JP2007205982A - 3次元視覚センサ - Google Patents

3次元視覚センサ Download PDF

Info

Publication number
JP2007205982A
JP2007205982A JP2006027082A JP2006027082A JP2007205982A JP 2007205982 A JP2007205982 A JP 2007205982A JP 2006027082 A JP2006027082 A JP 2006027082A JP 2006027082 A JP2006027082 A JP 2006027082A JP 2007205982 A JP2007205982 A JP 2007205982A
Authority
JP
Japan
Prior art keywords
image
pixel data
image receiving
imaging devices
visual sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027082A
Other languages
English (en)
Inventor
Naoki Shimizu
直規 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2006027082A priority Critical patent/JP2007205982A/ja
Publication of JP2007205982A publication Critical patent/JP2007205982A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】2台の撮像装置によって撮像された対象物の画像から三角測量の原理を用いて対象物の位置を3次元的に計測する際に要する時間を短くする。
【解決手段】視覚センサ10は、2台の撮像装置12a,12bと画像処理装置26とを備える。画像処理装置26は、2台の撮像装置の各受像素子22a,22bから出力される画素データのうちから、予め教示された対象物の特徴情報に一致する画素データを抽出し、抽出された画素データの範囲内において一方の撮像装置から出力された画素データと他方の撮像装置から出力された画素データとの間で一致する画素データを検出することによって、2台の撮像装置において対象物の同一の微小部分が結像した受像素子を特定し、特定された受像素子の位置に基づき、三角測量の原理を用いて微小部分の3次元的な位置を算出する。
【選択図】図1

