JP2010284035A - Permanent magnet rotating electrical machine - Google Patents

Permanent magnet rotating electrical machine Download PDF

Info

Publication number
JP2010284035A
JP2010284035A JP2009136335A JP2009136335A JP2010284035A JP 2010284035 A JP2010284035 A JP 2010284035A JP 2009136335 A JP2009136335 A JP 2009136335A JP 2009136335 A JP2009136335 A JP 2009136335A JP 2010284035 A JP2010284035 A JP 2010284035A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet row
row
rotating electrical
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009136335A
Other languages
Japanese (ja)
Inventor
Daisuke Misu
大輔 三須
Sueyoshi Mizuno
末良 水野
Akihira Morishita
明平 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009136335A priority Critical patent/JP2010284035A/en
Publication of JP2010284035A publication Critical patent/JP2010284035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet rotating electrical machine for increasing the torque/mass ratio, while suppressing torque pulsation. <P>SOLUTION: The rotating electrical machine includes a stator having armature windings; and a rotor which is rotatably supported with respect to the stator, and has an outside permanent magnet train and an inside permanent magnet train arranged in a Halbach array from a rotary shaft to a circumferential direction, and in which the armature windings are disposed between the outside permanent magnet train and the inside permanent magnet train in the circumferential direction, and the magnetic poles of outside permanent magnets and the magnetic poles of inside permanent magnets are directed in the same direction as to the direction of magnetic poles in the radial direction and directed in the reverse direction as to the direction of magnetic poles in the circumferential direction. The energy product of the cross section in the radial direction of the outside permanent magnet train is same as that of the cross section of the radial direction of the inside permanent magnet train, and the lengths of the outside permanent magnet train and the inside permanent magnet train are same in the rotary shaft direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子巻線を有する固定子に対し回転可能に支持された回転子にハルバッハ配列された永久磁石を有する永久磁石回転電機に関する。   The present invention relates to a permanent magnet rotating electric machine having permanent magnets arranged in a Halbach array on a rotor rotatably supported by a stator having an electronic winding.

永久磁石をハルバッハ配列した永久磁石回転電機は、径方向にN極とS極を交互に配置した主磁極磁石と、この主磁極磁石の周方向両面に径方向以外(例えば周方向)に着磁された補助磁石を備えたものである(例えば、特許文献1、2参照)。永久磁石をハルバッハ配列した永久磁石回転電機の主磁極磁石と補助磁石とは、全体で略円筒状をなしており、永久磁石をハルバッハ配列にすると、特定の方向の磁力を強めることができる。このハルバッハ配列された永久磁石を有する回転電機は、大きくすることなく高出力化を図ることが可能になる。   A permanent magnet rotating electrical machine in which permanent magnets are arranged in Halbach is a main magnetic pole magnet in which N poles and S poles are alternately arranged in the radial direction, and magnetized in a direction other than the radial direction (for example, in the circumferential direction) The auxiliary magnet is provided (see, for example, Patent Documents 1 and 2). The main magnetic pole magnet and the auxiliary magnet of the permanent magnet rotating electrical machine in which the permanent magnets are arranged in the Halbach array are substantially cylindrical as a whole. When the permanent magnets are arranged in the Halbach array, the magnetic force in a specific direction can be increased. The rotating electrical machine having the permanent magnets arranged in the Halbach arrangement can achieve high output without increasing the size.

従来のハルバッハ配列した永久磁石列を有する回転電機では、ヨーク鉄心に電機子巻線が巻かれており、永久磁石、電機子巻線、ヨーク鉄心の間に磁束が形成される。   In a conventional rotary electric machine having a permanent magnet array arranged in Halbach, an armature winding is wound around a yoke core, and a magnetic flux is formed between the permanent magnet, the armature winding, and the yoke core.

特開2006−320109号公報(第1図)JP 2006-320109 A (FIG. 1) 特開2004−350427号公報(第1乃至2図)JP 2004-350427 A (FIGS. 1 and 2)

しかしながら、特許文献1および特許文献2に記載の回転電機は、固定子や回転子に鉄心を用いているため、トルクの脈動が大きくなる。また、特許文献1および特許文献2に記載の回転電機は、固定子や回転子に鉄心を用いているため、鉄心の磁気飽和が発生し、強力な磁場を発生する磁石を用いてもトルクの向上には限界がある。   However, since the rotating electrical machines described in Patent Document 1 and Patent Document 2 use iron cores for the stator and the rotor, torque pulsation increases. In addition, since the rotating electrical machines described in Patent Document 1 and Patent Document 2 use an iron core for the stator and the rotor, magnetic saturation of the iron core occurs, and even if a magnet that generates a strong magnetic field is used, torque can be reduced. There are limits to improvement.

この発明の目的は、トルクの脈動を抑えつつ、トルク質量比を大きくする永久磁石回転電機を提供することである。   An object of the present invention is to provide a permanent magnet rotating electric machine that increases a torque mass ratio while suppressing torque pulsation.

本発明の永久磁石回転電機は、電機子巻線を有する固定子と、前記固定子に対し回転可能に支持され、回転軸から周方向にハルバッハ配列された外側永久磁石列と内側永久磁石列とを有し、前記外側永久磁石列と前記内側永久磁石列の間に前記電機子巻線が周方向に配置されるとともに、前記外側永久磁石の磁極の向きと前記内側永久磁石の磁極の向きとが、径方向の磁極の向きは同一方向で、周方向の磁極向きは逆方向を向いている回転子とを有し、前記外側永久磁石列の径方向断面のエネルギー積と前記内側永久磁石列の径方向断面のエネルギー積とが同じであり、前記外側永久磁石列と前記内側永久磁石列の前記回転軸方向の長さが同じである。   A permanent magnet rotating electric machine according to the present invention includes a stator having armature windings, an outer permanent magnet row and an inner permanent magnet row that are rotatably supported with respect to the stator and are arranged in a Halbach array in the circumferential direction from the rotating shaft. And the armature winding is disposed in the circumferential direction between the outer permanent magnet row and the inner permanent magnet row, and the magnetic pole direction of the outer permanent magnet and the magnetic pole direction of the inner permanent magnet However, the radial magnetic pole direction is the same direction, and the circumferential magnetic pole direction is the opposite direction of the rotor, and the energy product of the radial section of the outer permanent magnet row and the inner permanent magnet row The energy product of the radial cross section of the outer permanent magnet array is the same, and the outer permanent magnet array and the inner permanent magnet array have the same length in the rotational axis direction.

