JP2007205724A - Shape measuring device and measuring method of glass substrate - Google Patents

Shape measuring device and measuring method of glass substrate Download PDF

Info

Publication number
JP2007205724A
JP2007205724A JP2006021451A JP2006021451A JP2007205724A JP 2007205724 A JP2007205724 A JP 2007205724A JP 2006021451 A JP2006021451 A JP 2006021451A JP 2006021451 A JP2006021451 A JP 2006021451A JP 2007205724 A JP2007205724 A JP 2007205724A
Authority
JP
Japan
Prior art keywords
glass substrate
head
measuring
camera
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006021451A
Other languages
Japanese (ja)
Inventor
Shinichi Okamura
真一 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2006021451A priority Critical patent/JP2007205724A/en
Publication of JP2007205724A publication Critical patent/JP2007205724A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring device and a measuring method for measuring longitudinal/lateral sizes, squareness of four corners or the like of a square glass substrate used for a display substrate such as a large-size liquid crystal substrate or a plasma display substrate. <P>SOLUTION: The device comprises: an imaging means comprising a light source for irradiating the glass substrate surface and a camera for imaging a domain irradiated by the light source, on a glass inspection stand supporting the glass substrate in the tilted attitude; a head moving means for moving a head having the imaging means in both directions of the XY axes; a head position detection means for detecting the XY coordinate of the head; an image processing device for processing the image of a glass substrate peripheral edge part imaged by the camera; and an operation processing device for operating and measuring the size and the squareness of the four corners of the glass substrate, or a pore position and/or a pore diameter in addition to the size and the squareness of the four corners of the glass substrate, from position information of the XY axes by the head position detection means and peripheral edge position coordinate information of a plurality of spots on the glass substrate calculated by the image processing device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶基板やプラズマディスプレイ基板等の表示ディスプレイ基板に用いる方形のガラス基板の縦横の寸法と四隅の直角度、穿孔部の位置、及び該穿孔部の孔径等の形状測定装置および測定方法に関する。   The present invention relates to an apparatus and a method for measuring the shape of a rectangular glass substrate used for a display substrate such as a liquid crystal substrate or a plasma display substrate, such as vertical and horizontal dimensions, squareness of four corners, the position of a perforated portion, and the diameter of the perforated portion About.

矩形状で所望のサイズに切断されたガラス板は、建築、鏡、家具、自動車用等各種の用途に使用されるが、使用用途目的によっては切断後のガラス板の縦横の寸法、四隅の直角度、穿孔部の位置、及び該穿孔部の孔径等の形状について、高い精度の寸法、直角度、孔位置精度の要求される場合がある。   Glass plates that are rectangular and cut to the desired size are used in various applications such as architecture, mirrors, furniture, and automobiles. Depending on the purpose of use, the vertical and horizontal dimensions of the glass plate after cutting and the four corners With respect to the shape such as the angle, the position of the perforated part, and the hole diameter of the perforated part, a highly accurate dimension, squareness, and hole position accuracy may be required.

特に、液晶ディスプレイ用ガラス基板やプラズマディスプレイ用ガラス基板、フィールドエミッションディスプレイ基板、有機EL等のフラットディスプレイパネル等の表示用基板においては、このような要求が顕著である。   In particular, such a requirement is remarkable in display substrates such as glass substrates for liquid crystal displays, glass substrates for plasma displays, field emission display substrates, and flat display panels such as organic EL.

しかも、近年1枚の大きなサイズのガラス基板で多数枚の最終製品サイズを採寸できる多面採りで大寸法化傾向にあるフラットディスプレイパネル等の表示用基板の素板の寸法や孔位置等の測定を高精度で行なう場合に、従来行なってきたようなノギスや直角定規等を用いて人手で測定を行なうことは、作業性も悪く、測定誤差も大きくなるという問題があった。このため、各種の自動測定装置や、測定の補助装置が考えられるようになった。   Moreover, in recent years, it has been possible to measure the size and hole position of the base plate of a display substrate such as a flat display panel, which tends to increase the size of a large number of finished products with a single large glass substrate. When the measurement is performed with high accuracy, manual measurement using a vernier caliper, a right angle ruler, or the like, which has been conventionally performed, has a problem that workability is poor and a measurement error increases. For this reason, various automatic measuring devices and auxiliary measuring devices have come to be considered.

このような方形ガラス板の縦横の寸法や4隅の直角度を測定する方法、装置としては、例えば、特開2003−75121号公報には、ベース上に設けられ、水平方向へ直線的に往復移動可能な移動テーブルと、移動テーブル上に垂直軸回りに可逆回転可能に設けられ、方形ガラス板を水平に載置する回転テーブルと、移動テーブルの移動経路の一方の端部においてベース上に設けられ、回転テーブルに載置された方形ガラス板の中心を回転テーブルの回転中心に位置決めする位置決め手段と、移動テーブルの移動経路の両側方に対向配置してベース上に設けられ、回転テーブルに載置された方形ガラス板の側面との間の距離を測定する2つのレーザ距離計と、移動テーブル、回転テーブル、位置決め手段及び両レーザ距離計の動作を制御し、かつ、両レーザ距離計のデータから方形のガラス板の縦、横の寸法及び4隅の直角度を演算する制御・演算手段とを備えることを特徴とする方形ガラス板の形状測定装置が開示されている(特許文献1)。   As a method and apparatus for measuring the vertical and horizontal dimensions and the squareness of the four corners of such a rectangular glass plate, for example, Japanese Patent Application Laid-Open No. 2003-75121 is provided on a base and linearly reciprocates horizontally. A movable table, a rotary table provided on the movable table so as to be reversibly rotatable about a vertical axis, and provided on the base at one end of the moving path of the movable table, and a rotary table for horizontally placing a rectangular glass plate Positioning means for positioning the center of the rectangular glass plate placed on the rotary table to the rotation center of the rotary table, and provided on the base so as to be opposed to both sides of the moving path of the moving table. Controls the operation of two laser rangefinders that measure the distance between the side of the placed square glass plate, the moving table, the rotary table, the positioning means, and both laser rangefinders. In addition, there is disclosed a shape measuring apparatus for a rectangular glass sheet, comprising control / calculating means for calculating the vertical and horizontal dimensions and squareness of four corners of the rectangular glass sheet from the data of both laser distance meters. (Patent Document 1).

あるいは、特開2004−257754公報には、測定すべき物品の片側から投光手段により光束を照射し、前記物品の他側に配列し前記投光手段からの透過光を検出する多数の受光素子を用いて、前記物品を光走査しその寸法を測定する装置において、前記物品に対し前記受光素子を前記受光素子の配列方向と直交する方向に相対的に往復動する駆動手段と、前記往動と復動において前記物品に対し前記複数の受光素子をその配列方向に相対的にずらして前記受光素子の位置を異ならせる移動手段とを備えたことを特徴とする物品の寸法測定装置が開示されている(特許文献2)。
特開2003−75121号公報 特開2004−257754号公報
Alternatively, Japanese Patent Application Laid-Open No. 2004-257754 discloses a number of light receiving elements that irradiate a light beam from one side of an article to be measured by a light projecting unit and that are arranged on the other side of the article and detect transmitted light from the light projecting unit. In the apparatus for optically scanning the article and measuring the size of the article, a driving means for reciprocating the light receiving element relative to the article in a direction orthogonal to the arrangement direction of the light receiving elements, and the forward movement And a moving means for moving the plurality of light receiving elements relative to the article relative to each other in the arrangement direction to move the positions of the light receiving elements different from each other. (Patent Document 2).
JP 2003-75121 A JP 2004-257754 A

前記特許文献1に記載の発明は、比較的小寸法のフォトマスク用の方形のガラス板の寸法、角度の測定装置であって、方形のガラス板の対向する2辺の外方側に固定された一対のレーザー距離計にガラス板を通過移動させて対向2辺の寸法を測定し、残りの2辺の寸法を測定する為に回転テーブルを90度正確に回転させなければならないという手段は、近年ますます大寸法化傾向にあるフラットパネルディスプレイ用の素板ガラス基板の寸法測定に適用させる場合には、設備が大型化となり、ガラス板を回転させる時の周辺部との干渉を考慮すると、スペース的にも合理的ではない。   The invention described in Patent Document 1 is an apparatus for measuring the size and angle of a rectangular glass plate for a relatively small size photomask, and is fixed to the outer sides of two opposing sides of the rectangular glass plate. In order to measure the dimensions of the two opposite sides by moving the glass plate through the pair of laser distance meters, and to measure the dimensions of the remaining two sides, the means that the rotary table must be rotated 90 degrees accurately, When it is applied to the measurement of the size of the glass substrate for flat panel displays, which have been increasing in size in recent years, the size of the equipment has increased, and considering the interference with the surrounding area when rotating the glass plate, the space It is not reasonable.

また、前記特許文献2に記載の発明については、透明なガラス板上に物品Wを載置し、該ガラス板の下方のY軸方向に一列に配置した投光素子と、物品の上方で投光素子に対向するY軸方向の位置に一列に配置した受光素子を設けて、投光素子と受光素子をX軸方向に移動させて物品によって遮られた部分の長さを測定するものであるが、受光素子のmmオーダーの配列間隔によって分解能が左右され、μm単位の寸法精度を要求される場合には適用が困難である。   In the invention described in Patent Document 2, the article W is placed on a transparent glass plate, and the light projecting elements are arranged in a row in the Y-axis direction below the glass plate. A light receiving element arranged in a line at a position in the Y-axis direction opposite to the optical element is provided, and the length of the portion blocked by the article is measured by moving the light projecting element and the light receiving element in the X-axis direction. However, the resolution depends on the arrangement interval of the light receiving elements in the order of mm, and it is difficult to apply when a dimensional accuracy of μm is required.

