JP2009184807A - Shelf position automatic teaching device used for automated storage for drug discovery - Google Patents

Shelf position automatic teaching device used for automated storage for drug discovery Download PDF

Info

Publication number
JP2009184807A
JP2009184807A JP2008028748A JP2008028748A JP2009184807A JP 2009184807 A JP2009184807 A JP 2009184807A JP 2008028748 A JP2008028748 A JP 2008028748A JP 2008028748 A JP2008028748 A JP 2008028748A JP 2009184807 A JP2009184807 A JP 2009184807A
Authority
JP
Japan
Prior art keywords
storage
shelf
coordinate
plate
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028748A
Other languages
Japanese (ja)
Other versions
JP5116500B2 (en
Inventor
Kiwamu Murata
究 村田
Hiroyuki Taike
広幸 田池
Kazuhiro Tsutsumi
一弘 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2008028748A priority Critical patent/JP5116500B2/en
Publication of JP2009184807A publication Critical patent/JP2009184807A/en
Application granted granted Critical
Publication of JP5116500B2 publication Critical patent/JP5116500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shelf position automatic teaching device used for an automated storage for drug discovery capable of reducing manual work and highly accurately measuring four pieces of positional information, the X-axis, Y-axis, Z-axis and inclination angle θ in the depth direction of storage shelves in a short time with good reproducibility. <P>SOLUTION: The shelf position automatic teaching device used for the automated storage is provided with the plurality of storage shelves juxtaposed vertically and horizontally to store and manage workpieces for research for drug discovery in environments such as constant temperature, constant humidity and refrigeration; a transfer hand for taking in/out the workpieces to/from the storage shelves; and a measurement plate 300 inserted to a lowest stage and/or a highest stage of the storage shelves. The measurement plate 300 has a horizontal plate 310 adapted to the width of the storage shelf and a vertical plate 320 vertically provided on the front face of the horizontal plate 310. The verticalal plate 320 has a triangular projecting part 330 in the central part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、創薬研究用のワークを、恒温・恒湿・冷凍などの環境のもとで保管管理する垂直及び水平方向に並んだ複数の保管棚と、これらの保管棚に対してワークの出し入れを行う移載ハンドとを有する創薬用自動保管庫に関するものであって、さらに詳しくは、複数の保管棚の位置情報を予め計測する棚位置自動ティーチング装置に関するものである。   The present invention relates to a plurality of vertical and horizontal storage shelves for storing and managing a drug discovery research work under an environment of constant temperature, humidity, and freezing, and the work to the storage shelves. More specifically, the present invention relates to a shelf position automatic teaching apparatus that measures in advance position information of a plurality of storage shelves.

創薬研究の分野においては、薬剤や化合物などの試料が封入されたバイアル瓶やマイクロチューブなどの複数の小型容器を保管トレイにマトリクス状に並び立てて収容し、この保管トレイ(以下、「ワーク」と称す)を恒温・恒湿・冷凍などの環境のもとで保管管理する創薬用自動保管庫が使用されている。   In the field of drug discovery research, multiple small containers such as vials and microtubes in which samples such as drugs and compounds are enclosed are arranged side by side in a matrix on a storage tray. Is used for drug discovery and storage in a constant temperature, humidity and freezing environment.

この創薬用自動保管庫は、外部の端末機、例えば、PLC(Programmable Logic Controller)からの指令を移載ハンドに伝達させ、必要なワークを取り出したり、指定された位置にワークを収納したりする。そのため、予め各保管棚の位置情報を端末機に記憶させておく、いわゆるティーチングという作業を行う必要がある。   This automatic storage for drug discovery transmits instructions from an external terminal device such as a PLC (Programmable Logic Controller) to the transfer hand, takes out the necessary work, and stores the work in the designated position. . Therefore, it is necessary to perform a so-called teaching operation in which position information of each storage shelf is stored in advance in the terminal.

創薬研究の分野以外の一般的なマテハン分野におけるティーチングは、保管棚の上下・左右の間隔が広く、それほど高い位置決め精度が要求されないため、垂直及び水平方向にマトリックス状に並んだ保管棚の最上段の角隅棚とその対角にある最下段の角隅棚に対してのみ、X座標、Y座標、Z座標からなる3次元の位置情報を計測し、その他の保管棚については、単純な演算(既知の保管棚の数と寸法から割り出す)で位置情報を求めることによって十分、対応可能であった(例えば、特許文献1参照)。
特開2007−161453号
Teaching in the general material handling field other than the field of drug discovery research has a wide vertical and horizontal spacing between the storage shelves and does not require very high positioning accuracy. Only the upper corner corner shelf and the lowermost corner corner shelf on the opposite corner are measured for three-dimensional position information consisting of the X, Y, and Z coordinates, and the other storage shelves are simple. It was possible to cope with it sufficiently by calculating the position information by calculation (determined from the number and dimensions of known storage shelves) (see, for example, Patent Document 1).
JP2007-161453

ところが、創薬研究分野で使われる創薬用保管棚800においては、図10にその概略を示すように、保管庫内の収納効率を高めるため、保管棚822とワークとの隙間をできるだけ小さく設計する必要があるため、保管棚822に対するワークの位置決め精度として1mm以下が要求される。さらに、保管棚822の寸法には、製作上の公差が存在するため、1つ1つの保管棚822には、微妙ではあるが大きさの違いや歪みなどが存在する。そのため、X座標、Y座標、Z座標の3次元情報に加えて、保管棚822の奥行き方向の傾き角度θについても求める必要がある。そして、各保管棚822へのワークの挿入は、保管棚822の中央において行われることが望ましいため、個々の保管棚822の位置データを予め移載ハンドにティーチングする必要があり、次のような方法によるティーチングが行われていた。   However, in the drug storage shelf 800 used in the drug discovery research field, as schematically shown in FIG. 10, the gap between the storage shelf 822 and the workpiece is designed to be as small as possible in order to increase the storage efficiency in the storage. Since it is necessary, the positioning accuracy of the workpiece with respect to the storage shelf 822 is required to be 1 mm or less. Further, since there is a manufacturing tolerance in the dimensions of the storage shelves 822, each of the storage shelves 822 has subtle differences in size and distortion. Therefore, in addition to the three-dimensional information of the X coordinate, the Y coordinate, and the Z coordinate, it is necessary to obtain the inclination angle θ of the storage shelf 822 in the depth direction. And since it is desirable to insert the workpiece into each storage shelf 822 at the center of the storage shelf 822, it is necessary to teach the position data of each storage shelf 822 to the transfer hand in advance. Teaching by the method was performed.