本発明によれば、トルクの脈動を抑えつつ、トルク質量比を大きくする永久磁石回転電機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the permanent magnet rotary electric machine which enlarges a torque mass ratio can be provided, suppressing the pulsation of a torque.

本発明の第1の実施形態に係る永久磁石回転電機の回転軸方向断面図。FIG. 3 is a cross-sectional view in the direction of the rotation axis of the permanent magnet rotating electric machine according to the first embodiment of the present invention. 本発明の第1の実施形態に係る固定子の斜視図。The perspective view of the stator which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る永久磁石回転電機の径方向断面図。The radial direction sectional view of the permanent magnet rotating electrical machine concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る永久磁石回転電機の磁力線分布の一例を示す磁力線分布図。The magnetic force line distribution figure which shows an example of the magnetic force line distribution of the permanent magnet rotary electric machine which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る永久磁石回転電機の回転軸方向断面図。The rotating shaft direction sectional drawing of the permanent magnet rotary electric machine which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る永久磁石回転電機の他の例を示す回転軸方向断面図。The rotating shaft direction sectional drawing which shows the other example of the permanent magnet rotary electric machine which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る永久磁石回転電機の特性を示すグラフ。The graph which shows the characteristic of the permanent magnet rotary electric machine which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る永久磁石回転電機の径方向断面図。The radial direction sectional view of the permanent magnet rotating electrical machine concerning a 3rd embodiment of the present invention. 本発明の第3の実施形態に係る永久磁石回転電機におけるトルク脈動率を示すグラフ。The graph which shows the torque pulsation rate in the permanent magnet rotary electric machine which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る永久磁石回転電機の他の例を示す径方向断面図。Radial direction sectional drawing which shows the other example of the permanent magnet rotary electric machine which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る永久磁石回転電機の回転軸方向断面図。The rotating shaft direction sectional drawing of the permanent magnet rotary electric machine which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る永久磁石回転電機の他の例を示す回転軸方向断面図。The rotating shaft direction sectional drawing which shows the other example of the permanent magnet rotary electric machine which concerns on the 4th Embodiment of this invention.

図1は第1の実施形態に係る永久磁石回転電機1の軸方向断面図である。永久磁石回転電機1は、固定子6に電機子巻線4及びシャフト7が形成され、回転子5に永久磁石列(外側)2、永久磁石列(内側)3及び軸受9が形成されて構成される。   FIG. 1 is an axial cross-sectional view of a permanent magnet rotating electrical machine 1 according to the first embodiment. The permanent magnet rotating electrical machine 1 is configured such that an armature winding 4 and a shaft 7 are formed on a stator 6, and a permanent magnet row (outside) 2, a permanent magnet row (inside) 3 and a bearing 9 are formed on a rotor 5. Is done.

ここで、図2は、電機子巻線4及びとシャフト7が形成された固定子6の斜視図である。固定子6には、中心にシャフト7が形成されている。電機子巻線4は、例えば三相交流を用いる場合、U相−V相−W相の順に巻かれている。電機子巻線4は、集中巻きの巻線で形成されている。電機子巻線4は、ボビン41に巻線を巻いたコイル42により形成されている。そして、電機子巻線4は、回転軸であるシャフト7を中心として周方向に複数配置されている。U相,V相,W相がそれぞれ隣り合う複数の電機子巻線4によって構成されている場合、各相を構成する電機子巻線4同士はコイル渡り線8で接続されている。   Here, FIG. 2 is a perspective view of the stator 6 in which the armature winding 4 and the shaft 7 are formed. A shaft 7 is formed at the center of the stator 6. For example, when three-phase alternating current is used, the armature winding 4 is wound in the order of U phase-V phase-W phase. The armature winding 4 is formed of concentrated winding. The armature winding 4 is formed by a coil 42 in which a winding is wound around a bobbin 41. A plurality of armature windings 4 are arranged in the circumferential direction around a shaft 7 that is a rotating shaft. When the U-phase, V-phase, and W-phase are each constituted by a plurality of adjacent armature windings 4, the armature windings 4 that constitute each phase are connected by a coil connecting wire 8.

固定子6と回転子5との間には、軸受9が配置されており、回転子5は固定子6上で回転する構造になっている。回転子5にはハルバッハ配列で構成された略円筒形状の2列の永久磁石列(外側)2および永久磁石列(内側)3が回転軸から周方向に配置されている。   A bearing 9 is disposed between the stator 6 and the rotor 5, and the rotor 5 is configured to rotate on the stator 6. The rotor 5 is provided with two substantially cylindrical permanent magnet rows (outer side) 2 and permanent magnet row (inner side) 3 configured in a Halbach array in the circumferential direction from the rotation axis.

回転子5は、固定子6に対向する側に凸部を2列有する。回転子5には、回転子5の外側の凸部に永久磁石列(外側)2の永久磁石16が例えば接着等により取り付けられている。さらに、回転子5には、回転子5の内側の凸部に永久磁石列(内側)3の永久磁石16が取付けられている。回転子5は、永久磁石列(外側)2および永久磁石列(内側)3の間に電機子巻線4を配置するように構成されている。   The rotor 5 has two rows of convex portions on the side facing the stator 6. The permanent magnet 16 of the permanent magnet row (outside) 2 is attached to the rotor 5 on the outer convex portion of the rotor 5 by, for example, adhesion. Furthermore, the permanent magnet 16 of the permanent magnet row | line | column (inner side) 3 is attached to the rotor 5 at the convex part inside the rotor 5. The rotor 5 is configured to dispose the armature winding 4 between the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3.