また、物品が透明なガラス板であると、投光素子の光を通過させて遮ることはないので、本方式で測定することはできない。さらに、一辺が2mを越すような大寸法のフラットパネルディスプレイ用ガラス板に適用しようとした場合には、設備の大型化は避けられないといった問題点があった。   Further, if the article is a transparent glass plate, the light from the light projecting element is not allowed to pass therethrough and cannot be measured by this method. Furthermore, when trying to apply to a large-sized flat panel display glass plate with a side exceeding 2 m, there is a problem that an increase in size of the equipment is inevitable.

本発明は、上記問題点、すなわち、液晶ディスプレイ用ガラス基板やプラズマディスプレイ用ガラス基板、フィールドエミッションディスプレイ基板、有機EL等のフラットディスプレイパネル等の表示用ガラス基板の寸法と四隅の直角度、または寸法と四隅の直角度に加えて孔位置および/又は孔径を、非接触で、短時間に、高精度で効率的に測定できる測定方法および測定装置の提供を目的とするものであり、特に大寸法のガラス基板を対象としたものである。   The present invention has the above-mentioned problems, that is, the dimensions of the glass substrate for display such as a glass substrate for liquid crystal display, a glass substrate for plasma display, a field emission display substrate, and a flat display panel such as organic EL, and the perpendicularity or dimensions of the four corners. In addition to the squareness of the four corners, the purpose is to provide a measurement method and a measurement device that can measure the hole position and / or hole diameter in a non-contact manner in a short time with high precision and efficiency. This is intended for glass substrates.

すなわち、本発明は、方形のガラス基板の寸法形状を測定する装置において、該ガラス基板を傾斜姿勢にして支持するガラス検査台上で、該ガラス基板面を照射する光源と該光源によって照射された領域を撮像するカメラとからなる撮像手段と、該撮像手段を有するヘッドをXY軸両方向に移動自在とするヘッド移動手段と、該ヘッドのXY座標を検出自在なヘッド位置検出手段と、カメラで撮像したガラス基板周辺エッジ部の画像を処理する画像処理装置と、前記ヘッド位置検出手段によるXY軸の位置情報、該画像処理装置によって算出したガラス基板の複数箇所の周辺エッジ位置座標情報により、ガラス基板の寸法と四隅の直角度、またはガラス基板の寸法と四隅の直角度に加えて孔位置および/又は孔径を演算測定する演算処理装置、とからなることを特徴とするガラス基板の形状測定装置である。   That is, the present invention is an apparatus for measuring the size and shape of a square glass substrate, and is irradiated by the light source and the light source that irradiates the glass substrate surface on a glass inspection table that supports the glass substrate in an inclined posture. Imaging means comprising a camera for imaging an area, head moving means for allowing the head having the imaging means to move in both directions on the XY axes, head position detecting means for detecting the XY coordinates of the head, and imaging by the camera An image processing apparatus that processes an image of the peripheral edge portion of the glass substrate, position information on the XY axes by the head position detection means, and peripheral edge position coordinate information of a plurality of locations on the glass substrate calculated by the image processing apparatus. Processing unit for calculating and measuring the hole position and / or the hole diameter in addition to the dimensions and the squareness of the four corners, or the dimensions and the squareness of the four corners of the glass substrate Consisting of a shape measuring apparatus for a glass substrate according to claim.

あるいはまた、本発明は、前記ヘッド位置検出手段として、ヘッド移動手段のX軸方向に延設し、X座標を検出自在なX軸の位置読取装置と、該ヘッド移動手段のY軸方向に延設し、Y座標を検出自在なY軸の位置読取装置とからなることを特徴とする上述の記載のガラス基板の形状測定装置である。   Alternatively, according to the present invention, as the head position detecting means, an X-axis position reading device that extends in the X-axis direction of the head moving means and can detect the X coordinate, and extends in the Y-axis direction of the head moving means. The apparatus for measuring a shape of a glass substrate as described above, comprising a Y-axis position reader capable of detecting a Y coordinate.

あるいはまた、本発明は、上述のガラス基板の形状測定装置を用いて、方形のガラス基板の寸法形状を測定する方法において、予めティーチングによって測定位置を記憶させたガラス基板の四辺の各辺の少なくとも2点に順次ヘッドを移動させ、ヘッド位置検出手段によるヘッドの位置座標を測定し、さらに該ヘッド位置でカメラが撮像した画像データにより画像処理装置によって算出したエッジ位置の座標によって、四辺の各辺を直線で近似して外形寸法を特定するとともに、隣り合う2辺のなす角度を算出するようにしたことを特徴とするガラス基板の形状測定方法である。   Alternatively, the present invention provides a method for measuring the dimensional shape of a rectangular glass substrate using the above-described glass substrate shape measuring apparatus, and at least each of the four sides of the glass substrate in which measurement positions are stored in advance by teaching. The head is sequentially moved to two points, the position coordinates of the head are measured by the head position detecting means, and each side of the four sides is determined by the coordinates of the edge position calculated by the image processing device from the image data captured by the camera at the head position. Is a shape measurement method for a glass substrate, characterized in that an external dimension is specified by approximating a straight line and an angle formed by two adjacent sides is calculated.

あるいはまた、本発明は、上述のガラス基板の形状測定装置を用いて、方形のガラス基板の寸法形状を測定する方法において、予めガラス基板の所望のエッジ位置と穿孔部をカメラで撮像可能な位置となるようにヘッド位置をティーティングさせておき、該ティーチング情報に基づき、前記ヘッドを前記エッジ位置と穿孔部に移動させて、該位置におけるヘッドの位置座標と、前記カメラで撮像した画像より求めたガラス端面エッジと穿孔部エッジの座標情報より穿孔部位置および/又は孔径を算出するようにしたことを特徴とするガラス基板の形状測定方法である。   Alternatively, according to the present invention, in the method for measuring a dimensional shape of a rectangular glass substrate using the above-described glass substrate shape measuring apparatus, a position where a desired edge position and a perforated portion of the glass substrate can be imaged with a camera in advance. Based on the teaching information, the head is moved to the edge position and the perforated portion, and the head position coordinates at the position and the image captured by the camera are used to obtain the head position. The glass substrate shape measuring method is characterized in that the position and / or hole diameter of the perforated part is calculated from the coordinate information of the glass end face edge and the perforated part edge.

あるいはまた、本発明は、測定環境の雰囲気温度をセンサーで測定し、ヘッド位置検出手段とガラス基板の熱膨張係数の差を考慮して、所望の温度に換算する温度補正を行なうことを特徴とする上述のガラス基板の形状測定方法である。   Alternatively, the present invention is characterized in that the ambient temperature of the measurement environment is measured by a sensor, and temperature correction is performed to convert it to a desired temperature in consideration of the difference in thermal expansion coefficient between the head position detecting means and the glass substrate. It is the above-mentioned glass substrate shape measuring method.

ガラスサイズの大小を問わず、長方形のフラットディスプレイパネル等の表示用ガラス基板の寸法、四隅の直角度、孔位置、孔径を、短時間でスムーズに、非接触でガラス基板にキズをつけることもなく、高精度、効率的かつ自動的に測定できる。   Regardless of the size of the glass, the size of the glass substrate for display such as a rectangular flat display panel, the squareness of the four corners, the hole position, and the hole diameter can be scratched smoothly and non-contact in a short time. Highly accurate, efficient and automatic measurement.

図1、図2に示すように、本発明のガラス基板2の寸法形状測定装置1の構成としては、ガラス搬送手段30によって傾斜姿勢で搬入されるガラス基板をガラス検査台上で支持し、該ガラス基板2の所望のエッジまたは穿孔部2aに照明光を照射する光源12と該光源12によって照射された領域を撮像するカメラ11とからなる撮像手段10と、該撮像手段10を有するヘッド63をXY軸両方向に移動自在とするヘッド移動手段50と、該ヘッド63のXY座標を検出自在なヘッド位置検出手段40と、カメラ11で撮像したガラス基板周辺エッジ部の画像を処理する画像処理装置21と、前記ヘッド位置検出手段40によるXY軸の位置情報、該画像処理装置21によって算出したガラス基板2の複数箇所の周辺エッジ位置座標情報により、ガラス基板2の寸法と四隅の直角度、あるいは寸法と四隅の直角度に加えて孔位置および/又は孔径を演算測定する演算処理装置22とからなる。   As shown in FIG. 1 and FIG. 2, the size and shape measuring apparatus 1 for the glass substrate 2 of the present invention is configured such that a glass substrate carried in an inclined posture by a glass transport means 30 is supported on a glass inspection table, An imaging means 10 comprising a light source 12 for irradiating illumination light to a desired edge or perforated part 2a of the glass substrate 2 and a camera 11 for imaging an area irradiated by the light source 12, and a head 63 having the imaging means 10 A head moving means 50 that can move in both directions of the XY axes, a head position detecting means 40 that can detect the XY coordinates of the head 63, and an image processing device 21 that processes the image of the peripheral edge portion of the glass substrate imaged by the camera 11. And the position information of the XY axes by the head position detecting means 40 and the peripheral edge position coordinate information of a plurality of locations of the glass substrate 2 calculated by the image processing device 21. Ri, consisting processing unit 22 for calculating measured squareness or in addition to the perpendicularity of the dimensions and corner hole positions and / or pore size, the size of the glass substrate 2 and the four corners.

