WO2007132768A1 - Motor - Google Patents
Motor Download PDFInfo
- Publication number
- WO2007132768A1 WO2007132768A1 PCT/JP2007/059742 JP2007059742W WO2007132768A1 WO 2007132768 A1 WO2007132768 A1 WO 2007132768A1 JP 2007059742 W JP2007059742 W JP 2007059742W WO 2007132768 A1 WO2007132768 A1 WO 2007132768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- permanent magnet
- motor according
- stator
- yoke
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/02—Machines with one stator and two or more rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
- H02K21/021—Means for mechanical adjustment of the excitation flux
- H02K21/028—Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
- H02K21/029—Vectorial combination of the fluxes generated by a plurality of field sections or of the voltages induced in a plurality of armature sections
Definitions
- the present invention relates to a motor in which two rotors, an inner rotor and an outer rotor, are mounted and a toroidal winding is applied to a stator.
- a brushless motor used for a drive motor of a direct drive washing machine or the like is desired to have low speed, large torque, low vibration, and low noise. Since the motor used in direct drive is driven directly without gears, it is necessary to increase the torque of the motor.Therefore, the rotor side has an inner rotor and an outer rotor, and the stator side has an inner diameter side and an outer rotor. A double rotor type brushless motor with teeth on the diameter side has been proposed.
- Patent Document 1 discloses such a double rotor type brushless motor technology.
- torque is generated in the inner rotor and the outer rotor due to the current flowing in the winding arranged in the inner slot portion and the outer slot portion.
- a big torque can be output and it can be made highly efficient.
- the cogging torque and torque ripple due to the inner rotor and the cogging torque and torque ripple due to the outer rotor are combined to generate a larger cogging torque and torque ripple. happened.
- Patent Document 1 proposes a configuration in which the position of the boundary between the magnetic poles of the inner rotor and the outer rotor is shifted by an arbitrary angle. Also, by changing the combination of the slot opening width of the inner teeth and the slot opening width of the outer teeth, the phase of the cogging torque waveform by the inner rotor and the phase of the cogging torque waveform by the outer rotor are reversed. Technology has also been proposed. As described above, the cogging torque by the inner rotor and the cogging torque by the outer rotor can be canceled out to reduce the cogging torque of the motor as a whole! /
- FIG. 10 shows the rotor rotation position (electrical angle) and cogging torque of a conventional double rotor type motor. It is a graph which shows the relationship.
- the broken line shows the cogging torque by the inner rotor
- the thin solid line shows the cogging torque by the outer rotor
- the thick solid line at the center shows the cogging torque of the entire motor.
- the cogging of the outer rotor is larger than the cogging torque of the inner rotor. Since the torque is larger, it is difficult to completely cancel the torque.
- Patent Document 1 Japanese Patent Laid-Open No. 2001-037133
- the motor of the present invention has the following configuration.
- a stator core having an inner slot configured between the teeth and an outer slot configured between the outer teeth, and a stator yoke between the inner slot and the outer slot, wound in a three-phase star or delta shape
- a stator having a plurality of connected coils.
- the outer rotor has an inner rotor yoke laminated with punched electromagnetic steel sheets and an inner permanent magnet, and the outer rotor has an outer rotor yoke laminated with electromagnetic steel sheets punched into a predetermined shape and the outer permanent yoke having the same number of poles as the inner permanent magnet. And a magnet.
- the motor of the present invention has good volumetric efficiency, and when high output and high torque are obtained, the torque of the cogging torque is reduced while taking advantage of the characteristics of the double rotor type brushless motor. Low vibration and low noise motor can be realized.
- FIG. 1 is an external perspective view of a motor according to Embodiment 1 of the present invention.
- FIG. 2 is an exploded perspective view of the motor according to Embodiment 1 of the present invention.
- FIG. 3 is an exploded perspective view of the motor according to Embodiment 1 of the present invention.
- FIG. 4 is a cross-sectional view of the motor according to Embodiment 1 of the present invention.
- FIG. 5 is a cross-sectional view of a main part of the motor according to Embodiment 1 of the present invention.
- FIG. 6 is a graph showing the relationship between the rotor rotational position (electrical angle) and the cogging torque of the motor according to Embodiment 1 of the present invention.
- FIG. 7 is a longitudinal sectional view of an essential part of a motor according to Embodiment 2 of the present invention.
- FIG. 8 is a longitudinal sectional view of a main part of a motor according to Embodiment 3 of the present invention.
- FIG. 9 is a longitudinal sectional view of a main part of a motor according to Embodiment 4 of the present invention.
- FIG. 10 is a graph showing the relationship between the rotor rotational position (electrical angle) and the cogging torque in a conventional motor.
- FIG. 1 is a perspective view of a motor according to Embodiment 1 of the present invention.
- 2 and 3 are exploded perspective views of the motor according to Embodiment 1 of the present invention.
- FIG. 4 is a cross-sectional view of the motor according to Embodiment 1 of the present invention.
- FIG. 5 is a cross-sectional view of an essential part showing a 5-5 cross section of FIG.
- the motor of the present invention has a stator 10, an inner rotor 20 that is opposed to the inner diameter side of the stator 10 with a predetermined gap, and a predetermined gear on the outer diameter side of the stator 10. It has an outer rotor 30 that is opposed to it.
- the inner rotor 20 and the outer rotor 30 are integrally formed with a mold resin 50 and transmit torque to the outside through the rotating shaft 4.
- the stator 10 is also almost entirely covered with the mold resin 51, and the outer periphery of the stator 10 is integrally formed with the mold resin 51 in a uniform interval pitch or a non-uniform interval pitch in the rotation direction.
- a mounting portion 60 is formed.
- a sensor for detecting the rotational position of the outer port 30 is disposed between the adjacent mounting portions 60. For this reason, the mounting portion 60 is formed at a position that avoids the sensor position.
- a plurality of air holes 64 penetrating in the direction of the rotating shaft 4 are formed in the mold resin 50 that integrally connects the inner rotor 20 and the outer rotor 30. Further, a convex portion 65 is provided at a portion of the mold resin 50 that integrally connects the inner rotor 20 and the outer rotor 30 so as to face the stator 10 in the axial direction. Thereby, when the inner rotor 20 and the outer rotor 30 rotate, the heat generated from the stator 10 is agitated. Then, hot air in the rotational direction is generated between the stator 10, the inner rotor 20 and the outer rotor 30. This hot wind wind vent 64 from outside the motor Is released to the part.
- a plurality of ribs 62 are provided on the back side of the mold resin 50 that integrally connects the inner rotor 20 and the outer rotor 30. Thereby, the required intensity
- the stator 10 includes a substantially annular stator yoke 14, an outer tooth 12 projecting from the stator yoke 14 in the outer circumferential direction, and an inner tooth 13 projecting from the stator yoke 14 in the inner circumferential direction in the same number as the outer teeth 12. It consists of. Between each outer tooth 12, an outer slot 16 force An inner slot 17 is formed between each inner tooth 13. A plurality of coils 15 force by a toroidal winding system connected in a three-phase star or delta shape is wound around the stator yoke 14 between the outer slot 16 and the inner slot 17 by a concentrated winding system.
- the stator 10 is integrally formed from a mold resin 51 after winding the coil 15. This is for fixing the coil 15 to the stator core 11 and for preventing moisture and preventing moisture. In particular, when this motor is used in a washing machine, it is expected to have moisture-proofing and anti-plucking effects.
- Both the mold resin 50 and the mold resin 51 are preferably unsaturated polyester resins containing fillers. This is because the fluidity during molding and the strength after molding are excellent.
- An outer rotor 30 is disposed opposite to the outer teeth 12 of the stator 10 via a predetermined gap.
- the inner rotor 20 is disposed so as to face the inner teeth 13 through a predetermined gap.
- the outer rotor 30 includes an outer rotor yoke 31 and a plurality of outer permanent magnets 32 embedded in a plurality of outer permanent magnet embedding holes 33 formed in the outer rotor yoke 31.
- the outer rotor yoke 31 is formed by laminating electromagnetic steel plates punched into a predetermined shape (ring shape having the outer permanent magnet embedding hole 33) to constitute a magnetic circuit.
