JP2001037133A - Stator and motor - Google Patents

Stator and motor

Info

Publication number
JP2001037133A
JP2001037133A JP11208630A JP20863099A JP2001037133A JP 2001037133 A JP2001037133 A JP 2001037133A JP 11208630 A JP11208630 A JP 11208630A JP 20863099 A JP20863099 A JP 20863099A JP 2001037133 A JP2001037133 A JP 2001037133A
Authority
JP
Japan
Prior art keywords
rotor
stator
yoke portion
teeth
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11208630A
Other languages
Japanese (ja)
Other versions
JP3983423B2 (en
Inventor
Hiroshi Murakami
浩 村上
Toshiyuki Tamamura
俊幸 玉村
Yukio Honda
幸夫 本田
Masayuki Shindo
正行 神藤
Hisakazu Kataoka
久和 片岡
Naoaki Morino
修明 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20863099A priority Critical patent/JP3983423B2/en
Publication of JP2001037133A publication Critical patent/JP2001037133A/en
Priority to JP2007128114A priority patent/JP4499764B2/en
Application granted granted Critical
Publication of JP3983423B2 publication Critical patent/JP3983423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce volumes of coil ends, without lowering the torque constant, to reduce the size, and at the same time, enable uniform distribution of fluxes generated by currents applied to windings to obtain low vibration and low-noise effects. SOLUTION: A stator comprises an annular yoke 3, a plurality of tooth parts 2 formed on the yoke 3 and a plurality of coils which are applied to the yoke by toroidal winding and connected into three-phase star-connecting or Δ-connection form. As the volumes of coil ends can be reduced, vibration and noise can be suppressed and copper loss can be minimized, motor having small size, high efficiency, low vibration and low noise having can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の薄板状の電
磁鋼板を積層した、ステータコアの各スロット部に個別
のコイルが施されているステータにおいて、各スロット
部の巻線が、ステータヨークを取り囲む方向に巻線され
てコイルを構成し、各コイルが3相スターもしくはデル
タ状に結線されている事を特徴とする電動機用ステー
タ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator in which individual coils are applied to each slot of a stator core in which a plurality of thin electromagnetic steel sheets are laminated, and the winding of each slot is formed by a stator yoke. A stator for an electric motor, wherein the coils are wound in the surrounding direction to form coils, and each coil is connected in a three-phase star or delta shape.

【0002】[0002]

【従来の技術】図16に従来の代表的なステータの外観
図、図17にステータの結線図を示す。図16において
11はステータコア12は巻線である。この構成のステ
ータの巻線方式は一般に分布巻と呼ばれ、図17に示す
ように各スロットに巻線されたコイルが、3相スター状
もしくはデルタ状に結線され、電気角で120度位相の
ずれた電流を個々の相に流すことで回転磁界を発生し、
この回転磁界により、ステータ内部のロータに回転力を
発生させていた。図16に示す従来型の分布巻ステータ
は理想的な回転磁界を発生させるため、なめらかにロー
タを回転させることが可能で、低振動で低騒音なモータ
を構成することが可能である。
2. Description of the Related Art FIG. 16 shows an external view of a typical conventional stator, and FIG. 17 shows a connection diagram of the stator. In FIG. 16, reference numeral 11 denotes a stator core 12 which is a winding. The winding method of the stator having this configuration is generally called distributed winding. As shown in FIG. 17, coils wound in each slot are connected in a three-phase star or delta shape and have a phase of 120 degrees in electrical angle. A rotating magnetic field is generated by passing the shifted current to each phase,
This rotating magnetic field generates a rotating force on the rotor inside the stator. Since the conventional distributed winding stator shown in FIG. 16 generates an ideal rotating magnetic field, the rotor can be smoothly rotated, and a low-vibration and low-noise motor can be configured.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術によるス
テータ構成は理想的な回転磁界を発生させる事が特徴で
あるが、図16の13に示すコイルエンド部の体積が非
常に大きくなる欠点がある。コイルエンド部に流れる電
流はモータのトルク発生には寄与しないため、その部分
で発生する銅損が増大してモータ効率を低下させる。ま
た、コイルの材料は銅であるため、コイルエンドの体積
が大きくなると材料費も高価になってくる。このように
分布巻ステータには、コイルエンドの体積が大きくなる
ので、モータの小型化が困難で、材料費も高価になり、
銅損の増大によるモータ効率低下といった課題が存在す
る。
The stator structure according to the prior art described above is characterized in that it generates an ideal rotating magnetic field, but has the disadvantage that the volume of the coil end portion shown in FIG. . Since the current flowing through the coil end does not contribute to the generation of the torque of the motor, the copper loss generated at that portion increases and the motor efficiency decreases. Further, since the material of the coil is copper, if the volume of the coil end becomes large, the material cost becomes high. As described above, since the volume of the coil end is large in the distributed winding stator, it is difficult to reduce the size of the motor, and the material cost is high.
There is a problem such as a decrease in motor efficiency due to an increase in copper loss.

【0004】一方、このような課題を解決するために集
中巻構造のステータが存在する。図18は集中巻ステー
タの外観図、図19に巻線図を示す。集中巻構造のステ
ータは、図19に示すようにステータの各ティース部2
の周囲を囲む方向に巻線を施し、これらのコイルを3相
デルタおよびスター結線したものである。このように結
線することで、集中巻のステータは図18の13に示す
ようにコイルエンドの体積が小さくなるので分布巻に比
べてモータの小型化が可能である。しかしながら、集中
巻構造の発生する磁界分布は分布巻のように理想的な均
一回転磁界にはならない。図20と図21に分布巻と集
中巻の磁束の流れを表した図を示す。図20は4極分布
巻のステータに4極埋め込み磁石型ロータを組み込んだ
場合の磁束の流れを示しており、図21は4極集中巻の
ステータに、図20と同じロータを組み込んだ場合の磁
束の流れを示している。図20より分布巻ステータの発
生する磁界は、N極とS極が90度毎に分布している
が、集中巻ステータでは図21に示すように巻線に流れ
る電流が発生する磁界が90度毎に均一にならない。以
上のように、集中巻ステータは、コイルエンドが小さく
できるが、発生磁界が不均一になるため振動騒音が大き
くなるといった欠点がある。また、集中巻はステータの
巻線コイル1極当たりの角度が、ロータ1極当たりの角
度より小さくなる。例えば、図21の例では、ロータが
4極であるため1極当たり90度であるが、ステータテ
ィースに巻かれた巻線1相当たりは60度になる。その
結果、巻線の有効利用率が分布巻よりも悪くなるので、
消費電流が増大するという欠点も存在する。
On the other hand, there is a stator having a concentrated winding structure to solve such a problem. FIG. 18 is an external view of the concentrated winding stator, and FIG. 19 is a winding diagram. As shown in FIG. 19, each of the teeth portions 2 of the stator has a concentrated winding structure.
The windings are applied in a direction surrounding the periphery of the coil, and these coils are connected in a three-phase delta and star connection. By connecting in this way, the concentrated winding stator has a smaller coil end volume as shown at 13 in FIG. 18, so that the motor can be downsized compared to the distributed winding. However, the magnetic field distribution generated by the concentrated winding structure does not become an ideal uniform rotating magnetic field unlike the distributed winding. FIG. 20 and FIG. 21 are diagrams showing the flow of magnetic flux of distributed winding and concentrated winding. FIG. 20 shows the flow of magnetic flux when a 4-pole embedded magnet type rotor is incorporated in a 4-pole distributed winding stator, and FIG. 21 shows the case where the same rotor as FIG. 20 is incorporated in a 4-pole concentrated winding stator. The flow of magnetic flux is shown. As shown in FIG. 20, the magnetic field generated by the distributed winding stator is such that the N pole and the S pole are distributed every 90 degrees, but in the concentrated winding stator, the magnetic field generated by the current flowing through the winding is 90 degrees as shown in FIG. Not uniform every time. As described above, the concentrated winding stator can have a small coil end, but has a disadvantage in that the generated magnetic field becomes non-uniform and vibration noise increases. In the concentrated winding, the angle per pole of the winding coil of the stator is smaller than the angle per pole of the rotor. For example, in the example of FIG. 21, the rotor has four poles, so that the angle is 90 degrees per pole. However, the phase per winding wound around the stator teeth is 60 degrees. As a result, the effective utilization rate of the winding becomes worse than that of the distributed winding,
There is also a disadvantage that current consumption increases.