前記撮像手段10は、図4、図5に示すように、方形のガラス基板2の所望のエッジ部、または穿孔部2a近傍のいずれかに照明光が照射されるように複数個のLED素子(発光ダイオード素子)12a、12a、・・等をリング状に構成した光源12と、該光源12によって照射された前記領域を撮像するCCD撮像素子等からなるカメラ11をヘッド(Y軸ガイド)63の側面部に取付部材を介して配置固定する。   As shown in FIGS. 4 and 5, the imaging means 10 includes a plurality of LED elements (so that illumination light is irradiated to either a desired edge portion of the rectangular glass substrate 2 or the vicinity of the perforated portion 2 a. (Light emitting diode element) 12a, 12a,... Are arranged in a ring shape, and a camera 11 comprising a CCD image pickup device for picking up the area irradiated by the light source 12 is connected to a head (Y-axis guide) 63. It arranges and fixes to a side part via an attachment member.

カメラ11と光源12の位置関係は、カメラ11の光軸が、ガラス基板2の撮像対象であるエッジの上面部、または穿孔部2aの中心位置の法線方向、すなわちガラス基板2の上面に対して上面側の直角方向となるようにし、複数個のLED素子12a、12a、・・を同心円状に配設したリング照明12はカメラ11とガラス基板2間に配置して、カメラ11の光軸とリング照明12の中心軸とを略一致させ、カメラ11が、リング照明12の中心軸を通してガラス基板2のエッジ、または穿孔部を撮像できるように配置した。   The positional relationship between the camera 11 and the light source 12 is such that the optical axis of the camera 11 is relative to the upper surface of the edge to be imaged on the glass substrate 2 or the normal direction of the center position of the perforated portion 2a, that is, the upper surface of the glass substrate 2. The ring illumination 12 having a plurality of LED elements 12a, 12a,... Concentrically arranged so as to be perpendicular to the upper surface side is disposed between the camera 11 and the glass substrate 2, and the optical axis of the camera 11 is And the center axis of the ring illumination 12 are made to substantially coincide with each other, and the camera 11 is arranged so that the edge of the glass substrate 2 or the perforated portion can be imaged through the center axis of the ring illumination 12.

尚、カメラ11のレンズとしては、小型のテレセントリックレンズを用いると、カメラ11の光軸位置と測定目標位置間に僅かな位置ずれが発生することによる、エッジ端面や、穿孔部の端面を僅かながらも斜めから撮像することによる誤判読に影響されず、真上からの精密な撮像が可能である。   When a small telecentric lens is used as the lens of the camera 11, a slight positional deviation occurs between the optical axis position of the camera 11 and the measurement target position, so that the edge end face and the end face of the perforated part are slightly In addition, accurate imaging from directly above is possible without being affected by misinterpretation caused by imaging from an oblique direction.

つまり、該テレセントリックレンズは、カメラの視野内を平行に撮像するもので、ガラス基板の丸みを帯びたエッジ端面を真上方向から撮像させるもので、斜めから端面(ガラス面の直角な面)を撮像したり、穿孔部2aを斜めから撮像した時に円形の端面の一部を撮像したりすることがなく、エッジ端面や、穿孔部の端面を僅かながらも斜めから撮像することによる誤判読に影響されず、真上からの精密な撮像が可能である。   In other words, the telecentric lens captures images in the field of view of the camera in parallel, and captures the rounded edge end surface of the glass substrate from directly above, and the end surface (surface perpendicular to the glass surface) from an oblique direction. It does not pick up an image or captures a part of the circular end face when taking an image of the perforated part 2a from an oblique direction, and this may affect misreading by taking an image of the edge end face or the end face of the perforated part from a slight angle. In other words, precise imaging from directly above is possible.

つまり、該テレセントリックレンズは、カメラ11の視野内を並行に撮像するもので、ガラス基板の丸みを帯びたエッジ端面を真上方向から撮像するもので、斜めから端面(ガラス面の直角な面)を撮像したり、穿孔部2aを斜めから撮像した時に円形の端面の一部を撮像したりすることがない。   That is, the telecentric lens captures images in the field of view of the camera 11 in parallel, and captures the rounded edge end surface of the glass substrate from directly above, and obliquely faces the end surface (a surface perpendicular to the glass surface). Or a part of the circular end face is not captured when the perforated portion 2a is imaged obliquely.

前記ガラス搬送手段30は、図1、図2に示したように、ガラス基板2の下端辺エッジ部を、断面V字状の複数個の搬送受ロール31、31、・・のV溝部内で支持しながら、ガラス基板の背面を縦横に配設した複数個のフリー背ロール32、32、・・に凭れ掛けるように傾斜姿勢で支持して、ガラス基板2をガラス検査台3内に搬入、またはガラス検査台3よりガラス基板2を搬出させるものであり、複数個の搬送受ロール31、31、・・は、図示しない搬送モーターによって駆動される。   As shown in FIGS. 1 and 2, the glass conveying means 30 has a lower edge portion of the glass substrate 2 in a V-groove portion of a plurality of conveying receiving rolls 31, 31,. While supporting, the glass substrate 2 is carried into the glass inspection table 3 by supporting the glass substrate 2 in an inclined posture so as to lean over a plurality of free back rolls 32, 32,. Alternatively, the glass substrate 2 is unloaded from the glass inspection table 3, and the plurality of transport receiving rolls 31, 31,... Are driven by a transport motor (not shown).

前記ヘッド移動手段50は、図1、図2にガラス検査台3の下辺近傍、および上辺近傍に水平方向に設けたX軸フレーム51、51の夫々にX軸レール52、52を固設し、該X軸レール52、52に嵌合、かつX軸方向に摺動自在なX軸ガイド53、53を前記X軸レール52、52に沿って設けた。   The head moving means 50 has X-axis rails 52, 52 fixed to X-axis frames 51, 51 provided in the horizontal direction near the lower side and the upper side of the glass inspection table 3 in FIGS. X-axis guides 53 and 53 that are fitted to the X-axis rails 52 and 52 and are slidable in the X-axis direction are provided along the X-axis rails 52 and 52.

図2に示したように、前記X軸ガイド53、53のいずれか片方は、X軸の駆動モーター54の駆動によってラック&ピニオンギア55等により前記レール上を移動させるようにすれば良いが、X軸の駆動モーター54の駆動をボールネジや、タイミングベルト等の伝達機構によってX軸ガイド53、53を駆動するようにしても良い。   As shown in FIG. 2, one of the X-axis guides 53 and 53 may be moved on the rail by a rack and pinion gear 55 or the like by driving an X-axis drive motor 54. The X-axis guide motors 54 may be driven by a transmission mechanism such as a ball screw or a timing belt.

前記2つのX軸ガイド53、53は、垂直方向に配設するY軸フレーム61、および連結シャフト65によって連結固定される。該Y軸フレーム61には、該Y軸フレーム61の全長に亘ってY軸レール62を固設し、該Y軸レール62に嵌合、かつY軸方向に摺動自在なY軸ガイドを兼ねたヘッド63を設けた。   The two X-axis guides 53 and 53 are connected and fixed by a Y-axis frame 61 and a connecting shaft 65 arranged in the vertical direction. A Y-axis rail 62 is fixed to the Y-axis frame 61 over the entire length of the Y-axis frame 61, and also serves as a Y-axis guide that fits the Y-axis rail 62 and is slidable in the Y-axis direction. A head 63 was provided.

該ヘッド63には、前記光源12とカメラ11からなる撮像手段10を取り付け、方形のガラス基板の各辺のエッジ部の少なくとも2箇所、および各穿孔部のそれぞれの位置にヘッド63をヘッド移動手段50によって順次移動させるものである。   The image pickup means 10 comprising the light source 12 and the camera 11 is attached to the head 63, and the head 63 is moved to the head 63 at at least two positions of the edge portions of each side of the rectangular glass substrate and at the respective positions of the perforated portions. 50 is sequentially moved.

前記ヘッド位置検出手段40は、ヘッド移動手段50のX軸フレーム51の側部でX軸方向に延設して固設したX軸の位置読取装置41と、Y軸フレーム61の側部に固設してY軸方向に延設したY軸の位置読取装置51とからなる。前記位置読取装置41、51は、磁気式または光学式の位置読み取り装置があり、磁気式のものとしては、例えば、ソニー・プレシジョン・テクノロジー株式会社製のマグネスケール(登録商標)を用いることができる。   The head position detecting means 40 includes an X-axis position reading device 41 extending in the X-axis direction at the side portion of the X-axis frame 51 of the head moving means 50 and a side portion of the Y-axis frame 61. And a Y-axis position reading device 51 extending in the Y-axis direction. The position readers 41 and 51 include magnetic or optical position readers. As the magnetic readers, for example, Magnescale (registered trademark) manufactured by Sony Precision Technology Co., Ltd. can be used. .

下部側のX軸ガイド53は、下部側のX軸モーター54の駆動によってX軸方向に駆動されるが、上部側のX軸ガイド53は、下部側のX軸ガイド53が移動するときに、これに垂直に連結固定したY軸フレーム61、及び連結シャフト65との連結によって追従して移動する。   The lower-side X-axis guide 53 is driven in the X-axis direction by driving the lower-side X-axis motor 54, but the upper-side X-axis guide 53 is moved when the lower-side X-axis guide 53 moves. The Y-axis frame 61 and the connection shaft 65 that are connected and fixed perpendicularly to the connection shaft 65 move following the connection.

このため、Y軸フレーム61、及び連結シャフト65垂直姿勢を保ったまま上部側X軸ガイド53と共に水平方向に移動するのが望ましいが、ガラス基板2の大サイズに対応できるような長さの長いY軸フレーム61や連結シャフト65については、僅かながらも傾斜して水平方向に移動する場合がある。   For this reason, it is desirable that the Y-axis frame 61 and the connecting shaft 65 move in the horizontal direction together with the upper-side X-axis guide 53 while maintaining the vertical posture, but the length is long enough to accommodate the large size of the glass substrate 2. The Y-axis frame 61 and the connecting shaft 65 may be slightly inclined and move in the horizontal direction.

