constant pitch in the circumferential direction. The laminated electromagnetic steel sheets 41 are individually embedded in a large number of permanent magnet housing grooves that are provided in the axial direction in the circumferential direction at equal pitches.
[0030]
The permanent magnets 30 and 40 are magnetized in the thickness direction, that is, in the substantially radial direction. The permanent magnet 30 and the permanent magnet 40 are embedded at equal positions in the circumferential direction, and the permanent magnets 30 and 40 at the same position have magnetic poles of the same polarity on the stator 2 side. As a result, magnetic pole surfaces are formed at a predetermined pitch in the circumferential direction on the inner circumferential surface of the laminated electromagnetic steel sheet 31 and the inner circumferential surface of the laminated electromagnetic steel sheet 41 at the same circumferential position as the permanent magnet. It has the same polarity as the magnetic pole surface of the rotor portion 4 at the same position in the circumferential direction.
[0031]
The rotor support frame 5 extends in the radial direction, an outer cylindrical portion 51 to which the outer peripheral surface of the outer rotor portion 3 is fixed, an inner cylindrical portion 52 to which the inner peripheral surface of the inner rotor portion 4 is fixed. And the disc part 53 which connects the end parts on the rear side of both the cylinder parts 51 and 52, and the front end of the inner cylinder part 52 is fastened to the crankshaft 101.
[0032]
The stator 2 is wound around a stator core 20 disposed in a radial gap between the outer rotor portion 3 and the inner rotor portion 4 and is electromagnetically coupled to the rotor portions 3 and 4 (stator winding ( Armature coil) 21.
[0033]
The stator core 20 is made of a laminated electromagnetic steel sheet obtained by laminating a large number of electromagnetic steel sheets having a ring shape in the axial direction. If described with reference to a partial development view of FIG. A large number of outer peripheral slots 202 and teeth 203 formed at a predetermined pitch in the circumferential direction on the radially outer side of 201, and a plurality of inner peripheral slots 204 and teeth formed at a predetermined circumferential direction on the inner side in the radial direction of the core back 201. 205.
[0034]
The stator core 20 is fixed to the stator support frame 6 by a large number of rod-like support members (bolts) 7 that penetrate the core back 201 in the axial direction at a circumferential position equal to the circumferential position of the teeth.
[0035]
The stator support frame 6 is formed of a ring plate having an annular step, and is fastened to the housing 100 close to the front side of the stator core 20.
[0036]
If the stator winding 21 is described with reference to a partial development view of FIG. 2, the concentrated winding coil portion 210 concentratedly wound on the outer peripheral side slot 202 and the inner peripheral side slot 204 at the same position in the circumferential direction is arranged on the outer peripheral side. The number of slots 202 is equal to the number of slots (= the number of slots of the inner peripheral side slot 204). However, FIG. 2 shows only the U-phase concentrated winding coil portion 210. Therefore, the rod-shaped support member 7 is located between two concentrated winding coil portions 210 adjacent in the circumferential direction and penetrates the core back 201.
[0037]
The winding start end 2101 and the winding end end 2102 of each concentrated winding coil part 210 are projected to the front side in the axial direction, and each phase winding of the star-connected stator winding 21 is connected to all concentrated winding coil parts 210 of the same phase. Are connected in parallel (see FIG. 3). Each U-phase concentrated winding coil section 210 is wound every three slots. However, in order to reverse the energization direction of the odd-numbered concentrated winding coil part 210 and the even-numbered concentrated winding coil part 210, as shown in FIG. 2, the winding start end 2101 of the odd-numbered concentrated winding coil part 210 is provided. And the winding end end 2102 of the even-numbered concentrated winding coil section 210 is connected to the U-phase output end section 91, and similarly the winding start end 2101 of the even-numbered concentrated winding coil section 210 and the winding of the odd-numbered concentrated winding coil section. The end end 2102 is connected to a neutral point terminal portion 94 that forms a neutral point.
[0038]
(Stator winding connection structure)
The stator winding connection structure will be described in more detail with reference to FIG.
[0039]
A cylindrical three-phase terminal 9 is fixed to the stator support frame 6 shown in FIG. The three-phase terminal 9 includes a plurality of resin sleeves 90 fastened to the stator support frame 6 by bolts (not shown) at predetermined intervals in the circumferential direction, and axially inwardly of the resin sleeves 90. A U-phase output end 91, a V-phase output end 92, and a W-phase output end 93, each of which has an outer peripheral portion fitted into and supported by three output end receiving grooves recessed at regular intervals. is doing. These output end portions 91 to 93 are made of copper ring pieces.
[0040]