【0005】[0005]

【課題を解決するための手段】本願発明は、環状のヨー
ク部と、このヨーク部に設けた複数のティース部と、前
記ヨーク部にトロイダル巻きを施した複数のコイル部と
を備え、前記複数のコイル部は3相スターもしくはデル
タ状に結線したステータであります。この発明によれ
ば、コイルエンドの体積を小さくできるとともに、振
動、騒音低減でき、銅損の発生も最小限に抑えることが
可能であるため、小型、高効率、低振動、低騒音モータ
を提供することが可能となります。
The present invention comprises an annular yoke portion, a plurality of teeth portions provided on the yoke portion, and a plurality of coil portions obtained by applying a toroidal winding to the yoke portion. The coil part is a stator connected in a three-phase star or delta shape. According to the present invention, a small-sized, high-efficiency, low-vibration, and low-noise motor is provided because the volume of the coil end can be reduced, vibration and noise can be reduced, and occurrence of copper loss can be minimized. It is possible to do.

【0006】[0006]

【発明の実施の形態】本願発明は、環状のヨーク部と、
このヨーク部に設けた複数のティース部と、前記ヨーク
部にトロイダル巻きを施した複数のコイル部とを備え、
前記複数のコイル部は3相スターもしくはデルタ状に結
線したステータであり、コイルエンドの体積を小さくで
きるとともに、銅損の発生を抑えることができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an annular yoke,
A plurality of teeth provided on the yoke, and a plurality of coils formed by applying a toroidal winding to the yoke,
The plurality of coil portions are stators connected in a three-phase star or delta shape, and can reduce the volume of the coil end and suppress the occurrence of copper loss.

【0007】また、周方向でティース部間にあるヨーク
部でトロイダル巻線を施したコイル部は、隣り合うコイ
ル部と異相であるとよい。
[0007] Further, it is preferable that the coil portion provided with the toroidal winding at the yoke portion between the teeth portions in the circumferential direction is out of phase with the adjacent coil portion.

【0008】また、ティース部は、ティース先端が広が
った構造であるとよい。
[0008] Further, the teeth portion may have a structure in which the tips of the teeth are widened.

【0009】また、ステータの外径Rとヨーク部の軸方
向の長さ積厚L<0.5Rであと、巻線に流れることに
より発生する銅損の発生を効果的に小さくすることがで
きる。
Further, when the outer diameter R of the stator and the axial length product thickness L <0.5R of the yoke portion are smaller than 0.5R, the occurrence of copper loss caused by flowing through the windings can be effectively reduced. .

【0010】本願発明は、回転子と、環状のヨーク部
と、このヨーク部に設けた複数のティース部と、前記ヨ
ーク部にトロイダル巻きを施した複数のコイル部とを備
え、前記複数のコイル部は3相スターもしくはデルタ状
に結線し、前記ヨーク部及びティース部で発生する回転
磁束に前記回転子が同期して回転駆動する電動機であ
り、コイルエンドの体積を小さくできるとともに、銅損
の発生を抑えることができる。
The invention of the present application comprises a rotor, an annular yoke, a plurality of teeth provided on the yoke, and a plurality of coils formed by applying a toroidal winding to the yoke. The part is a three-phase star or delta-shaped motor, and the rotor is driven in rotation in synchronization with the rotating magnetic flux generated in the yoke part and the teeth part. The volume of the coil end can be reduced, and copper loss is reduced. Occurrence can be suppressed.

【0011】また、回転子は永久磁石を備え、ステータ
の回転磁束に同期して回転する電動機であってもよい。
Further, the rotor may be a motor having a permanent magnet and rotating in synchronization with the rotating magnetic flux of the stator.

【0012】また、回転子に永久磁石を埋め込み、マグ
ネットトルクを主とし、リラクタンストルクを補助とす
る総合トルクにより回転駆動する電動機であってもよ
い。
Further, the motor may be a motor in which a permanent magnet is embedded in the rotor, and is driven to rotate by a total torque mainly using a magnet torque and assisting a reluctance torque.

【0013】また、回転子は突極比を備え、リラクタン
ストルクにより回転駆動する電動機であってもよい。
Further, the rotor may be a motor having a salient pole ratio and driven to rotate by reluctance torque.

【0014】また、ヨーク部の内径部及び外径部の両方
にティース部を有し、この内径側ティース部と外径側テ
ィース部に対応する内側ロータと外側ロータを有する電
動機であってもよい。
Further, the motor may have teeth at both the inner and outer diameters of the yoke, and have an inner rotor and an outer rotor corresponding to the inner and outer teeth. .

【0015】また、外側ロータと内側ロータの極の変わ
り目が、任意の角度ずらして取り付けられた電動機であ
ってもよい。
[0015] The electric motor may be mounted such that the poles of the outer rotor and the inner rotor change at an arbitrary angle.

【0016】本願発明は、環状のヨーク部と、このヨー
ク部の内径側及び外径側に設けた複数のティース部と、
この内径側ティース部に対応する内側ロータと、前記外
径側ティース部に対応する外側ロータと、前記ヨーク部
にトロイダル巻きを施した複数のコイル部とを備え、前
記複数のコイル部は3相スターもしくはデルタ状に結線
し、前記ティース部及びヨーク部で発生する回転磁束に
より、前記内側ロータまたは外側ロータの一方は誘導磁
束により回転し、前記内側ロータまたは外側ロータの他
方は同期磁束により回転駆動する電動機であり、コイル
エンドの体積を小さくできるとともに、銅損の発生を抑
えることができる。
According to the present invention, there is provided an annular yoke portion, and a plurality of teeth provided on an inner diameter side and an outer diameter side of the yoke portion.
An inner rotor corresponding to the inner-diameter-side teeth portion, an outer rotor corresponding to the outer-diameter-side teeth portion, and a plurality of coil portions obtained by applying a toroidal winding to the yoke portion; One of the inner rotor and the outer rotor is rotated by an induction magnetic flux due to a rotating magnetic flux generated in the teeth and the yoke portion, and the other of the inner rotor and the outer rotor is rotationally driven by a synchronous magnetic flux. This makes it possible to reduce the volume of the coil end and to suppress the occurrence of copper loss.

【0017】[0017]

【実施例】(実施例1)図1は本発明の第1の実施例を
示した図である。図1において、1がステータコア、2
がステータコアのティース部、3がヨーク部、4がスロ
ット部である。各スロット部には、巻線をトロイダル状
に施したコイルが配置され3相結線されている。5は、
非磁性体からなるスペーサ部であり、コイルが他の部分
隣りのコイルと接しないようにするため、ヨーク部3に
設ける。図2に図1で示すステータの巻線結線図を示
す。
(Embodiment 1) FIG. 1 is a view showing a first embodiment of the present invention. In FIG. 1, 1 is a stator core, 2
Denotes a teeth portion of the stator core, 3 denotes a yoke portion, and 4 denotes a slot portion. In each slot portion, a coil in which a winding is applied in a toroidal shape is arranged and three-phase connected. 5 is
A spacer portion made of a non-magnetic material, which is provided on the yoke portion 3 in order to prevent the coil from being in contact with a coil adjacent to another portion. FIG. 2 shows a winding connection diagram of the stator shown in FIG.