このため、下部側のX軸ガイド53の移動位置の測定においては、下部側のX軸ガイド53の移動位置を測定できるX軸の位置読取装置41だけでなく、上部側のX軸ガイド53の移動位置をも測定できるX軸の位置読取装置41を配置して、上下2つの位置読取装置41、41によって、Y軸フレーム61の角度を補正して行なうのが好ましい。   Therefore, in the measurement of the movement position of the lower X-axis guide 53, not only the X-axis position reading device 41 that can measure the movement position of the lower X-axis guide 53 but also the upper X-axis guide 53. It is preferable that the X-axis position reading device 41 capable of measuring the moving position is arranged and the angle of the Y-axis frame 61 is corrected by the upper and lower two position reading devices 41 and 41.

前記X軸の位置読取装置41によって、X軸ガイド53のX座標位置を検出でき、これによって、ヘッド63のX座標の絶対移動量を精密に測定できる。また、前記Y軸の位置読取装置42によって、ヘッド(Y軸ガイド)63のY座標の絶対量を精密に検出できる。   The X-axis position reading device 41 can detect the X-coordinate position of the X-axis guide 53, and thereby the absolute movement amount of the X coordinate of the head 63 can be accurately measured. Further, the absolute value of the Y coordinate of the head (Y axis guide) 63 can be accurately detected by the Y axis position reading device 42.

ヘッド移動手段50を駆動するモーターとしてサーボモーターを用いると、ヘッド63の位置のX座標、Y座標を求めることが可能ではあるが、本発明においては、高い測定精度が要求されるので、ヘッド63の停止位置の測定にマグネスケール等の位置読取装置41、42を用いて、マグネスケールによる絶対量を取り込む。   If a servo motor is used as the motor for driving the head moving means 50, the X and Y coordinates of the position of the head 63 can be obtained. However, in the present invention, high measurement accuracy is required. For the measurement of the stop position, position reading devices 41 and 42 such as a magnescale are used to capture the absolute amount of the magnescale.

ヘッド63の所望の停止位置においては、カメラ11の撮像したエリア内にガラス基板2の所望のエッジ部や穿孔部2aが撮像されていれば、位置ずれがあったとしてもカメラが撮像した画像データとカメラ原点座標とにより補正が可能であるため問題ない。   At the desired stop position of the head 63, if the desired edge portion or the perforated portion 2a of the glass substrate 2 is imaged in the area imaged by the camera 11, the image data captured by the camera even if there is a positional deviation. And the camera origin coordinates can be corrected.

前記光源12で照射されたガラス基板2の各辺のエッジ部および各穿孔部2aをカメラ11で順次撮像し、原画像は画像処理装置21によって所望の設定レベルで二値化され、二値化画像によりエッジ位置のX座標とY座標が求められ、視野内の原点からの距離とヘッド63の位置座標を合せて、ガラス基板の各エッジ位置の座標、四隅の直角度、さらには各穿孔部2aの中心位置の座標を演算処理装置22で算出する。   The edges of each side of the glass substrate 2 irradiated by the light source 12 and the perforations 2a are sequentially captured by the camera 11, and the original image is binarized at a desired setting level by the image processing device 21, and binarized. The X and Y coordinates of the edge position are obtained from the image, the distance from the origin in the field of view and the position coordinate of the head 63 are combined, the coordinates of the edge positions of the glass substrate, the squareness of the four corners, and the perforated portions The arithmetic processing unit 22 calculates the coordinates of the center position 2a.

次いで、本発明のガラス基板2の寸法形状の測定方法について説明する。   Next, a method for measuring the size and shape of the glass substrate 2 of the present invention will be described.

ガラス基板2の寸法測定に先立ち、予め、ヘッド(Y軸ガイド)63を基準となるガラス基板の各辺の少なくとも2点、および複数の穿孔部位置にティーチングによって順次移動させ、各位置のX座標、Y座標についてヘッド63を移動させるヘッド移動手段のコントローラー等に記憶させておく。   Prior to measuring the dimensions of the glass substrate 2, the head (Y-axis guide) 63 is sequentially moved to at least two points on each side of the glass substrate as a reference and a plurality of perforation positions by teaching, and the X coordinate of each position , And stored in a controller or the like of the head moving means for moving the head 63 with respect to the Y coordinate.

測定点は、ガラス基板2の4辺の各辺のエッジ部については少なくとも2箇所とし、さらに複数箇所に設けた各穿孔部2a、2a、・・の円状のエッジ部全体がカメラの視野内に納まるようにヘッドを順次移動させてカメラで撮像する。   The measurement points are at least two edge portions of each of the four sides of the glass substrate 2, and the circular edge portions of the perforated portions 2a, 2a,. The head is sequentially moved so as to fit in the image, and an image is taken by the camera.

尚、ガラス基板2の各辺毎の2箇所の測定位置は、互いに極力離した位置とすると、これらの測定点を平均させて結んだ直線がガラス基板2の一辺となるため、測定精度が向上するので望ましい。   If the two measurement positions for each side of the glass substrate 2 are separated from each other as much as possible, a straight line obtained by averaging these measurement points becomes one side of the glass substrate 2, so that the measurement accuracy is improved. This is desirable.

次いで、未測定のガラス基板2をガラス搬送手段30によってガラス支持台3上の所定の位置に搬入させ、前記ティーチング情報に基づいて、ヘッド移動手段50によってヘッド63をガラス基板2の各辺の少なくとも2箇所の測定ポイント、および各穿孔部2aの中心位置近傍に順次移動させ、各測定位置にヘッド63を移動させ停止した状態でリング照明等の光源12からの照明光を該エッジ部に照射して、カメラ11でガラス基板2のエッジ部を撮像する。   Next, the unmeasured glass substrate 2 is carried into a predetermined position on the glass support 3 by the glass conveying means 30, and the head 63 is moved at least on each side of the glass substrate 2 by the head moving means 50 based on the teaching information. The edge part is irradiated with illumination light from the light source 12 such as ring illumination in a state where the measurement point is sequentially moved to the vicinity of the center position of each of the two measurement points and the perforated part 2a, and the head 63 is moved to each measurement position and stopped. Then, the camera 11 images the edge portion of the glass substrate 2.

同時に、ヘッド位置検出手段40のX軸位置読取装置41とY軸位置読取装置42によって測定ポイントと穿孔部2aの中心に順次移動したヘッド63のX座標とY座標を測定する。   At the same time, the X-coordinate and Y-coordinate of the head 63 sequentially moved to the measurement point and the center of the punching portion 2a are measured by the X-axis position reading device 41 and the Y-axis position reading device 42 of the head position detecting means 40.

前記カメラ11が撮像した原画像は、画像処理装置21によって一旦二値化され、該画像の範囲内におけるエッジ位置と原点位置との位置ずれ量、および前記マグネスケール等の位置読取装置から読み取ったヘッド63の位置座標とをあわせた位置情報を演算記憶装置に記憶させ、ガラス基板2の一辺あたり測定した少なくとも2箇所の位置座標により直線近似させる。   The original image captured by the camera 11 is once binarized by the image processing device 21 and read from the position deviation device between the edge position and the origin position within the range of the image and the position reading device such as the magnescale. Position information combined with the position coordinates of the head 63 is stored in an arithmetic storage device, and linear approximation is performed using at least two position coordinates measured per side of the glass substrate 2.

ガラス基板2の各辺毎に、各辺の測定点を連結して直線で近似させ、該各直線によって形成される四角形の交点から交点迄の座標情報より各辺の長さを算出することができ、さらに、図8に示すように、隣り合う2辺のなす角度θも算出できる。   For each side of the glass substrate 2, the measurement points of each side are connected and approximated by a straight line, and the length of each side is calculated from the coordinate information from the intersection point of the quadrangle formed by each straight line. Further, as shown in FIG. 8, an angle θ formed by two adjacent sides can also be calculated.

円形の穿孔部2aの位置および/又は孔径の測定については、予めティーティングによって穿孔部2aの円形状全体がカメラ11の視野内に納まるようにしておき、測定時には、図9に示すように、画像処理装置によって穿孔部2aの中心位置座標Q1を求めることができ、該カメラで撮像した穿孔部2aの画像の中心位置座標Q1と、ヘッド63の位置のマグネスケールから読み取った座標、さらには四角形の各辺の座標からの距離を演算装置により算出することができる。   For the measurement of the position and / or the hole diameter of the circular perforated part 2a, the entire circular shape of the perforated part 2a is previously accommodated in the visual field of the camera 11 by teaching, and at the time of measurement, as shown in FIG. The center position coordinate Q1 of the punching portion 2a can be obtained by the image processing apparatus, the center position coordinate Q1 of the image of the punching portion 2a imaged by the camera, the coordinates read from the magnescale of the position of the head 63, and the quadrangle The distance from the coordinates of each side can be calculated by an arithmetic unit.

また、本発明の測定対象であるガラス基板2の寸法精度をより精度の高いシビアなものとするために、図3に示したように、測定環境の雰囲気温度を温度センサー5で測定し、ヘッド63の位置検出手段40の位置読取装置41としてマグネスケールを用いた場合の熱膨張係数((11±1)×10−6/℃)と、ガラス基板2の熱膨張係数(8.5×10−6/℃)との差(2.5×10−6/℃)を考慮して、所望の温度、例えばマグネスケールの精度の保証のできる常温20℃に換算する温度補正を行なう。ちなみに、2000mmの長さで温度が5℃変化すると、25μmの補正量が必要となる。 Further, in order to make the dimensional accuracy of the glass substrate 2 which is the measurement object of the present invention more severe, the ambient temperature of the measurement environment is measured by the temperature sensor 5 as shown in FIG. The thermal expansion coefficient ((11 ± 1) × 10 −6 / ° C.) when a magnescale is used as the position reading device 41 of the 63 position detection means 40 and the thermal expansion coefficient (8.5 × 10 6 ) of the glass substrate 2. In consideration of the difference (2.5 × 10 −6 / ° C.) from −6 / ° C., temperature correction is performed to convert the temperature to a desired temperature, for example, normal temperature of 20 ° C. that can guarantee the accuracy of the magnescale. Incidentally, if the temperature changes by 5 ° C. with a length of 2000 mm, a correction amount of 25 μm is required.