すなわち、まず、(1)図12に示すように、複数の保管棚822が垂直に並んだ垂直収納フレーム820の最下段及び/又は最上段に、保管棚822の幅とほぼ同じ幅を有し、中央に長方形の位置合わせ用窓630が開口した計測用プレート600を設置する。次に、(2)移載ハンド700を手動で制御して、計測用プレート600の下にハンドプレート740を挿入し、計測用プレート600の縦横中央に刻設された中央横線610及び中央縦線620と、位置合わせ用窓630から見える移載ハンド700のハンドプレート740上に刻設された中央横線710と中央縦線720とを一致させる。そして、(3)その時の位置情報を端末機に登録するとともに、垂直収納フレーム820の既知の棚段数及び棚間距離から、他の棚の位置情報を簡単な演算によって算出する。ここで、計測用プレート600の挿入を、最下段と最上段の両方に対して行うことによって、片方のみに対して行うよりも精度の高い位置情報が得られる。そして、(4)一つの垂直収納フレーム820の測定が終わると、図10に示すように隣接する垂直収納フレーム830の保管棚832の位置情報について、前記(1)〜(3)を繰り返して求める。図10では、創薬用保管棚800として、回転棚式のものを示しているが、垂直収納フレームが直線上に並んだ固定棚式のものであっても前述したのと同様の方法によって、各保管棚の位置情報を求めることができる。   That is, first, (1) as shown in FIG. 12, the lowermost level and / or uppermost level of the vertical storage frame 820 in which a plurality of storage shelves 822 are vertically arranged has substantially the same width as the width of the storage shelves 822. A measurement plate 600 having a rectangular alignment window 630 opened at the center is installed. Next, (2) the transfer hand 700 is manually controlled to insert the hand plate 740 under the measurement plate 600, and the central horizontal line 610 and the central vertical line engraved at the vertical and horizontal centers of the measurement plate 600. The central horizontal line 710 and the central vertical line 720 engraved on the hand plate 740 of the transfer hand 700 that can be seen from the alignment window 630 are aligned with each other. (3) The position information at that time is registered in the terminal, and the position information of other shelves is calculated by a simple calculation from the known number of shelves of the vertical storage frame 820 and the distance between the shelves. Here, by inserting the measurement plate 600 into both the lowermost stage and the uppermost stage, it is possible to obtain position information with higher accuracy than when the measurement plate 600 is inserted into only one side. (4) When the measurement of one vertical storage frame 820 is completed, the above (1) to (3) are repeatedly obtained for the positional information of the storage shelf 832 of the adjacent vertical storage frame 830 as shown in FIG. . In FIG. 10, a rotating shelf type is shown as the drug storage shelf 800, but even if the vertical storage frame is a fixed shelf type arranged in a straight line, The position information of the storage shelf can be obtained.

ここで、図10に示すように垂直収納フレーム820を構成する複数の保管棚822に対しては、1箇所又は2箇所(最下段及び/又は最上段)の保管棚822の位置情報のみを計測して他の保管棚822については、既知の棚段数及び棚間距離に基づき演算で求めているのに対して、他の垂直収納フレームに対しては、改めて同様の手法により再度、位置情報の計測が必要である理由は、一つの垂直収納フレームを構成する保管棚は、鋼板から一度に板金加工によって製造されるため比較的公差が少ないのに対して、別の垂直収納フレームに対しては、別途、板金加工によって製造されることによる製造上の公差に加えて、創薬用保管棚800への組み付け公差が発生するためである。   Here, as shown in FIG. 10, for the plurality of storage shelves 822 constituting the vertical storage frame 820, only the position information of the storage shelves 822 at one place or two places (the lowermost stage and / or the uppermost stage) is measured. For other storage shelves 822, the calculation is based on the known number of shelves and the distance between shelves, whereas for other vertical storage frames, the position information is again obtained by the same method. Measurement is necessary because the storage shelves that make up one vertical storage frame are manufactured from sheet steel by sheet metal processing at a time, so there is relatively little tolerance, whereas for another vertical storage frame, This is because an assembly tolerance to the drug storage shelf 800 is generated in addition to a manufacturing tolerance due to being separately manufactured by sheet metal processing.

したがって、従来のティーチング方法では、少なくとも垂直収納フレームの台数分について、X座標、Y座標、Z座標、奥行き方向の傾き角度θの4つの位置情報の計測を前述した方法に基づき手作業で行っていたため、創薬用保管棚800に装着された全ての保管棚のティーチングを行うためには膨大な時間を要していた。さらに、作業者が変わることにより、経験や勘に由来する測定誤差が生じやすく測定精度が悪かった。   Therefore, in the conventional teaching method, measurement of four pieces of positional information of the X coordinate, the Y coordinate, the Z coordinate, and the inclination angle θ in the depth direction is manually performed based on the method described above for at least the number of vertical storage frames. Therefore, enormous time is required for teaching all the storage shelves attached to the drug storage shelf 800. Furthermore, due to the change of workers, measurement errors derived from experience and intuition are likely to occur, resulting in poor measurement accuracy.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、人手による作業を減らし、保管棚のX座標、Y座標、Z座標、奥行き方向の傾き角度θの4つの位置情報の計測を短時間で、高精度で、再現性よく行うことができる創薬用自動保管庫に用いられる棚位置自動ティーチング装置を提供することである。   Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to reduce the number of manual operations and to store four pieces of positional information of the storage shelf X coordinate, Y coordinate, Z coordinate, and the inclination angle θ in the depth direction. It is to provide an automatic teaching device for shelf position used in an automatic drug storage for drug discovery capable of performing measurement in a short time, with high accuracy and good reproducibility.

まず、本請求項1に係る発明は、創薬研究用のワークを恒温・恒湿・冷凍などの環境のもとで保管管理する垂直及び水平方向に並んだ複数の保管棚と、該保管棚に対して前記ワークの出し入れを行う移載ハンドと、前記保管棚の最下段及び/又は最上段に挿入される計測用プレートとを有する創薬用自動保管庫に用いられる棚位置自動ティーチング装置において、前記計測用プレートが、前記保管棚の幅に適合した水平板と該水平板の前面に垂設された垂直板を有し、該垂直板が、その中央部に三角形状の凸部を有し、該凸部を跨ぐ一直線上の複数の測定点の位置座標と該測定点までの距離を測定するラインセンサとを有し、前記凸部の縁と前記一直線との2つの境界点間の距離から、前記三角形状の凸部の底辺から前記境界点までの高さ(Z座標)を求め、前記ラインセンサから前記一直線上の前記凸部を跨ぐ前記垂直板上の2点までのそれぞれの距離から、前記保管棚の奥行き方向の傾き角度(θ)を求め、前記凸部の縁と前記一直線上の1つの境界点の位置から、水平方向の位置(X座標)を求め、前記ラインセンサから前記1つの境界点までの距離から、前記保管棚の奥行き方向の長さ(Y座標)を求めることにより、前記課題を解決したものである。
ここで、本発明における「ワーク」とは、薬剤や化合物などの試料が封入されたバイアル瓶やマイクロチューブなどの複数の小型容器をマトリクス状に並び立てて収容する保管トレイの総称である。また、本発明における「ラインセンサ」とは、一直線状に照射した光が物体で拡散反射され戻って来るまでの時間tを計測することにより、時間tの変化から物体の位置を認識するとともに、その時間tから物体までの距離を認識する機能を有するセンサ及び一直線上に照射した光が物体で拡散反射されて戻ってきた光を2次元センサ上に結像させ、位置・形状の変化を検出することで変位・形状を測定するセンサなどを総称した広義のセンサを意味している。
First, the invention according to claim 1 includes a plurality of storage shelves arranged in the vertical and horizontal directions for storing and managing a drug discovery research work in an environment of constant temperature, constant humidity, and freezing, and the storage shelves. In a shelf position automatic teaching device used in an automatic drug storage for drug discovery having a transfer hand for taking in and out of the workpiece and a measurement plate inserted in the bottom and / or top of the storage shelf, The measurement plate has a horizontal plate adapted to the width of the storage shelf and a vertical plate suspended from the front surface of the horizontal plate, and the vertical plate has a triangular convex portion at the center thereof. , Having a position sensor of a plurality of measurement points on a straight line straddling the convex part and a line sensor for measuring a distance to the measurement point, and a distance between two boundary points between the edge of the convex part and the straight line To the height from the bottom of the triangular convex portion to the boundary point ( Coordinate), and the inclination angle (θ) in the depth direction of the storage shelf is determined from the respective distances from the line sensor to two points on the vertical plate that straddle the convex portion on the straight line, and the convex portion The horizontal position (X coordinate) is obtained from the position of one boundary point on the straight line and the edge, and the length in the depth direction of the storage shelf (from the distance from the line sensor to the one boundary point ( By solving for (Y coordinate), the above problem is solved.
Here, the “work” in the present invention is a general term for a storage tray for storing a plurality of small containers such as vials and microtubes in which samples such as drugs and compounds are enclosed in a matrix. In addition, the “line sensor” in the present invention recognizes the position of the object from the change in the time t by measuring the time t until the light irradiated in a straight line is diffusely reflected by the object and returned. A sensor that has the function of recognizing the distance from the time t to the object and the light that has been reflected and reflected back from the object is imaged on the two-dimensional sensor to detect changes in position and shape. By doing so, it means a sensor in a broad sense that collectively refers to sensors that measure displacement and shape.