Description

本発明は、三角測量の原理を用いて対象物の位置を3次元的に計測する3次元視覚センサに関する。
工場の製造ラインにおける組み立て作業や加工作業等においては、作業の自動化又は省力化を図るために、ロボット等の自動機械と視覚センサとを組み合わせたシステムが利用されている。視覚センサには、単体の撮像装置で撮影された対象物の画像から主に対象物の2次元的な位置ずれを計測するものや、対象物の位置を3次元的に計測する3次元視覚センサが含まれる。3次元視覚センサとしては、スリット光やスポット光を対象物に投射して対象物面上に周辺よりも高輝度の光帯又は光点を形成し、これをCCDカメラ等の撮像装置によって観測して三角測量の原理によって対象物の3次元計測を行うものや、2台の撮像装置を用いてスレテオ画像処理によって対象物の位置を3次元的に計測するものが知られている。
特許文献1は、ステレオ画像処理によって、すなわち2台の撮像装置を用いて得た二つの画像から三角測量によって、対象物の位置を3次元的に計測する3次元視覚センサの一例を示している。特許文献1に示されている3次元視覚センサでは、対象物を2台の撮像装置で撮像し、各撮像装置の受像素子について、当該撮像装置の予め定められた被写界深度に属するものが結像しているか否かを確認して、予め定められた被写界深度内に位置する対象物の微小部分の像が結像した受像素子からの画素データを検出し、一方の撮像装置から検出された画素データと他方の撮像装置から検出された画素データとの間で一致する画素データを検出する。そして、このようにして検出された一致する画素データが対象物の同一の微小部分が結像した受像素子から出力されたものであるとみなして、2台の撮像装置において対象物の同一の微小部分が結像した受像素子を特定し、特定された受像素子の位置に基づいて当該微小部分の位置を算出する。
特公平5−70084号公報
特許文献1に記載の3次元視覚センサでは、各撮像装置の全ての受像素子について被写界深度内に位置するものが結像しているか否かを確認して、予め定められた被写界深度内に位置する対象物の微小部分の像が結像した受像素子からの画素データを検出した後に、被写界深度内の微小部分が結像した受像素子から出力された画素データ同士の間で一致するものを検出するので、全ての受像素子からの画素データについて所定の処理を行う必要があり、長い処理時間を要するという問題があった。
よって、本発明の目的は、上記従来技術に存する問題を解消して、2台の撮像装置によって撮像された画像から三角測量の原理を用いて対象物の位置を3次元的に計測する視覚センサにおいて、対象物の位置の計測に要する時間を短くすることにある。
本発明は、上記目的に鑑み、2台の撮像装置と画像処理装置とを備え、該2台の撮像装置によって撮像された対象物の画像から三角測量の原理を用いて対象物の位置を3次元的に計測する視覚センサにおいて、前記画像処理装置が、前記2台の撮像装置の複数の受像素子の各々から出力される画素データのうちから、予め教示された対象物の特徴情報に一致する画素データを抽出し、抽出された画素データの範囲内において一方の撮像装置から出力された画素データと他方の撮像装置から出力された画素データとの間で一致する画素データを検出することによって、前記2台の撮像装置において前記対象物の同一の微小部分が結像した受像素子を特定し、特定された受像素子の位置に基づき、三角測量の原理を用いて前記微小部分の位置を算出するようにした3次元視覚センサを提供する。
本発明の3次元視覚センサでは、撮像装置によって撮像された画像の全ての画素に対応する受像素子から出力される画素データの中から予め教示された対象物の特徴情報に一致する画素データを抽出し、抽出された画素データの範囲内において一方の撮像装置から出力された画素データと他方の撮像装置から出力された画素データとの間で一致する画素データを検出する。したがって、限定された受像素子から出力された画素データの範囲内で、一致する画素データを特定するので、一方の撮像装置の全ての受像素子から出力される画素データを他方の撮像装置の全ての画素から出力される画素データと一致するか否かを判断する必要がない。この結果、二つの撮像装置のうちの一方の各受像素子と他方の撮像装置の各受像素子との間で対象物の同一の微小部分が結像した受像素子を特定するための処理に要する時間が大幅に短縮され得る。
例えば、前記特徴情報は、前記対象物の色、形状及び輪郭に関する情報のうちの少なくとも一つである。
前記画像処理装置は、前記撮像装置によって撮像された画像にエッジ検出処理又は線検出処理を施すことにより得られた線に属する画素に対応する受像素子から出力される画素データを特定し、特定された画素データの中から前記予め教示された対象物の特徴情報に一致する画素データを抽出することができる。また、前記画像処理装置は、前記撮像装置によって撮像された画像にパターンマッチング処理を施すことによって予め定められた対象物の特徴情報に一致する画像範囲を特定し、特定された画像範囲に属する画素に対応する受像素子から出力される画素データを抽出してもよい。
本発明の3次元視覚センサによれば、2台の撮像装置のうちの一方の撮像装置の各受像素子と他方の撮像装置の各受像素子との間で対象物の同一の微小部分が結像した受像素子を特定するための処理に要する時間が大幅に短縮され得るので、対象物の位置の3次元的計測に要する時間を短縮することが可能となる。
以下、図面を参照して本発明の好ましい実施形態を説明する。
図1は本発明の3次元視覚センサの全体構成を示す模式図、図2はレンズとCCDの配置を示す線図、図3は三角測量の原理を用いた対象物の位置の計測方法を説明するための説明図である。
図1を参照すると、本発明の3次元視覚センサ10は、二つの撮像装置12a,12bを備える。本実施形態では、撮像装置12a,12bとして、CCDカメラが使用されている。撮像装置12aは、レンズ14aと、レンズ14aから所定距離だけ離れた位置に配置される受像装置16aと、レンズ14aと受像装置16aとの間に配置される絞り18aとを備える。同様に、撮像装置12bは、レンズ14bと、レンズ14bから所定距離だけ離れた位置に配置される受像装置16bと、レンズ14bと受像装置16bとの間に配置される絞り18bとを備える。2台の撮像装置12a,12bはその光軸13a,13bが互いと平行になるように配置されている。また、各撮像装置12a,12bにおいて、レンズ14a,14bはモータなどの1つのアクチュエータ20によってその光軸方向に同時に同じ距離だけ移動できるようになっている。