前記光源12としてのリング照明は、サークライン(登録商標)状の高周波蛍光灯等でも良いが、寿命、衝撃等による破損等を考慮すると、多数のLED素子12a、12a、・・を複数列同心円状に配列し、各LED素子12a、12a、・・の照射方向がリング照明12の中心軸上のほぼ同一部分に照射可能に配列した同心円形状の照明とし、LED素子12a、12a、・・の各光軸による形状が円錐形状とするのが良い。   The ring illumination as the light source 12 may be a Circline (registered trademark) high-frequency fluorescent lamp or the like, but considering the lifetime, damage due to impact, etc., a large number of LED elements 12a, 12a,. The LED elements 12a, 12a,... Are arranged in such a manner that the illumination directions of the LED elements 12a, 12a,. The shape by each optical axis is preferably a conical shape.

前記カメラ11は、2次元のエリアカメラとするのが望ましい。ラインカメラを使用する場合には、走査した画像データを演算処理装置22に記憶させ、2次元のエリアに組み立てて処理するようにしなければならないため、穿孔部2aの中心を算出する画像処理装置21を使う場合には非効率的である。   The camera 11 is preferably a two-dimensional area camera. When a line camera is used, the scanned image data must be stored in the arithmetic processing unit 22, and assembled into a two-dimensional area for processing. Therefore, the image processing unit 21 calculates the center of the perforated part 2a. Is inefficient when using.

前記対象となるガラス基板2は、端縁部に面取り加工や端面研磨を施したガラス基板全般を対象とするが、特に端面が丸みを帯びた断面形状とする液晶ディスプレイ用ガラス基板やプラズマディスプレイ用ガラス基板、フィールドエミッションディスプレイ基板、有機EL等のフラットディスプレイパネル等の矩形状の各種ディスプレイ基板に対して有効である。   The target glass substrate 2 is a general glass substrate whose edge is chamfered or polished, and in particular, a glass substrate for a liquid crystal display or a plasma display having a rounded cross section. It is effective for various rectangular display substrates such as glass substrates, field emission display substrates, and flat display panels such as organic EL.

検査対象のガラス基板2は、例えば、板厚が0.5mm〜3mmで、縦辺800mm×横辺900mm程度の小寸法のガラス基板から、縦辺2200mm×横辺2400mm程度の大寸法の矩形状のガラス基板であり、ガラス基板2の端面部2aは丸みを帯びた断面円弧形状に端面加工され、穿孔部を有しているものも対象である。   The glass substrate 2 to be inspected is, for example, a rectangular plate having a thickness of 0.5 mm to 3 mm, a small size glass substrate having a vertical side of 800 mm × a horizontal side of about 900 mm, and a large size of about 2200 mm × a horizontal side of about 2400 mm. The glass substrate 2 and the end surface 2a of the glass substrate 2 are processed to have a round cross-section arc shape and have a perforated portion.

ガラス基板2の各辺について数多くの測定点によって測定した場合には、まず最小二乗法により直線近似させた後、この直線から大きく外れた測定点のばらつきにより、該ガラス基板の一辺毎の直線度の合否を判定することも可能である。   When measuring each side of the glass substrate 2 at a large number of measurement points, first, a straight line approximation is performed by the least square method, and the linearity of each side of the glass substrate due to variations in measurement points greatly deviating from this straight line. It is also possible to determine pass / fail.

以下、本発明の作用について説明する。   The operation of the present invention will be described below.

ガラス基板2の縦横の各辺の寸法を測定するにあたり、ヘッド63をX軸、Y軸方向に駆動するヘッド移動手段50のコントローラ4だけによって、ヘッド63を所望の位置に移動させようとすると、ヘッド63はコントローラ4によってほぼ所定位置まで移動することはできるが、厳密に言うと最終的に停止した位置は絶対量として測定した長さではなく、パルス信号のカウント量によって計算上指定した位置で止まるはずの位置であるため、僅かながらも停止位置に誤差が生じる可能性がある。   In measuring the dimensions of the vertical and horizontal sides of the glass substrate 2, the head 63 is moved to a desired position only by the controller 4 of the head moving means 50 that drives the head 63 in the X-axis and Y-axis directions. The head 63 can be moved almost to a predetermined position by the controller 4, but strictly speaking, the position where the head finally stopped is not the length measured as an absolute amount, but a position designated by calculation based on the count amount of the pulse signal. Since the position is supposed to stop, there is a possibility that an error may occur in the stop position.

すなわち、ヘッド移動手段50のコントローラ4によるヘッド63の停止位置精度は、絶対量ではなく、要求するガラス基板の寸法精度の目標値である±0.1mmを下回る精度となる可能性がある。   That is, the stop position accuracy of the head 63 by the controller 4 of the head moving means 50 is not an absolute amount, and may be less than ± 0.1 mm, which is a target value of the required dimensional accuracy of the glass substrate.

このため、本発明においては、ヘッド移動手段50のコントローラ4により、ティーティング時に記憶した位置にヘッド63を移動させ、コントローラ4から得られる座標位置を取り出すのではなく、別途設けたマグネスケール等の位置の絶対量を測定できる位置読取装置41、42を用いてヘッド63の位置座標を絶対量として実測するので、ヘッド位置の停止位置に誤差があっても本当の停止位置を精度良く正確に測定できる。   For this reason, in the present invention, the controller 4 of the head moving means 50 does not move the head 63 to the position stored at the time of teaching and take out the coordinate position obtained from the controller 4, but extracts a magnetic scale or the like provided separately. Since the position coordinates of the head 63 are measured as absolute amounts using the position reading devices 41 and 42 capable of measuring the absolute amount of the position, even if there is an error in the stop position of the head position, the true stop position is accurately and accurately measured. it can.

さらにヘッド63に取付固定したカメラ11でガラス基板2のエッジ位置を撮像して、カメラ原点からの位置を算出するので、μm単位の高精度な寸法測定ができる。   Furthermore, since the camera 11 attached and fixed to the head 63 images the edge position of the glass substrate 2 and calculates the position from the camera origin, it is possible to measure the dimensions with high accuracy in units of μm.

カメラ11の光軸を、ガラス基板2のエッジ部よりガラス基板面の法線方向としたのは、ガラス基板2の端部の最外周エッジ部位置を検出するためである。   The reason why the optical axis of the camera 11 is set to the normal direction of the glass substrate surface from the edge portion of the glass substrate 2 is to detect the position of the outermost peripheral edge portion of the end portion of the glass substrate 2.

また、カメラ11の光軸と、前記光源12であるリング照明の光軸と一致させるようにしたので、カメラ11はリング照明12の開口部内を通過するようにしてガラス基板2のエッジ部を撮像でき、リング照明12が邪魔にならない。また、リング照明12のLED素子12a、12a、・・はガラス基板2のエッジ側方向のみに照射され、カメラ11側には遮光カバー12bが設けられているので、リング照明12の照明光が直接カメラ11に入射することはない。   Further, since the optical axis of the camera 11 and the optical axis of the ring illumination as the light source 12 are matched, the camera 11 images the edge portion of the glass substrate 2 so as to pass through the opening of the ring illumination 12. Yes, the ring illumination 12 does not get in the way. Further, the LED elements 12a, 12a,... Of the ring illumination 12 are irradiated only in the edge side direction of the glass substrate 2, and the light shielding cover 12b is provided on the camera 11 side. It does not enter the camera 11.

また、ガラス基板2の端部や穿孔部2aの中心位置に、複数個のLED素子12a、12a、・・を同心円状に配列したリング照明12の光軸の中心を一致するように設けたので、該端部や穿孔部2aのエッジ部に影ができたりすることもなく、端面の各部分に照明光が比較的同一条件で均等に照射されることになる。   In addition, since the center of the optical axis of the ring illumination 12 in which a plurality of LED elements 12a, 12a,... Are arranged concentrically at the end position of the glass substrate 2 or the center position of the perforated part 2a is provided. The illumination light is evenly applied to the respective portions of the end surface under relatively the same conditions without causing shadows on the end portions or the edge portions of the perforated portion 2a.

さらにまた、カメラ11のレンズとして、小型のテレセントリックレンズを用いたので、カメラ11の光軸位置と測定目標位置間に僅かな位置ずれが発生することによる、エッジ端面や、穿孔部の端面を僅かながらも斜めから撮像することによる誤判読に影響されず、あたかもカメラ11の光軸が測定ポイントの真上位置にあるかのような精密な撮像が可能となった。   Furthermore, since a small telecentric lens is used as the lens of the camera 11, a slight positional deviation occurs between the optical axis position of the camera 11 and the measurement target position. However, it is not affected by misinterpretation by imaging from an oblique direction, and it is possible to perform precise imaging as if the optical axis of the camera 11 is directly above the measurement point.

すなわち、該テレセントリックレンズによってガラス基板の丸みを帯びたエッジ端面を真上方向から撮像することができ、斜めから端面(ガラス面の直角な面)を撮像したり、穿孔部2aを斜めから撮像した時に円形の端面の一部を撮像したりすることによるトラブルがない。   That is, the telecentric lens can image the rounded edge end surface of the glass substrate from directly above, image the end surface (surface perpendicular to the glass surface) from an oblique direction, and image the perforated portion 2a from an oblique direction. Sometimes there is no trouble caused by imaging a part of the circular end face.