- the inner rotor 20 includes an inner rotor yoke 21 and a plurality of inner permanent magnets 22 embedded in a plurality of inner permanent magnet embedding holes 23 formed in the inner rotor yoke 21.
- the inner rotor yoke 21 is laminated with electromagnetic steel plates punched into a predetermined shape (ring shape having an inner permanent magnet embedding hole 23), and constitutes a magnetic circuit.
- the outer rotor 30 and the inner rotor 20 each have no rotor frame. Yes. Therefore, the weight can be reduced and the number of manufacturing steps can be reduced. Furthermore, the volume of the rotor frame can be covered with the mold resin 50 to absorb vibrations.
- the outer rotor 30 and the inner rotor 20 are inserted into a resin molding die and integrally molded by a mold resin 50. Then, the outer rotor 30 and the inner rotor 20 are rotated together by being connected to the rotating shaft 4 and applying a predetermined current to the coil 15.
- the motor in this embodiment has a higher torque than a general inner rotor motor or outer rotor motor. High output can be realized.
- the number of poles of the inner rotor 20 and the number of poles of the outer rotor 30 are both 12, and the number of slots is 18 slots.
- the winding arrangement can achieve the same effect as distributed winding.
- FIG. 6 is a graph showing the relationship between the rotor rotational position (electrical angle) and the cogging torque of the double rotor type motor according to the present embodiment.
- the broken line indicates the cogging torque due to the inner rotor 20
- the thin solid line indicates the cogging torque due to the outer rotor 30
- the thick solid line at the center indicates the cogging torque of the entire motor combining these.
- the inner rotor 20 and the outer rotor 30 are configured to cancel the phase of the cogging torque of the inner rotor 20 and the phase of the cogging torque of the outer rotor 30.
- the cogging torque of the outer rotor 30 is larger than the cogging torque of the inner rotor 20, it is difficult to completely cancel out.
- the axial length of the inner permanent magnet 22 is made longer than the axial length of the outer permanent magnet 32 as shown in FIG. This is due to the following reason.
- the circumference length where the inner permanent magnet 22 is arranged is equal to the outer permanent magnet. It is shorter than the circumference of 32. For this reason, the length of the inner permanent magnet 22 in the rotational direction is shorter than the dimension of the outer permanent magnet 32 in the rotational direction. Therefore, if the axial length of the inner permanent magnet 22 and the axial length of the outer permanent magnet 32 are the same, the inner rotor The amount of magnetic flux generated from 20 and the amount of magnetic flux generated from the outer rotor 30 are different. If so, the amplitude of the cogging torque waveform by the inner rotor 20 and the amplitude of the cogging torque waveform by the outer rotor 30 are different, and the cogging torque of the entire motor cannot be completely canceled.
- the axial length of the inner permanent magnet 22 is made longer than the axial length of the outer permanent magnet 32, and at the same time, the inner rotor yoke 21 is made thicker than the outer permanent magnet 22. It is thicker than the rotor yoke 31.
- the amount of magnetic flux generated from the inner rotor 20 and the amount of magnetic flux generated from the outer rotor 30 are adjusted.
- the amplitude of the waveform of the cogging torque of the inner rotor 20 and the amplitude of the waveform of the cogging torque of the outer rotor 30 are made substantially the same. With such a configuration, as shown in FIG. 6, the cogging torque of the inner rotor 20 and the cogging torque of the outer rotor 30 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
- the force showing the configuration of 12 poles and 18 slots can be applied to other configurations such as a configuration of 30 poles and 18 slots.
- the number of poles is less than 12, there is a problem that the torque output is reduced.
- the number of poles is greater than 30, there is a problem that iron loss increases.
- the force showing a configuration in which the permanent magnet is embedded in the rotor yoke can also be applied to a configuration in which the permanent magnet is attached to the surface of the rotor yoke.
- either one of the inner rotor 20 and the outer rotor 30 may be configured to embed a permanent magnet in the rotor yoke, and the other may be configured to attach the permanent magnet to the rotor yoke surface.
- FIG. 7 is a cross-sectional view of a main part of the motor according to Embodiment 2 of the present invention.
- the same constituent elements as those in the first embodiment are given the same reference numerals and the description thereof is omitted.
- the motor according to the second embodiment includes the axial length of the inner permanent magnet 122 and the axial length of the outer permanent magnet 132, and the stack thickness of the inner rotor yoke 121 and the stack thickness of the outer rotor yoke 1 31. Are the same. On the other hand, the radial thickness of the inner permanent magnet 122 is made larger than the radial thickness of the outer permanent magnet 132. Other configurations are the same as those in the first embodiment.
- the motor according to the second embodiment adjusts the amount of magnetic flux generated from the inner rotor 120 and the amount of magnetic flux generated from the outer rotor 130 by the configuration as described above.
- the amplitude of the waveform of the cogging torque of the inner rotor 120 and the amplitude of the waveform of the cogging torque of the outer rotor 130 are substantially the same. Thereby, as shown in FIG. 6, the cogging torque of the inner rotor 120 and the cogging torque of the outer rotor 130 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
- the force described as the axial length of the inner permanent magnet 122 and the axial length of the outer permanent magnet 132 are not necessarily the same.
- the inner rotor yoke 121 and the outer rotor yoke 131 have the same thickness, they need not necessarily be the same.
- the axial length of the permanent magnet and the stack thickness of the rotor yoke can be changed as appropriate.
- FIG. 8 is a cross-sectional view of a main part of the motor according to Embodiment 3 of the present invention.
- the same constituent elements as those in the first embodiment are given the same reference numerals and the description thereof is omitted.
- the inner rotor yoke 221 and the outer rotor yoke 231 have substantially the same thickness, and the axial length of the inner permanent magnet 222 is set to the axial direction of the outer permanent magnet 232. It is longer than the length of. The rest is the same as in the first embodiment.
- the motor according to the present embodiment adjusts the amount of magnetic flux generated from inner rotor 220 and the amount of magnetic flux generated from outer rotor 230 by the configuration as described above.
- the amplitude of the waveform of the cogging torque of the inner rotor 220 and the amplitude of the waveform of the cogging torque of the outer rotor 230 are made substantially the same. Therefore, as shown in FIG. 6, the cogging torque of the inner rotor 220 and the cogging torque of the outer rotor 230 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
- FIG. 9 is a cross-sectional view of main parts of a motor according to Embodiment 4 of the present invention.
- the same constituent elements as those in the first embodiment are given the same reference numerals and the description thereof is omitted.
- the motor according to the present embodiment includes the axial length of inner permanent magnet 322 and the outer permanent magnet.
- the axial length of 332, and the thickness of the inner rotor yoke 321 and the thickness of the outer rotor yoke 331 are both substantially the same.
- the inner permanent magnet 322 and the outer permanent magnet 332 are made of different materials, and the residual magnetic flux density of the inner permanent magnet 322 is made larger than the residual magnetic flux density of the outer permanent magnet 332. The rest is the same as in the first embodiment.
- the amount of magnetic flux generated from the inner rotor 320 and the amount of magnetic flux generated also by the outer rotor 330 force can be adjusted.
- the amplitude of the cogging torque waveform of the inner rotor and the amplitude of the cogging torque waveform of the outer rotor are substantially the same.
- the cogging torque of the inner rotor 320 and the cogging torque of the outer rotor 330 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
- the axial length of the inner permanent magnet 322 and the axial length of the outer permanent magnet 332 have been described as being substantially the same, but are not limited to the same. .
- the inner rotor yoke 321 and the outer rotor yoke 331 are described as having substantially the same thickness, but are not limited to the same.
- the axial length of the permanent magnet and the stack thickness of the rotor yoke may be appropriately changed.
- the material of the permanent magnet has been described as a different material, it is not limited to a different material.
- the inner permanent magnet 322 and the outer permanent magnet 332 are made of the same neodymium / iron / boron sintered magnet, and the residual magnetic flux density of the inner permanent magnet 322 is changed to the outer permanent magnet by changing the blending method. It can also be made larger than the residual magnetic flux density of the magnet 332.