受像装置16a,16bは、撮像装置12a,12bによって取得される画像の各画素に対応する複数の受像素子22a,22bから構成されており、ワーク(計測対象物)Wの像がレンズ14a,14b及び絞り18a,18bを通った後に受像装置16a,16bの各受像素子22a,22b上に結像し、各受像素子22a,22bがそこに結像した像の輝度(明るさ)及び色差(色情報)に関する情報を含む画素データを画素信号として出力するようになっている。すなわち、受像装置16a,16bの各受像素子22a,22bから出力される画素データは、受像素子22a,22b上に結像しているワークWの各微小部分24の像に対応している。なお、本実施形態では、受像装置16a,16bは電荷結合素子(CCD)である。
3次元視覚センサ10は、さらに、2台の撮像装置12a,12bから得られる画像を処理してワークW(正確には、その特定の微小部分24)の位置を算出するための画像処理装置26を備える。画像処理装置26は、マイクロプロセッサからなる中央演算処理装置28と、様々なデータを一時的に記憶するためのRAMメモリ30と、一つの画面に関する情報を記憶するためのフレームメモリ32a,32bと、フレームメモリ32a,32bに記憶された画像情報に所定の画像処理を施した結果の画像情報を記憶するための補助メモリ34a,34bと、入出力コントローラ36と、フレームメモリ32a,32bにそれぞれ接続されたA/Dコンバータ38a,38bとを含む。
RAMメモリ30、フレームメモリ32a,32b、補助メモリ34a,34b、入出力コントローラ36は、バス40を介して中央演算処理装置28に接続されている。また、入出力コントローラ36には、絞り18a,18bとアクチュエータ20とが接続されており、中央演算処理装置28からの指令に従って絞り18a,18b及びアクチュエータ20の動作を制御し、ワークWの所望の微小部分24にピントが合うようにできるようになっている。詳細には、絞り18a,18bを拡縮することによってピントが合う空間の範囲である被写界深度42の幅を変化させることができ、アクチュエータ20でレンズ14a,14bと受像素子22a,22bとの相対距離を変化させることによって、ピント位置すなわち被写界深度42の位置を変化させることができる。したがって、絞り18a,18b及びレンズ14a,14bの位置を調整することにより、ワークWの特定の部分の像が受像素子上に結像するようにできる。
次に、図2及び図3を参照して、図1に示されている3次元視覚センサ10を用いて所望の微小部分24の位置を3次元的に計測する手順を説明する。
以下の説明において、図2に示されているように、レンズ14aの中心O1を通り且つ光軸13aに沿って延びる軸線をZ軸、レンズ14aの中心O1とレンズ14bの中心O2とを結ぶ直線に沿って延びる軸線をX軸、レンズ14aの中心O1を通り且つX軸及びZ軸に垂直に延びる軸線をY軸とする3次元直交座標系で各点の座標を表すものとする。
最初に、中央演算処理装置28から入出力コントローラ36に発せられた指令に従って、二つの撮像装置12a,12bの絞り18a,18bを小さくし、ピントがあっている空間の範囲である被写界深度42を広くする。そして、ワークWを撮像装置12a,12bで撮像する。受像装置16a,16bの複数の受像素子22a、22bから出力された複数の画素データ(アナログデータ)からなる画像データは、A/Dコンバータ38a,38bによりディジタルデータに変換され、各撮像装置12a,12bに対応する別々のフレームメモリ32a,32bに記憶される。なお、撮像装置12a,12bによる撮像の際には、各受像素子22a,22bから出力される画素信号を適切な大きさにするために、撮像装置12a,12bのシャッタースピードを調整する。詳細には、シャッタースピードを最小の時間から順次増加させていき、受像素子22a,22bから出力される全ての画素信号の大きさが所定の範囲に入ったときに、適切なシャッタースピードと判断して、そのときに各受像素子22a,22bから出力された複数の画素データからなる画像データをフレームメモリ32a,32bに記憶する。
次に、二つのフレームメモリ32a,32bに記憶された画像データは、RAMメモリ30に出力され、RAMメモリ30に記憶された画像データは中央演算処理装置28によって画像処理を施され、画像データを構成する複数の画素データの中から、撮像装置12a,12bの被写界深度42内に位置する微小部分24の像に対応し且つ予め教示されたワークWの微小部分24の特徴情報に一致する画素データが抽出される。予め教示されるワークWの微小部分24の特徴情報は、例えば、位置の計測が所望されるワークWの微小部分24の色、輪郭又は形状に関するものである。
例えば、位置の計測を所望されるワークWの微小部分24について輪郭に関する情報が予め教示されている場合、次のようにして画像処理を行えばよい。まず、RAMメモリ30に記憶される画像データにエッジ検出処理や線検出処理を施して、画像データを構成する複数の画素データの中からワークW又はその微小部分の輪郭を表す線部分を構成する画素に対応する画素データ群を抽出する。そして、当該線部分に対応する画素データ群の中から、予め教示された微小部分24の輪郭に関する特徴情報(例えば計測されるべき微小部分が所定の色であること又は輪郭曲線の曲率が極大となる点であることなど)に合致する画素データ群をさらに抽出する。抽出された線部分に対応する画素データ群を各撮像装置12a,12bに対応する補助メモリ34a,34bに記憶する。次に、フレームメモリ32a,32bに記憶される画像データに基づいて、抽出された画素データ群の各画素データに対応する画素を検出する。以下では、この検出された画素を検出画素と呼称する。
各撮像装置12a,12bによって撮像された画像について、検出画素が一つずつ存在する場合には、それぞれの検出画素に対応する受像素子22a,22bにワークWの同じ微小部分が結像していると判断する。