さらにまた、X軸の位置読取装置41を上方と下方に2箇所設けたのは、片側のX軸ガイド53がX軸モーターによって駆動され、他方のX軸ガイド53が追従してX軸方向に移動しようとするが、Y軸フレーム61と連結シャフト65の長さが長くなって垂直姿勢で追従しようとしてもできないケースがあり、Y軸フレーム61と連結シャフト65が傾斜姿勢となって、上下2つのX軸ガイドの位置がずれるケースがあるためである。   Furthermore, the two X-axis position reading devices 41 are provided above and below because the X-axis guide 53 on one side is driven by the X-axis motor and the other X-axis guide 53 follows in the X-axis direction. There are cases in which the Y-axis frame 61 and the connecting shaft 65 are long and cannot be followed in a vertical posture. This is because there are cases where the positions of the two X-axis guides are shifted.

[実施例1]
まず、図1、図2に示したように、傾斜姿勢の矩形状のガラス基板2がガラス搬送手段30によって傾斜姿勢のガラス検査台3上に搬入され、図示しない位置センサーにより所定の位置で停止する。ガラス基板2は、ガラス検査台3上では下辺エッジを断面V溝状部を有する搬送受ロール31、31、・・で支持し、背面は縦横に複数個配設したフリー背ロール32、32、・・で支持されている。
[Example 1]
First, as shown in FIGS. 1 and 2, a rectangular glass substrate 2 in an inclined posture is carried onto a glass inspection table 3 in an inclined posture by a glass conveying means 30, and stopped at a predetermined position by a position sensor (not shown). To do. The glass substrate 2 supports the lower edge on the glass inspection table 3 with conveyance receiving rolls 31, 31,... Having a V-shaped cross section, and a free back roll 32, 32 having a plurality of rear and back surfaces arranged vertically and horizontally. · · Is supported by.

続いて、図6に示すようなガラス基板2の各辺毎に3点づつ、ガラス基板の全周囲で合計12点の測定ポイントP〜P12と、所望位置に設けた穿孔部の中心部位置にヘッドを移動するようにティーチングし、この位置座標を記憶させておく。 Subsequently, three points for each side of the glass substrate 2 as shown in FIG. 6, a total of 12 measurement points P 1 to P 12 around the entire circumference of the glass substrate, and the center of the perforated part provided at the desired position Teaching is performed so as to move the head to the position, and the position coordinates are stored.

図4、図5に示すように、撮像手段であるカメラ11はCCDのエリアカメラとし、カメラ11とガラス基板2間に配置する光源12としては、夫々の光軸を極力一致させるようにした市販のリング照明12とした。   As shown in FIGS. 4 and 5, the camera 11 as an imaging means is a CCD area camera, and the light source 12 arranged between the camera 11 and the glass substrate 2 is commercially available with the optical axes aligned as much as possible. The ring illumination 12 was used.

すなわち該光源12は、リング照明であって、複数個のLED素子12a、12a、・・を2列で等ピッチで同心円状に並べて設け、照射方向はガラス基板2側のみであり、カメラ11側にはリング照明の遮蔽カバー12bによって照明の直遮光が照射されないようにした市販品であり、各LED素子12a、12a、・・の照射方向は中心軸に対して例えば15度傾斜させており、各LED素子12a、12a、・・の複数の光軸によって円錐形状となっている。   That is, the light source 12 is ring illumination, and a plurality of LED elements 12a, 12a,... Are arranged in two rows concentrically at an equal pitch, the irradiation direction is only on the glass substrate 2 side, and the camera 11 side Is a commercially available product in which direct illumination of the illumination is not irradiated by the shielding cover 12b of the ring illumination, and the irradiation direction of each LED element 12a, 12a,. Each LED element 12a, 12a,... Has a conical shape due to a plurality of optical axes.

また、カメラ11はリング照明の中心部の空間を通して、図4に示すようなガラス基板2のエッジ部を撮像し、あるいは図5に示すように穿孔部2aの全体を撮像するように設定される。カメラ11とリング照明12間の距離は、一実施例として150mm、リング照明12とガラス基板2間の距離は30mmとしたが、これに限定されるものではない。   Further, the camera 11 is set to take an image of the edge portion of the glass substrate 2 as shown in FIG. 4 through the space at the center of the ring illumination, or to take an image of the entire perforated portion 2a as shown in FIG. . The distance between the camera 11 and the ring illumination 12 is 150 mm as an example, and the distance between the ring illumination 12 and the glass substrate 2 is 30 mm, but is not limited thereto.

前記撮像手段10は、ヘッド移動手段50によってX軸、Y軸に移動自在なヘッド63に固定され、ヘッド移動手段50の上下2つのX軸フレーム51、51にそれぞれX軸マグネスケール41、41を、Y軸フレーム61にY軸マグネスケール42が設けられ、ヘッド63の停止時にX、Y軸の各マグネスケール41、41、42によってヘッドの位置座標を読み取り、コントローラを経由して演算処理装置22で記憶しておく。   The imaging means 10 is fixed to a head 63 that is movable in the X axis and Y axis by a head moving means 50, and X axis magnescales 41, 41 are respectively provided on two upper and lower X axis frames 51, 51 of the head moving means 50. The Y-axis frame 61 is provided with a Y-axis magnet scale 42. When the head 63 is stopped, the X- and Y-axis magnet scales 41, 41, 42 read the position coordinates of the head, and the arithmetic processing unit 22 passes through the controller. Remember it.

図6に示されるように、ガラス基板2の各辺について3点づつ、全周囲でP〜P12の合計12点のエッジ位置について、測定ポイントPから測定ポイントP12に向けて順次ヘッド63を移動させて位置座標を測定する。 As shown in FIG. 6, the heads are sequentially arranged from the measurement point P 1 to the measurement point P 12 with respect to the edge positions of the total 12 points of P 1 to P 12 on the entire circumference, 3 points for each side of the glass substrate 2. 63 is moved to measure the position coordinates.

ガラス基板2の外周部の各測定ポイントP〜P12の位置において、図7に示したように、ガラス基板2のエッジ位置をカメラ11で撮像し、画像処理装置(図3参照)によって、エッジ位置P点の座標を求め、該位置情報を演算装置に送り、演算装置内で、測定時の座標とティーチング時の座標との差、さらにヘッドの位置情報によりP〜P12の各P点の正確なエッジ位置を算出できる。 At the positions of the measurement points P 1 to P 12 on the outer peripheral portion of the glass substrate 2, as shown in FIG. 7, the edge position of the glass substrate 2 is imaged with the camera 11, and the image processing apparatus (see FIG. 3) The coordinates of the edge position P point are obtained, the position information is sent to the arithmetic unit, and in the arithmetic unit, each of P 1 to P 12 is determined by the difference between the coordinate at the time of measurement and the coordinate at the time of teaching, and the position information of the head. The exact edge position of a point can be calculated.

図6に示したように、一つの辺あたり3箇所のエッジ位置を測定した結果、その座標から最小二乗法により各辺を直線近似させ、さらに、対向する二辺間の距離を順次求めて、四辺の長さを求め、各辺の長さが基準値の±0.4mm以内であればOKであり、0.4mmを越えるとNGである。   As shown in FIG. 6, as a result of measuring the edge positions of three locations per side, each side is linearly approximated by the least square method from the coordinates, and further, the distance between two opposing sides is sequentially obtained, The lengths of the four sides are obtained. If the length of each side is within ± 0.4 mm of the reference value, it is OK, and if it exceeds 0.4 mm, it is NG.

四隅の直角度については、図8に示したように、3箇所のエッジ位置P〜Pの座標から求めた辺Lと、同じく3箇所のエッジ位置P10〜P12の座標から求めた辺Lから、二辺が交わる角度θを求め、該角度θが90±0.01度以内であればOKとするものである。 The squareness of the four corners is obtained from the side L 3 obtained from the coordinates of the three edge positions P 7 to P 9 and the coordinates of the three edge positions P 10 to P 12 as shown in FIG. The angle θ at which the two sides intersect is obtained from the side L 4, and if the angle θ is within 90 ± 0.01 degrees, it is determined as OK.

さらに、図6に示す穿孔部2a、2a、・・の中心座標Q〜Qおよび孔径については、図5に示したようなCCDカメラ11と光源12を穿孔部2aの中心軸の法線方向に配置して穿孔部2aのエッジを撮像した画像が、図9に示したようになっている。画像処理装置によって穿孔部の中心座標Qおよび孔径を算出し、該中心座標Qがガラス基板のX軸方向の一辺と、Y軸方向の一辺までの距離を演算処理装置によって算出し、穿孔部位地が基準位置と比較して±0.4mm以内ならOK、この範囲を超えたらNGとするものである。 Further, with respect to the center coordinates Q 1 to Q 4 and the hole diameter of the perforations 2a, 2a,... Shown in FIG. 6, the CCD camera 11 and the light source 12 as shown in FIG. An image obtained by capturing the edge of the perforated portion 2a in the direction is as shown in FIG. Calculating the center coordinates Q 1 and hole diameter of the perforated portion by the image processing apparatus, said center coordinates Q 1 is calculated and one side of the X-axis direction of the glass substrate, the processing unit a distance to one side of the Y-axis direction, perforations If the site is within ± 0.4 mm compared to the reference position, it is OK, and if it exceeds this range, it is NG.