- the present invention is useful for motors that are small and have limited space, such as home appliances and electrical equipment, and that require high output, high efficiency, low vibration, low noise, and low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
A motor comprises a stator including a stator core having an annular stator yoke and inner and outer teeth projecting from the stator yoke to the inner and outer sides, and coils wound around the stator core; and an inner rotor and an outer rotor facing the inner and outer teeth with spaces therebetween and having permanent magnets. The amplitudes of the waveforms of the cogging torques by the inner and outer rotors are made equal to each other by adjusting the amounts of the magnetic flux produced from the inner and outer rotors.
Description
明 細 書 Specification
モータ motor
技術分野 Technical field
[0001] 本発明は、内側ロータと外側ロータの 2つのロータを搭載し、ステータにトロイダル 卷線が施されたモータに関する。 The present invention relates to a motor in which two rotors, an inner rotor and an outer rotor, are mounted and a toroidal winding is applied to a stator.
背景技術 Background art
[0002] ダイレクトドライブ洗濯機の駆動用モータなどに使用されるブラシレスモータは、低 速大トルクで低振動、低騒音であることが望まれている。ダイレクトドライブ駆動で用 いられるモータは、ギヤが無ぐ直接駆動するため、モータの大トルク化が必要である ため、ロータ側には内側ロータと外側ロータを備え、ステータ側には内径側および外 径側にティースを備えるダブルロータ型のブラシレスモータが提案されて ヽる。 [0002] A brushless motor used for a drive motor of a direct drive washing machine or the like is desired to have low speed, large torque, low vibration, and low noise. Since the motor used in direct drive is driven directly without gears, it is necessary to increase the torque of the motor.Therefore, the rotor side has an inner rotor and an outer rotor, and the stator side has an inner diameter side and an outer rotor. A double rotor type brushless motor with teeth on the diameter side has been proposed.
[0003] このようなダブルロータ型ブラシレスモータ技術に関して、特許文献 1に開示されて いる。このようなダブルロータ型ブラシレスモータは、内側スロット部と外側スロット部と に配置される卷線に流れる電流により、内側ロータおよび外側ロータにトルクが発生 する。このため、内側ロータのみ、または外側ロータのみを備える同一体積のモータ に比べて、大きなトルクを出力することができ、高効率にすることができる。しかしなが ら、このようなダブルロータ型モータでは、内側ロータによるコギングトルクおよびトル クリップルと外側ロータによるコギングトルクおよびトルクリップルとが合成され、さらに 大きなコギングトルクおよびトルクリップルが発生すると 、う問題が生じて 、た。 [0003] Patent Document 1 discloses such a double rotor type brushless motor technology. In such a double rotor type brushless motor, torque is generated in the inner rotor and the outer rotor due to the current flowing in the winding arranged in the inner slot portion and the outer slot portion. For this reason, compared with the motor of the same volume provided only with an inner side rotor or only an outer side rotor, a big torque can be output and it can be made highly efficient. However, in such a double rotor type motor, the cogging torque and torque ripple due to the inner rotor and the cogging torque and torque ripple due to the outer rotor are combined to generate a larger cogging torque and torque ripple. Happened.
[0004] このため、特許文献 1には、内側ロータと外側ロータとの磁極の境目の位置を任意 の角度ずらす構成が提案されている。また、内側ティースのスロットオープンの幅と外 側ティースのスロットオープンの幅との組合せを変えることにより、内側ロータによるコ ギングトルクの波形の位相と外側ロータによるコギングトルクの波形の位相とを反転さ せる技術も提案されている。以上のようにして、内側ロータによるコギングトルクと外側 ロータによるコギングトルクとを打ち消し、モータ全体としてのコギングトルクを低減さ せることができるとされて!/、る。 [0004] For this reason, Patent Document 1 proposes a configuration in which the position of the boundary between the magnetic poles of the inner rotor and the outer rotor is shifted by an arbitrary angle. Also, by changing the combination of the slot opening width of the inner teeth and the slot opening width of the outer teeth, the phase of the cogging torque waveform by the inner rotor and the phase of the cogging torque waveform by the outer rotor are reversed. Technology has also been proposed. As described above, the cogging torque by the inner rotor and the cogging torque by the outer rotor can be canceled out to reduce the cogging torque of the motor as a whole! /
[0005] 図 10は、従来のダブルロータ型モータのロータ回転位置(電気角)とコギングトルク
との関係を示すグラフである。図 10において、破線は内側ロータによるコギングトルク を、細い実線は外側ロータによるコギントルクを、中央の太い実線はこれらを合成した モータ全体のコギングトルクを示して 、る。 [0005] FIG. 10 shows the rotor rotation position (electrical angle) and cogging torque of a conventional double rotor type motor. It is a graph which shows the relationship. In Fig. 10, the broken line shows the cogging torque by the inner rotor, the thin solid line shows the cogging torque by the outer rotor, and the thick solid line at the center shows the cogging torque of the entire motor.
[0006] 上述の通り、内側ロータと外側ロータとを、内側ロータのコギングトルクの位相と外側 ロータのコギングトルクの位相とを打ち消すように構成したとしても、内側ロータのコギ ングトルクより外側ロータのコギングトルクの方が大きいため、完全に打ち消すことが 困難であると 、う課題を有して 、た。 [0006] As described above, even if the inner rotor and the outer rotor are configured to cancel the phase of the cogging torque of the inner rotor and the phase of the cogging torque of the outer rotor, the cogging of the outer rotor is larger than the cogging torque of the inner rotor. Since the torque is larger, it is difficult to completely cancel the torque.
特許文献 1 :特開 2001— 037133号公報 Patent Document 1: Japanese Patent Laid-Open No. 2001-037133
発明の開示 Disclosure of the invention
[0007] 本発明のモータは次の構成を有する。環状のステータヨークと、このステータヨーク 力 径方向内側に向かって突出した複数の内側ティースと、この内側ティースと同数 でステータヨークカも径方向外側に向力つて突出した複数の外側ティースと、内側テ ィースの間に構成された内側スロットと、外側ティースの間に構成された外側スロットと を有するステータコアと、内側スロットと外側スロットの間のステータヨークに卷回され 、 3相スターまたはデルタ状に結線された複数のコイルとを備えたステータを有する。 [0007] The motor of the present invention has the following configuration. An annular stator yoke, a plurality of inner teeth projecting radially inward in the stator yoke force, a plurality of outer teeth projecting in the same number as the inner teeth, and the stator yoke also projecting radially outward, and an inner side A stator core having an inner slot configured between the teeth and an outer slot configured between the outer teeth, and a stator yoke between the inner slot and the outer slot, wound in a three-phase star or delta shape And a stator having a plurality of connected coils.
[0008] 内側ティースに空隙を介して対向した内側ロータと、この内側ロータと同一回転軸 に接続され、外側ティースに空隙を介して対向した外側ロータとを含み、内側ロータ は、所定の形状に打ち抜いた電磁鋼板が積層された内側ロータヨークと、内側永久 磁石とを有し、外側ロータは、所定の形状に打ち抜いた電磁鋼板が積層された外側 ロータヨークと、内側永久磁石と同極数の外側永久磁石とを有する。 [0008] An inner rotor opposed to the inner teeth via a gap, and an outer rotor connected to the same rotation shaft as the inner rotor and opposed to the outer teeth via the gap, the inner rotor having a predetermined shape The outer rotor has an inner rotor yoke laminated with punched electromagnetic steel sheets and an inner permanent magnet, and the outer rotor has an outer rotor yoke laminated with electromagnetic steel sheets punched into a predetermined shape and the outer permanent yoke having the same number of poles as the inner permanent magnet. And a magnet.
[0009] ここに、内側ロータから生じる磁束量と、外側ロータから生じる磁束量とを調整するこ とにより、内側ロータによるコギングトルクの波形の振幅と、外側ロータによるコギング トルクの波形の振幅とを同一にする構成を有する。 [0009] Here, by adjusting the amount of magnetic flux generated from the inner rotor and the amount of magnetic flux generated from the outer rotor, the amplitude of the cogging torque waveform by the inner rotor and the amplitude of the cogging torque waveform by the outer rotor are obtained. The configuration is the same.