【0018】図2に示すようにステータコアのヨーク部
に巻線する事で、コイルエンドの体積を分布巻に比べて
非常に小さくすることができる。図3は本発明のステー
タに電流を流したときの発生する磁束の流れを示した図
である。本発明のステータでは、従来例で示した図20
の分布巻の磁束分布と全く同一になる。したがって、従
来例で説明した集中巻ステータのように、巻線に流れる
電流が発生する磁束分布が不均一になることがないた
め、小型化しても振動、騒音を非常に小さなレベルにお
さえることが可能である。
As shown in FIG. 2, by winding around the yoke of the stator core, the volume of the coil end can be made very small as compared with the distributed winding. FIG. 3 is a diagram showing the flow of magnetic flux generated when a current flows through the stator of the present invention. In the stator of the present invention, FIG.
Is exactly the same as the magnetic flux distribution of the winding. Therefore, unlike the concentrated winding stator described in the conventional example, the distribution of the magnetic flux generated by the current flowing through the winding does not become non-uniform, so that even if the size is reduced, the vibration and noise can be suppressed to a very small level. It is possible.

【0019】図4は本発明のステータに永久磁石ロータ
を組み込んだときの電流―トルク特性を示した図であ
る。またこの図には、同一のロータを組み込んだ時の分
布巻ステータと集中巻ステータの特性も示している。
FIG. 4 is a diagram showing current-torque characteristics when a permanent magnet rotor is incorporated in the stator of the present invention. This figure also shows the characteristics of the distributed winding stator and the concentrated winding stator when the same rotor is incorporated.

【0020】本発明のステータは巻線が発生する磁束分
布が分布巻と同一になるため、トルク定数も分布巻と全
く同一であり、集中巻のようにコイルエンドの体積を小
さくした結果、トルク定数が低下してしまうこともな
い。表1は本発明ステータと従来型の分布巻ステータ、
集中巻ステータの積厚を同一にしたときのステータ高さ
の比較を示した図である。表1よりステータ高さは集中
巻と同一寸法まで小型化できる。以上のように本発明の
ステータはトルク定数を低下させることなく、コイルエ
ンドの体積を小さくできると同時に、低振動、騒音のモ
ータが実現できるため、従来型のステータである分布
巻、集中巻ステータの課題を解決できる大きな効果を得
ることができる。
In the stator of the present invention, the distribution of magnetic flux generated by the windings is the same as that of the distributed winding, so that the torque constant is exactly the same as that of the distributed winding. The constant does not decrease. Table 1 shows the stator of the present invention and a conventional distributed winding stator.
It is the figure which showed the comparison of the stator height at the time of making the stack thickness of a concentrated winding stator the same. From Table 1, the height of the stator can be reduced to the same size as the concentrated winding. As described above, the stator of the present invention can reduce the volume of the coil end without lowering the torque constant, and at the same time can realize a motor with low vibration and noise. A great effect that can solve the problem described above can be obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】図5はステータの外径Rと積厚Lとの比に
対する巻線の線間抵抗の関係を示した図である。図中に
は本発明のステータと分布巻ステータの比較を示してい
る。本発明のステータは、ステータの外径Rと積厚Lと
の比、L/Rが0.5以下の場合、分布巻ステータより
巻線の線間抵抗が小さくなる為、巻線に電流が流れるこ
とにより発生する銅損が小さくできるので、小型で有る
と同時に高効率なモータが実現できる。このようにL/
Rが0.5以下の場合、本発明の効果が最もよくあらわ
れる。
FIG. 5 is a diagram showing the relationship between the ratio between the outer diameter R of the stator and the thickness L, and the resistance between the wires of the winding. The figure shows a comparison between the stator of the present invention and a distributed winding stator. In the stator of the present invention, when the ratio of the outer diameter R of the stator to the thickness L, L / R is 0.5 or less, the line-to-line resistance of the winding is smaller than that of the distributed winding stator. Since the copper loss generated by flowing can be reduced, a motor that is small and has high efficiency can be realized. Thus, L /
When R is 0.5 or less, the effect of the present invention is best exhibited.

【0023】(実施例2)図6は本発明の第2の実施例
を示した図である。図6は第1の実施例で示したステー
タに永久磁石ロータを組み込んだ、永久磁石型同期モー
タである。本発明のステータに永久磁石ロータを組み込
むことにより、永久磁石の磁束でトルクを発生できるた
め、巻線抵抗が小さいと同時に小型で高トルク、高効率
モータを実現できる。また、図7の様に、ロータを埋め
込み磁石型ロータにすることで、マグネットトルクに加
えてリラクタンストルクも有効利用できるので更に銅損
の小さい永久磁石同期モータを実現することが可能であ
る。
(Embodiment 2) FIG. 6 is a view showing a second embodiment of the present invention. FIG. 6 shows a permanent magnet type synchronous motor in which a permanent magnet rotor is incorporated in the stator shown in the first embodiment. By incorporating the permanent magnet rotor into the stator of the present invention, torque can be generated by the magnetic flux of the permanent magnet, so that a small-sized, high-torque, high-efficiency motor can be realized at the same time as having a small winding resistance. Further, as shown in FIG. 7, when the rotor is an embedded magnet type rotor, the reluctance torque can be effectively used in addition to the magnet torque, so that a permanent magnet synchronous motor with further reduced copper loss can be realized.

【0024】(実施例3)図8は本発明の第3の実施例
を示した図である。図8は本発明の第1の実施例で示し
たステータにシンクロナスリラクタンスモータのマルチ
フラックスバリア型ロータを組み込んだシンクロナスリ
ラクタンスモータである。シンクロナスリラクタンスモ
ータはロータに永久磁石を使用しないため、永久磁石型
同期モータと比べて、消費電流が大きくなり、銅損が大
きくなるという課題があるが、本発明のステータと組み
合わせることにより、トルク定数を低下させることな
く、巻線抵抗値が低減できるのでシンクロナスリラクタ
ンスモータの銅損を従来の分布巻ステータに比べて、大
きく低減できることが可能となる。
(Embodiment 3) FIG. 8 is a view showing a third embodiment of the present invention. FIG. 8 shows a synchronous reluctance motor in which a multi-flux barrier type rotor of a synchronous reluctance motor is incorporated in the stator shown in the first embodiment of the present invention. Synchronous reluctance motors do not use permanent magnets for their rotors, so they have the problem of increasing current consumption and copper loss compared to permanent magnet type synchronous motors. Since the winding resistance can be reduced without lowering the constant, the copper loss of the synchronous reluctance motor can be greatly reduced as compared with the conventional distributed winding stator.

【0025】(実施例4)図9は本発明の第4の実施例
を示した図である。図9において11はステータコア、
12は内側ティース部、13はヨーク部、14は内側ス
ロット部、17は外側ティース部、18は外側スロット
部である。図9は第1の実施例で示したステータの外径
側にも外側ティース17を構成した構造のステータコア
である。
(Embodiment 4) FIG. 9 is a view showing a fourth embodiment of the present invention. In FIG. 9, 11 is a stator core,
Reference numeral 12 denotes an inner tooth portion, 13 denotes a yoke portion, 14 denotes an inner slot portion, 17 denotes an outer tooth portion, and 18 denotes an outer slot portion. FIG. 9 shows a stator core having a structure in which the outer teeth 17 are also formed on the outer diameter side of the stator shown in the first embodiment.