図3は、第1の実施形態に係る永久磁石回転電機1の径方向断面図である。回転子5に取り付けられた永久磁石列(外側)2および永久磁石列(内側)3は、図3に示す矢印は、磁極向きを示している。電機子巻線4は、U相−V相−W相の順で周方向に巻かれている。U相巻線10、V相巻線11、W相巻線12は、それぞれ隣り合う2つの電機子巻線4で構成されている。   FIG. 3 is a radial cross-sectional view of the permanent magnet rotating electrical machine 1 according to the first embodiment. In the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 attached to the rotor 5, the arrows shown in FIG. 3 indicate the magnetic pole directions. The armature winding 4 is wound in the circumferential direction in the order of U phase-V phase-W phase. The U-phase winding 10, the V-phase winding 11, and the W-phase winding 12 are each composed of two adjacent armature windings 4.

永久磁石列(外側)2は、磁極方向が径方向に交互となるように径方向に着磁された永久磁石16を周方向に沿って一つ置きに配置している。さらに、永久磁石列(外側)2は、磁極方向が周方向に交互となるように周方向に着磁された永久磁石16を周方向に沿って一つ置きに配置している。つまり、永久磁石列(外側)2は、周方向に4つの異なる方向に着磁された永久磁石16を等周期で配置している。永久磁石列(内側)3は、永久磁石列(外側)2における永久磁石16の配置の順番と同様である。径方向に着磁された永久磁石16については、永久磁石列(外側)2の磁極と永久磁石列(内側)3の磁極が同一方向になるように構成する。径方向に着磁された永久磁石16の間に配置されている周方向に着磁された永久磁石16については、永久磁石列(外側)2の磁極と永久磁石列(内側)3の磁極とが反対方向になるように構成する。   In the permanent magnet row (outer side) 2, every other permanent magnet 16 magnetized in the radial direction is arranged along the circumferential direction so that the magnetic pole directions are alternately arranged in the radial direction. Further, the permanent magnet row (outside) 2 is arranged with every other permanent magnet 16 magnetized in the circumferential direction so that the magnetic pole directions are alternately arranged in the circumferential direction. That is, the permanent magnet row (outside) 2 has permanent magnets 16 magnetized in four different directions in the circumferential direction arranged at equal intervals. The permanent magnet row (inner side) 3 is the same as the arrangement order of the permanent magnets 16 in the permanent magnet row (outer side) 2. The permanent magnet 16 magnetized in the radial direction is configured such that the magnetic poles of the permanent magnet row (outer side) 2 and the magnetic poles of the permanent magnet row (inner side) 3 are in the same direction. Regarding the circumferentially magnetized permanent magnets 16 disposed between the radially magnetized permanent magnets 16, the magnetic poles of the permanent magnet row (outer side) 2 and the magnetic poles of the permanent magnet row (inner side) 3 Are configured in the opposite direction.

次に、図4は第1の実施形態に係る永久磁石回転電機1の磁力線分布の一例を示す磁力線分布図である。永久磁石列(外側)2および永久磁石列(内側)3の磁束が電機子巻線4を鎖交する。電機子巻線4に例えば三相交流を流すことで回転子5が回転する。   Next, FIG. 4 is a magnetic force line distribution diagram showing an example of the magnetic force line distribution of the permanent magnet rotating electrical machine 1 according to the first embodiment. Magnetic fluxes of the permanent magnet row (outside) 2 and the permanent magnet row (inner side) 3 link the armature windings 4. The rotor 5 is rotated by passing, for example, a three-phase alternating current through the armature winding 4.

図4に示すように、径方向に着磁された永久磁石16に多くの磁束が発生していることが分かる。つまり、磁束が電機子巻線4に鎖交することにより、永久磁石回転電機1は、大きなトルクを得ることが可能になる。周方向に着磁された永久磁石16の磁束は、永久磁石列(外側)2と永久磁石列(内側)3とでは反対の向きになり、互いの磁束をキャンセルする働きをする。   As shown in FIG. 4, it can be seen that a large amount of magnetic flux is generated in the permanent magnet 16 magnetized in the radial direction. That is, the permanent magnet rotating electrical machine 1 can obtain a large torque by the magnetic flux interlinking with the armature winding 4. The magnetic fluxes of the permanent magnets 16 magnetized in the circumferential direction are opposite in the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 and function to cancel each other's magnetic flux.

次に、第1の実施形態である永久磁石回転電機1を構成する永久磁石列(外側)2と永久磁石列(内側)3の形状について説明する。径方向に対向する永久磁石列(外側)2の永久磁石16と永久磁石列(内側)3の永久磁石16は、永久磁石列(外側)2の永久磁石16の径方向断面のエネルギー積と永久磁石列(外側)3の永久磁石16の径方向断面のエネルギー積が等しくなるように配置されている。   Next, the shapes of the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 constituting the permanent magnet rotating electrical machine 1 according to the first embodiment will be described. The permanent magnet 16 of the permanent magnet row (outer side) 2 and the permanent magnet 16 of the permanent magnet row (inner side) 3 that are opposed in the radial direction are the energy product and permanent of the radial section of the permanent magnet 16 of the permanent magnet row (outer side) 2. It arrange | positions so that the energy product of the radial direction cross section of the permanent magnet 16 of the magnet row | line | column (outside) 3 may become equal.

径方向に対向する永久磁石列(外側)2を構成する永久磁石16と永久磁石列(内側)3を構成する永久磁石16の材料特性が同一であれば、永久磁石列(外側)2を構成する永久磁石16と永久磁石列(内側)3を構成する永久磁石16の断面積は等しくなる。   If the material characteristics of the permanent magnet 16 constituting the permanent magnet row (outside) 2 and the permanent magnet 16 constituting the permanent magnet row (inside) 3 are the same, the permanent magnet row (outside) 2 is formed. The cross-sectional areas of the permanent magnet 16 and the permanent magnet 16 constituting the permanent magnet row (inner side) 3 are equal.

さらに、図1に示すように、径方向に対向する永久磁石列(外側)2の永久磁石16と永久磁石列(内側)3の永久磁石16とのシャフト7の回転軸方向の長さ(回転子5における永久磁石16が接合された面から回転軸方向の長さ)は等しい。径方向に対向する永久磁石列(外側)2を構成する永久磁石16と永久磁石列(内側)3を構成する永久磁石16の材料特性が同一であれば、永久磁石列(外側)2を構成する永久磁石16と永久磁石列(内側)3を構成する永久磁石16の体積は等しくなる。   Further, as shown in FIG. 1, the length (rotation) of the shaft 7 between the permanent magnet 16 in the permanent magnet row (outer side) 2 and the permanent magnet 16 in the permanent magnet row (inner side) 3 facing in the radial direction. The length in the rotation axis direction from the surface of the child 5 on which the permanent magnet 16 is joined is equal. If the material characteristics of the permanent magnet 16 constituting the permanent magnet row (outside) 2 and the permanent magnet 16 constituting the permanent magnet row (inside) 3 are the same, the permanent magnet row (outside) 2 is formed. The volumes of the permanent magnets 16 constituting the permanent magnet 16 and the permanent magnet row (inner side) 3 are equal.