[0010] この構成により本発明のモータは、体積効率が良好であり、高出力、高トルクが得ら れると 、うダブルロータ型ブラシレスモータの特徴を生かしながら、コギングトルクゃト ルクリップルを低減し、低振動'低騒音なモータを実現できる。 With this configuration, the motor of the present invention has good volumetric efficiency, and when high output and high torque are obtained, the torque of the cogging torque is reduced while taking advantage of the characteristics of the double rotor type brushless motor. Low vibration and low noise motor can be realized.
図面の簡単な説明 Brief Description of Drawings
[0011] [図 1]図 1は本発明の実施の形態 1に係るモータの外観斜視図である。
圆 2]図 2は本発明の実施の形態 1に係るモータの分解斜視図である。 FIG. 1 is an external perspective view of a motor according to Embodiment 1 of the present invention. 2] FIG. 2 is an exploded perspective view of the motor according to Embodiment 1 of the present invention.
圆 3]図 3は本発明の実施の形態 1に係るモータの分解斜視図である。 3] FIG. 3 is an exploded perspective view of the motor according to Embodiment 1 of the present invention.
[図 4]図 4は本発明の実施の形態 1に係るモータの断面図である。 FIG. 4 is a cross-sectional view of the motor according to Embodiment 1 of the present invention.
[図 5]図 5は本発明の実施の形態 1に係るモータの要部断面図である。 FIG. 5 is a cross-sectional view of a main part of the motor according to Embodiment 1 of the present invention.
[図 6]図 6は本発明の実施の形態 1に係るモータのロータ回転位置 (電気角)とコギン グトルクとの関係を示すグラフである。 FIG. 6 is a graph showing the relationship between the rotor rotational position (electrical angle) and the cogging torque of the motor according to Embodiment 1 of the present invention.
[図 7]図 7は本発明の実施の形態 2に係るモータの要部縦断面図である。 FIG. 7 is a longitudinal sectional view of an essential part of a motor according to Embodiment 2 of the present invention.
[図 8]図 8は本発明の実施の形態 3に係るモータの要部縦断面図である。 FIG. 8 is a longitudinal sectional view of a main part of a motor according to Embodiment 3 of the present invention.
[図 9]図 9は本発明の実施の形態 4に係るモータの要部縦断面図である。 FIG. 9 is a longitudinal sectional view of a main part of a motor according to Embodiment 4 of the present invention.
[図 10]図 10は従来のモータに係るロータ回転位置 (電気角)とコギングトルクとの関 係を示すグラフである。 FIG. 10 is a graph showing the relationship between the rotor rotational position (electrical angle) and the cogging torque in a conventional motor.
符号の説明 Explanation of symbols
4 回転軸 4 Rotating axis
10 ステータ 10 Stator
11 ステータコア 11 Stator core
12 外側ティース 12 Outer teeth
13 内側ティース 13 Inner teeth
14 ステータヨーク 14 Stator yoke
15 コィノレ 15 Koinole
16 外側スロット 16 Outer slot
17 内佃 jスロット 17 Inner slot j slot
20, 120, 220, 320 内側ロータ 20, 120, 220, 320 Inner rotor
21, 121, 221, 321 内佃 jロータヨーク 21, 121, 221, 321 Inner side j Rotor yoke
22, 122, 222, 322 内側永久磁石 22, 122, 222, 322 Inner permanent magnet
23 内側永久磁石埋設孔 23 Inner permanent magnet hole
30, 130, 230, 330 外側ロータ 30, 130, 230, 330 Outer rotor
31, 131, 231, 331 外側ロータヨーク 31, 131, 231, 331 Outer rotor yoke
32, 132, 232, 332 外側永久磁石
33 外側永久磁石埋設孔 32, 132, 232, 332 outer permanent magnet 33 Outer permanent magnet hole
50, 51 モールド榭脂 50, 51 Molded resin
60 取付部 60 Mounting part
62 リブ 62 Ribs
64 風孔 64 Vent
65 凸部 65 Convex
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態について、図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014] (実施の形態 1) [0014] (Embodiment 1)
図 1は本発明の実施の形態 1におけるモータの斜視図である。また、図 2および図 3 は本発明の実施の形態 1におけるモータの分解斜視図である。図 4は、本発明の実 施の形態 1におけるモータの断面図である。また、図 5は、図 4の 5— 5断面を示す要 部断面図である。 FIG. 1 is a perspective view of a motor according to Embodiment 1 of the present invention. 2 and 3 are exploded perspective views of the motor according to Embodiment 1 of the present invention. FIG. 4 is a cross-sectional view of the motor according to Embodiment 1 of the present invention. FIG. 5 is a cross-sectional view of an essential part showing a 5-5 cross section of FIG.
[0015] これらの図において、本発明のモータは、ステータ 10と、ステータ 10の内径側に所 定のギャップを持って対向する内側ロータ 20と、ステータ 10の外径側に所定のギヤッ プを持って対向する外側ロータ 30とよりなる。内側ロータ 20と外側ロータ 30とは、モ 一ルド榭脂 50で一体的に成形されており、回転軸 4にてトルクを外部に伝達する。一 方、ステータ 10もモールド榭脂 51にて略全面が被覆されており、このステータ 10の 外周部には、モールド榭脂 51にて一体的に、回転方向に均一間隔ピッチまたは不 均一間隔ピッチの取付部 60が形成されている。隣接する取付部 60間には、外側口 ータ 30の回転位置を検出するためのセンサが配置される。このため、取付部 60はセ ンサ位置を回避する位置に形成される。 In these drawings, the motor of the present invention has a stator 10, an inner rotor 20 that is opposed to the inner diameter side of the stator 10 with a predetermined gap, and a predetermined gear on the outer diameter side of the stator 10. It has an outer rotor 30 that is opposed to it. The inner rotor 20 and the outer rotor 30 are integrally formed with a mold resin 50 and transmit torque to the outside through the rotating shaft 4. On the other hand, the stator 10 is also almost entirely covered with the mold resin 51, and the outer periphery of the stator 10 is integrally formed with the mold resin 51 in a uniform interval pitch or a non-uniform interval pitch in the rotation direction. A mounting portion 60 is formed. A sensor for detecting the rotational position of the outer port 30 is disposed between the adjacent mounting portions 60. For this reason, the mounting portion 60 is formed at a position that avoids the sensor position.
[0016] 内側ロータ 20と外側ロータ 30とを一体ィ匕するモールド榭脂 50には、回転軸 4の方 向に貫通する複数の風孔 64が形成される。また、この内側ロータ 20と外側ロータ 30 とを一体ィ匕するモールド榭脂 50におけるステータ 10と軸方向で対向する部分に、凸 部 65が設けられる。これにより、内側ロータ 20および外側ロータ 30が回転するときに 、ステータ 10から発生した熱が攪拌される。そして、ステータ 10、内側ロータ 20と外 側ロータ 30の間で、回転方向への熱風が生じる。この熱風力 風孔 64からモータ外
部に放出される。また、内側ロータ 20と外側ロータ 30とを一体ィ匕するモールド榭脂 5 0の背面側には、複数のリブ 62が設けられる。これにより、モールド榭脂量を低減さ せながら、必要とされる強度を担保することができる。 A plurality of air holes 64 penetrating in the direction of the rotating shaft 4 are formed in the mold resin 50 that integrally connects the inner rotor 20 and the outer rotor 30. Further, a convex portion 65 is provided at a portion of the mold resin 50 that integrally connects the inner rotor 20 and the outer rotor 30 so as to face the stator 10 in the axial direction. Thereby, when the inner rotor 20 and the outer rotor 30 rotate, the heat generated from the stator 10 is agitated. Then, hot air in the rotational direction is generated between the stator 10, the inner rotor 20 and the outer rotor 30. This hot wind wind vent 64 from outside the motor Is released to the part. A plurality of ribs 62 are provided on the back side of the mold resin 50 that integrally connects the inner rotor 20 and the outer rotor 30. Thereby, the required intensity | strength can be ensured, reducing mold fat amount.