一方、各撮像装置12a,12bによって撮像された画像について、検出画素が複数存在する場合には、検出画素を一つに絞るために、以下の処理を行う。まず、中央演算処理装置28から入出力コントローラ36に発せられた指令に従って二つの撮像装置12a,12bの絞り18a,18bを大きくすることによって、撮像装置12a,12bの被写界深度42を狭くし、ワークWを撮像装置12a,12bで撮像する。次に、フレームメモリ32に記憶された画像データを構成する複数の画素データに基づき、複数ある検出画素に対応する受像素子22a,22bから出力された画素データとそれに隣接する受像素子22a,22bから出力された画素データとの差(コントラストデータ)をRAMメモリ30に記憶する。さらに、中央演算処理装置28から入出力コントローラ36に発せられた指令に従ってアクチュエータ20を作動させてレンズ14a,14bを移動させた後にワークWの撮像を行い、同様に複数ある検出画素に対応する受像素子22a,22bから出力された画素データとそれに隣接する受像素子22a,22bから出力された画素データとの差(コントラストデータ)をRAMメモリ30に記憶する。レンズ14a,14bを移動させることにより被写界深度42の位置を変えて、各レンズ位置において同じ処理を繰り返す。
例えば、レンズ14a,14bの位置が10段階で変更でき、一つのレンズ位置につき検出画素に対応する受像素子22a,22bとその周囲の画素に対応する受像素子22a,22bとの差(コントラストデータ)を10個求める場合、100個のデータがRAMメモリ30に記憶されることになる。次に、これらのデータの中から最大となるものが、ピントの合っている画素の位置、すなわち一つの被写界深度42内に位置する微小部分が結像している受像素子22a,22bの位置を表すことになる。この画素を被写界画素と呼称する。例えば、第5のレンズ位置においてRAMメモリ30に記憶された画素データの差に最大値が含まれている場合、被写界画素に対応する受像素子22a,22bに結像する微小部分が第5のレンズ位置に対応する被写界深度42内に位置することになる。
同じレンズ位置、すなわち同じ被写界深度42において、撮像装置12aから得られた画像に基づいて検出された被写界画素と撮像装置12bから得られた画像に基づいて検出された被写界画素とが一つずつである場合には、二つの被写界画素に対応する受像素子にワークWの同じ微小部分が結像していると判断する。
一方、同じ被写界深度42において、撮像装置12aから得られた画像に基づいて検出された被写界画素又は撮像装置12bから得られた画像に基づいて検出された被写界画素が複数存在する場合、例えば計測すべき微小部分の色や明暗に関する特徴情報など、検出画素を特定する特徴情報をさらに付加して、検出画素又は被写界画素が一つに絞られるまで、以上の処理を繰り返す。予め教示された特徴情報に微小部分の色や明暗に関する情報を含めておいてもよいことはもちろんである。
各撮像装置12a,12bから得られた画像において、検出画素又は被写界画素が一つに絞られたなら、三角測量の原理に基づいて、検出画素又は被写界画素に対応する受像素子に結像する微小部分の位置を3次元的に計測する。
このように、本発明の3次元視覚センサによれば、各撮像装置12a,12bから得た複数の画素データの中から、予め教示されたワークWの特徴部分の特徴情報に一致する画素データを抽出し、抽出された画素データの範囲内で、一方の撮像装置12aから得た画素データと他方の撮像装置12bから得た画素データとの間で一致する画素データを検出している。したがって、各撮像装置12a,12bから得られた全ての画素データの範囲で一致する画素データを検索する必要がなくなる。この結果、一致する画素データを検出するための処理に要する時間を大幅に短縮することが可能となり、ワークWの位置の計測に要する時間も大幅に短縮され得る。
上記実施形態では、撮像装置12a,12bから得た画像にエッジ検出処理又は線検出処理を施すことによって得られた線に属する画素に対応する受像素子22a,22bから出力される画素データを特定して、特定された画素データの中から、予め教示された特徴情報に一致する画素データを抽出し、抽出された画素データの範囲内で、一方の撮像装置12aから得た画素データと他方の撮像装置12bから得た画素データとの間で一致する画素データを検出している。しかしながら、各撮像装置12a,12bから得た画像データにパターンマッチング処理を施すことによって、予め定められた対象物の特徴情報に一致する画像範囲を特定して、特定された画像範囲に属する画素に対応する受像素子から出力される画素データを抽出し、一致する画素データの検索範囲を限定するようにしてもよい。また、計測が所望される微小部分の形状によっては、エッジ検出処理や線検出処理に代えて円検出処理を用いることも可能である。
ここで、図3を参照して、三角測量の原理に基づく、微小部分の位置の計測方法について説明する。以下では、レンズ14aの中心O1から受像装置16aの検出画素までのX軸方向の距離をX1、レンズ14aの中心O1から受像装置16aの検出画素までのY軸方向の距離をY1、レンズ14bの中心O2から受像装置16bの検出画素までのX軸方向の距離をX2、レンズ14bの中心O2から受像装置16bの検出画素までのY軸方向の距離をY2、レンズ14aの中心O1とレンズ14bの中心O2の間の距離をW、レンズ14a,14bの中心O1,O2から受像装置16a,16bまでの距離をQとする。
図3から分かるように、撮像装置12aにおいて、相似則より、Q:X1=z:x、Q:Y1=z:yとなり、次式が求められる。
X1・z=Q・x (1−1)
Y1・z=Q・y (1−2)
同様に、撮像装置12bにおいて、相似則より、Q:X2=z:(W+x)、Q:Y2=z:yとなり、次式が求められる。
X2・z=Q・(W+x) (2−1)
Y2・z=Q・y (2−2)
また、Y1とY2との間には、次式の関係がある。
Y1=Y2 (3)
式(1−1)、式(1−2)、式(2−1)、式(2−2)及び式(3)を解くと、(x,y,z)=(X1・W/(X2−X1),Y1・W/(X2−X1),Q・W/(X2−X1))が得られる。
二つのレンズ14a,14b間の距離Wは一定で既知であり、レンズ14a,14bと受像装置16a,16bとの距離はレンズ14a,14bの移動距離から検出することができるので、検出画素又は被写界画素に対応する受像素子22a,22bの位置を特定することができれば、ワークWの所望の微小部分の位置を計測することが可能となる。
本発明の3次元視覚センサの全体構成を示す模式図である。 レンズとCCDの配置を示す線図である。 三角測量の原理を用いた対象物の位置の計測方法を説明するための説明図である。
符号の説明
10 3次元視覚センサ
12a,12b 撮像装置
22a,22b 受像素子
24 微小部分
26 画像処理装置
W ワーク