以上のように、径方向に対向する永久磁石列(外側)2を構成する永久磁石16と永久磁石列(内側)3を構成する永久磁石16は、径方向断面のエネルギー積が等しく、回転軸方向の長さが等しくなるように配置されている。   As described above, the permanent magnet 16 constituting the permanent magnet row (outer side) 2 and the permanent magnet 16 constituting the permanent magnet row (inner side) 3 in the radial direction have the same energy product in the radial cross section, and have a rotational axis. It arrange | positions so that the length of a direction may become equal.

このような配置とすることで、永久磁石列(外側)2と永久磁石列(内側)3に生じる起磁力は等しくなる。したがって、永久磁石列(外側)2の径方向の外側に漏れる磁束と永久磁石列(内側)3の径方向の内側に漏れる磁束は減少する。永久磁石列(外側)2と永久磁石列(内側)3との間の磁束密度は、径方向断面のエネルギー積および回転軸方向の長さを異ならせた場合に比べて最大となる。結果として、永久磁石回転電機1により発生するトルクも最大となる。   With this arrangement, the magnetomotive forces generated in the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 are equal. Therefore, the magnetic flux leaking to the outer side in the radial direction of the permanent magnet row (outer side) 2 and the magnetic flux leaking to the inner side in the radial direction of the permanent magnet row (inner side) 3 are reduced. The magnetic flux density between the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 becomes the maximum as compared with the case where the energy product in the radial cross section and the length in the rotation axis direction are made different. As a result, the torque generated by the permanent magnet rotating electrical machine 1 is also maximized.

次に、第2の実施形態について説明する。図5は第2の実施形態に係る永久磁石回転電機1の回転軸方向断面図である。図6は、第2の実施形態に係る永久磁石回転電機1の他の例を示す回転軸方向断面図である。第1の実施形態と同一符号箇所については説明を省略する。第2の実施形態は、第1の実施形態で説明した永久磁石列(外側)2およびと永久磁石列(内側)3の形状と同様である。   Next, a second embodiment will be described. FIG. 5 is a sectional view in the direction of the rotation axis of the permanent magnet rotating electrical machine 1 according to the second embodiment. FIG. 6 is a sectional view in the rotation axis direction showing another example of the permanent magnet rotating electrical machine 1 according to the second embodiment. The description of the same reference numerals as in the first embodiment is omitted. The second embodiment has the same shape as the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 described in the first embodiment.

図5および図6に示す永久磁石回転電機1は、永久磁石列(外側)2の永久磁石16における体積のエネルギー積と永久磁石列(内側)3の永久磁石16における体積のエネルギー積(永久磁石列(外側)2および永久磁石列(内側)3を構成する永久磁石16の材料特性が同一であれば体積)を一定とし、永久磁石列(外側)2の内径と永久磁石列(内側)3の外径を固定し、回転軸方向の長さを変更した場合の例である。ここでは、永久磁石列(外側)2および永久磁石列(内側)3を構成する永久磁石16の体積が等しい場合について説明する。   The permanent magnet rotating electrical machine 1 shown in FIGS. 5 and 6 includes a volume energy product of the permanent magnet 16 in the permanent magnet row (outer) 2 and a volume energy product of the permanent magnet 16 in the permanent magnet row (inner) 3 (permanent magnet). If the material characteristics of the permanent magnets 16 constituting the row (outside) 2 and the permanent magnet row (inside) 3 are the same, the volume is constant, and the inner diameter of the permanent magnet row (outside) 2 and the permanent magnet row (inside) 3 are constant. This is an example in which the outer diameter of each is fixed and the length in the rotation axis direction is changed. Here, a case will be described in which the permanent magnets 16 constituting the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 have the same volume.

永久磁石列(外側)2および永久磁石列(内側)3を回転軸方向に長くした場合、体積および永久磁石列(外側)2の内径と永久磁石列(内側)3の外径は変わらないので、永久磁石列(外側)2の外径は小さくなり、永久磁石列(内側)3の内径は大きくなる。   When the permanent magnet row (outside) 2 and the permanent magnet row (inner side) 3 are elongated in the rotation axis direction, the volume and the inner diameter of the permanent magnet row (outer side) 2 and the outer diameter of the permanent magnet row (inner side) 3 do not change. The outer diameter of the permanent magnet row (outer side) 2 is reduced, and the inner diameter of the permanent magnet row (inner side) 3 is increased.

これとは逆に、永久磁石列(外側)2および永久磁石列(内側)3を回転軸方向に短くした場合、体積および永久磁石列(外側)2の内径と永久磁石列(内側)3の外径は変わらないので、永久磁石列(外側)2の外径は大きくなり、永久磁石列(内側)3の内径は小さくなる。   On the contrary, when the permanent magnet row (outside) 2 and the permanent magnet row (inside) 3 are shortened in the rotation axis direction, the volume and the inner diameter of the permanent magnet row (outside) 2 and the permanent magnet row (inside) 3 Since the outer diameter does not change, the outer diameter of the permanent magnet array (outer side) 2 is increased, and the inner diameter of the permanent magnet array (inner side) 3 is decreased.