[0017] ステータ 10は、略環状のステータヨーク 14と、このステータヨーク 14から外周方向 に突出した外側ティース 12と、外側ティース 12と同数でステータヨーク 14から内周方 向に突出した内側ティース 13とから成る。各々の外側ティース 12の間には外側スロッ ト 16力 各々の内側ティース 13の間には内側スロット 17が、それぞれ形成されている 。そして、 3相スターまたはデルタ状に結線されたトロイダル卷線方式による複数のコ ィル 15力 外側スロット 16と内側スロット 17の間のステータヨーク 14に集中卷線方式 で卷回されている。 The stator 10 includes a substantially annular stator yoke 14, an outer tooth 12 projecting from the stator yoke 14 in the outer circumferential direction, and an inner tooth 13 projecting from the stator yoke 14 in the inner circumferential direction in the same number as the outer teeth 12. It consists of. Between each outer tooth 12, an outer slot 16 force An inner slot 17 is formed between each inner tooth 13. A plurality of coils 15 force by a toroidal winding system connected in a three-phase star or delta shape is wound around the stator yoke 14 between the outer slot 16 and the inner slot 17 by a concentrated winding system.
[0018] このステータ 10は、上述したように、コイル 15を卷線した後、モールド榭脂 51〖こより 一体成形される。これは、コイル 15をステータコア 11に固定することと、防湿、防摘の ためである。特に、このモータが洗濯機に用いられる場合には、防湿、防摘の効果が 期待される。なお、モールド榭脂 50及びモールド榭脂 51は、ともにフィラーを含んだ 不飽和ポリエステル榭脂が好適である。これは、成形時の流動性と成形後の強度が 優れているためである。 [0018] As described above, the stator 10 is integrally formed from a mold resin 51 after winding the coil 15. This is for fixing the coil 15 to the stator core 11 and for preventing moisture and preventing moisture. In particular, when this motor is used in a washing machine, it is expected to have moisture-proofing and anti-plucking effects. Both the mold resin 50 and the mold resin 51 are preferably unsaturated polyester resins containing fillers. This is because the fluidity during molding and the strength after molding are excellent.
[0019] 次に、ロータ側の構成について説明する。ステータ 10の外側ティース 12に対向し て所定の空隙を介して外側ロータ 30が配設されている。同様に、内側ティース 13〖こ 対向して所定の空隙を介して内側ロータ 20が配設されている。 Next, the configuration on the rotor side will be described. An outer rotor 30 is disposed opposite to the outer teeth 12 of the stator 10 via a predetermined gap. Similarly, the inner rotor 20 is disposed so as to face the inner teeth 13 through a predetermined gap.
[0020] 外側ロータ 30は、外側ロータヨーク 31と外側ロータヨーク 31に形成される複数の外 側永久磁石埋設孔 33に埋設される複数の外側永久磁石 32とを備える。外側ロータ ヨーク 31は、所定の形状 (外側永久磁石埋設孔 33を有するリング形状)に打ち抜い た電磁鋼板が積層されてなり、磁気回路を構成する。同様に、内側ロータ 20は、内 側ロータヨーク 21と内側ロータヨーク 21に形成される複数の内側永久磁石埋設孔 23 に埋設される複数の内側永久磁石 22とを備える。内側ロータヨーク 21は、所定の形 状(内側永久磁石埋設孔 23を有するリング形状)に打ち抜いた電磁鋼板が積層され ており、磁気回路を構成する。 [0020] The outer rotor 30 includes an outer rotor yoke 31 and a plurality of outer permanent magnets 32 embedded in a plurality of outer permanent magnet embedding holes 33 formed in the outer rotor yoke 31. The outer rotor yoke 31 is formed by laminating electromagnetic steel plates punched into a predetermined shape (ring shape having the outer permanent magnet embedding hole 33) to constitute a magnetic circuit. Similarly, the inner rotor 20 includes an inner rotor yoke 21 and a plurality of inner permanent magnets 22 embedded in a plurality of inner permanent magnet embedding holes 23 formed in the inner rotor yoke 21. The inner rotor yoke 21 is laminated with electromagnetic steel plates punched into a predetermined shape (ring shape having an inner permanent magnet embedding hole 23), and constitutes a magnetic circuit.
[0021] なお、外側ロータ 30および内側ロータ 20は、それぞれロータフレームを備えていな
い。このため、軽量ィ匕することができるとともに、製造工数を低減することができる。さ らに、ロータフレームの体積分をモールド榭脂 50で被覆することができ、振動を吸収 することができる。 [0021] It should be noted that the outer rotor 30 and the inner rotor 20 each have no rotor frame. Yes. Therefore, the weight can be reduced and the number of manufacturing steps can be reduced. Furthermore, the volume of the rotor frame can be covered with the mold resin 50 to absorb vibrations.
[0022] 外側ロータ 30と内側ロータ 20とは、榭脂成形金型内にインサートしてモールド榭脂 50により一体成形される。そして、回転軸 4に連結して、コイル 15に所定の通電を行 うことにより、外側ロータ 30と内側ロータ 20とが一体で回転する。このような外側ロー タ 30と内側ロータ 20との一体的な構成とすることにより、この実施の形態におけるモ ータは、一般的なインナーロータ型モータやアウターロータ型モータに比べ、高トルク 、高出力を実現することができる。 [0022] The outer rotor 30 and the inner rotor 20 are inserted into a resin molding die and integrally molded by a mold resin 50. Then, the outer rotor 30 and the inner rotor 20 are rotated together by being connected to the rotating shaft 4 and applying a predetermined current to the coil 15. By adopting an integral configuration of the outer rotor 30 and the inner rotor 20 as described above, the motor in this embodiment has a higher torque than a general inner rotor motor or outer rotor motor. High output can be realized.
[0023] ここで、この実施の形態に係るモータは、内側ロータ 20の極数および外側ロータ 30 の極数がともに 12極であり、スロット数はともに 18スロットである。このように、 12極 18 スロットの組合せにすることにより、卷線配置が分布巻と同等の効果を実現することが できる。 Here, in the motor according to this embodiment, the number of poles of the inner rotor 20 and the number of poles of the outer rotor 30 are both 12, and the number of slots is 18 slots. Thus, by using a combination of 12 poles and 18 slots, the winding arrangement can achieve the same effect as distributed winding.
[0024] 図 6は、本実施の形態におけるダブルロータ型モータのロータ回転位置 (電気角)と コギングトルクとの関係を示すグラフである。図 6において、破線は内側ロータ 20によ るコギングトルクを、細い実線は外側ロータ 30によるコギングトルクを、中央の太い実 線はこれらを合成したモータ全体のコギングトルクを示している。 FIG. 6 is a graph showing the relationship between the rotor rotational position (electrical angle) and the cogging torque of the double rotor type motor according to the present embodiment. In FIG. 6, the broken line indicates the cogging torque due to the inner rotor 20, the thin solid line indicates the cogging torque due to the outer rotor 30, and the thick solid line at the center indicates the cogging torque of the entire motor combining these.
[0025] この実施の形態 1に係るモータは、内側ロータ 20と外側ロータ 30とを、内側ロータ 2 0のコギングトルクの位相と外側ロータ 30のコギングトルクの位相とを打ち消すように 構成している。しかしながら、内側ロータ 20のコギングトルクより外側ロータ 30のコギ ングトルクの方が大きいため、完全に打ち消すことが困難である。この対策として、本 実施の形態においては、図 5に示すように内側永久磁石 22の軸方向の長さを外側 永久磁石 32の軸方向長さより長くしている。これは、以下の理由によるものである。 In the motor according to the first embodiment, the inner rotor 20 and the outer rotor 30 are configured to cancel the phase of the cogging torque of the inner rotor 20 and the phase of the cogging torque of the outer rotor 30. . However, since the cogging torque of the outer rotor 30 is larger than the cogging torque of the inner rotor 20, it is difficult to completely cancel out. As a countermeasure against this, in the present embodiment, the axial length of the inner permanent magnet 22 is made longer than the axial length of the outer permanent magnet 32 as shown in FIG. This is due to the following reason.