そして、本請求項2に係る発明は、請求項1に係る棚位置自動ティーチング装置において、前記三角形状の凸部が、前記垂直板の底面と高さが一致している底辺と、前記垂直板の高さと等しくかつ前記底面と直交する垂線を有する直角三角形状であることにより、前記課題をさらに解決したものである。   The invention according to claim 2 is the shelf position automatic teaching apparatus according to claim 1, wherein the triangular convex portion has a base whose height coincides with the bottom surface of the vertical plate, and the vertical plate. This problem is further solved by a right triangle having a perpendicular line that is equal to the height of and perpendicular to the bottom surface.

また、本請求項3に係る発明は、請求項1又は請求項2に係る棚位置自動ティーチング装置において、前記ラインセンサが、レーザ式変位センサであることにより、前記課題をさらに解決したものである。なお、本発明における「レーザ式変位センサ」とは、レーザ光を用いてX軸、Z軸の二次元で対象物の表面形状を正確に再現できるものであって、高さ、幅、段差などを測定することができるものを総称している。   Further, the invention according to claim 3 further solves the above-mentioned problem in the shelf position automatic teaching apparatus according to claim 1 or claim 2, wherein the line sensor is a laser displacement sensor. . The “laser type displacement sensor” in the present invention can accurately reproduce the surface shape of an object in two dimensions of the X axis and the Z axis using a laser beam, and includes height, width, step, etc. This is a generic term for things that can be measured.

本請求項1に係る発明によれば、創薬研究用のワークを恒温・恒湿・冷凍などの環境のもとで保管管理する垂直及び水平方向に並んだ複数の保管棚と、該保管棚に対して前記ワークの出し入れを行う移載ハンドと、前記保管棚の最下段及び/又は最上段に挿入される計測用プレートとを有する創薬用自動保管庫に用いられる棚位置自動ティーチング装置において、前記計測用プレートが、前記保管棚の幅に適合した水平板と該水平板の前面に垂設された垂直板を有し、該垂直板が、その中央部に三角形状の凸部を有し、該凸部を跨ぐ一直線上の複数の測定点の位置座標と該測定点までの距離を測定するラインセンサとを有し、前記凸部の縁と前記一直線との2つの境界点間の距離から、前記三角形状の凸部の底辺から前記境界点までの高さ(Z座標)を求め、前記ラインセンサから前記一直線上の前記凸部を跨ぐ前記垂直板上の2点までのそれぞれの距離から、前記保管棚の奥行き方向の傾き角度(θ)を求め、前記凸部の縁と前記一直線上の1つの境界点の位置から、水平方向の位置(X座標)を求め、前記ラインセンサから前記1つの境界点までの距離から、前記保管棚の奥行き方向の長さ(Y座標)を求めることによって、計測用プレートのセッティング作業以外、人手を介することなく、保管棚のX座標、Y座標、Z座標、奥行き方向の傾き角度θの4つの位置情報の計測を、ライセンサセンサから放たれたレーザ光線が垂直板の一直線上で反射されて戻ってくる時間が三角形状の凸部の境界部分で異なり、その時間差から境界点の水平方向の位置、奥行き方法の長さ、境界点までの高さ、奥行き方向の傾き角度からなる特定の保管棚の位置情報(X座標、Y座標、Z座標、θ)を非接触で取得できるため、ティーチング時間の短縮及びティーチング精度の高精度化が実現できる。   According to the invention of claim 1, a plurality of storage shelves arranged in the vertical and horizontal directions for storing and managing a drug discovery research work in an environment of constant temperature, constant humidity, and freezing, and the storage shelves In a shelf position automatic teaching device used in an automatic drug storage for drug discovery having a transfer hand for taking in and out of the workpiece and a measurement plate inserted in the bottom and / or top of the storage shelf, The measurement plate has a horizontal plate adapted to the width of the storage shelf and a vertical plate suspended from the front surface of the horizontal plate, and the vertical plate has a triangular convex portion at the center thereof. , Having a position sensor of a plurality of measurement points on a straight line straddling the convex part and a line sensor for measuring a distance to the measurement point, and a distance between two boundary points between the edge of the convex part and the straight line To the height from the bottom of the triangular convex portion to the boundary point ( Coordinate), and the inclination angle (θ) in the depth direction of the storage shelf is determined from the respective distances from the line sensor to two points on the vertical plate that straddle the convex portion on the straight line, and the convex portion The horizontal position (X coordinate) is obtained from the position of one boundary point on the straight line and the edge, and the length in the depth direction of the storage shelf (from the distance from the line sensor to the one boundary point ( By obtaining the (Y coordinate), the measurement of the four position information of the storage shelf X coordinate, Y coordinate, Z coordinate, and the inclination angle θ in the depth direction can be performed without any manual intervention other than the setting work of the measurement plate. The time when the laser beam emitted from the sensor is reflected on the straight line of the vertical plate and returns is different at the boundary of the triangular convex part, and the horizontal position of the boundary point, the length of the depth method, boundary Position information (X coordinate, Y coordinate, Z coordinate, θ) consisting of the height and tilt angle in the depth direction can be acquired in a non-contact manner, reducing teaching time and increasing teaching accuracy Can be realized.

そして、本請求項2に係る発明によれば、請求項1に係る発明において、三角形状の凸部が、前記垂直板の底面と面一(つらいち:段差がないこと)となる底辺と、前記垂直板の高さと等しくかつ前記底面と直交する垂線を有する直角三角形状であることによって、直角三角形状の凸部上の水平方向の2つの境界点の距離から、三角形状の凸部の底辺からの高さ(Z座標)を後述する三角形の相似関係の法則により、簡単に求めることができるため、より一層のティーチング時間の短縮が実現できる。   And, according to the invention according to claim 2, in the invention according to claim 1, the triangular protrusion is flush with the bottom surface of the vertical plate (i.e., there is no step), and From the distance between two boundary points in the horizontal direction on the convex part of the right triangle shape by being a right triangle shape having a perpendicular line that is equal to the height of the vertical plate and perpendicular to the bottom surface, the base of the triangular convex part Since the height (Z coordinate) from can be easily obtained by the rule of similarity of triangles described later, the teaching time can be further shortened.