【0026】図1に示した第1の実施例では、ステータ
外径側にあるコイル6はモータのトルク発生に全く寄与
しないが、図9の様にステータの外側にも外側テーィス
7を設けることで、ステータ外径側のコイルもトルク発
生の磁界が発生できるため、同一の電流で2倍のトルク
を発生する事が可能である。
In the first embodiment shown in FIG. 1, the coil 6 on the outer diameter side of the stator does not contribute to the torque generation of the motor at all, but the outer teeth 7 are also provided outside the stator as shown in FIG. Thus, since the coil on the outer diameter side of the stator can also generate a magnetic field for generating torque, it is possible to generate twice the torque with the same current.

【0027】図10は図9に示す第4の実施例のステー
タに対して、内側ロータと外側ロータに表面磁石型ロー
タを組み込んだ例である。このような構成にすること
で、内側スロット部14にある巻線に流れる電流で、内
側ロータ20にトルクが発生し、外側スロット部18に
流れる電流で外側ロータ21にトルクが発生するため、
同一の電流で2倍のトルクが発生し、小型、大トルク、
高効率モータを得ることができる。
FIG. 10 shows an example in which a surface magnet type rotor is incorporated in an inner rotor and an outer rotor with respect to the stator of the fourth embodiment shown in FIG. With such a configuration, a torque is generated in the inner rotor 20 by a current flowing through the winding in the inner slot portion 14, and a torque is generated in the outer rotor 21 by a current flowing through the outer slot portion 18.
Double torque is generated by the same current, small size, large torque,
A highly efficient motor can be obtained.

【0028】図11は図10に示すモータの外側ロータ
と、内側ロータの磁極の境目の位置を、任意の角度αず
らせた構造のモータである、外側ロータ23と、内側ロ
ータ22の磁極の境目の位置を任意の角度ずらすこと
で、コギングトルクが低減でき、更に低騒音なモータに
することが可能である。
FIG. 11 shows a motor having a structure in which the boundary between the magnetic poles of the outer rotor and the inner rotor of the motor shown in FIG. Is shifted by an arbitrary angle, the cogging torque can be reduced, and a motor with lower noise can be obtained.

【0029】図12は内側ロータに埋め込み磁石型ロー
タ、外側ロータに表面磁石型ロータを組み込んだ永久磁
石型同期モータである。このように本発明のモータは、
内側ロータ24と外側ロータ25に異なる種類のロータ
を構成する事が可能である。また、表面磁石型同期モー
タと埋め込み磁石型同期モータでは、同一電流で発生す
るトルクが最大値になるときの電流位相が異なる。
FIG. 12 shows a permanent magnet type synchronous motor in which an embedded magnet type rotor is incorporated in an inner rotor and a surface magnet type rotor is incorporated in an outer rotor. Thus, the motor of the present invention
It is possible to configure different types of rotors for the inner rotor 24 and the outer rotor 25. Further, the phase of the surface magnet type synchronous motor differs from that of the embedded magnet type synchronous motor when the torque generated by the same current reaches the maximum value.

【0030】そこで、図12に示すように、内側ロータ
24と外側ロータ25の磁極の境目の位置を任意の角度
βずらすことで、個々のロータが発生するトルクを最大
とする事ができるため、非常に高効率なモータを実現す
る事が可能になる。
Therefore, as shown in FIG. 12, by shifting the position of the boundary between the magnetic poles of the inner rotor 24 and the outer rotor 25 by an arbitrary angle β, the torque generated by each rotor can be maximized. It is possible to realize a motor with very high efficiency.

【0031】図13は内側ロータにシンクロナスリラク
タンスモータ、外側ロータに表面磁石型ロータを組み込
んだ実施例である。このように本発明のモータは、内側
ロータと外側ロータに異なる種類のロータを構成する事
が可能である。また、表面磁石型同期モータと埋め込み
磁石型同期モータでは、同一電流で発生するトルクが最
大値になるときの電流位相が異なる。そこで、図12に
示すように、内側ロータ26と外側ロータ27の磁極の
境目の位置を任意の角度βずらすことで、個々のロータ
が発生するトルクを最大とする事ができるため、非常に
高効率なモータを実現する事が可能になる。
FIG. 13 shows an embodiment in which a synchronous reluctance motor is incorporated in the inner rotor and a surface magnet type rotor is incorporated in the outer rotor. As described above, in the motor of the present invention, different types of rotors can be configured for the inner rotor and the outer rotor. Further, the phase of the surface magnet type synchronous motor differs from that of the embedded magnet type synchronous motor when the torque generated by the same current reaches the maximum value. Therefore, as shown in FIG. 12, the torque generated by each rotor can be maximized by shifting the position of the boundary between the magnetic poles of the inner rotor 26 and the outer rotor 27 by an arbitrary angle β. It is possible to realize an efficient motor.

【0032】(実施例5)図22は本発明の第5の実施
例を示した図である。第4の実施例である電動機は内側
ロータおよび外側ロータに同期電動起用ロータを組み込
んでいるため、自起動できないのが欠点であり、ロータ
の位置を検出する位置センサを取り付けてインバータ駆
動している。位置センサ無しで駆動するセンサレス駆動
制御も開発されているが、制御回路が複雑になりコスト
アップにつながるのが課題である。図22では内側ロー
タに誘導電動機用ロータ30を外側ロータに表面磁石同
期モータ用ロータが組み込まれている。このように内側
ロータに誘導電動機用ロータを組み込むことで、始動時
は誘導電動機ロータ30がトルク発生して回転させて、
モータが同期回転数まで上昇すると、外側ロータである
表面磁石同期電動起用ロータ31がトルク発生するよう
に構成することで、センサ無しでモータを起動できる。
また、本実施例のモータは一般の商用電源でも駆動でき
るため、複雑なインバータ回路なしにする事が可能にな
り、大きなコスト削減を実現することが可能である。図
22では内側ロータに誘導電動機用ロータを組み込んだ
が、外側ロータに誘導電動機用ロータ、内側ロータに表
面磁石同期電動起用ロータを組み込んでも同様の効果を
得ることが可能である。
(Embodiment 5) FIG. 22 is a view showing a fifth embodiment of the present invention. The electric motor according to the fourth embodiment has a disadvantage that the motor cannot be self-started because the inner rotor and the outer rotor incorporate the synchronous motor generator rotor, and the inverter is driven by attaching a position sensor for detecting the position of the rotor. . Sensorless drive control for driving without a position sensor has also been developed, but the problem is that the control circuit becomes complicated and leads to an increase in cost. In FIG. 22, an induction motor rotor 30 is incorporated in an inner rotor, and a surface magnet synchronous motor rotor is incorporated in an outer rotor. By incorporating the induction motor rotor in the inner rotor in this way, at the time of starting, the induction motor rotor 30 rotates by generating torque.
When the motor rises to the synchronous rotation speed, the outer magnet, ie, the surface magnet synchronous electric motor generating rotor 31 is configured to generate torque, so that the motor can be started without a sensor.
Further, since the motor of the present embodiment can be driven by a general commercial power supply, it is possible to eliminate a complicated inverter circuit, and it is possible to realize a large cost reduction. Although the induction motor rotor is incorporated in the inner rotor in FIG. 22, the same effect can be obtained by incorporating the induction motor rotor in the outer rotor and the surface magnet synchronous electric motor generation rotor in the inner rotor.

【0033】図23は本実施例の他の実施例を示した図
である。図23は内側ロータに誘導電動機用ロータ3
0、外側ロータにシンクロナスリラクタンスモータ用ロ
ータ32を組み込んだ例であり、図22と同様の効果を
得ることができる。
FIG. 23 is a view showing another embodiment of the present embodiment. FIG. 23 shows an induction motor rotor 3 on the inner rotor.
0, an example in which the synchronous reluctance motor rotor 32 is incorporated in the outer rotor, and the same effect as that of FIG. 22 can be obtained.