[0026] 内側永久磁石 22の配置される円周の長さと外側永久磁石 32の配置される円周の 長さとを比較すると、内側永久磁石 22の配置される円周の長さが外側永久磁石 32 の配置される円周の長さよりも短い。このため、内側永久磁石 22の回転方向の長さ は、外側永久磁石 32の回転方向の寸法よりも短くなる。したがって、内側永久磁石 2 2の軸方向の長さと外側永久磁石 32の軸方向の長さとが同一であれば、内側ロータ
20から生じる磁束量と外側ロータ 30から生じる磁束量とが異なる。そうすると、内側口 ータ 20によるコギングトルクの波形の振幅と、外側ロータ 30によるコギングトルクの波 形の振幅とが異なり、モータ全体としてのコギングトルクを完全に打ち消すことができ ない。 [0026] When the length of the circumference where the inner permanent magnet 22 is arranged is compared with the length of the circumference where the outer permanent magnet 32 is arranged, the circumference length where the inner permanent magnet 22 is arranged is equal to the outer permanent magnet. It is shorter than the circumference of 32. For this reason, the length of the inner permanent magnet 22 in the rotational direction is shorter than the dimension of the outer permanent magnet 32 in the rotational direction. Therefore, if the axial length of the inner permanent magnet 22 and the axial length of the outer permanent magnet 32 are the same, the inner rotor The amount of magnetic flux generated from 20 and the amount of magnetic flux generated from the outer rotor 30 are different. If so, the amplitude of the cogging torque waveform by the inner rotor 20 and the amplitude of the cogging torque waveform by the outer rotor 30 are different, and the cogging torque of the entire motor cannot be completely canceled.
[0027] 以上のことから、本実施の形態では、内側永久磁石 22の軸方向の長さを、外側永 久磁石 32の軸方向の長さより長くし、同時に内側ロータヨーク 21の積厚を、外側ロー タヨーク 31の積厚より厚くしている。これにより、内側ロータ 20から生じる磁束量と、外 側ロータ 30から生じる磁束量とを調整している。このようにして、内側ロータ 20のコギ ングトルクの波形の振幅と外側ロータ 30のコギングトルクの波形の振幅とを略同一に している。このような構成とすることにより、図 6に示すように、内側ロータ 20のコギング トルクと外側ロータ 30のコギングトルクとを打ち消し、モータ全体のコギングトルクを大 幅に低減することができる。 [0027] From the above, in the present embodiment, the axial length of the inner permanent magnet 22 is made longer than the axial length of the outer permanent magnet 32, and at the same time, the inner rotor yoke 21 is made thicker than the outer permanent magnet 22. It is thicker than the rotor yoke 31. Thus, the amount of magnetic flux generated from the inner rotor 20 and the amount of magnetic flux generated from the outer rotor 30 are adjusted. In this way, the amplitude of the waveform of the cogging torque of the inner rotor 20 and the amplitude of the waveform of the cogging torque of the outer rotor 30 are made substantially the same. With such a configuration, as shown in FIG. 6, the cogging torque of the inner rotor 20 and the cogging torque of the outer rotor 30 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
[0028] なお、本実施の形態においては、 12極 18スロットの構成を示した力 本発明は、例 えば 30極 18スロットの構成等、他の構成にも適用できる。ただし、極数を 12未満とす ると、トルクの出力が小さくなつてしまうという問題がある。一方、極数を 30より大きい 数とすると、鉄損が大きくなつてしまうという問題がある。 [0028] In the present embodiment, the force showing the configuration of 12 poles and 18 slots The present invention can be applied to other configurations such as a configuration of 30 poles and 18 slots. However, if the number of poles is less than 12, there is a problem that the torque output is reduced. On the other hand, if the number of poles is greater than 30, there is a problem that iron loss increases.
[0029] また、永久磁石をロータヨークに埋め込む構成を示した力 本発明は、ロータヨーク 表面に永久磁石を貼り付ける構成にも適用できる。あるいは、内側ロータ 20と外側口 ータ 30のいずれか一方を、永久磁石をロータヨークに埋め込む構成とし、他方をロー タヨーク表面に永久磁石を貼り付ける構成とすることも可能である。 [0029] Further, the force showing a configuration in which the permanent magnet is embedded in the rotor yoke. The present invention can also be applied to a configuration in which the permanent magnet is attached to the surface of the rotor yoke. Alternatively, either one of the inner rotor 20 and the outer rotor 30 may be configured to embed a permanent magnet in the rotor yoke, and the other may be configured to attach the permanent magnet to the rotor yoke surface.
[0030] (実施の形態 2) [0030] (Embodiment 2)
図 7は、本発明の実施の形態 2に係るモータの要部断面図である。実施の形態 1と 同一の構成要素は、同一の参照符号を付し説明を省略する。 FIG. 7 is a cross-sectional view of a main part of the motor according to Embodiment 2 of the present invention. The same constituent elements as those in the first embodiment are given the same reference numerals and the description thereof is omitted.
[0031] この実施の形態 2に係るモータは、内側永久磁石 122の軸方向の長さと外側永久 磁石 132の軸方向の長さ、および、内側ロータヨーク 121の積厚と外側ロータヨーク 1 31の積厚を共に同一にしている。一方、内側永久磁石 122の径方向の厚さを外側 永久磁石 132の径方向の厚さより厚くしている。その他の構成は、実施の形態 1と同 じである。
[0032] この実施の形態 2に係るモータは、以上のような構成により、内側ロータ 120から生 じる磁束量と、外側ロータ 130から生じる磁束量とを調整している。実施の形態 1と同 様に、内側ロータ 120のコギングトルクの波形の振幅と外側ロータ 130のコギングトル クの波形の振幅とを略同一にしている。これにより、図 6に示すように、内側ロータ 12 0のコギングトルクと外側ロータ 130のコギングトルクとを打ち消し、モータ全体のコギ ングトルクを大幅に低減することができる。 [0031] The motor according to the second embodiment includes the axial length of the inner permanent magnet 122 and the axial length of the outer permanent magnet 132, and the stack thickness of the inner rotor yoke 121 and the stack thickness of the outer rotor yoke 1 31. Are the same. On the other hand, the radial thickness of the inner permanent magnet 122 is made larger than the radial thickness of the outer permanent magnet 132. Other configurations are the same as those in the first embodiment. The motor according to the second embodiment adjusts the amount of magnetic flux generated from the inner rotor 120 and the amount of magnetic flux generated from the outer rotor 130 by the configuration as described above. As in the first embodiment, the amplitude of the waveform of the cogging torque of the inner rotor 120 and the amplitude of the waveform of the cogging torque of the outer rotor 130 are substantially the same. Thereby, as shown in FIG. 6, the cogging torque of the inner rotor 120 and the cogging torque of the outer rotor 130 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
[0033] なお、本実施の形態においては、内側永久磁石 122の軸方向の長さと外側永久磁 石 132の軸方向の長さを共に同一にすると説明した力 必ずしも同一でなくてもよい 。同様に、内側ロータヨーク 121の積厚と外側ロータヨーク 131の積厚を共に同一に すると説明したが、必ずしも同一でなくてもよい。内側永久磁石 122の径方向の厚さ を外側永久磁石 132の径方向の厚さより大きくすることを必須条件として、永久磁石 の軸方向の長さやロータヨークの積厚は、適宜変更可能である。 [0033] In the present embodiment, the force described as the axial length of the inner permanent magnet 122 and the axial length of the outer permanent magnet 132 are not necessarily the same. Similarly, although it has been described that the inner rotor yoke 121 and the outer rotor yoke 131 have the same thickness, they need not necessarily be the same. With the essential condition that the radial thickness of the inner permanent magnet 122 is larger than the radial thickness of the outer permanent magnet 132, the axial length of the permanent magnet and the stack thickness of the rotor yoke can be changed as appropriate.
[0034] (実施の形態 3) [Embodiment 3]
図 8は、本発明の実施の形態 3に係るモータの要部断面図である。実施の形態 1と 同一の構成要素は、同一の参照符号を付し説明を省略する。 FIG. 8 is a cross-sectional view of a main part of the motor according to Embodiment 3 of the present invention. The same constituent elements as those in the first embodiment are given the same reference numerals and the description thereof is omitted.