A front view of the U-phase output end 91 viewed in the axial direction is shown in FIG. The U-phase output end 91 includes a ring portion 910 and a locking portion 911 that protrudes radially inward from the inner peripheral edge of the ring portion 910 at the same position in the circumferential direction as the U-phase outer peripheral slot 202 and the inner peripheral slot 204. , And an output terminal 912 protruding outward from the outer peripheral edge of the ring portion 910. The winding end 2102 or the winding start end 2101 of each concentrated winding coil part 210 of the U phase described above is locked to each locking part 911. The V-phase output end portion 92 and the W-phase output end portion 93 have the same structure as the U-phase output end portion 91 and are connected to the V-phase concentrated winding coil portion 210 and the W-phase concentrated winding coil portion 210, respectively. The locking portions 911 of the output end portions 91 to 93 of each phase are provided so as to be shifted in the circumferential direction by one slot pitch.
[0041]
As shown in FIG. 4, the neutral point terminal portion 94 is fastened together with a resin sleeve 90 and fastened with screws (not shown) at predetermined intervals in the circumferential direction to a radially inner portion of the fixture 10 extending radially inward. A plurality of resin sleeves 95, and neutral point terminal portions 94 that are supported by fitting an outer peripheral portion into a neutral point terminal portion receiving groove that is recessed inside the diameter of the resin sleeve 95. have.
[0042]
FIG. 6 shows a front view of the neutral point terminal portion 94 made of a copper ring plate as viewed in the axial direction. The neutral point terminal portion 94 includes a ring portion 940 and a locking portion 941 that protrudes radially inward from the inner periphery of the ring portion 940. The number of locking portions 940 is three times that of the locking portions 911 of the U-phase output end 91.
(Operation)
Next, the operation of this vehicular rotating electrical machine will be described.
[0043]
The vehicular rotating electrical machine 1 is a three-phase synchronous machine, and the position of the rotor is detected by a rotation sensor (not shown). When a three-phase AC voltage having a phase corresponding to the position of the rotor is passed through the star-connected stator winding 21, the outer rotor portion 3 and the inner rotor portion 4 are applied to the outer rotor portion 3 and the inner rotor portion 4 by the rotating magnetic field formed by the stator winding 21. Torque is generated, and the vehicular rotating electrical machine 1 starts the internal combustion engine through the crankshaft 101. Thereafter, the vehicular rotating electrical machine 1 performs torque assist, regenerative braking, or power generation in the same manner as a conventional vehicular rotating electrical machine.
[0044]
According to the vehicle rotary electric machine of this embodiment, a small and high-output vehicle rotary electric machine can be realized, and in particular, the coil end portion of the stator winding 21 is conventionally divided without dividing the stator core 20. Further reduction can be achieved, and one end support of the stator core 20 is facilitated.
[0045]
[Example 2]
An embodiment in which the vehicular rotating electrical machine of the present invention is applied to an internal combustion engine driven vehicle will be described below with reference to FIGS. However, components having the same main functions as those of the first embodiment are denoted by the same reference numerals for easy understanding.
[0046]
The vehicular rotating electrical machine is the same as the rotating electrical machine for a vehicle according to the first embodiment, in which the stator 2 is stacked in three stages in the radial direction, and therefore, four stages of rotor portions 201 to 204 are arranged. However, in FIG. 8, for simplification, one stage of the rotor portion 203 and the stator is omitted, the stator core 20 is omitted, and the stator winding 21 is schematically illustrated.
[0047]
Each stator 2 has essentially the same structure as that of the first embodiment, but each outer peripheral slot 202 and inner peripheral slot 204 are gradually formed deeper toward the outside at both axial ends. In this way, since the axial protrusion width of the coil end portion of the stator winding 21 can be shortened, a vehicular rotating electrical machine having a shorter axial length can be realized. Further, since the total extension distance of the coil end portion can be reduced, its leakage inductance and electrical resistance can be reduced, and the efficiency and output can be improved.
[0048]
The rotor portions 201 to 204 stacked in four stages are the same as those in the first embodiment in that they have a permanent magnet field rotor structure. In this embodiment, the rotor portions 201 to 204 are cylindrical ceramic magnets. The pattern shown in FIG. 8 is magnetized during and after molding. Of course, as in the first embodiment, various rotors such as permanent magnet embedded rotor parts 201 to 204 and permanent magnet surface arrangement type rotors can be employed.
[0049]