ここで、図5および図6に示すように、永久磁石列(外側)2の外径をa、永久磁石列(外側)2および永久磁石列(内側)3に回転軸方向の長さをbとする。図7は、永久磁石回転電機1を構成する永久磁石列(外側)2および永久磁石列(内側)3のうち径方向を向いた磁極の数を一定とし、回転軸方向の長さおよびこれに付随する永久磁石列(外側)2の外径を変えた場合に、永久磁石回転電機1で発生するトルクに対する質量の比(トルク質量比)を測定したグラフである。横軸は、永久磁石列(外側)2の外径aに対する回転軸方向の長さbの割合(%)、縦軸は、最大トルク質量比に対する割合(%)である。   Here, as shown in FIG. 5 and FIG. 6, the outer diameter of the permanent magnet row (outer side) 2 is a, the length of the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 is b in the rotational axis direction. And FIG. 7 shows that the number of magnetic poles facing the radial direction in the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 constituting the permanent magnet rotating electrical machine 1 is constant, 6 is a graph obtained by measuring a ratio of mass to torque generated in the permanent magnet rotating electrical machine 1 (torque mass ratio) when the outer diameter of the accompanying permanent magnet row (outside) 2 is changed. The horizontal axis represents the ratio (%) of the length b in the rotation axis direction to the outer diameter a of the permanent magnet row (outer side) 2, and the vertical axis represents the ratio (%) to the maximum torque mass ratio.

図5のグラフに示すように、永久磁石列(外側)2および永久磁石列(内側)3の回転軸方向の長さを変えた場合、トルク質量比が最大となる点が存在する。永久磁石列(外側)2の回転軸方向の長さbが外径aの1/2から5倍までの範囲であれば、永久磁石回転電機1のトルク質量比を大きく取ることができる。   As shown in the graph of FIG. 5, when the lengths of the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 in the rotation axis direction are changed, there is a point where the torque mass ratio becomes maximum. If the length b in the rotation axis direction of the permanent magnet row (outside) 2 is in a range from 1/2 to 5 times the outer diameter a, the torque mass ratio of the permanent magnet rotating electrical machine 1 can be increased.

永久磁石列(外側)2の回転軸方向の長さbが外径aの1/2倍より小さくなると、永久磁石回転電機1のトルク質量比が急激に減少する。永久磁石列(外側)2の回転軸方向の長さbが外径aの5倍より大きくなると、永久磁石回転電機1のトルク質量比が減少する。   When the length b in the rotation axis direction of the permanent magnet row (outside) 2 is smaller than ½ times the outer diameter a, the torque mass ratio of the permanent magnet rotating electrical machine 1 is rapidly reduced. When the length b in the rotation axis direction of the permanent magnet row (outer side) 2 becomes larger than 5 times the outer diameter a, the torque mass ratio of the permanent magnet rotating electrical machine 1 decreases.

したがって、上記条件に合致する範囲で永久磁石列(外側)2および永久磁石列(内側)3を永久磁石回転電機1に配置することによって、永久磁石回転電機1は高トルク化を実現できる。永久磁石列(外側)2の回転軸方向の長さbは、外径aの1/2から5倍までと幅広くとることができるので、永久磁石回転電機1は、回転軸方向に長く径方向に細い形状、回転軸方向に薄く径方向に太い形状など用途に合わせて変更できる。   Therefore, by arranging the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 in the permanent magnet rotating electric machine 1 within a range that satisfies the above conditions, the permanent magnet rotating electric machine 1 can achieve high torque. Since the length b of the permanent magnet row (outer side) 2 in the direction of the rotation axis can be as wide as 1/2 to 5 times the outer diameter a, the permanent magnet rotating electrical machine 1 is longer in the direction of the rotation axis and in the radial direction. The shape can be changed according to the application, such as a very thin shape, a thin shape in the rotation axis direction and a thick shape in the radial direction.

図8は、第3の実施形態に係る永久磁石回転電機1の径方向断面図である。図10は、第3の実施形態に係る永久磁石回転電機1の他の例を示す径方向断面図である。第1の実施形態と同一符号箇所については説明を省略する。第3の実施形態は、第1の実施形態または第2の実施形態で説明した永久磁石列(外側)2およびと永久磁石列(内側)3の形状と同様である。   FIG. 8 is a radial cross-sectional view of the permanent magnet rotating electrical machine 1 according to the third embodiment. FIG. 10 is a radial cross-sectional view showing another example of the permanent magnet rotating electrical machine 1 according to the third embodiment. The description of the same reference numerals as in the first embodiment is omitted. The third embodiment is similar in shape to the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 described in the first embodiment or the second embodiment.

図8に示すように、永久磁石回転電機1には、電機子巻線4が6個配置されている。永久磁石回転電機1には、それぞれ隣り合う2つの電機子巻線4を1組として構成されたU相巻線10、V相巻線11、W相巻線12が1組ずつ、計3組配置されている。永久磁石列(外側)2および永久磁石列(内側)3の径方向を向いた磁極の数は、4である。   As shown in FIG. 8, six armature windings 4 are arranged in the permanent magnet rotating electric machine 1. The permanent magnet rotating electrical machine 1 has a total of 3 sets of U-phase winding 10, V-phase winding 11 and W-phase winding 12 each consisting of two adjacent armature windings 4 as one set. Has been placed. The number of magnetic poles facing the radial direction of the permanent magnet array (outside) 2 and the permanent magnet array (inside) 3 is four.

ここで図9は、永久磁石列(外側)2および永久磁石列(内側)3の径方向の磁極の数とU相、V相、W相を構成する巻線の合計組数(スロット数)を変えて測定した結果を示したグラフである。横軸は、永久磁石列(外側)2の外径aに対する回転軸方向の長さbの比率である。縦軸は、永久磁石回転電機1におけるトルク脈動率(%)である。   Here, FIG. 9 shows the number of magnetic poles in the radial direction of the permanent magnet row (outside) 2 and the permanent magnet row (inside) 3 and the total number of windings constituting the U phase, V phase, and W phase (number of slots). It is the graph which showed the result measured by changing. The horizontal axis represents the ratio of the length b in the rotation axis direction to the outer diameter a of the permanent magnet row (outer side) 2. The vertical axis represents the torque pulsation rate (%) in the permanent magnet rotating electrical machine 1.