[0035] この実施の形態 3に係るモータは、内側ロータヨーク 221の積厚と外側ロータヨーク 231の積厚とを略同一とし、内側永久磁石 222の軸方向の長さを外側永久磁石 232 の軸方向の長さより長くしている。これ以外は実施の形態 1と同様である。 In the motor according to the third embodiment, the inner rotor yoke 221 and the outer rotor yoke 231 have substantially the same thickness, and the axial length of the inner permanent magnet 222 is set to the axial direction of the outer permanent magnet 232. It is longer than the length of. The rest is the same as in the first embodiment.
[0036] 本実施の形態に係るモータは、以上のような構成により、内側ロータ 220から生じる 磁束量と、外側ロータ 230から生じる磁束量とを調整している。これにより、実施の形 態 1と同様に、内側ロータ 220のコギングトルクの波形の振幅と外側ロータ 230のコギ ングトルクの波形の振幅とを略同一にしている。従って、図 6に示すように、内側ロー タ 220のコギングトルクと外側ロータ 230のコギングトルクとを打ち消し、モータ全体の コギングトルクを大幅に低減することができる。 The motor according to the present embodiment adjusts the amount of magnetic flux generated from inner rotor 220 and the amount of magnetic flux generated from outer rotor 230 by the configuration as described above. As a result, similarly to the first embodiment, the amplitude of the waveform of the cogging torque of the inner rotor 220 and the amplitude of the waveform of the cogging torque of the outer rotor 230 are made substantially the same. Therefore, as shown in FIG. 6, the cogging torque of the inner rotor 220 and the cogging torque of the outer rotor 230 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
[0037] (実施の形態 4) [0037] (Embodiment 4)
図 9は、本発明の実施の形態 4に係るモータの要部断面図である。実施の形態 1と 同一の構成要素は、同一の参照符号を付し説明を省略する。 FIG. 9 is a cross-sectional view of main parts of a motor according to Embodiment 4 of the present invention. The same constituent elements as those in the first embodiment are given the same reference numerals and the description thereof is omitted.
[0038] 本実施の形態に係るモータは、内側永久磁石 322の軸方向の長さと外側永久磁石
332の軸方向の長さ、および、内側ロータヨーク 321の積厚と外側ロータヨーク 331 の積厚を共に略同一としている。一方、内側永久磁石 322と外側永久磁石 332とを 異なる材質とし、内側永久磁石 322の残留磁束密度を外側永久磁石 332の残留磁 束密度より大きくしている。これ以外は実施の形態 1と同様である。 [0038] The motor according to the present embodiment includes the axial length of inner permanent magnet 322 and the outer permanent magnet. The axial length of 332, and the thickness of the inner rotor yoke 321 and the thickness of the outer rotor yoke 331 are both substantially the same. On the other hand, the inner permanent magnet 322 and the outer permanent magnet 332 are made of different materials, and the residual magnetic flux density of the inner permanent magnet 322 is made larger than the residual magnetic flux density of the outer permanent magnet 332. The rest is the same as in the first embodiment.
[0039] 具体的には、一例として、内側永久磁石 322としてネオジゥム '鉄 ·ボロン系焼結磁 石 (Br= l. 36T)を使用し、外側永久磁石 332としてフェライト系焼結磁石 (Br=0. 44T)を使用する。これにより、内側ロータ 320から生じる磁束量と、外側ロータ 330 力も生じる磁束量とを調整することができる。実施の形態 1と同様に、内側ロータのコ ギングトルクの波形の振幅と外側ロータのコギングトルクの波形の振幅とを略同一に している。これにより、図 6に示すように、内側ロータ 320のコギングトルクと外側ロータ 330のコギングトルクとを打ち消し、モータ全体のコギングトルクを大幅に低減すること ができる。 Specifically, as an example, neodymium 'iron-boron-based sintered magnet (Br = l.36T) is used as the inner permanent magnet 322, and ferrite-based sintered magnet (Br = 0. 44T) is used. Thereby, the amount of magnetic flux generated from the inner rotor 320 and the amount of magnetic flux generated also by the outer rotor 330 force can be adjusted. As in the first embodiment, the amplitude of the cogging torque waveform of the inner rotor and the amplitude of the cogging torque waveform of the outer rotor are substantially the same. Thereby, as shown in FIG. 6, the cogging torque of the inner rotor 320 and the cogging torque of the outer rotor 330 can be canceled, and the cogging torque of the entire motor can be greatly reduced.
[0040] なお、本実施の形態においては、内側永久磁石 322の軸方向の長さと外側永久磁 石 332の軸方向の長さは、略同一と説明したが、同一に限定されるものではない。同 様に、内側ロータヨーク 321の積厚と外側ロータヨーク 331の積厚は略同一と説明し たが、同一に限定されるものではない。内側永久磁石 322の残留磁束密度を外側永 久磁石 332の残留磁束密度より大きくすることを必須要件として、永久磁石の軸方向 の長さやロータヨークの積厚を適宜変更してもよ 、。 In the present embodiment, the axial length of the inner permanent magnet 322 and the axial length of the outer permanent magnet 332 have been described as being substantially the same, but are not limited to the same. . Similarly, the inner rotor yoke 321 and the outer rotor yoke 331 are described as having substantially the same thickness, but are not limited to the same. As an essential requirement that the residual magnetic flux density of the inner permanent magnet 322 be larger than the residual magnetic flux density of the outer permanent magnet 332, the axial length of the permanent magnet and the stack thickness of the rotor yoke may be appropriately changed.
[0041] また、永久磁石の材質については、異なる材質と説明したが、異なる材質に限定さ れるものではない。例えば、内側永久磁石 322、外側永久磁石 332共に同一のネオ ジゥム ·鉄 ·ボロン系焼結磁石とし、その配合比ゃ着磁方法等を変えることによって、 内側永久磁石 322の残留磁束密度を外側永久磁石 332の残留磁束密度より大きく することでもよ 、。 [0041] Although the material of the permanent magnet has been described as a different material, it is not limited to a different material. For example, the inner permanent magnet 322 and the outer permanent magnet 332 are made of the same neodymium / iron / boron sintered magnet, and the residual magnetic flux density of the inner permanent magnet 322 is changed to the outer permanent magnet by changing the blending method. It can also be made larger than the residual magnetic flux density of the magnet 332.
産業上の利用可能性 Industrial applicability
[0042] 本発明は、家電製品ゃ電装品など、小型でスペースに制限があり、かつ高出力で 高効率、低振動'低騒音、低コストが求められるモータに有用である。
[0042] The present invention is useful for motors that are small and have limited space, such as home appliances and electrical equipment, and that require high output, high efficiency, low vibration, low noise, and low cost.
Claims
[1] 環状のステータヨークと、前記ステータヨークカも径方向内側に向力つて突出した複 数の内側ティースと、前記内側ティースと同数で前記ステータヨーク力 径方向外側 に向カゝつて突出した複数の外側ティースと、前記内側ティースの間に構成された内 側スロットと、前記外側ティースの間に構成された外側スロットとを有するステータコア と、前記内側スロットと前記外側スロットの間の前記ステータヨークに卷回され、 3相ス ターまたはデルタ状に結線された複数のコイルとを備えたステータと、 [1] An annular stator yoke, a plurality of inner teeth projecting radially inward from the stator yoke, and the same number of inner teeth projecting outward from the stator yoke force radially outward A stator core having a plurality of outer teeth, an inner slot formed between the inner teeth, and an outer slot formed between the outer teeth, and the stator yoke between the inner slot and the outer slot A stator having a plurality of coils wound around and connected in a three-phase star or delta shape;
前記内側ティースに空隙を介して対向した内側ロータと、前記内側ロータと同一回転 軸に接続され、前記外側ティースに空隙を介して対向した外側ロータとを含み、 前記内側ロータは、所定の形状に打ち抜いた電磁鋼板が積層された内側ロータョー クと、内側永久磁石とを有し、 An inner rotor opposed to the inner teeth via a gap, and an outer rotor connected to the same rotation shaft as the inner rotor and opposed to the outer teeth via a gap, the inner rotor having a predetermined shape It has an inner rotor with laminated punched electrical steel sheets and an inner permanent magnet,
前記外側ロータは、所定の形状に打ち抜 ヽた電磁鋼板が積層された外側ロータョー クと、前記内側永久磁石と同極数の外側永久磁石とを有し、 The outer rotor has an outer rotor in which electromagnetic steel plates punched into a predetermined shape are stacked, and an outer permanent magnet having the same number of poles as the inner permanent magnet,
前記内側ロータから生じる磁束量と、前記外側ロータ力 生じる磁束量とを調整する ことにより、前記内側ロータによるコギングトルクの波形の振幅と、前記外側ロータによ るコギングトルクの波形の振幅とを同一にする構成を有するモータ。 By adjusting the amount of magnetic flux generated from the inner rotor and the amount of magnetic flux generated by the outer rotor force, the amplitude of the cogging torque waveform by the inner rotor and the amplitude of the cogging torque waveform by the outer rotor are the same. A motor having a configuration of
[2] 前記内側永久磁石の軸方向の長さは、前記外側永久磁石の軸方向の長さより長く 構成する請求項 1記載のモータ。 [2] The motor according to claim 1, wherein the axial length of the inner permanent magnet is longer than the axial length of the outer permanent magnet.