【0034】(実施例6)図14は本発明の第6の実施
例を示した図である。第6の実施例は本発明のステータ
の製造方法に関するもので、ステータコアを円周方向に
複数個のブロックに分割して、各分割ブロックのヨーク
部に個別に巻線を行い、巻線後に分割ブロックを合体さ
せて、各巻線を3相スターもしくはデルタ結線を行う、
事を特徴とするステータの製造方法である。図14では
ステータコアを2分割した例である。このようにステー
タを分割する事で、巻線工程が簡単になり、一体コアの
まま巻線するよりも、高占積率巻線が可能になる効果が
得られる。図14では各分割ブロックのヨーク部に個別
に巻線を行い分割ブロックのA−A’面とB−B’面を
あわせて、溶接等の手段を用いて合体させ、その後、各
ヨーク部に巻線されたコイルを3相スターもしくはデル
タ結線を行うことでステータを完成させる。図15は本
発明の第5の実施例のもう一つの例を示した図である。
図15はステータ外径にもティースを設け、内側ロータ
と、外側ロータを組み込むことのできるステータであ
り、図14と同様に円周方向に2分割して巻線を施す例
を示している。
(Embodiment 6) FIG. 14 is a view showing a sixth embodiment of the present invention. The sixth embodiment relates to a method of manufacturing a stator according to the present invention, in which a stator core is divided into a plurality of blocks in a circumferential direction, and winding is individually performed on a yoke portion of each divided block. Combine the blocks and make each winding a three-phase star or delta connection,
This is a method for manufacturing a stator characterized by the above. FIG. 14 shows an example in which the stator core is divided into two parts. Dividing the stator in this manner simplifies the winding process, and provides an effect of enabling a higher space factor winding than winding with an integral core. In FIG. 14, winding is individually performed on the yoke portions of the divided blocks, and the AA 'surface and the BB' surface of the divided blocks are joined together by means of welding or the like. The stator is completed by performing a three-phase star or delta connection on the wound coil. FIG. 15 is a diagram showing another example of the fifth embodiment of the present invention.
FIG. 15 shows an example in which teeth are provided on the outer diameter of the stator, and the inner rotor and the outer rotor can be incorporated therein. In the example shown in FIG.

【0035】[0035]

【発明の効果】上記実施例の記載から明らかなように、
本発明は複数の薄板状の電磁鋼板を積層した、ステータ
コアの各スロット部に個別のコイルが施されているステ
ータにおいて、各スロット部の巻線が、ステータヨーク
を取り囲む方向に巻線されてコイルを構成し、各コイル
が3相スターもしくはデルタ状に結線することで、トル
ク定数を低下させることなく、コイルエンドの体積を小
さくして小型化できると同時に、巻線に流れる電流が発
生する磁束分布を均一にすることが可能になるので、低
振動、低騒音の効果を得ることができる。また、巻線抵
抗値も小さくできるので、銅損の低い、高効率なモータ
を実現できることが可能になり、小型、低振動、低騒
音、高効率モータが提供できる。
As is clear from the description of the above embodiment,
According to the present invention, in a stator in which individual coils are applied to respective slots of a stator core in which a plurality of thin plate-shaped electromagnetic steel sheets are stacked, winding of each slot is wound in a direction surrounding a stator yoke. By connecting each coil in a three-phase star or delta shape, it is possible to reduce the volume of the coil end without reducing the torque constant, and at the same time, the magnetic flux generated by the current flowing through the winding Since the distribution can be made uniform, effects of low vibration and low noise can be obtained. In addition, since the winding resistance can be reduced, it is possible to realize a high-efficiency motor with low copper loss, and a small-sized, low-vibration, low-noise, high-efficiency motor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示した図FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施例を示すステータの巻線結
線図
FIG. 2 is a winding connection diagram of a stator showing a first embodiment of the present invention.

【図3】本発明の第1の実施例のステータによる磁束分
布を示した図
FIG. 3 is a diagram showing a magnetic flux distribution by a stator according to the first embodiment of the present invention.

【図4】本発明の第1の実施例のステータと従来型ステ
ータのトルク定数を比較した図
FIG. 4 is a diagram comparing torque constants of the stator according to the first embodiment of the present invention and a conventional stator.

【図5】本発明の第1の実施例のステータ従来型ステー
タの線間抵抗を比較した図
FIG. 5 is a diagram comparing the line resistance of the conventional stator of the first embodiment of the present invention;

【図6】本発明の第2の実施例を示した図FIG. 6 is a diagram showing a second embodiment of the present invention.

【図7】本発明の第2の実施例の他の例を示した図FIG. 7 is a diagram showing another example of the second embodiment of the present invention.

【図8】本発明の第3の実施例を示した図FIG. 8 is a diagram showing a third embodiment of the present invention.

【図9】本発明の第4の実施例を示した図FIG. 9 is a diagram showing a fourth embodiment of the present invention.

【図10】本発明の第4の実施例の他の例を示した図FIG. 10 is a diagram showing another example of the fourth embodiment of the present invention.

【図11】本発明の第4の実施例の他の例を示した図FIG. 11 is a diagram showing another example of the fourth embodiment of the present invention.

【図12】本発明の第4の実施例の他の例を示した図FIG. 12 is a diagram showing another example of the fourth embodiment of the present invention.

【図13】本発明の第4の実施例の他の例を示した図FIG. 13 is a diagram showing another example of the fourth embodiment of the present invention.

【図14】本発明の第6の実施例を示した図FIG. 14 is a diagram showing a sixth embodiment of the present invention.

【図15】本発明の第6の実施例の他の例を示した図FIG. 15 is a diagram showing another example of the sixth embodiment of the present invention.

【図16】従来の分布巻ステータの外観を示す図FIG. 16 is a diagram showing an appearance of a conventional distributed winding stator.

【図17】従来の分布巻ステータの巻線図を示す図FIG. 17 is a diagram showing a winding diagram of a conventional distributed winding stator.

【図18】従来の集中巻ステータの外観を示す図FIG. 18 is a view showing the appearance of a conventional concentrated winding stator.

【図19】従来の集中巻ステータの巻線図を示す図FIG. 19 is a diagram showing a winding diagram of a conventional concentrated winding stator.

【図20】従来の分布巻ステータによる磁束分布を示し
た図
FIG. 20 is a diagram showing a magnetic flux distribution by a conventional distributed winding stator.

【図21】従来の集中巻ステータによる磁束分布を示し
た図
FIG. 21 is a diagram showing a magnetic flux distribution by a conventional concentrated winding stator.

【図22】本発明の第5の実施例を示した図FIG. 22 is a diagram showing a fifth embodiment of the present invention.

【図23】本発明の第5の実施例の他の例を示した図FIG. 23 is a diagram showing another example of the fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ステータコア 2 ティース部 3 ヨーク部 4 スロット部 6 外側コイル 7 外側ティース 8 外側スロット 9 ロータコア 10 マグネット 11 ステータコア 12 巻線 13 コイルエンド DESCRIPTION OF SYMBOLS 1 Stator core 2 Teeth part 3 Yoke part 4 Slot part 6 Outer coil 7 Outer tooth 8 Outer slot 9 Rotor core 10 Magnet 11 Stator core 12 Winding 13 Coil end