また、本請求項3によれば、請求項1又は請求項2に係る発明において、ラインセンサがレーザ式変位センサであることによって、三角形状の凸部と垂直板表面との距離の差により、測定点の位置と測定点までの距離を同時に計測できるため、より一層のティーチング時間の短縮が実現できる。   According to claim 3, in the invention according to claim 1 or 2, the line sensor is a laser-type displacement sensor, so that the difference between the distance between the triangular convex portion and the vertical plate surface is as follows: Since the position of the measurement point and the distance to the measurement point can be measured simultaneously, the teaching time can be further reduced.

本発明は、創薬研究用のワークを恒温・恒湿・冷凍などの環境のもとで保管管理する垂直及び水平方向に並んだ複数の保管棚と、該保管棚に対して前記ワークの出し入れを行う移載ハンドと、前記保管棚の最下段及び/又は最上段に挿入される計測用プレートとを有する創薬用自動保管庫に用いられる棚位置自動ティーチング装置において、前記計測用プレートが、前記保管棚の幅に適合した水平板と該水平板の前面に垂設された垂直板を有し、該垂直板が、その中央部に三角形状の凸部を有し、該凸部を跨ぐ一直線上の複数の測定点の位置座標と該測定点までの距離を測定するラインセンサとを有し、前記凸部の縁と前記一直線の2つの境界点間の距離から、前記三角形状の凸部の底辺から前記境界点までの高さ(Z座標)を求め、前記ラインセンサから前記一直線上の前記凸部を跨ぐ前記垂直板上の2点までのそれぞれの距離から、前記保管棚の奥行き方向の傾き角度(θ)を求め、前記凸部の縁と前記一直線上との1つの境界点の位置から、水平方向の位置(X座標)を求め、前記ラインセンサから前記1つの境界点までの距離から、前記保管棚の奥行き方向の長さ(Y座標)を求めることによって、計測用プレートのセッティング作業以外、人手を介することなく、保管棚のX座標、Y座標、Z座標、奥行き方向の傾き角度θの4つの位置情報の計測を、ラインセンサから放たれたレーザ光線の反射光が戻ってくる時間が三角形状の凸部と垂直板平面とで異なるため、その時間差から境界点の位置、奥行き方向の長さ、境界点までの高さ、奥行き方向の傾き角度からなる特定の保管棚の位置情報(X座標、Y座標、Z座標、θ)を非接触で取得でき、ティーチング時間の短縮及びティーチング精度の高精度化が実現できるものであれば、その具体的な実施の態様は、如何なるものであっても何ら構わない。   The present invention provides a plurality of vertical and horizontal storage shelves for storing and managing a drug discovery research work in an environment of constant temperature, constant humidity, and freezing, and loading and unloading of the work with respect to the storage shelf. In a shelf position automatic teaching apparatus used in an automatic drug storage for medicines having a transfer hand for performing and a measurement plate inserted in the lowermost stage and / or the uppermost stage of the storage shelf, the measurement plate comprises: It has a horizontal plate that fits the width of the storage shelf and a vertical plate that is suspended from the front surface of the horizontal plate, and the vertical plate has a triangular convex portion at the center, and is straight across the convex portion. A triangular sensor having a position coordinate of a plurality of measurement points on a line and a line sensor for measuring a distance to the measurement point, and the distance between the edge of the convex part and the two boundary points of the straight line The height (Z coordinate) from the bottom of the The inclination angle (θ) in the depth direction of the storage shelf is determined from the distance from each sensor to two points on the vertical plate that straddle the convex portion on the straight line, and the edge of the convex portion and the straight line The horizontal position (X coordinate) is obtained from the position of one boundary point, and the depth direction length (Y coordinate) of the storage shelf is obtained from the distance from the line sensor to the one boundary point. The laser emitted from the line sensor to measure the four position information of the storage shelf X coordinate, Y coordinate, Z coordinate, and the inclination angle θ in the depth direction, without manual intervention, except for the setting work of the measurement plate Since the time that the reflected light returns is different between the triangular convex part and the vertical plate plane, the position of the boundary point, the length in the depth direction, the height to the boundary point, the inclination angle in the depth direction from the time difference Specific consisting of A specific embodiment of the storage shelf position information (X-coordinate, Y-coordinate, Z-coordinate, θ) can be obtained in a non-contact manner and the teaching time can be shortened and the teaching accuracy can be improved. Can be anything.

例えば、本発明の棚位置自動ティーチング装置は、回転棚式の創薬用保管棚に対しても、固定棚式の創薬用保管棚に対しても、何ら支障なくティーチング操作を行うことができる。   For example, the automatic shelf position teaching apparatus of the present invention can perform teaching operations without any trouble on both a rotating shelf type drug storage shelf and a fixed shelf type drug storage shelf.

次に本発明の一実施例を図1乃至図11に基づいて説明する。
ここで、図1は、本発明の実施例である棚位置自動ティーチング装置のティーチング対象である垂直収納フレームと本発明の主要構成要素である計測用プレートとを示す斜視図であり、図2は、計測用プレートを斜め下方から見た斜視図であり、図3は、計測用プレートを斜め上方から見た斜視図であり、図4は、本実施例の棚位置自動ティーチング装置の構造を示す斜視図であり、図5は、図4を矢視V方向から見た上面図であり、図6は、図5を矢視VI方向から見た側面図であり、図7乃至図9は、本実施例のティーチング動作を説明する平面図であり、図10は、本実施例である棚位置自動ティーチング装置のティーチング対象である垂直収納フレームを複数装備した創薬用保管棚の斜視図であり、図11は、図10に示す創薬用保管棚を格納した創薬用自動保管庫の一部を切り欠いた斜視図である。
Next, an embodiment of the present invention will be described with reference to FIGS.
Here, FIG. 1 is a perspective view showing a vertical storage frame which is a teaching target of the shelf position automatic teaching apparatus according to the embodiment of the present invention and a measuring plate which is a main component of the present invention, and FIG. FIG. 3 is a perspective view of the measurement plate as viewed from obliquely below, FIG. 3 is a perspective view of the measurement plate as viewed from obliquely above, and FIG. 4 illustrates the structure of the automatic shelf position teaching apparatus of this embodiment. 5 is a top view of FIG. 4 viewed from the direction of arrow V, FIG. 6 is a side view of FIG. 5 viewed from the direction of arrow VI, and FIGS. FIG. 10 is a plan view illustrating the teaching operation of the present embodiment, and FIG. 10 is a perspective view of a drug storage shelf equipped with a plurality of vertical storage frames that are teaching targets of the shelf position automatic teaching apparatus according to the present embodiment; FIG. 11 shows the drug discovery protection shown in FIG. It is a perspective view, with parts cut away of the drug discovery automatic storehouse for storing shelf.