図9には、永久磁石列(外側)2および永久磁石列(内側)3の径方向の磁極の数とU相、V相、W相を構成する巻線の合計組数(スロット数)の比を図8に示すように4:3とした場合と比較例として2:3とした場合を示している。例えば、グラフ中の2P3Sは、径方向の磁極の数が2極、スロット数が2スロットを意味している。径方向の磁極の数とスロット数の比が2:3である場合として、2P3S、4P6S、8P12S、・・・、32P48Sについて測定している。径方向の磁極の数とスロット数の比が4:3である場合として、4P3S、8P6S、12P9S、・・・、32P24Sについて測定している。   FIG. 9 shows the number of magnetic poles in the radial direction of the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 and the total number of sets (number of slots) of windings constituting the U phase, V phase, and W phase. As shown in FIG. 8, the ratio is 4: 3, and the ratio is 2: 3 as a comparative example. For example, 2P3S in the graph means that the number of magnetic poles in the radial direction is 2 and the number of slots is 2 slots. Assuming that the ratio of the number of magnetic poles in the radial direction to the number of slots is 2: 3, measurement is performed on 2P3S, 4P6S, 8P12S,..., 32P48S. Assuming that the ratio of the number of magnetic poles in the radial direction to the number of slots is 4: 3, measurement is performed on 4P3S, 8P6S, 12P9S,..., 32P24S.

径方向の磁極の数とスロット数の比が2:3の場合と4対3の場合とで、永久磁石列(外側)2の外径aに対する回転軸方向の長さbの比率が同じとき、径方向の磁極の数とスロット数の比が4:3の場合は、2:3の場合に比べてトルク脈動が小さいことが分かる。   When the ratio of the number of magnetic poles in the radial direction to the number of slots is 2: 3 and the case of 4: 3, the ratio of the length b in the rotation axis direction to the outer diameter a of the permanent magnet array (outer) 2 is the same. It can be seen that the torque pulsation is smaller when the ratio of the number of magnetic poles in the radial direction and the number of slots is 4: 3 than when the ratio is 2: 3.

したがって、図8に示すように径方向の磁極の数とスロット数の比を4:3とした場合、他の比率とした場合(図9の例では4P6S)に比べて永久磁石回転電機1で発生するトルク脈動を抑えられる。   Therefore, as shown in FIG. 8, when the ratio of the number of magnetic poles and the number of slots in the radial direction is 4: 3, the permanent magnet rotating electrical machine 1 has a different ratio (4P6S in the example of FIG. 9). Torque pulsation that occurs can be suppressed.

図10に示す例も同様である。永久磁石回転電機1には、電機子巻線4が48個配置されている。永久磁石回転電機1には、それぞれ隣り合う2つの電機子巻線4を1組として構成されたU相巻線10、V相巻線11、W相巻線12が8組ずつ、計24組配置されている。永久磁石列(外側)2および永久磁石列(内側)3の径方向の磁極の数は、32である。径方向の磁極の数とスロット数の比は4:3である。このような径方向の磁極の数とスロット数で永久磁石回転電機1を構成することで、他の比率となるように構成した場合(図9の例では32P48S)に比べてトルク脈動を抑えられる。   The same applies to the example shown in FIG. The permanent magnet rotating electrical machine 1 is provided with 48 armature windings 4. The permanent magnet rotating electrical machine 1 includes eight sets of U-phase winding 10, V-phase winding 11, and W-phase winding 12 each composed of two adjacent armature windings 4 as a set, for a total of 24 sets. Has been placed. The number of magnetic poles in the radial direction of the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 is 32. The ratio of the number of magnetic poles in the radial direction to the number of slots is 4: 3. By configuring the permanent magnet rotating electrical machine 1 with the number of magnetic poles and the number of slots in such a radial direction, torque pulsation can be suppressed as compared with the case where the ratio is configured to be other ratio (32P48S in the example of FIG. 9). .

図11は、第4の実施形態に係る永久磁石回転電機1の回転軸方向断面図である。第1の実施形態と同一符号箇所については説明を省略する。第4の実施形態は、第1の実施形態から第3の実施形態で説明した永久磁石列(外側)2および永久磁石列(内側)3の形状と同様である。   FIG. 11 is a cross-sectional view in the rotation axis direction of the permanent magnet rotating electrical machine 1 according to the fourth embodiment. The description of the same reference numerals as in the first embodiment is omitted. The fourth embodiment is similar to the shapes of the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 described in the first to third embodiments.

第4の実施形態では電機子巻線4はボビン41を有さない。電機子巻線4は、平角線材で巻いたコイル42のみにより形成されている。平角線材としては銅線を用いている。電機子巻線4が平角線材で形成されているため、素線断面積は大きくなる。したがって、電機子巻線4による発熱を抑えることができる。電機子巻線4は、平角線材で形成されているため、ボビン41なしで容易に形成できる。したがって、電機子巻線4は、永久磁石列(外側)2と永久磁石列(内側)3の間の空間を線材によって最大限利用して、発生させるトルク(起電力)の向上を図ることができる。以上のように、永久磁石回転電機1は、大きなトルクを発生できるとともに電機子巻線4による発熱量を抑えることができる。   In the fourth embodiment, the armature winding 4 does not have the bobbin 41. The armature winding 4 is formed only by a coil 42 wound with a flat wire. Copper wire is used as the flat wire. Since the armature winding 4 is formed of a rectangular wire, the wire cross-sectional area becomes large. Therefore, heat generation by the armature winding 4 can be suppressed. Since the armature winding 4 is formed of a flat wire, it can be easily formed without the bobbin 41. Therefore, the armature winding 4 can improve the torque (electromotive force) to be generated by making maximum use of the space between the permanent magnet row (outer side) 2 and the permanent magnet row (inner side) 3 with the wire. it can. As described above, the permanent magnet rotating electrical machine 1 can generate a large torque and suppress the amount of heat generated by the armature winding 4.

図12は、第4の実施形態に係る永久磁石回転電機1の他の例を示す回転軸方向断面図である。固定子6には、プリント基板14が周方向に配置されている。電機子巻線4は、プリント基板14上に配置されている。図3に示すように、U相巻線10、V相巻線11、W相巻線12がそれぞれ隣り合う2つの電機子巻線4で構成されている場合、プリント基板14上の結線パターンによって電機子巻線4同士は結線される。第4の実施形態では、プリント基板14上に予め電機子巻線4の結線パターンを設けておき、プリント基板14上に電機子巻線4を配置することで、第1の実施形態で用いた図1に示すコイル渡し線8を省略することができる。   FIG. 12 is a sectional view in the rotation axis direction showing another example of the permanent magnet rotating electrical machine 1 according to the fourth embodiment. A printed circuit board 14 is arranged in the circumferential direction on the stator 6. The armature winding 4 is disposed on the printed board 14. As shown in FIG. 3, when the U-phase winding 10, the V-phase winding 11, and the W-phase winding 12 are each composed of two adjacent armature windings 4, depending on the connection pattern on the printed circuit board 14. The armature windings 4 are connected to each other. In the fourth embodiment, the connection pattern of the armature winding 4 is provided in advance on the printed circuit board 14, and the armature winding 4 is arranged on the printed circuit board 14, so that it is used in the first embodiment. The coil connecting wire 8 shown in FIG. 1 can be omitted.