However, in this embodiment, as shown in FIG. 8, of the rotor portions 201 to 204, the two rotor portions facing each other with the stator 2 interposed therebetween have magnetic pole surfaces having the same polarity at the same position in the circumferential direction. The magnetic pole surface here refers to an N pole surface indicated by N and an S pole surface indicated by S. Further, in this embodiment, the inner peripheral surface and the outer peripheral surface of the intermediate rotor portions 202 and 203 sandwiched in the radial direction by the two stators 2 have magnetic pole surfaces of opposite polarity at the same position in the circumferential direction.
[0050]
In this way, since the intermediate rotor portions 202 and 203 can be mainly magnetized in the radial direction, it can be seen that the rotor portions 202 and 203 essentially do not require a yoke portion. However, since the intermediate rotor portions 202 and 203 have electromagnetic coupling surfaces on both sides in the radial direction, the AT is preferably double that of the rotor portions 201 and 204. In any case, this vehicular rotating electrical machine has a total of six electromagnetic coupling surfaces in the radial direction, and can theoretically generate three times as much torque as the single-stage configuration of the first embodiment.
[0051]
That is, the cylindrical ceramic magnets as the intermediate stators 202 and 203 do not need to have a large magnetic path cross-sectional area in the circumferential intermediate portion between each N-pole magnetic pole surface N and each S-pole magnetic pole surface S. Therefore, in this embodiment, an axial through hole 300 for ventilation is provided in the circumferential intermediate portion. In principle, the intermediate portion in the circumferential direction can be nonmagnetic. Naturally, some of the axial through holes 300 may be used for inserting rod-like support members for fixing the cylindrical ceramic magnets as the stators 202 and 203 to the disk portion 53 of the rotor support frame 5. However, in this embodiment, the end portions on the rotor support frame 5 side of the rotor parts 201 to 204 formed integrally with the cylindrical ceramic magnet are formed thin in the radial direction, and the rotor support frame 5 is formed on the rotor support frame 5. It is inserted and fixed in the recessed part provided in the recess.
[0052]
In this embodiment, the rotor parts 201 and 204 on the smallest diameter side and the largest diameter side form a magnetic path by the cylindrical yoke parts 51 and 52 of the rotor support frame 5. If the magnetic paths are formed by the portions 201 and 204 themselves, the rotor support frame 5 can be a lightweight product such as aluminum die cast. In this case, the rotor portions 201 and 204 can omit a gap between two magnetic pole surfaces adjacent in the circumferential direction. As in the first embodiment, the rotor parts 201 to 204 can be embedded magnet type or surface magnet type. In the latter case, the rotor parts 202 and 203 need to be provided with permanent magnets on the inside and outside of the diameter. It becomes.
[0053]
According to this embodiment, since the rotor portions 201 to 204 and the stator 2 are stacked in multiple stages in the radial direction, a further reduction in size and output can be achieved than in the first embodiment. In such a multistage structure, the adverse effect due to an increase in the ratio of the coil end portion to the conductor portion in the slot in the stator winding 21 has been large conventionally, but in the method using the concentrated winding coil portion 210 of this configuration, Since the total extension distance of the coil end portion can be dramatically reduced as compared with the conventional case, the axial length of the rotating electrical machine can be shortened and the output can be increased by increasing the number of stages while suppressing the adverse effect of the increase in the number of coil end portions.
[0054]
Further, in this embodiment, the radially intermediate rotor portions 202 and 203 can be configured so that magnetic flux flows mainly in the axial direction, so that one intermediate rotor portion is substantially two in the first embodiment. It corresponds to the rotor part, and the intermediate rotor parts 202 and 203 do not need to have a yoke part that allows the magnetic flux to flow in the circumferential direction. For this reason, a further reduction in size and output can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the axial direction of a power train using a vehicular rotating electrical machine according to a first embodiment in the vicinity of the rotating electrical machine for a vehicle.
2 is a partial development view of a stator of the rotating electrical machine for a vehicle shown in FIG. 1. FIG.
3 is a wiring diagram of a U-phase stator winding of the vehicular rotating electrical machine shown in FIG. 1. FIG.
4 is an axial sectional view showing a wiring structure of a stator winding of the vehicular rotating electrical machine shown in FIG. 1; FIG.
5 is a front view of a U-phase output terminal section shown in FIG. 4. FIG.
6 is a front view of the neutral point terminal portion shown in FIG. 4. FIG.
7 is a cross-sectional view in the axial direction of a rotating electrical machine for a vehicle according to Embodiment 2. FIG.
8 is a partial development view of the vehicular rotating electrical machine shown in FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating electric machine for vehicles 2 Stator 3 Outer rotor part (rotor)
4 Inner rotor (rotor)
5 Rotor Support Frame 6 Stator Support Frame 7 Rod Support Member 100 Housing