始めに、図11を参照して本発明による棚位置自動ティーチング装置が適用される創薬用自動保管庫900の一例について説明する。
図11に示した創薬用自動保管庫900は、バイアル瓶やマイクロチューブなどの円筒状又は四角筒状の小型容器を縦列収容した保管トレイ100を恒温・恒湿・低温などの環境のもとで保管する保管エリア910と、入出庫窓935を介して保管トレイ100の入庫及び出庫を行う入出庫エリア930と、保管エリア910から取り出された保管トレイ100と入出庫エリア930から運び込まれた保管トレイ100との間で、所定の小型容器の差し替えを行うピッキングロボット200と、保管エリア910に垂直及び水平方向に並んだ複数の保管棚に対して保管トレイ100の出し入れを行う移載ハンド300とが設置された移載エリア940を有している。
First, an example of an automatic drug storage 900 to which the shelf position automatic teaching apparatus according to the present invention is applied will be described with reference to FIG.
An automatic storage for drug discovery 900 shown in FIG. 11 has a storage tray 100 in which small cylindrical or square cylindrical containers such as vials and microtubes are accommodated in a row in an environment of constant temperature, humidity and low temperature. A storage area 910 to be stored, a storage / retrieval area 930 for storing / extracting the storage tray 100 through the storage / retrieval window 935, a storage tray 100 taken out from the storage area 910, and a storage tray carried from the storage / exit area 930 A picking robot 200 for exchanging a predetermined small container with 100, and a transfer hand 300 for taking in and out the storage tray 100 with respect to a plurality of storage shelves arranged vertically and horizontally in the storage area 910. It has a transfer area 940 installed.

そして、保管エリア910内には、図10に概略を示すように創薬用保管棚800が設置されている。この創薬用保管棚800には、図10に示すように、例えば、マイクロチューブ120のような複数の小型容器が収容されている保管トレイ100を垂直方向に複数収容可能に区画した垂直収納フレーム810、820、830・・・が、無端循環軌道Oに沿って水平移動可能に複数配置されている。   In the storage area 910, a drug storage shelf 800 is installed as schematically shown in FIG. In this drug storage shelf 800, as shown in FIG. 10, for example, a vertical storage frame 810 in which a plurality of storage trays 100 in which a plurality of small containers such as microtubes 120 are stored can be stored in the vertical direction. , 820, 830... Are arranged along the endless circulation track O so as to be horizontally movable.

本発明の創薬用自動保管庫に用いられる棚位置自動ティーチング装置によるティーチングは、まず始めに、図1に示すように基準となる一つの垂直収納フレーム820の最下段の保管棚822に計測用プレート300を挿入する。計測用プレート300は、図2及び図3に示すように保管棚の幅に適合した、すなわち、保管棚と、ほとんど同じ幅を有している水平板310と、この水平板310の前面に垂設された垂直板320を有している。そして、垂直板320の中央部に垂直板320の底面322と面一の底辺332と、垂直板320の高さと等しくかつ底辺332と直交する垂線334を有する直角三角形状の凸部330を有している。
前記のように計測用プレート300は、保管棚とほとんど同じ幅を有しているため、この挿入作業だけは、作業者の手作業によって行われる。さらに、この計測用プレート300の寸法公差がティーチングの精度に大きな影響を与えるため、この計測用プレート300の水平板310と垂直板320と凸部330は、樹脂のバルクから切削加工で一体物として削り出している。ここで、樹脂の材質としては特に限定されるものではないが、本実施例においては、大型の素材(バルク)を容易に入手可能であって、耐摩耗性、自己潤滑性に優れた6ナイロンを用いている。
Teaching by the automatic shelf position teaching device used in the automatic drug storage for the drug discovery according to the present invention starts with a measuring plate placed on the lowest storage shelf 822 of one vertical storage frame 820 as a reference as shown in FIG. 300 is inserted. As shown in FIGS. 2 and 3, the measurement plate 300 is adapted to the width of the storage shelf, that is, the horizontal plate 310 having almost the same width as the storage shelf, and the measurement plate 300 is suspended from the front surface of the horizontal plate 310. A vertical plate 320 is provided. The vertical plate 320 has a convex portion 330 in the shape of a right triangle having a vertical line 334 equal to the height of the vertical plate 320 and perpendicular to the base 332 at the center of the vertical plate 320. ing.
As described above, since the measurement plate 300 has almost the same width as the storage shelf, only this insertion work is performed manually by the operator. Further, since the dimensional tolerance of the measurement plate 300 has a great influence on the teaching accuracy, the horizontal plate 310, the vertical plate 320, and the convex portion 330 of the measurement plate 300 are cut from the resin bulk as an integrated object. It is carved out. Here, the material of the resin is not particularly limited, but in this embodiment, a large material (bulk) can be easily obtained, and 6 nylon with excellent wear resistance and self-lubricity. Is used.

そして、図4に示すように垂直板320上に形成された凸部330を跨ぐ一直線L上の複数の測定点の位置座標と測定点までの距離を測るラインセンサ400を有している。このラインセンサ400としては、市販されているLED発光素子とCCD受光素子を組み合わせたラインセンサなどを用いることができるが、本実施例においては、図4に示すように、1つの半導体レーザ410から放射されたレーザ光を円筒面平凹形状をしたシリンドリカルレンズ420により、入射光に対して1軸方向のみ変化を与え、線状の拡大ビームを形成し、計測用プレート300の垂直板320上に形成された凸部330を跨ぐ一直線L上で拡散反射させ、その反射光を収差による誤差を低減させる複数枚のレンズを組み合わせたレンズ系430を通してCMOSセンサ440上に結像させることができるレーザ変位センサを用いている。そして、このラインセンサ400により垂直板320上の変位、形状を測定することによって、図5及び図6に示すように、計測用プレート300が挿入されている保管棚の水平方向の位置(X座標)、保管棚の奥行き方向の長さ(Y座標)、保管棚の垂直方向の高さ(Z座標)及び保管棚の奥行き方向の傾き角度(θ)からなる位置情報(X座標、Y座標、Z座標、θ)を求める。   And as shown in FIG. 4, it has the line sensor 400 which measures the position coordinate and the distance to a measurement point of several measurement points on the straight line L which straddles the convex part 330 formed on the vertical board 320. As shown in FIG. As the line sensor 400, a commercially available line sensor combining an LED light emitting element and a CCD light receiving element can be used. In this embodiment, as shown in FIG. The emitted laser light is changed in only one axial direction with respect to the incident light by the cylindrical lens 420 having a cylindrical concave / convex shape to form a linear expanded beam on the vertical plate 320 of the measurement plate 300. Laser displacement that allows diffused reflection on a straight line L straddling the formed convex portion 330 and that the reflected light can be imaged on the CMOS sensor 440 through a lens system 430 that combines a plurality of lenses that reduce errors due to aberrations. A sensor is used. Then, by measuring the displacement and shape on the vertical plate 320 by the line sensor 400, as shown in FIGS. 5 and 6, the horizontal position (X coordinate) of the storage shelf in which the measurement plate 300 is inserted is measured. ), Position information (X coordinate, Y coordinate, depth of storage shelf in the depth direction (Y coordinate), vertical height of storage shelf (Z coordinate), and inclination angle (θ) of storage shelf in the depth direction. Z coordinate, θ) is obtained.