コイル渡り線8は、回転子5と電機子巻線4の回転軸方向の間であって、電機子巻線4の上側に配置しなければならない。そのため、第1の実施形態の永久磁石回転電機1では、コイル渡り線8を通すための空間が回転子5と電機子巻線4の間に必要であった。永久磁石回転電機1にプリント基板14を配置することで、コイル渡し線8を省略できるため、永久磁石回転電機1は小型化を図れる。   The coil connecting wire 8 must be disposed between the rotor 5 and the armature winding 4 in the rotation axis direction and above the armature winding 4. Therefore, in the permanent magnet rotating electrical machine 1 of the first embodiment, a space for passing the coil connecting wire 8 is required between the rotor 5 and the armature winding 4. By disposing the printed circuit board 14 on the permanent magnet rotating electric machine 1, the coil connecting wire 8 can be omitted, so that the permanent magnet rotating electric machine 1 can be reduced in size.

上記第1の実施形態から第4の実施形態によれば、永久磁石回転電機1の小型化、軽量化、高トルク化を実現できる。第1の実施形態から第4の実施形態を適宜組み合わせるとより効果的である。   According to the first to fourth embodiments, the permanent magnet rotating electrical machine 1 can be reduced in size, weight, and torque. It is more effective to appropriately combine the first to fourth embodiments.

1…永久磁石回転電機、2…永久磁石列(外側)、3…永久磁石列(内側)、4…電機子巻線、5…回転子、6…固定子、7…シャフト、8…コイル渡り線、9…軸受、14…プリント基板、16…永久磁石、41…ボビン、42…コイル。 DESCRIPTION OF SYMBOLS 1 ... Permanent magnet rotary electric machine, 2 ... Permanent magnet row | line | column (outside), 3 ... Permanent magnet row | line | column (inner side), 4 ... Armature winding, 5 ... Rotor, 6 ... Stator, 7 ... Shaft, 8 ... Coil crossing Wire, 9 ... bearing, 14 ... printed circuit board, 16 ... permanent magnet, 41 ... bobbin, 42 ... coil.

Claims (5)

電機子巻線を有する固定子と、
前記固定子に対し回転可能に支持され、回転軸から周方向にハルバッハ配列された外側永久磁石列と内側永久磁石列とを有し、前記外側永久磁石列と前記内側永久磁石列の間に前記電機子巻線が周方向に配置されるとともに、前記外側永久磁石の磁極の向きと前記内側永久磁石の磁極の向きとが、径方向の磁極の向きは同一方向で、周方向の磁極の向きは逆方向を向いている回転子と、
を有する永久磁石回転電機において、
前記外側永久磁石列の径方向断面のエネルギー積と前記内側永久磁石列の径方向断面のエネルギー積とが同じであり、前記外側永久磁石列と前記内側永久磁石列の前記回転軸方向の長さが同じであることを特徴とする永久磁石回転電機。
A stator having armature windings;
The outer permanent magnet row and the inner permanent magnet row, which are rotatably supported with respect to the stator and are arranged in a Halbach array in the circumferential direction from the rotation axis, are arranged between the outer permanent magnet row and the inner permanent magnet row. The armature winding is arranged in the circumferential direction, and the direction of the magnetic pole of the outer permanent magnet and the direction of the magnetic pole of the inner permanent magnet are the same in the radial direction and the direction of the circumferential magnetic pole Is the rotor facing the opposite direction,
In a permanent magnet rotating electric machine having
The energy product of the radial cross section of the outer permanent magnet row and the energy product of the radial cross section of the inner permanent magnet row are the same, and the length of the outer permanent magnet row and the inner permanent magnet row in the rotational axis direction is the same. A permanent magnet rotating electrical machine characterized by the same.
前記外側永久磁石列と前記内側永久磁石列の前記回転軸方向の長さは前記外側永久磁石列の外径の1/2倍から5倍のであることを特徴とする請求項1記載の永久磁石回転電機。   2. The permanent magnet according to claim 1, wherein a length of the outer permanent magnet array and the inner permanent magnet array in the rotation axis direction is 1/2 to 5 times an outer diameter of the outer permanent magnet array. Rotating electric machine. 前記外側永久磁石列および前記内側永久磁石列における前記径方向の磁極の数と、前記電機子巻線で構成される相の数の比が4:3であることを特徴とする請求項1または2のいずれか1項に記載の永久磁石回転電機。   The ratio of the number of the magnetic poles in the radial direction in the outer permanent magnet row and the inner permanent magnet row to the number of phases constituted by the armature winding is 4: 3. The permanent magnet rotating electrical machine according to any one of 2. 前記電機子巻線は、コイルボビンを有さず、平角線材で巻線を形成されていることを特徴とする請求項1から3のいずれか1項に記載の永久磁石回転電機。   4. The permanent magnet rotating electric machine according to claim 1, wherein the armature winding does not have a coil bobbin and is formed of a rectangular wire. 5. 前記電機子巻線は前記固定子に設けられたプリント基板上に配置され、前記プリント基板上のパターンによって前記電機子巻線同士が結線されていることを特徴とする請求項1から4のいずれか1項に記載の永久磁石回転電機。   The armature winding is arranged on a printed circuit board provided on the stator, and the armature windings are connected to each other by a pattern on the printed circuit board. The permanent magnet rotating electrical machine according to claim 1.
JP2009136335A 2009-06-05 2009-06-05 Permanent magnet rotating electrical machine Pending JP2010284035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136335A JP2010284035A (en) 2009-06-05 2009-06-05 Permanent magnet rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136335A JP2010284035A (en) 2009-06-05 2009-06-05 Permanent magnet rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2010284035A true JP2010284035A (en) 2010-12-16