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 19/10 H02K 19/10 A // H02K 21/16 21/16 M (72)発明者 本田 幸夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神藤 正行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 片岡 久和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 森野 修明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H002 AA09 AB01 AE07 5H603 AA09 BB01 BB07 BB10 BB12 CA01 CA05 CB02 CB17 CC05 CC07 CC15 CC17 CD21 CE01 5H619 AA01 AA10 BB01 BB06 BB22 BB24 PP01 PP02 PP04 PP05 PP06 PP08 PP14 5H621 BB02 BB10 GA01 GA04 GB10 HH01 JK01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02K 19/10 H02K 19/10 A // H02K 21/16 21/16 M (72) Inventor Yukio Honda Osaka 1006, Kadoma, Kazuma, Kadoma, Matsushita Electric Industrial Co., Ltd. (72) Inventor Masayuki Kamito 1006, Kadoma, Kadoma, Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. CD21 CE01 5H619 AA01 AA10 BB01 BB06 BB22 BB24 PP01 PP02 PP04 PP05 PP06 PP08 PP14 5H621 BB02 BB10 GA01 GA04 GB10 HH01 JK01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 環状のヨーク部と、このヨーク部に設け
た複数のティース部と、前記ヨーク部にトロイダル巻き
を施した複数のコイル部とを備え、前記複数のコイル部
は3相スターもしくはデルタ状に結線したステータ。
1. An annular yoke portion, a plurality of teeth portions provided on the yoke portion, and a plurality of coil portions obtained by applying a toroidal winding to the yoke portion, wherein the plurality of coil portions are a three-phase star or Stator connected in delta.
【請求項2】 周方向でティース部間にあるヨーク部で
トロイダル巻線を施したコイル部は、隣り合うコイル部
と異相である請求項1記載のステータ。
2. The stator according to claim 1, wherein the coil portion provided with the toroidal winding at the yoke portion between the teeth portions in the circumferential direction is out of phase with the adjacent coil portion.
【請求項3】 ティース部は、ティース先端が広がった
構造である請求項1記載のステータ。
3. The stator according to claim 1, wherein the teeth portion has a structure in which the tips of the teeth are widened.
【請求項4】 ステータの外径Rとヨーク部の軸方向の
長さ積厚L<0.5Rである請求項1記載のステータ。
4. The stator according to claim 1, wherein an outer diameter R of the stator and an axial length product thickness L of the yoke portion are smaller than 0.5R.
【請求項5】 回転子と、環状のヨーク部と、このヨー
ク部に設けた複数のティース部と、前記ヨーク部にトロ
イダル巻きを施した複数のコイル部とを備え、前記複数
のコイル部は3相スターもしくはデルタ状に結線し、前
記ヨーク部及びティース部で発生する回転磁束に前記回
転子が同期して回転駆動する電動機。
5. A rotor, an annular yoke portion, a plurality of teeth portions provided on the yoke portion, and a plurality of coil portions obtained by applying a toroidal winding to the yoke portion, wherein the plurality of coil portions are An electric motor that is connected in a three-phase star or delta shape, and the rotor is driven to rotate in synchronization with a rotating magnetic flux generated in the yoke and the teeth.
【請求項6】 回転子は永久磁石を備え、ステータの回
転磁束に同期して回転する請求項5記載の電動機。
6. The electric motor according to claim 5, wherein the rotor has a permanent magnet and rotates in synchronization with a rotating magnetic flux of the stator.
【請求項7】 回転子に永久磁石を埋め込み、マグネッ
トトルクを主とし、リラクタンストルクを補助とする総
合トルクにより回転駆動する請求項5記載の電動機。
7. The electric motor according to claim 5, wherein a permanent magnet is embedded in the rotor, and the rotor is driven to rotate by total torque mainly using magnet torque and assisting reluctance torque.
【請求項8】 回転子は突極比を備え、リラクタンスト
ルクにより回転駆動する請求項5記載の電動機。
8. The electric motor according to claim 5, wherein the rotor has a salient pole ratio and is driven to rotate by reluctance torque.
【請求項9】 ヨーク部の内径部及び外径部の両方にテ
ィース部を有し、この内径側ティース部と外径側ティー
ス部に対応する内側ロータと外側ロータを有する請求項
5記載の電動機。
9. The electric motor according to claim 5, wherein the yoke has teeth on both the inner and outer diameters, and has an inner rotor and an outer rotor corresponding to the inner and outer teeth. .
【請求項10】 外側ロータと内側ロータの極の変わり
目が、任意の角度ずらして取り付けられた請求項9記載
の電動機。
10. The electric motor according to claim 9, wherein the turning points of the poles of the outer rotor and the inner rotor are shifted by an arbitrary angle.
【請求項11】 環状のヨーク部と、このヨーク部の内
径側及び外径側に設けた複数のティース部と、この内径
側ティース部に対応する内側ロータと、前記外径側ティ
ース部に対応する外側ロータと、前記ヨーク部にトロイ
ダル巻きを施した複数のコイル部とを備え、前記複数の
コイル部は3相スターもしくはデルタ状に結線し、前記
ティース部及びヨーク部で発生する回転磁束により、前
記内側ロータまたは外側ロータの一方は誘導磁束により
回転し、前記内側ロータまたは外側ロータの他方は同期
磁束により回転駆動する電動機。
11. An annular yoke portion, a plurality of teeth provided on the inner diameter side and the outer diameter side of the yoke portion, an inner rotor corresponding to the inner diameter side teeth, and a corresponding to the outer diameter side teeth portion. Outer rotor and a plurality of coil portions obtained by applying a toroidal winding to the yoke portion. The plurality of coil portions are connected in a three-phase star or delta shape, and are rotated by a rotating magnetic flux generated in the teeth portion and the yoke portion. An electric motor in which one of the inner rotor and the outer rotor is rotated by an induced magnetic flux, and the other of the inner rotor and the outer rotor is rotationally driven by a synchronous magnetic flux.
【請求項12】 環状のヨーク部と、このヨーク部に設
けた複数のティース部と、前記ヨーク部を備えたステー
タ本体は、前記ヨーク部で複数に分割しており、ステー
タヨーク部が分割した状態において、前記ヨーク部にト
ロイダル巻線を施してコイル部を形成し、前記ステータ
本体を一体にした後、前記コイル部を3相スターもしく
はデルタ状に結線したステータの製造方法。
12. An annular yoke portion, a plurality of teeth provided on the yoke portion, and a stator body including the yoke portion are divided into a plurality of portions by the yoke portion, and the stator yoke portion is divided. In this state, a method of manufacturing a stator in which a toroidal winding is applied to the yoke portion to form a coil portion, the stator body is integrated, and the coil portions are connected in a three-phase star or delta shape.
JP20863099A 1999-07-23 1999-07-23 Electric motor Expired - Lifetime JP3983423B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20863099A JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor
JP2007128114A JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20863099A JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor
JP2007128114A JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007128114A Division JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Publications (2)

Publication Number Publication Date
JP2001037133A true JP2001037133A (en) 2001-02-09
JP3983423B2 JP3983423B2 (en) 2007-09-26

Family

ID=48782795

Family Applications (2)

Application Number Title Priority Date Filing Date
JP20863099A Expired - Lifetime JP3983423B2 (en) 1999-07-23 1999-07-23 Electric motor
JP2007128114A Expired - Lifetime JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007128114A Expired - Lifetime JP4499764B2 (en) 1999-07-23 2007-05-14 Electric motor

Country Status (1)