この位置情報の導出過程について、図7乃至図9に基づき説明する。まず、図7に示すように、ラインセンサによって放射されたレーザ光を垂直板上の凸部330を跨ぐ一直線L上を矢印方向に走査し、レーザ光が一直線L上の各点で反射されて、戻って来るまで時間tを測定する。そして、凸部330の存在により、一直線L上のA部分とB部分では、凸部330の厚みd分、時間tが異なるため(A部分の方がB部分の方より時間tが長くなる)、境界点aの位置、すなわち、X座標が求められる。さらに、A部分あるいはB部分上の任意の測定点におけるレーザ光の放射から戻って来るまでの時間tから、計測用プレートの奥行き方向の距離、すなわち、Y座標が求められる。   The process of deriving this position information will be described with reference to FIGS. First, as shown in FIG. 7, the laser light emitted by the line sensor is scanned in the direction of the arrow on the straight line L straddling the convex portion 330 on the vertical plate, and the laser light is reflected at each point on the straight line L. , Measure the time t until it comes back. Because of the presence of the convex portion 330, the A portion and the B portion on the straight line L are different in the time t by the thickness d of the convex portion 330 (the time portion A is longer than the portion B). The position of the boundary point a, that is, the X coordinate is obtained. Further, the distance in the depth direction of the measurement plate, that is, the Y coordinate is obtained from the time t until the laser beam is returned from the radiation at an arbitrary measurement point on the A portion or the B portion.

次に、図8に示すように、ラインセンサによって放射されたレーザ光が、凸部330を跨ぐ一直線L上の2点b、cで拡散反射されて、戻って来るまでの時間tb、tcを、それぞれ測定することにより、ラインセンサから2点b、cまでの距離が求められる。この距離の差から、保管棚の奥行き方向の傾き角度θが求められる。なお、2点b、cの間隔は、ラインセンサ側で予め設定している。   Next, as shown in FIG. 8, the time tb, tc until the laser light emitted by the line sensor is diffusely reflected at two points b, c on the straight line L straddling the convex portion 330 and returned. By measuring each, the distance from the line sensor to the two points b and c is obtained. The inclination angle θ in the depth direction of the storage shelf is obtained from the difference in distance. The interval between the two points b and c is set in advance on the line sensor side.

さらに、図9に示すように、ラインセンサによって放射されたレーザ光を垂直板上の凸部330を跨ぐ一直線L上を矢印方向に走査し、レーザ光が一直線L上の各点で拡散反射されて、戻って来る間での時間tを測定することにより、凸部330の存在により、一直線L上のC部分とD部分では、凸部330の厚みd分、時間tが異なるため(C部分の方がD部分の方より時間tが長くなる)、境界点fの位置が求められる。同様に、一直線L上のD部分とE部分では、凸部330の厚み分、時間tが異なるため(D部分の方がE部分の方より時間tが短くなる)、境界点eの位置が求められる。その結果、三角形の相似の関係より、
距離D:距離F=距離H:(距離H+距離G) ・・・ (1)
の関係が成立する。
この関係式(1)を変形することにより、
距離G=(距離F/距離D−1)*距離H ・・・ (2)
の関係式(2)が導出される。そして、距離H+距離G、すなわち、三角形状の凸部330の高さ及び距離F、すなわち、三角形状の凸部330の底辺は、既知であるので、一直線Lの2つの境界点e、f間の距離Dを求めることによって、三角形状の凸部330の底辺から境界点e、fまでの距離、すなわち、Z座標が求められる。
Further, as shown in FIG. 9, the laser light emitted by the line sensor is scanned in the direction of the arrow on the straight line L straddling the convex portion 330 on the vertical plate, and the laser light is diffusely reflected at each point on the straight line L. Then, by measuring the time t during the return, due to the presence of the convex portion 330, the portion C on the straight line L and the portion D are different in the time t by the thickness d of the convex portion 330 (the portion C). The time t is longer than the direction D), and the position of the boundary point f is obtained. Similarly, the D portion and the E portion on the straight line L are different in time t by the thickness of the convex portion 330 (time t is shorter in the D portion than in the E portion), so the position of the boundary point e is Desired. As a result, from the similarity of triangles,
Distance D: Distance F = Distance H: (Distance H + Distance G) (1)
The relationship is established.
By modifying this relational expression (1),
Distance G = (Distance F / Distance D-1) * Distance H (2)
The following relational expression (2) is derived. Since the distance H + distance G, that is, the height and distance F of the triangular convex portion 330, that is, the base of the triangular convex portion 330 is known, the distance between the two boundary points e and f of the straight line L is known. The distance D from the bottom of the triangular convex portion 330 to the boundary points e and f, that is, the Z coordinate is obtained.

このようにして、図1に示すような基準となる一つの垂直収納フレーム820の最下段の保管棚822の位置情報(X座標、Y座標、Z座標、θ)の計測が終わると、既知の垂直収納フレーム820の棚段数及び棚間距離から、垂直収納フレーム820の全ての保管棚822の位置情報(X座標、Y座標、Z座標、θ)が算出される。本実施例においては、X座標、Y座標、θについては、垂直収納フレーム820の全ての保管棚822は、計測された最下段の保管棚822の位置情報と共通とし、Z座標(高さ)は、最下段のZ座標の情報を保存し、他の保管棚822は、設計上の棚間距離に基づきPLC内で計算して求めている。   In this way, when the position information (X coordinate, Y coordinate, Z coordinate, θ) of the lowermost storage shelf 822 of one vertical storage frame 820 serving as a reference as shown in FIG. The position information (X coordinate, Y coordinate, Z coordinate, θ) of all the storage shelves 822 of the vertical storage frame 820 is calculated from the number of shelves of the vertical storage frame 820 and the distance between the shelves. In this embodiment, for the X coordinate, Y coordinate, and θ, all the storage shelves 822 of the vertical storage frame 820 are common to the measured position information of the lowest storage shelf 822, and the Z coordinate (height). Stores the information of the lowest Z coordinate, and the other storage shelves 822 are calculated in the PLC based on the designed inter-shelf distance.

なお、本実施例では、垂直収納フレーム820の最下段の保管棚822の位置情報に基づき、垂直収納フレーム820の全ての保管棚822の位置情報を算出しているが、最下段に加え、最上段の保管棚の位置情報も計測し、両者の位置情報から、垂直収納フレーム820の全ての保管棚822の位置情報を算出することにより、計測精度を一層向上させることができる。
また、基準となる垂直収納フレームの保管棚の位置情報の計測が終わると、隣の垂直収納フレームの保管棚の位置情報の計測を順次行う。本発明によれば、4つの位置情報の計測を同時に、しかも、人手を介さずに、行うことができるので大幅に計測時間を短縮することができる。さらに、位置情報の計測を非接触で計測するため、接触による誤差が生じることがない。
In this embodiment, the position information of all the storage shelves 822 of the vertical storage frame 820 is calculated based on the position information of the lowermost storage shelf 822 of the vertical storage frame 820. By measuring the position information of the upper storage shelves and calculating the position information of all the storage shelves 822 of the vertical storage frame 820 from the position information of both, the measurement accuracy can be further improved.
When the measurement of the position information of the storage shelf of the vertical storage frame serving as the reference is finished, the position information of the storage shelf of the adjacent vertical storage frame is sequentially measured. According to the present invention, measurement of four pieces of position information can be performed simultaneously and without human intervention, so that the measurement time can be greatly shortened. Furthermore, since position information is measured in a non-contact manner, no error due to contact occurs.