Claims (4)

  1. 2台の撮像装置と画像処理装置とを備え、該2台の撮像装置によって撮像された対象物の画像から三角測量の原理を用いて対象物の位置を3次元的に計測する視覚センサにおいて、
    前記画像処理装置が、前記2台の撮像装置の複数の受像素子の各々から出力される画素データのうちから、予め教示された対象物の特徴情報に一致する画素データを抽出し、抽出された画素データの範囲内において一方の撮像装置から出力された画素データと他方の撮像装置から出力された画素データとの間で一致する画素データを検出することによって、前記2台の撮像装置において前記対象物の同一の微小部分が結像した受像素子を特定し、特定された受像素子の位置に基づき、三角測量の原理を用いて前記微小部分の位置を算出することを特徴とする3次元視覚センサ。
  2. 前記特徴情報は、前記対象物の色、形状及び輪郭に関する情報のうちの少なくとも一つである、請求項1に記載の3次元視覚センサ。
  3. 前記画像処理装置は、前記撮像装置によって撮像された画像にエッジ検出処理又は線検出処理を施すことにより得られた線に属する画素に対応する受像素子から出力される画素データを特定し、特定された画素データの中から前記予め教示された対象物の特徴情報に一致する画素データを抽出する、請求項1に記載の3次元視覚センサ。
  4. 前記画像処理装置は、前記撮像装置によって撮像された画像にパターンマッチング処理を施すことによって予め定められた対象物の特徴情報に一致する画像範囲を特定し、特定された画像範囲に属する画素に対応する受像素子から出力される画素データを抽出する、請求項1に記載の3次元視覚センサ。
JP2006027082A 2006-02-03 2006-02-03 3次元視覚センサ Pending JP2007205982A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027082A JP2007205982A (ja) 2006-02-03 2006-02-03 3次元視覚センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027082A JP2007205982A (ja) 2006-02-03 2006-02-03 3次元視覚センサ