Country Link
JP (2) JP3983423B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
JP2001268870A (en) * 2000-03-15 2001-09-28 Denso Corp Rotating electric machine for vehicle
JP2003180059A (en) * 2001-12-10 2003-06-27 Denso Corp Alternating-current rotating electric machine for vehicle
JP2003324917A (en) * 2002-05-09 2003-11-14 Denso Corp Ac dynamo-electric machine for vehicle
JP2004083179A (en) * 2002-08-26 2004-03-18 Watanabe Kikai Seisakusho:Kk Transport device
JP2004222353A (en) * 2003-01-09 2004-08-05 Nidec Shibaura Corp Single-phase induction motor
WO2004098030A1 (en) * 2003-04-30 2004-11-11 Robert Bosch Gmbh Switched reluctance machine, especially an sr-motor
JP2005124356A (en) * 2003-10-20 2005-05-12 Nissan Motor Co Ltd Magnetic circuit structure for rotating electric machine
JP2006345682A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Annular winding motor
JP2007014120A (en) * 2005-06-30 2007-01-18 Nishishiba Electric Co Ltd Shaft-driven generator
WO2007010640A1 (en) 2005-07-20 2007-01-25 Matsushita Electric Industrial Co., Ltd. Twin rotor type motor
WO2007043506A1 (en) * 2005-10-13 2007-04-19 Matsushita Electric Industrial Co., Ltd. Motor with two rotors
WO2007077749A1 (en) 2006-01-05 2007-07-12 Matsushita Electric Industrial Co., Ltd. Motor with two rotors and apparatus with the same
WO2007080841A1 (en) 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. Motor and device using the same
JP2007215397A (en) * 2006-01-13 2007-08-23 Matsushita Electric Ind Co Ltd Motor and device mounted therewith
WO2007123058A1 (en) * 2006-04-18 2007-11-01 Panasonic Corporation Motor
WO2007123107A1 (en) * 2006-04-20 2007-11-01 Panasonic Corporation Motor
JP2008005617A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor
JP2008061377A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Motor
WO2008126408A1 (en) * 2007-04-11 2008-10-23 Panasonic Corporation Drum type washing machine
WO2008146437A1 (en) * 2007-05-31 2008-12-04 Panasonic Corporation Electric motor
KR100891657B1 (en) * 2002-01-24 2009-04-02 엘지전자 주식회사 Induction motor applied troidal winding method
JP2010154717A (en) * 2008-12-26 2010-07-08 Daihatsu Motor Co Ltd Motor drive apparatus
CN101340131B (en) * 2007-07-05 2012-07-18 松下电器产业株式会社 Electric motor
WO2012176963A1 (en) * 2011-06-24 2012-12-27 Lee Seong Goun Electric motor and generator in which a concentric winding is applied
JP5292656B1 (en) * 2012-12-05 2013-09-18 快堂 池田 "Left-handed winding-gap-right-handed winding" fitting and cooling pipe that also serves as the magnetic pole of the toroidal core
US8876493B2 (en) 2009-03-06 2014-11-04 Panasonic Corporation Fan motor and blower including the same motor
DE102013112634A1 (en) 2013-11-15 2015-05-21 Jungheinrich Aktiengesellschaft Reluctance machine and method for operating a reluctance machine
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines
CN105471209A (en) * 2014-09-10 2016-04-06 珠海格力节能环保制冷技术研究中心有限公司 Switched reluctance motor
CN105529888A (en) * 2014-10-27 2016-04-27 珠海格力节能环保制冷技术研究中心有限公司 Switched reluctance motor and winding arrangement method therefor
CN106849404A (en) * 2016-12-12 2017-06-13 国电南京自动化股份有限公司 The vertical machine stator structure of stator side fluting
CN106849398A (en) * 2016-12-15 2017-06-13 广东威灵电机制造有限公司 Stator and the motor with it
CN106877531A (en) * 2017-03-31 2017-06-20 广东威灵电机制造有限公司 Motor stator and motor
JP2017135863A (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Hybrid field type double gap synchronous machine
CN107317445A (en) * 2017-06-23 2017-11-03 贵州宝文电机科技有限公司 Multilayer wheel hub motor and wheel hub
DE102006035721B4 (en) * 2005-07-29 2019-05-29 General Electric Co. Method and device for cooling wind turbine generators
JP2020512809A (en) * 2017-03-31 2020-04-23 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Motor stator and motor
CN111316536A (en) * 2017-10-17 2020-06-19 移动磁体技术公司 Annular multiphase motor
CN113131700A (en) * 2021-04-09 2021-07-16 台铃科技(江苏)股份有限公司 High power density in-wheel motor structure
CN114499001B (en) * 2022-02-28 2023-10-31 上海交通大学 Ring winding reluctance motor, system and control method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016235A1 (en) * 2009-08-06 2011-02-10 パナソニック株式会社 Synchronous motor and system for driving synchronous motor
WO2011146051A1 (en) * 2010-05-18 2011-11-24 Eric Quere Composite electromechanical machines with controller
CN102664504A (en) * 2012-05-09 2012-09-12 哈尔滨工业大学 Polyphase permanent magnet motor with leakage reactance adjustable structure
JP2013240179A (en) * 2012-05-14 2013-11-28 Asmo Co Ltd Brushless motor
CN102801268A (en) * 2012-07-31 2012-11-28 哈尔滨工业大学 Low-inductance low loss PMSM
DE102012025049A1 (en) * 2012-12-20 2014-06-26 Robert Bosch Gmbh Method for producing a synchronous motor
WO2017182912A1 (en) * 2016-04-18 2017-10-26 The Trustees For The Time-Being Of The Kmn Fulfilment Trust A generator having unlike magnetic poles radially aligned
JP6432579B2 (en) * 2016-09-05 2018-12-05 株式会社豊田中央研究所 Multi-phase winding and rotating electric machine
US10498274B2 (en) * 2016-11-10 2019-12-03 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
US11043880B2 (en) 2016-11-10 2021-06-22 Hamilton Sunstrand Corporation Electric power generating system with a synchronous generator
US10122306B2 (en) 2017-03-08 2018-11-06 Hamilton Sundstrand Corporation Electric power generating system with a permanent magnet generator and combination of active and passive rectifiers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321715A (en) * 1976-08-13 1978-02-28 Hitachi Ltd Electric motor
JPH09312946A (en) * 1996-05-21 1997-12-02 Fujitsu General Ltd Winding method of motor coil
JPH10174407A (en) * 1996-12-10 1998-06-26 Daido Steel Co Ltd Electromagnet part for motor and electric motor
JPH10271782A (en) * 1997-03-28 1998-10-09 Matsushita Electric Ind Co Ltd Motor
JPH1146461A (en) * 1997-07-24 1999-02-16 Shibaura Eng Works Co Ltd Motor
JPH1198737A (en) * 1997-09-17 1999-04-09 Toshiba Corp Permanent magnet motor