Claims (1)

車軸にトルクを伝達する回転子と前記回転子の周面に対面する周面を有してハウジングに固定される固定子とを備え前記回転子は、内周面が前記固定子の外周面に電磁結合する外側ロータ部と、外周面が前記固定子の内周面に電磁結合する内側ロータ部とを有し前記固定子は、前記内側ロータ部及び外側ロータ部との間に配置される固定子鉄心と、前記固定子に巻装されて前記両ロ−タ部と電磁結合する1セットの多相巻線からなる固定子巻線とを有し前記固定子鉄心は、コアバックと、前記コアバックの径方向外側に周方向所定ピッチで形成された多数の外周側スロット及びティースと、前記コアバックの径方向内側に周方向所定ピッチで形成された多数の内周側スロット及びティースとを有し前記固定子巻線は、互いに近接する前記外周側スロット及び前記内周側スロットの各対にそれぞれ集中巻きされた各集中巻きコイル部を接続して構成され前記固定子鉄心は、輪板形状をもつ多数の電磁鋼板を軸方向に積層してなるとともに、互いに周方向に隣接する一対の前記集中巻きコイル部の間に位置して前記コアバックを貫通する棒状支持部材を通じて軸方向一端側で固定子支持フレ−ムに一端支持される車両用回転電機において、
前記固定子支持フレ−ムに固定された樹脂スリーブに互いに軸方向へ所定間隔を隔てて支持された略同心の輪板状導体からなる各相の相端子部と、前記固定子支持フレ−ムに固定された樹脂スリーブに前記相端子部の径方向内側にて支持された輪板状導体からなる中性点端子部とを有し、前記集中巻きコイル部の一端は前記相端子部に接続され、前記集中巻きコイル部の他端は前記中性点端子部に接続されることを特徴とする車両用回転電機。
Comprising a rotor for transmitting torque to the axle, a stator fixed to the housing has a circumferential surface facing the peripheral surface of the rotor, the rotor, the outer periphery the inner peripheral surface of said stator has an outer rotor portion electromagnetically coupled to the surface, and an inner rotor portion outer peripheral surface is electromagnetically coupled to the inner peripheral surface of said stator, said stator is disposed between the inner rotor portion and the outer rotor portion And a stator winding comprising a set of multi-phase windings wound around the stator and electromagnetically coupled to the rotor parts , the stator core having a core And a plurality of outer peripheral slots and teeth formed at a predetermined circumferential pitch on the radially outer side of the core back, and a plurality of inner peripheral slots formed at a predetermined circumferential pitch on the inner side of the core back. and and a teeth, the stator windings, to close to each other Is constructed by connecting each concentrated winding coil unit which are respectively concentrated winding on each pair of the outer peripheral side slot and the inner peripheral side slot, said stator core is a plurality of electromagnetic steel sheets having a ring-like shape in the axial direction The stator support frame is supported at one end in the axial direction through a rod-shaped support member that is laminated and positioned between a pair of concentrated winding coil portions adjacent to each other in the circumferential direction and penetrating the core back. the vehicle rotary electric machine,
Phase terminal portions of respective phases composed of substantially concentric ring-plate-like conductors supported at a predetermined interval in the axial direction on resin sleeves fixed to the stator support frame, and the stator support frame And a neutral point terminal portion made of a ring-shaped conductor supported on the inner side in the radial direction of the phase terminal portion, and one end of the concentrated winding coil portion is connected to the phase terminal portion. And the other end of the concentrated winding coil portion is connected to the neutral point terminal portion.
JP2000072973A 1999-11-18 2000-03-15 Rotating electric machine for vehicles Expired - Lifetime JP4019595B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000072973A JP4019595B2 (en) 2000-03-15 2000-03-15 Rotating electric machine for vehicles
DE60027840T DE60027840T2 (en) 1999-11-18 2000-11-17 Rotary electric machine for vehicles
US09/714,875 US6590312B1 (en) 1999-11-18 2000-11-17 Rotary electric machine having a permanent magnet stator and permanent magnet rotor
EP00125139A EP1102385B1 (en) 1999-11-18 2000-11-17 Rotary electric machine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072973A JP4019595B2 (en) 2000-03-15 2000-03-15 Rotating electric machine for vehicles