Publications (1)

Publication Number Publication Date
JP2007205982A true JP2007205982A (ja) 2007-08-16

Family

ID=38485563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027082A Pending JP2007205982A (ja) 2006-02-03 2006-02-03 3次元視覚センサ

Country Status (1)

Country Link
JP (1) JP2007205982A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949881A (zh) * 2017-02-24 2017-07-14 浙江大学 一种移动机器人快速视觉定位方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949881A (zh) * 2017-02-24 2017-07-14 浙江大学 一种移动机器人快速视觉定位方法

Similar Documents

Publication Publication Date Title
JP5911934B2 (ja) 輪郭線計測装置およびロボットシステム
US9679385B2 (en) Three-dimensional measurement apparatus and robot system
EP3531066B1 (en) Three-dimensional scanning method including a plurality of lasers with different wavelengths, and scanner
CN108472706B (zh) 变形加工支持系统以及变形加工支持方法
TWI521471B (zh) 3 - dimensional distance measuring device and method thereof
JP2010091426A (ja) 距離計測装置及びプログラム
JP2020047049A (ja) 画像処理装置及び画像処理方法
JP6621351B2 (ja) レーザー加工用の画像処理装置及び画像処理方法
JP2008045983A (ja) ステレオカメラの調整装置
KR20230000585A (ko) 센서 캘리브레이션 방법 및 장치
JP2006224291A (ja) ロボットシステム
JP7427370B2 (ja) 撮像装置、画像処理装置、画像処理方法、撮像装置の校正方法、ロボット装置、ロボット装置を用いた物品の製造方法、制御プログラムおよび記録媒体
JP7195801B2 (ja) 画像処理装置およびその制御方法、距離検出装置、撮像装置、プログラム
CN110475627B (zh) 变形加工辅助系统及变形加工辅助方法
JP6540261B2 (ja) 高速度撮像システム及び高速度撮像方法
JP6634842B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP2007171018A (ja) 物体位置認識方法及び物体位置認識装置
JP2007205982A (ja) 3次元視覚センサ
JP6699902B2 (ja) 画像処理装置及び画像処理方法
JP6646133B2 (ja) 画像処理装置および内視鏡
JP2020091126A (ja) 計測装置、システム、表示方法及びプログラム
JP2010014699A (ja) 形状計測装置及び形状計測方法
JP2010146357A (ja) 3次元画像処理方法および3次元画像処理装置
JP5432545B2 (ja) 対象物検出装置
WO2022124232A1 (ja) 画像処理システム及び画像処理方法