このようにして、本発明の寸法形状測定方法及び装置によって、ガラス基板2の4辺の寸法、四隅の直角度、穿孔部2aの位置、及び孔径を測定し、これらのデータを上位コンピュータ23に送信すれば、検査成績書、検査日報等のアウトプットの作成を自動出力し、またデータの管理も容易である。   In this way, the dimension and shape measuring method and apparatus of the present invention measure the dimensions of the four sides of the glass substrate 2, the squareness of the four corners, the position of the perforated part 2a, and the hole diameter, and these data are stored in the host computer 23. If it is transmitted, output of inspection report, inspection daily report, etc. is automatically output, and data management is easy.

本発明は、一辺が2mを越すような大寸法の液晶ディスプレイ用ガラス基板やプラズマディスプレイ用ガラス基板、フィールドエミッションディスプレイ基板、有機EL等のフラットディスプレイパネル等の表示用ガラス基板であっても、その寸法と四隅の直角度、あるいは寸法と四隅の直角度に加えて孔位置および/又は孔径を、非接触で、短時間に、μm単位の高精度で効率的に測定できる測定方法および測定装置の提供を目的とするものである。   Even if the present invention is a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a field emission display substrate, a flat display panel such as an organic EL, etc. A measuring method and a measuring apparatus capable of efficiently measuring a hole position and / or a hole diameter in addition to a dimension and a squareness of four corners in addition to a dimension and a squareness of a corner in a short time, with high accuracy in μm units. It is for the purpose of provision.

本発明の形状測定装置の全体正面図。The whole front view of the shape measuring apparatus of this invention. 本発明の形状測定装置の全体側面図。The whole side view of the shape measuring apparatus of this invention. 本発明の形状測定装置の全体概念図。The whole conceptual diagram of the shape measuring apparatus of this invention. 本発明の形状測定装置のカメラ、光源、ガラス基板エッジの位置関係を示す図。The figure which shows the positional relationship of the camera of a shape measuring apparatus of this invention, a light source, and a glass substrate edge. 本発明の形状測定装置のカメラ、光源、ガラス基板の穿孔部の位置関係を示す図。The figure which shows the positional relationship of the perforation part of the camera of the shape measuring apparatus of this invention, a light source, and a glass substrate. 本発明の形状測定方法によって測定されるガラス基板の測定位置の一例を示す図。The figure which shows an example of the measurement position of the glass substrate measured by the shape measuring method of this invention. ガラス基板のエッジ部の測定方法の説明図。Explanatory drawing of the measuring method of the edge part of a glass substrate. ガラス基板の四隅の直角度の測定方法の説明図。Explanatory drawing of the measuring method of the squareness of the four corners of a glass substrate. ガラス基板の穿孔部中心の測定方法の説明図。Explanatory drawing of the measuring method of the perforation part center of a glass substrate.

符号の説明Explanation of symbols

1 形状測定装置
2 ガラス基板
2a 穿孔部
3 ガラス検査台
4 コントローラ
5 温度センサー
6 温度ロガー
10 撮像手段
11 カメラ
12 光源
21 画像処理装置
22 演算処理装置
23 上位コンピュータ
30 ガラス搬送手段
31 搬送受ロール
32 フリー背ロール
40 ヘッド位置検出手段
41 X軸の位置読取装置
42 Y軸の位置読取装置
50 ヘッド移動手段
51 X軸フレーム
52 X軸レール
53 X軸ガイド
54 X軸モーター
55 ラック&ピニオン
61 Y軸フレーム
62 Y軸レール
63 ヘッド(Y軸ガイド)
64 Y軸モーター
65 連結シャフト
DESCRIPTION OF SYMBOLS 1 Shape measuring apparatus 2 Glass substrate 2a Perforation part 3 Glass inspection stand 4 Controller 5 Temperature sensor 6 Temperature logger 10 Imaging means 11 Camera 12 Light source 21 Image processing apparatus 22 Arithmetic processing apparatus 23 Host computer 30 Glass conveyance means 31 Conveyance receiving roll 32 Free Back roll 40 Head position detecting means 41 X-axis position reading device 42 Y-axis position reading device 50 Head moving means 51 X-axis frame 52 X-axis rail 53 X-axis guide 54 X-axis motor 55 Rack & pinion 61 Y-axis frame 62 Y-axis rail 63 head (Y-axis guide)
64 Y-axis motor 65 Connecting shaft

Claims (5)

方形のガラス基板の寸法形状を測定する装置において、該ガラス基板を傾斜姿勢にして支持するガラス検査台上で、該ガラス基板面を照射する光源と該光源によって照射された領域を撮像するカメラとからなる撮像手段と、該撮像手段を有するヘッドをXY軸両方向に移動自在とするヘッド移動手段と、該ヘッドのXY座標を検出自在なヘッド位置検出手段と、カメラで撮像したガラス基板周辺エッジ部の画像を処理する画像処理装置と、前記ヘッド位置検出手段によるXY軸の位置情報、該画像処理装置によって算出したガラス基板の複数箇所の周辺エッジ位置座標情報により、ガラス基板の寸法と四隅の直角度、またはガラス基板の寸法と四隅の直角度に加えて孔位置および/又は孔径を演算測定する演算処理装置、とからなることを特徴とするガラス基板の形状測定装置。 In an apparatus for measuring the size and shape of a square glass substrate, on a glass inspection table that supports the glass substrate in an inclined posture, a light source that irradiates the glass substrate surface, and a camera that images an area irradiated by the light source; An image pickup means, a head moving means for moving the head having the image pickup means in both directions of the XY axes, a head position detecting means capable of detecting the XY coordinates of the head, and a peripheral edge portion of the glass substrate imaged by the camera Based on the position information of the X and Y axes by the head position detection means and the peripheral edge position coordinate information of a plurality of positions of the glass substrate calculated by the image processing apparatus, the dimensions of the glass substrate and the four corners And an arithmetic processing unit for calculating and measuring the hole position and / or hole diameter in addition to the angle or the size of the glass substrate and the squareness of the four corners. Shape measuring apparatus for a glass substrate to be. 前記ヘッド位置検出手段として、ヘッド移動手段のX軸方向に延設し、X座標を検出自在なX軸の位置読取装置と、該ヘッド移動手段のY軸方向に延設し、Y座標を検出自在なY軸の位置読取装置とからなることを特徴とする請求項1記載のガラス基板の形状測定装置。 As the head position detecting means, an X-axis position reading device extending in the X-axis direction of the head moving means and detecting the X-coordinate, and an Y-axis direction extending from the head moving means to detect the Y-coordinate 2. The glass substrate shape measuring device according to claim 1, comprising a free Y-axis position reading device. 請求項1または2記載のガラス基板の形状測定装置を用いて、方形のガラス基板の寸法形状を測定する方法において、予めティーチングによって測定位置を記憶させたガラス基板の四辺の各辺の少なくとも2点に順次ヘッドを移動させ、ヘッド位置検出手段によるヘッドの位置座標を測定し、さらに該ヘッド位置でカメラが撮像した画像データにより画像処理装置によって算出したエッジ位置の座標によって、四辺の各辺を直線で近似して外形寸法を特定するとともに、隣り合う2辺のなす角度を算出するようにしたことを特徴とするガラス基板の形状測定方法。 3. A method of measuring a dimensional shape of a rectangular glass substrate using the glass substrate shape measuring apparatus according to claim 1 or 2, wherein at least two points on each of the four sides of the glass substrate in which measurement positions are stored in advance by teaching. The head is sequentially moved, the position coordinates of the head are measured by the head position detecting means, and each edge of the four sides is linearly defined by the coordinates of the edge position calculated by the image processing device based on the image data captured by the camera at the head position. A shape measurement method for a glass substrate, characterized in that an external dimension is specified by approximation and an angle formed by two adjacent sides is calculated. 請求項1または2記載のガラス基板の形状測定装置を用いて、方形のガラス基板の寸法形状を測定する方法において、予めガラス基板の所望のエッジ位置と穿孔部をカメラで撮像可能な位置となるようにヘッド位置をティーティングさせておき、該ティーチング情報に基づき、前記ヘッドを前記エッジ位置と穿孔部に移動させて、該位置におけるヘッドの位置座標と、前記カメラで撮像した画像より求めたガラス端面エッジと穿孔部エッジの座標情報より穿孔部位置および/又は孔径を算出するようにしたことを特徴とするガラス基板の形状測定方法。 In the method for measuring a dimensional shape of a square glass substrate using the glass substrate shape measuring apparatus according to claim 1 or 2, a desired edge position and a perforated portion of the glass substrate are previously located at a position where an image can be captured by a camera. The head position is taught as described above, and based on the teaching information, the head is moved to the edge position and the punched portion, and the position coordinates of the head at the position and the glass obtained from the image captured by the camera are obtained. A method for measuring a shape of a glass substrate, wherein a position of a perforated portion and / or a hole diameter is calculated from coordinate information of an end face edge and a perforated portion edge. 測定環境の雰囲気温度をセンサーで測定し、ヘッド位置検出手段とガラス基板の熱膨張係数の差を考慮して、所望の温度に換算する温度補正を行なうことを特徴とする請求項3または4記載のガラス基板の形状測定方法。 5. The temperature correction for converting to a desired temperature is performed by measuring the atmospheric temperature of the measurement environment with a sensor and taking into account the difference in thermal expansion coefficient between the head position detecting means and the glass substrate. Of measuring the shape of a glass substrate.
JP2006021451A 2006-01-30 2006-01-30 Shape measuring device and measuring method of glass substrate Pending JP2007205724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021451A JP2007205724A (en) 2006-01-30 2006-01-30 Shape measuring device and measuring method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021451A JP2007205724A (en) 2006-01-30 2006-01-30 Shape measuring device and measuring method of glass substrate

Publications (1)

Publication Number Publication Date
JP2007205724A true JP2007205724A (en) 2007-08-16

Family

ID=38485339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021451A Pending JP2007205724A (en) 2006-01-30 2006-01-30 Shape measuring device and measuring method of glass substrate