Publications (2)

Publication Number Publication Date
JP2001268870A JP2001268870A (en) 2001-09-28
JP4019595B2 true JP4019595B2 (en) 2007-12-12

Family

ID=18591299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072973A Expired - Lifetime JP4019595B2 (en) 1999-11-18 2000-03-15 Rotating electric machine for vehicles

Country Status (1)

Country Link
JP (1) JP4019595B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477256B2 (en) * 2015-05-28 2019-03-06 株式会社デンソー Rotating electric machine
JP6595443B2 (en) * 2016-12-01 2019-10-23 トヨタ自動車株式会社 Rotating electric machine
CN110460170A (en) * 2018-05-07 2019-11-15 田果成 Without shaft generator and axle sensed communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144716A (en) * 1976-05-28 1977-12-02 Hitachi Ltd Rotary machine
JPS5315502A (en) * 1976-07-28 1978-02-13 Hitachi Ltd Rotary electric machine
JPS5321702A (en) * 1976-08-13 1978-02-28 Hitachi Ltd Rotary electric machine
JPH0815381B2 (en) * 1987-10-15 1996-02-14 浩 清水 Rotating electric machine
JPH0332387A (en) * 1989-06-27 1991-02-12 Secoh Giken Inc Plural phase reluctance type motor
JPH04124876U (en) * 1991-04-26 1992-11-13 三菱電機株式会社 magnet generator
JPH06233483A (en) * 1993-01-29 1994-08-19 Honda Motor Co Ltd Connection structure of coil winding in stator
JPH09247881A (en) * 1996-03-08 1997-09-19 Japan Servo Co Ltd Stator of motor
JP3651150B2 (en) * 1996-11-22 2005-05-25 株式会社デンソー Load drive device
JPH10271782A (en) * 1997-03-28 1998-10-09 Matsushita Electric Ind Co Ltd Motor
JPH1146461A (en) * 1997-07-24 1999-02-16 Shibaura Eng Works Co Ltd Motor
JP3983423B2 (en) * 1999-07-23 2007-09-26 松下電器産業株式会社 Electric motor

Also Published As

Publication number Publication date
JP2001268870A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
US6590312B1 (en) Rotary electric machine having a permanent magnet stator and permanent magnet rotor
US8884491B2 (en) Multi-gap electric rotating machine with one-piece stator core
JP5040303B2 (en) Rotating electric machine
US9627935B2 (en) Multi-gap rotating electric machine having phase coils formed of substantially U-shaped electric conductor segments
JP2009077468A (en) Dynamo-electric machine and manufacturing method of rotating electric machine
JP2006520178A (en) Rotating electric machine having one stator and two rotors
US7994676B2 (en) Reluctance motor rotor and reluctance motor equipped with the same
US20160105065A1 (en) Rotating electric machine for vehicle
JP6048191B2 (en) Multi-gap rotating electric machine
JP2003032978A (en) Dynamo-electric machine
JP2009213208A (en) Rotating electrical machine and manufacturing method therefor
JP3928297B2 (en) Electric motor and manufacturing method thereof
US20160226355A1 (en) Magnetic inductor electric motor
JP2001268866A (en) Rotating electric machine for vehicle
EP1324472B1 (en) Inner and outer rotor slotless electric motor with ring-type winding
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2005151785A (en) Synchronous generator having annular armature coil
JP4019595B2 (en) Rotating electric machine for vehicles
JP2001145209A (en) Vehicle dynamoelectric machine
JP2010057271A (en) Double rotor motor
JP4482918B2 (en) Permanent magnet type electric motor having ring-shaped stator coil
JP5223523B2 (en) Synchronous motor
JP2005124378A (en) Induction motor having annular stator coil
JP2014197957A (en) Multi-gap type synchronous motor
JP2018102090A (en) Stator and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5