Family

ID=43540265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136335A Pending JP2010284035A (en) 2009-06-05 2009-06-05 Permanent magnet rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2010284035A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503683A1 (en) * 2011-03-23 2012-09-26 L-3 Communications Magnet-Motor GmbH Drive system for a land craft
CN105207378A (en) * 2014-06-27 2015-12-30 仁维国际股份有限公司 Rotary motor
DE202015006632U1 (en) * 2015-09-17 2016-09-26 Rainer Schmieg Coaxial generator for a turbine
CN107237850A (en) * 2016-03-28 2017-10-10 北京宏推进科技有限公司 A kind of damping retaining spring based on halbach permanent magnet arrays
WO2019065929A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Motor
WO2021032480A1 (en) * 2019-08-22 2021-02-25 Webasto SE Rotor device and stator device for a flat, brushless electric motor and flat, brushless electric motor for a roof system of an automobile
KR20220046913A (en) * 2020-10-08 2022-04-15 올레그 그리고리에비치 다쉬코 Electric machine with a rotor created according to the Halbach scheme

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322452A (en) * 1996-05-24 1997-12-12 Sankyo Seiki Mfg Co Ltd Dynamo-electric machine
JP2006187116A (en) * 2004-12-27 2006-07-13 Denso Corp Electric wheel
JP2007006545A (en) * 2005-06-21 2007-01-11 Yaskawa Electric Corp Periodical magnetic filed generator and linear motor employing it, rotatory motor, oscillating motor
WO2007132768A1 (en) * 2006-05-17 2007-11-22 Panasonic Corporation Motor
JP2008295258A (en) * 2007-05-28 2008-12-04 Aisan Ind Co Ltd Rotational electric machine
JP2009506739A (en) * 2005-08-24 2009-02-12 クールマン−ウィルスドルフ・モーターズ・エルエルシー MP-A and MP-T machines, multipolar machines for AC and three-phase AC current
JP2009506379A (en) * 2005-08-31 2009-02-12 トムソン ライセンシング Multi-standard vertical scanning CRT and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322452A (en) * 1996-05-24 1997-12-12 Sankyo Seiki Mfg Co Ltd Dynamo-electric machine
JP2006187116A (en) * 2004-12-27 2006-07-13 Denso Corp Electric wheel
JP2007006545A (en) * 2005-06-21 2007-01-11 Yaskawa Electric Corp Periodical magnetic filed generator and linear motor employing it, rotatory motor, oscillating motor
JP2009506739A (en) * 2005-08-24 2009-02-12 クールマン−ウィルスドルフ・モーターズ・エルエルシー MP-A and MP-T machines, multipolar machines for AC and three-phase AC current
JP2009506379A (en) * 2005-08-31 2009-02-12 トムソン ライセンシング Multi-standard vertical scanning CRT and method of operating the same
WO2007132768A1 (en) * 2006-05-17 2007-11-22 Panasonic Corporation Motor
JP2008295258A (en) * 2007-05-28 2008-12-04 Aisan Ind Co Ltd Rotational electric machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503683A1 (en) * 2011-03-23 2012-09-26 L-3 Communications Magnet-Motor GmbH Drive system for a land craft
WO2012126785A1 (en) * 2011-03-23 2012-09-27 L-3 Communications Magnet-Motor Gmbh Drive system for a land craft
US9221326B2 (en) 2011-03-23 2015-12-29 L-3 Communications Magnet-Motor Gmbh Drive system for a land craft
CN105207378A (en) * 2014-06-27 2015-12-30 仁维国际股份有限公司 Rotary motor
DE202015006632U1 (en) * 2015-09-17 2016-09-26 Rainer Schmieg Coaxial generator for a turbine
CN107237850A (en) * 2016-03-28 2017-10-10 北京宏推进科技有限公司 A kind of damping retaining spring based on halbach permanent magnet arrays
WO2019065929A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Motor
JPWO2019065929A1 (en) * 2017-09-29 2020-12-03 日本電産株式会社 motor
JP7006697B2 (en) 2017-09-29 2022-01-24 日本電産株式会社 motor
US11342812B2 (en) 2017-09-29 2022-05-24 Nidec Corporation Motor
WO2021032480A1 (en) * 2019-08-22 2021-02-25 Webasto SE Rotor device and stator device for a flat, brushless electric motor and flat, brushless electric motor for a roof system of an automobile
KR20220046913A (en) * 2020-10-08 2022-04-15 올레그 그리고리에비치 다쉬코 Electric machine with a rotor created according to the Halbach scheme
KR102466216B1 (en) 2020-10-08 2022-11-11 올레그 그리고리에비치 다쉬코 Electric machine with a rotor created according to the Halbach scheme

Similar Documents

Publication Publication Date Title
US8643240B2 (en) Superconducting rotating electrical machine and stator for use with superconducting rotating electrical machine
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP4499764B2 (en) Electric motor
JP5778498B2 (en) Stator and motor
JP5491484B2 (en) Switched reluctance motor
JP6222032B2 (en) Rotating electric machine
WO2002091547A1 (en) Transverse flux machine with stator made of e-shaped laminates
JP2011239593A (en) Electric motor
JP2010284035A (en) Permanent magnet rotating electrical machine
JP6157340B2 (en) Permanent magnet rotating electric machine
JP5683103B2 (en) Universal motor
JP2010110128A (en) Permanent magnet rotating electrical machine
JP4914169B2 (en) Rotating electric machine
JP6212117B2 (en) Synchronous motor
JP2008252979A (en) Axial-gap type rotating machine
US20080290754A1 (en) AC Motor
WO2015104795A1 (en) Rotary electric machine
JP2014180193A (en) Synchronous motor with high responsiveness
JP5903510B2 (en) Rotating electrical equipment
JP2012019605A (en) Permanent magnet rotating electrical machine
JP2015512241A (en) Electric machine
JP6543239B2 (en) Stacked motor and stacked generator
JP7444855B2 (en) Claw pole motor with ring coil and serpentine coil
JP2011151914A (en) Stator for brushless motors and brushless motor
KR101348636B1 (en) Stator of transverse flux electric machine having multi-phase in circumferencial direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610