Country Status (1)

Country Link
JP (1) JP2007205724A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039915A1 (en) * 2011-09-14 2013-03-21 Soladigm, Inc. Portable defect mitigator for electrochromic windows
WO2014027375A1 (en) * 2012-08-13 2014-02-20 川崎重工業株式会社 Plate glass inspection unit and manufacturing facility
JP2016526002A (en) * 2013-05-24 2016-09-01 サン−ゴバン グラス フランス Substrate manufacturing method
CN106017348A (en) * 2016-06-01 2016-10-12 安瑞装甲材料(芜湖)科技有限公司 Bullet-proof glass bow detection system and bullet-proof glass bow detection method
CN106091965A (en) * 2016-06-01 2016-11-09 安瑞装甲材料(芜湖)科技有限公司 A kind of bulletproof glass bending degree detecting device
JP2017067709A (en) * 2015-10-02 2017-04-06 大日本印刷株式会社 Measurement device
US9638977B2 (en) 2012-03-13 2017-05-02 View, Inc. Pinhole mitigation for optical devices
CN107457915A (en) * 2017-08-04 2017-12-12 安徽宽居电器有限公司 A kind of workbench of glass punching machine
US9885934B2 (en) 2011-09-14 2018-02-06 View, Inc. Portable defect mitigators for electrochromic windows
WO2018105489A1 (en) * 2016-12-06 2018-06-14 日本電気硝子株式会社 Belt-like glass film quality inspection method and glass roll
CN109313014A (en) * 2016-06-23 2019-02-05 日本电气硝子株式会社 Glass substrate strain measurement method and glass substrate device for measurement of strain
JP2020506367A (en) * 2017-12-14 2020-02-27 ベイジン アポロ ディン ロン ソーラー テクノロジー カンパニー リミテッド Apparatus for automatically detecting substrate dimensions, substrate detection line, and method for detecting the same
US10583523B2 (en) 2012-05-18 2020-03-10 View, Inc. Circumscribing defects in optical devices
US10684524B2 (en) 2010-11-08 2020-06-16 View, Inc. Electrochromic window fabrication methods
CN111442764A (en) * 2020-04-30 2020-07-24 安徽福莱特光伏玻璃有限公司 Online visual positioning and punching device for glass and positioning method thereof
US10914118B2 (en) 2012-03-13 2021-02-09 View, Inc. Multi-zone EC windows
JP2021156756A (en) * 2020-03-27 2021-10-07 日本電気硝子株式会社 Inspection method for glass workpiece and inspection device for glass workpiece
JPWO2020110634A1 (en) * 2018-11-28 2021-10-14 日本電気硝子株式会社 Glass plate measuring device
JP2021185636A (en) * 2017-03-27 2021-12-09 株式会社東京精密 Prober and pre-alignment method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10684524B2 (en) 2010-11-08 2020-06-16 View, Inc. Electrochromic window fabrication methods
WO2013039915A1 (en) * 2011-09-14 2013-03-21 Soladigm, Inc. Portable defect mitigator for electrochromic windows
US10884310B2 (en) 2011-09-14 2021-01-05 View, Inc. Portable defect mitigators for electrochromic windows
US10532948B2 (en) 2011-09-14 2020-01-14 View, Inc. Portable defect mitigator for electrochromic windows
US9885934B2 (en) 2011-09-14 2018-02-06 View, Inc. Portable defect mitigators for electrochromic windows
US11886088B2 (en) 2011-09-14 2024-01-30 View, Inc. Portable defect mitigators for electrochromic windows
US9507232B2 (en) 2011-09-14 2016-11-29 View, Inc. Portable defect mitigator for electrochromic windows
US9638977B2 (en) 2012-03-13 2017-05-02 View, Inc. Pinhole mitigation for optical devices
US10534237B2 (en) 2012-03-13 2020-01-14 View, Inc. Pinhole mitigation for optical devices
US11550197B2 (en) 2012-03-13 2023-01-10 View, Inc. Pinhole mitigation for optical devices
US10914118B2 (en) 2012-03-13 2021-02-09 View, Inc. Multi-zone EC windows
US10583523B2 (en) 2012-05-18 2020-03-10 View, Inc. Circumscribing defects in optical devices
KR20150038608A (en) 2012-08-13 2015-04-08 카와사키 주코교 카부시키 카이샤 Plate glass inspection unit and manufacturing facility
WO2014027375A1 (en) * 2012-08-13 2014-02-20 川崎重工業株式会社 Plate glass inspection unit and manufacturing facility
JP2016526002A (en) * 2013-05-24 2016-09-01 サン−ゴバン グラス フランス Substrate manufacturing method
JP2017067709A (en) * 2015-10-02 2017-04-06 大日本印刷株式会社 Measurement device
CN106017348A (en) * 2016-06-01 2016-10-12 安瑞装甲材料(芜湖)科技有限公司 Bullet-proof glass bow detection system and bullet-proof glass bow detection method
CN106091965A (en) * 2016-06-01 2016-11-09 安瑞装甲材料(芜湖)科技有限公司 A kind of bulletproof glass bending degree detecting device
CN109313014A (en) * 2016-06-23 2019-02-05 日本电气硝子株式会社 Glass substrate strain measurement method and glass substrate device for measurement of strain
KR20190092368A (en) * 2016-12-06 2019-08-07 니폰 덴키 가라스 가부시키가이샤 Quality inspection method of strip-shaped glass film, and glass roll
JPWO2018105489A1 (en) * 2016-12-06 2019-10-24 日本電気硝子株式会社 Quality inspection method for glass strip and glass roll
US11346652B2 (en) 2016-12-06 2022-05-31 Nippon Electric Glass Co., Ltd. Belt-like glass film quality inspection method and glass roll
CN109804222A (en) * 2016-12-06 2019-05-24 日本电气硝子株式会社 The quality inspection method and glass reel of ribbon glass film
JP7238405B2 (en) 2016-12-06 2023-03-14 日本電気硝子株式会社 Quality inspection method for strip glass film
WO2018105489A1 (en) * 2016-12-06 2018-06-14 日本電気硝子株式会社 Belt-like glass film quality inspection method and glass roll
TWI759369B (en) * 2016-12-06 2022-04-01 日商日本電氣硝子股份有限公司 Quality inspection method of strip glass film, and glass roll
KR102400342B1 (en) * 2016-12-06 2022-05-20 니폰 덴키 가라스 가부시키가이샤 Quality inspection method of strip-shaped glass film, and glass roll
JP7285435B2 (en) 2017-03-27 2023-06-02 株式会社東京精密 Prober and pre-alignment method
JP2021185636A (en) * 2017-03-27 2021-12-09 株式会社東京精密 Prober and pre-alignment method
CN107457915A (en) * 2017-08-04 2017-12-12 安徽宽居电器有限公司 A kind of workbench of glass punching machine
JP2020506367A (en) * 2017-12-14 2020-02-27 ベイジン アポロ ディン ロン ソーラー テクノロジー カンパニー リミテッド Apparatus for automatically detecting substrate dimensions, substrate detection line, and method for detecting the same
JPWO2020110634A1 (en) * 2018-11-28 2021-10-14 日本電気硝子株式会社 Glass plate measuring device
JP2021156756A (en) * 2020-03-27 2021-10-07 日本電気硝子株式会社 Inspection method for glass workpiece and inspection device for glass workpiece
JP7435147B2 (en) 2020-03-27 2024-02-21 日本電気硝子株式会社 Glass work inspection method and glass work inspection device
CN111442764A (en) * 2020-04-30 2020-07-24 安徽福莱特光伏玻璃有限公司 Online visual positioning and punching device for glass and positioning method thereof
CN111442764B (en) * 2020-04-30 2023-10-03 安徽福莱特光伏玻璃有限公司 Online visual positioning and punching device for glass and positioning method thereof

Similar Documents

Publication Publication Date Title
JP2007205724A (en) Shape measuring device and measuring method of glass substrate
EP2250534B1 (en) Laser processing a multi-device panel
KR100722102B1 (en) Visual inspection apparatus and method
TWI421141B (en) Laser processing method, laser processing device and solar panel manufacturing method
JP2011512539A (en) Vision inspection system and inspection method for inspection object using the same
US5311275A (en) Apparatus and method for detecting particles on a substrate
JP4663493B2 (en) Teaching device and teaching method
KR20160010386A (en) Surface defect inspection apparatus
JP2016205957A (en) Method for correcting movable head position of x-y substrate inspection device, and x-y substrate inspection device
JP7145643B2 (en) Inspection jig and inspection method
JP2007085912A (en) Position measurement method, position measuring device and position measuring system
TWI414384B (en) Laser processing method, laser processing device, and manufacturing method of solar panels
JP2002228422A (en) Online measuring device for measuring thickness of substrate and its measuring method
JP2011177771A (en) Laser beam machining method, laser beam machining apparatus, and method for manufacturing solar panel
JP5301919B2 (en) Hard brittle plate chamfering device
JP3185858U (en) Automatic optical detection equipment
JP5383365B2 (en) Laser processing method, laser processing apparatus, and solar panel manufacturing method
JP5580553B2 (en) Camera installation position detection device, detection method, and camera installation position detection jig
KR101533826B1 (en) Surface defect inspection apparatus
JP2000164626A (en) Method and device for bonding components
JP4818837B2 (en) Component thickness measuring method and component mounting apparatus in component mounting apparatus
JPH11274794A (en) Method of inspecting component-mounting condition of mounting apparatus and tool for inspecting component-mounting condition
JP2009184807A (en) Shelf position automatic teaching device used for automated storage for drug discovery
JP4729328B2 (en) Defect correction device
CN113167606B (en) Method for correcting detection value of linear scale