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
JP2001268870A (en) * 2000-03-15 2001-09-28 Denso Corp Rotating electric machine for vehicle
JP2003180059A (en) * 2001-12-10 2003-06-27 Denso Corp Alternating-current rotating electric machine for vehicle
KR100891657B1 (en) * 2002-01-24 2009-04-02 엘지전자 주식회사 Induction motor applied troidal winding method
JP2003324917A (en) * 2002-05-09 2003-11-14 Denso Corp Ac dynamo-electric machine for vehicle
JP2004083179A (en) * 2002-08-26 2004-03-18 Watanabe Kikai Seisakusho:Kk Transport device
JP2004222353A (en) * 2003-01-09 2004-08-05 Nidec Shibaura Corp Single-phase induction motor
WO2004098030A1 (en) * 2003-04-30 2004-11-11 Robert Bosch Gmbh Switched reluctance machine, especially an sr-motor
JP2005124356A (en) * 2003-10-20 2005-05-12 Nissan Motor Co Ltd Magnetic circuit structure for rotating electric machine
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines
JP4657820B2 (en) * 2005-06-10 2011-03-23 三菱電機株式会社 Annular winding motor
JP2006345682A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Annular winding motor
JP2007014120A (en) * 2005-06-30 2007-01-18 Nishishiba Electric Co Ltd Shaft-driven generator
WO2007010640A1 (en) 2005-07-20 2007-01-25 Matsushita Electric Industrial Co., Ltd. Twin rotor type motor
KR100901588B1 (en) * 2005-07-20 2009-06-08 파나소닉 주식회사 Twin rotor type motor
JPWO2007010640A1 (en) * 2005-07-20 2009-01-29 パナソニック株式会社 Twin rotor type motor
EP1892814A4 (en) * 2005-07-20 2016-09-14 Panasonic Corp Twin rotor type motor
JP2012075318A (en) * 2005-07-20 2012-04-12 Panasonic Corp Rotor and motor equipped with inward/outward rotor yoke
DE102006035721B4 (en) * 2005-07-29 2019-05-29 General Electric Co. Method and device for cooling wind turbine generators
EP1912316A1 (en) * 2005-10-13 2008-04-16 Matsushita Electric Industrial Co., Ltd. Motor with two rotors
EP1912316A4 (en) * 2005-10-13 2013-08-21 Panasonic Corp Motor with two rotors
JP4849071B2 (en) * 2005-10-13 2011-12-28 パナソニック株式会社 Motor with two rotors
JPWO2007043506A1 (en) * 2005-10-13 2009-04-16 パナソニック株式会社 Motor with two rotors
WO2007043506A1 (en) * 2005-10-13 2007-04-19 Matsushita Electric Industrial Co., Ltd. Motor with two rotors
KR100951755B1 (en) * 2005-10-13 2010-04-08 파나소닉 주식회사 Motor having twin-rotor
JP2007185012A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Motor
WO2007077749A1 (en) 2006-01-05 2007-07-12 Matsushita Electric Industrial Co., Ltd. Motor with two rotors and apparatus with the same
KR101178985B1 (en) * 2006-01-05 2012-08-31 파나소닉 주식회사 Motor having twin-rotor and apparatus having the same
JP2007215397A (en) * 2006-01-13 2007-08-23 Matsushita Electric Ind Co Ltd Motor and device mounted therewith
WO2007080841A1 (en) 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. Motor and device using the same
WO2007123058A1 (en) * 2006-04-18 2007-11-01 Panasonic Corporation Motor
US7626299B2 (en) 2006-04-20 2009-12-01 Panasonic Corporation Motor
JPWO2007123107A1 (en) * 2006-04-20 2009-09-03 パナソニック株式会社 motor
KR100899913B1 (en) * 2006-04-20 2009-05-28 파나소닉 주식회사 Motor
EP1879283A1 (en) * 2006-04-20 2008-01-16 Matsushita Electric Industrial Co., Ltd. Motor
JP4670871B2 (en) * 2006-04-20 2011-04-13 パナソニック株式会社 motor
EP1879283A4 (en) * 2006-04-20 2013-03-20 Panasonic Corp Motor
WO2007123107A1 (en) * 2006-04-20 2007-11-01 Panasonic Corporation Motor
JP2008005617A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor
JP2008061377A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Motor
US20100058817A1 (en) * 2007-04-11 2010-03-11 Panasonic Corporation Drum type washing machine
WO2008126408A1 (en) * 2007-04-11 2008-10-23 Panasonic Corporation Drum type washing machine
WO2008146437A1 (en) * 2007-05-31 2008-12-04 Panasonic Corporation Electric motor
US8350433B2 (en) 2007-05-31 2013-01-08 Panasonic Corporation Electric motor
US8134266B2 (en) 2007-05-31 2012-03-13 Panasonic Corporation Electric motor
JPWO2008146437A1 (en) * 2007-05-31 2010-08-19 パナソニック株式会社 Electric motor
JP4985770B2 (en) * 2007-05-31 2012-07-25 パナソニック株式会社 Electric motor
CN101340131B (en) * 2007-07-05 2012-07-18 松下电器产业株式会社 Electric motor
JP2010154717A (en) * 2008-12-26 2010-07-08 Daihatsu Motor Co Ltd Motor drive apparatus
US8876493B2 (en) 2009-03-06 2014-11-04 Panasonic Corporation Fan motor and blower including the same motor
WO2012176963A1 (en) * 2011-06-24 2012-12-27 Lee Seong Goun Electric motor and generator in which a concentric winding is applied
JP2014112986A (en) * 2012-12-05 2014-06-19 Kaido Ikeda Magnetic-pole-doubling mounting tool for "left hand wind, gap, and right hand wind" toroidal core, and cooling pipe
WO2014087890A1 (en) * 2012-12-05 2014-06-12 Ikeda Kaidou Fitting tool doubling as magnet ic pole of "left-handed-thread winding/gap/right-handed-thread winding" toroidal core, and cooling pipe
JP5292656B1 (en) * 2012-12-05 2013-09-18 快堂 池田 "Left-handed winding-gap-right-handed winding" fitting and cooling pipe that also serves as the magnetic pole of the toroidal core
DE102013112634A1 (en) 2013-11-15 2015-05-21 Jungheinrich Aktiengesellschaft Reluctance machine and method for operating a reluctance machine
CN105471209A (en) * 2014-09-10 2016-04-06 珠海格力节能环保制冷技术研究中心有限公司 Switched reluctance motor
CN105529888A (en) * 2014-10-27 2016-04-27 珠海格力节能环保制冷技术研究中心有限公司 Switched reluctance motor and winding arrangement method therefor
JP2017135863A (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Hybrid field type double gap synchronous machine
CN106849404A (en) * 2016-12-12 2017-06-13 国电南京自动化股份有限公司 The vertical machine stator structure of stator side fluting
CN106849398A (en) * 2016-12-15 2017-06-13 广东威灵电机制造有限公司 Stator and the motor with it
CN106877531A (en) * 2017-03-31 2017-06-20 广东威灵电机制造有限公司 Motor stator and motor
JP2020512809A (en) * 2017-03-31 2020-04-23 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Motor stator and motor
CN107317445A (en) * 2017-06-23 2017-11-03 贵州宝文电机科技有限公司 Multilayer wheel hub motor and wheel hub
CN111316536A (en) * 2017-10-17 2020-06-19 移动磁体技术公司 Annular multiphase motor
JP2020537864A (en) * 2017-10-17 2020-12-24 ムービング マグネット テクノロジーズ Toroidal type multi-phase electric machine
CN113131700A (en) * 2021-04-09 2021-07-16 台铃科技(江苏)股份有限公司 High power density in-wheel motor structure
CN114499001B (en) * 2022-02-28 2023-10-31 上海交通大学 Ring winding reluctance motor, system and control method thereof

Also Published As

Publication number Publication date
JP2007209199A (en) 2007-08-16
JP3983423B2 (en) 2007-09-26
JP4499764B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP2001037133A (en) Stator and motor
JP4926107B2 (en) Rotating electric machine
KR101730525B1 (en) Brushless synchronous motor
US8901798B2 (en) Switched reluctance machines with minimum stator core
WO2007123107A1 (en) Motor
JP2000197325A (en) Reluctance motor
JPH1198791A (en) Brushless dc motor
JP2010193675A (en) Motor
JP2008061485A (en) Permanent magnet electric motor capable of self-starting with ac power supply
JP2003032978A (en) Dynamo-electric machine
KR100565219B1 (en) Free magnet type induction motor
JP2011120465A (en) Two-phase bldc motor
JP5538984B2 (en) Permanent magnet motor
CN107546946A (en) A kind of m phases stator winding switched reluctance machines and driving method, pole changing method
EP1324472B1 (en) Inner and outer rotor slotless electric motor with ring-type winding
US20110248582A1 (en) Switched reluctance machine
WO2007123057A1 (en) Motor
CN104795952B (en) Switched reluctance machines
JP2003143822A (en) Induction motor
JP4177189B2 (en) Rotating electric machine and pulley apparatus using the rotating electric machine
JP2001169517A (en) Capacitor motor
JP4482918B2 (en) Permanent magnet type electric motor having ring-shaped stator coil
JP4166929B2 (en) Method for manufacturing electric motor rotor
CN209860683U (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
JP2003348809A (en) Magnet-included inner rotor motor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

EXPY Cancellation because of completion of term