なお、本実施例では、垂直板320に形成した三角形状の凸部330が、垂直板320の底面322と面一の底辺332と、垂直板320の高さと等しくかつ底面322と直交する垂線を有する直角三角形状を有しているが、直角三角形状でなくても、例えば、二等辺三角形のような任意の三角形を用いても、同様に位置情報(X座標、Y座標、Z座標、θ)の計測が可能である。   In the present embodiment, the triangular convex portion 330 formed on the vertical plate 320 forms a perpendicular line that is equal to the bottom surface 322 of the vertical plate 320, the same base 332, and is perpendicular to the bottom surface 322. Even if it is not a right triangle shape, for example, an arbitrary triangle such as an isosceles triangle is used, position information (X coordinate, Y coordinate, Z coordinate, θ ) Can be measured.

さらに、本実施例では、保管棚の奥行き方向の傾き角度θを求める際に、三角形状の凸部330を跨ぐ垂直板320上の2点までのそれぞれの距離から求めているが、三角形状の凸部330の表面上の2点までの距離から求めることも可能である。   Further, in the present embodiment, when the inclination angle θ in the depth direction of the storage shelf is obtained, it is obtained from the respective distances up to two points on the vertical plate 320 straddling the triangular convex portion 330. It can also be obtained from the distance to two points on the surface of the convex portion 330.

本発明の創薬用自動保管庫に用いられる棚位置自動ティーチング装置は、ラインセンサと本発明に特有の形状を有する計測用プレートとを組み合わせて用いることにより、膨大な数の保管棚を有する創薬用自動保管庫のティーチング作業時間を大幅に高速化するとともに、計測精度を格段に向上させるものであって、その効果は甚大であり、産業上の利用可能性はきわめて高い。   The shelf position automatic teaching device used in the automatic drug storage for drug discovery according to the present invention is for drug discovery having a huge number of storage shelves by using a combination of a line sensor and a measuring plate having a shape unique to the present invention. This greatly speeds up the teaching work time of the automatic storage and greatly improves the measurement accuracy. The effect is enormous and the industrial applicability is extremely high.

本実施例の垂直収納フレームと計測用プレートを示す斜視図。The perspective view which shows the vertical storage frame and measurement plate of a present Example. 本実施例の計測用プレートを下方から見たときの斜視図。The perspective view when the plate for a measurement of a present Example is seen from the downward direction. 本実施例の計測用プレートを上方から見たときの斜視図。The perspective view when the plate for a measurement of a present Example is seen from upper direction. 本実施例の棚位置自動ティーチング装置の構造を示す斜視図。The perspective view which shows the structure of the shelf position automatic teaching apparatus of a present Example. 図4を矢視V方向から見た上面図。The top view which looked at FIG. 4 from the arrow V direction. 図5を矢視VI方向から見た側面図。The side view which looked at FIG. 5 from arrow VI direction. 本実施例のティーチング動作を説明する平面図(X座標及びY座標の計測)。The top view explaining the teaching operation | movement of a present Example (measurement of a X coordinate and a Y coordinate). 本実施例のティーチング動作を説明する平面図(傾き角度θの計測)。The top view explaining the teaching operation | movement of a present Example (measurement of inclination-angle (theta)). 本実施例のティーチング動作を説明する平面図(Z座標の計測)。The top view explaining the teaching operation | movement of a present Example (measurement of Z coordinate). 本実施例の垂直収納フレームを装備した創薬用保管棚の斜視図。The perspective view of the storage shelf for drug discovery equipped with the vertical storage frame of a present Example. 本実施例の創薬用保管棚を格納した創薬用自動保管庫の斜視図。The perspective view of the automatic storage for drug discovery which stored the storage shelf for drug discovery of a present Example. 従来の棚位置ティーチング装置を示す斜視図。The perspective view which shows the conventional shelf position teaching apparatus.

符号の説明Explanation of symbols

100 ・・・ 保管トレイ
120 ・・・ マイクロチューブ
200 ・・・ ピッキングロボット
300 ・・・ 計測用プレート
310 ・・・ (計測用プレートの)水平板
320 ・・・ (計測用プレートの)垂直板
322 ・・・ (計測用プレートの垂直板の)底面
330 ・・・ (計測用プレートの)凸部
332 ・・・ (計測用プレートの凸部の)底辺
334 ・・・ (計測用プレートの凸部の)垂線
400 ・・・ ラインセンサ
410 ・・・ (ラインセンサの)半導体レーザ
420 ・・・ (ラインセンサの)シリンドリカルレンズ
430 ・・・ (ラインセンサの)レンズ系
440 ・・・ (ラインセンサの)CMOSセンサ
600 ・・・ 計測用プレート
610 ・・・ (計測用プレートの)中央横線
620 ・・・ (計測用プレートの)中央縦線
630 ・・・ (計測用プレートの)位置合わせ用窓
700 ・・・ 移載ハンド
710 ・・・ 中央横線
720 ・・・ 中央縦線
740 ・・・ ハンドプレート
800 ・・・ 創薬用保管棚
810、820、830 ・・・ 垂直収納フレーム
812、822、832 ・・・ 保管棚
900 ・・・ 創薬用自動保管庫
910 ・・・ (創薬用自動保管庫の)保管エリア
930 ・・・ (創薬用自動保管庫の)入出庫エリア
935 ・・・ (創薬用自動保管庫の)入出庫窓
940 ・・・ (創薬用自動保管庫の)移載エリア
O ・・・ 無端循環軌道
DESCRIPTION OF SYMBOLS 100 ... Storage tray 120 ... Microtube 200 ... Picking robot 300 ... Measurement plate 310 ... Horizontal plate 320 (of measurement plate) ... Vertical plate 322 (of measurement plate) ... Bottom surface 330 (of measurement plate vertical plate) ... Convex part 332 (of measurement plate) ... Base 334 (of convex part of measurement plate) ... (Convex part of measurement plate) Vertical line 400 ... Line sensor 410 ... (Line sensor) Semiconductor laser 420 ... (Line sensor) Cylindrical lens 430 ... (Line sensor) Lens system 440 ... (Line sensor) ) CMOS sensor 600 ... measurement plate 610 ... central horizontal line 620 (of measurement plate) ... (of measurement plate) Center vertical line 630 ... Positioning window 700 (of measurement plate) ... Transfer hand 710 ... Center horizontal line 720 ... Center vertical line 740 ... Hand plate 800 ... Storage for drug discovery Shelf 810, 820, 830 ... Vertical storage frame 812, 822, 832 ... Storage shelf 900 ... Automatic storage for drug discovery 910 ... Storage area 930 (of automatic storage for drug discovery) ... ( Entry / exit area 935 (for automatic drug storage) Entry / exit window 940 (for automatic drug storage) Transfer area O (for automatic drug storage) Endless circulation orbit

Claims (3)