[3] 前記内側ロータヨークの積厚は、前記外側ロータヨークの積厚より厚く構成する請求 項 1記載のモータ。 3. The motor according to claim 1, wherein the inner rotor yoke is thicker than the outer rotor yoke.
[4] 前記内側永久磁石の径方向の厚さは、前記外側永久磁石の径方向の厚さより厚く 構成する請求項 1記載のモータ。 4. The motor according to claim 1, wherein the radial thickness of the inner permanent magnet is greater than the radial thickness of the outer permanent magnet.
[5] 前記内側永久磁石の残留磁束密度は、前記外側永久磁石の残留磁束密度より大き く構成する請求項 1記載のモータ。 5. The motor according to claim 1, wherein the residual magnetic flux density of the inner permanent magnet is greater than the residual magnetic flux density of the outer permanent magnet.
[6] 前記内側ロータヨークは複数の内側永久磁石孔を有し、前記内側永久磁石は前記 内側永久磁石孔に埋め込まれ、前記外側ロータヨークは複数の外側永久磁石孔を 有し、前記外側永久磁石は前記外側永久磁石孔に埋め込まれる請求項 1記載のモ ータ,
[6] The inner rotor yoke has a plurality of inner permanent magnet holes, the inner permanent magnet is embedded in the inner permanent magnet hole, the outer rotor yoke has a plurality of outer permanent magnet holes, and the outer permanent magnet is The motor according to claim 1, embedded in the outer permanent magnet hole,
[7] 前記内側ロータと前記外側ロータとは、榭脂モールドで一体に成形される請求項 1記 載のモータ。 7. The motor according to claim 1, wherein the inner rotor and the outer rotor are integrally formed by a resin mold.
[8] 前記榭脂モールドは、回転軸の方向に貫通する複数の風孔を備える請求項 7記載 のモータ。 8. The motor according to claim 7, wherein the resin mold includes a plurality of air holes penetrating in the direction of the rotation axis.
[9] 前記榭脂モールドは、前記ステータと軸方向で対向する部分に、凸部を備える請求 項 7記載のモータ。 9. The motor according to claim 7, wherein the resin mold includes a convex portion at a portion facing the stator in the axial direction.
[10] 前記ステータは、モールド榭脂にて被覆され、一体に取付部を備える請求項 1記載 のモータ。
[10] The motor according to claim 1, wherein the stator is covered with a mold resin and integrally includes a mounting portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007541519A JP4569632B2 (en) | 2006-05-17 | 2007-05-11 | motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006137556 | 2006-05-17 | ||
JP2006-137556 | 2006-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007132768A1 true WO2007132768A1 (en) | 2007-11-22 |
Family
ID=38693861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/059742 WO2007132768A1 (en) | 2006-05-17 | 2007-05-11 | Motor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4569632B2 (en) |
WO (1) | WO2007132768A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010259150A (en) * | 2009-04-21 | 2010-11-11 | Toshiba Corp | Permanent-magnet type rotating electrical machine |
JP2010284035A (en) * | 2009-06-05 | 2010-12-16 | Toshiba Corp | Permanent magnet rotating electrical machine |
JP2013240146A (en) * | 2012-05-11 | 2013-11-28 | Asmo Co Ltd | Brushless motor |
JP2013243884A (en) * | 2012-05-22 | 2013-12-05 | Asmo Co Ltd | Brushless motor |
US9502931B2 (en) | 2012-03-23 | 2016-11-22 | Asmo Co., Ltd. | Brushless motor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078459A (en) * | 2013-02-04 | 2013-05-01 | 苏州大学 | Coreless permanent magnet motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005124312A (en) * | 2003-10-16 | 2005-05-12 | Nissan Motor Co Ltd | Double spindle multilayer motor |
JP2005333727A (en) * | 2004-05-20 | 2005-12-02 | Mitsubishi Electric Corp | Elevator driver |
-
2007
- 2007-05-11 JP JP2007541519A patent/JP4569632B2/en active Active
- 2007-05-11 WO PCT/JP2007/059742 patent/WO2007132768A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005124312A (en) * | 2003-10-16 | 2005-05-12 | Nissan Motor Co Ltd | Double spindle multilayer motor |
JP2005333727A (en) * | 2004-05-20 | 2005-12-02 | Mitsubishi Electric Corp | Elevator driver |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010259150A (en) * | 2009-04-21 | 2010-11-11 | Toshiba Corp | Permanent-magnet type rotating electrical machine |
JP2010284035A (en) * | 2009-06-05 | 2010-12-16 | Toshiba Corp | Permanent magnet rotating electrical machine |
US9502931B2 (en) | 2012-03-23 | 2016-11-22 | Asmo Co., Ltd. | Brushless motor |
US9893576B2 (en) | 2012-03-23 | 2018-02-13 | Asmo Co., Ltd. | Brushless motor with cog-shaped rotor core having poles with auxiliary magnets and shaft-fixing portions |
US9966807B2 (en) | 2012-03-23 | 2018-05-08 | Asmo Co., Ltd. | Brushless motor |
JP2013240146A (en) * | 2012-05-11 | 2013-11-28 | Asmo Co Ltd | Brushless motor |
JP2013243884A (en) * | 2012-05-22 | 2013-12-05 | Asmo Co Ltd | Brushless motor |
Also Published As
Publication number | Publication date |
---|---|
JP4569632B2 (en) | 2010-10-27 |
JPWO2007132768A1 (en) | 2009-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4670871B2 (en) | motor | |
US7327062B2 (en) | Rotor for rotary electric machine | |
US8987962B2 (en) | Double-stator/double-rotor type motor and direct drive apparatus for washer using same | |
US7332845B2 (en) | Spoke permanent magnet rotor | |
US20120104879A1 (en) | Noise reduction structures for electrical machines | |
US10284032B2 (en) | Reluctance rotor with runup aid | |
JP5167855B2 (en) | Fixing method of motor stator | |
JP5256801B2 (en) | Electric motor | |
WO2011114594A1 (en) | Permanent magnet-type rotary generator | |
JPWO2008126408A1 (en) | Drum washing machine | |
JP4569632B2 (en) | motor | |
WO2016060232A1 (en) | Double stator-type rotary machine | |
JP5067365B2 (en) | motor | |
WO2007080841A1 (en) | Motor and device using the same | |
US20220368183A1 (en) | Rotor for a synchronous machine | |
JP2013106499A (en) | Rotary electric machine and rotor of rotary electric machine | |
JP5634338B2 (en) | Magnet motor and drum type washing machine equipped with magnet motor | |
WO2017212575A1 (en) | Permanent magnet motor | |
WO2019187752A1 (en) | Electric motor | |
JP2005269831A (en) | Brushless dc motor | |
WO2007123058A1 (en) | Motor | |
JP4491211B2 (en) | Permanent magnet rotating electric machine | |
EP3758192B1 (en) | Rotor, motor, and driving apparatus | |
JP2013013243A (en) | Motor | |
JP2010178485A (en) | Motor, motor rotor, and motor manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2007541519 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07743177 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07743177 Country of ref document: EP Kind code of ref document: A1 |