創薬研究用のワークを恒温・恒湿・冷凍などの環境のもとで保管管理する垂直及び水平方向に並んだ複数の保管棚と、該保管棚に対して前記ワークの出し入れを行う移載ハンドと、前記保管棚の最下段及び/又は最上段に挿入される計測用プレートとを有する創薬用自動保管庫に用いられる棚位置自動ティーチング装置において、
前記計測用プレートが、前記保管棚の幅に適合した水平板と該水平板の前面に垂設された垂直板を有し、
該垂直板が、その中央部に三角形状の凸部を有し、
該凸部を跨ぐ一直線上の複数の測定点の位置座標と該測定点までの距離を測定するラインセンサとを有し、
前記凸部の縁と前記一直線との2つの境界点間の距離から、前記三角形状の凸部の底辺から前記境界点までの高さ(Z座標)を求め、
前記ラインセンサから前記一直線上の前記凸部を跨ぐ前記垂直板上の2点までのそれぞれの距離から、前記保管棚の奥行き方向の傾き角度(θ)を求め、
前記凸部の縁と前記一直線上との1つの境界点の位置から、水平方向の位置(X座標)を求め、
前記ラインセンサから前記1つの境界点までの距離から、前記保管棚の奥行き方向の長さ(Y座標)を求めることをによって、特定の保管棚の位置情報(X座標、Y座標、Z座標、θ)を取得することを特徴とする創薬用自動保管庫に用いられる棚位置自動ティーチング装置。
Multiple storage shelves arranged in vertical and horizontal directions for storing and managing workpieces for drug discovery research in an environment of constant temperature, humidity and freezing, and transfer of the workpieces to and from the storage shelves In a shelf position automatic teaching device used for an automatic drug storage for drug discovery having a hand and a measurement plate inserted in the lowermost stage and / or the uppermost stage of the storage shelf,
The measuring plate has a horizontal plate adapted to the width of the storage shelf and a vertical plate suspended from the front surface of the horizontal plate;
The vertical plate has a triangular convex portion at the center thereof,
It has position coordinates of a plurality of measurement points on a straight line straddling the convex part and a line sensor for measuring the distance to the measurement point,
From the distance between two boundary points between the edge of the convex part and the straight line, the height (Z coordinate) from the base of the triangular convex part to the boundary point is determined,
From each distance from the line sensor to two points on the vertical plate across the convex part on the straight line, the inclination angle (θ) in the depth direction of the storage shelf is determined,
From the position of one boundary point between the edge of the convex part and the straight line, a horizontal position (X coordinate) is obtained,
By obtaining the length (Y coordinate) of the storage shelf in the depth direction from the distance from the line sensor to the one boundary point, the position information (X coordinate, Y coordinate, Z coordinate, θ) is an automatic teaching device for shelf positions used in an automatic drug storage.
前記三角形状の凸部が、前記垂直板の底面と面一となる底辺と、前記垂直板の高さと等しくかつ前記底面と直交する垂線を有する直角三角形状であることを特徴とする請求項1記載の創薬用自動保管庫に用いられる棚位置自動ティーチング装置。   2. The triangular convex portion is a right-angled triangular shape having a base that is flush with a bottom surface of the vertical plate, and a perpendicular line that is equal to the height of the vertical plate and perpendicular to the bottom surface. Shelf position automatic teaching device used for the automatic drug storage for described medicines. 前記ラインセンサが、レーザ式変位センサであることを特徴とする請求項1又は請求項2記載の創薬用自動保管庫に用いられる棚位置自動ティーチング装置。
The shelf position automatic teaching apparatus used for an automatic drug storage for medicines according to claim 1 or 2, wherein the line sensor is a laser displacement sensor.
JP2008028748A 2008-02-08 2008-02-08 Automatic shelf position teaching device used for automatic drug storage Expired - Fee Related JP5116500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028748A JP5116500B2 (en) 2008-02-08 2008-02-08 Automatic shelf position teaching device used for automatic drug storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028748A JP5116500B2 (en) 2008-02-08 2008-02-08 Automatic shelf position teaching device used for automatic drug storage

Publications (2)

Publication Number Publication Date
JP2009184807A true JP2009184807A (en) 2009-08-20
JP5116500B2 JP5116500B2 (en) 2013-01-09

Family

ID=41068463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028748A Expired - Fee Related JP5116500B2 (en) 2008-02-08 2008-02-08 Automatic shelf position teaching device used for automatic drug storage

Country Status (1)

Country Link
JP (1) JP5116500B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710845A (en) * 2018-05-11 2018-10-26 北京旷视科技有限公司 The correlating method of target object and article, apparatus and system
CN111504238A (en) * 2020-04-29 2020-08-07 河南柴油机重工有限责任公司 Micro-amplitude displacement testing method and device for vibration isolation device in diesel engine running state
CN115826114A (en) * 2023-02-17 2023-03-21 成都思越智能装备股份有限公司 Reflector and stacker shelf position teaching method based on reflector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656228A (en) * 1992-08-05 1994-03-01 Daihen Corp Reference position automatic teaching method for conveyng robot
JPH10321703A (en) * 1997-05-16 1998-12-04 Kokusai Electric Co Ltd Apparatus for manufacturing semiconductor
JP2002068410A (en) * 2000-08-31 2002-03-08 Matsushita Electric Ind Co Ltd Automatic teaching method and device for automated storage and retrieval warehouse robot
JP2006206223A (en) * 2005-01-26 2006-08-10 Hitachi Plant Technologies Ltd Automatic teaching method of stacker crane
JP2006346790A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Robot, and interference discriminating method and interference discriminating device
JP2007161453A (en) * 2005-12-15 2007-06-28 Tsubakimoto Chain Co Shelf position automatic teaching device
JP2008020399A (en) * 2006-07-14 2008-01-31 Omron Corp Displacement sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656228A (en) * 1992-08-05 1994-03-01 Daihen Corp Reference position automatic teaching method for conveyng robot
JPH10321703A (en) * 1997-05-16 1998-12-04 Kokusai Electric Co Ltd Apparatus for manufacturing semiconductor
JP2002068410A (en) * 2000-08-31 2002-03-08 Matsushita Electric Ind Co Ltd Automatic teaching method and device for automated storage and retrieval warehouse robot
JP2006206223A (en) * 2005-01-26 2006-08-10 Hitachi Plant Technologies Ltd Automatic teaching method of stacker crane
JP2006346790A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Robot, and interference discriminating method and interference discriminating device
JP2007161453A (en) * 2005-12-15 2007-06-28 Tsubakimoto Chain Co Shelf position automatic teaching device
JP2008020399A (en) * 2006-07-14 2008-01-31 Omron Corp Displacement sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710845A (en) * 2018-05-11 2018-10-26 北京旷视科技有限公司 The correlating method of target object and article, apparatus and system
CN111504238A (en) * 2020-04-29 2020-08-07 河南柴油机重工有限责任公司 Micro-amplitude displacement testing method and device for vibration isolation device in diesel engine running state
CN111504238B (en) * 2020-04-29 2021-12-03 河南柴油机重工有限责任公司 Micro-amplitude displacement testing method and device for vibration isolation device in diesel engine running state
CN115826114A (en) * 2023-02-17 2023-03-21 成都思越智能装备股份有限公司 Reflector and stacker shelf position teaching method based on reflector

Also Published As

Publication number Publication date
JP5116500B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
CN110506297B (en) High accuracy calibration system and method
US7222431B1 (en) Alignment correction system and methods of use thereof
JP2011209064A (en) Article recognition apparatus and article processing apparatus using the same
JP2020172401A (en) High speed establishing method of warehouse storage map, machine, memory medium and robot
JP2007205724A (en) Shape measuring device and measuring method of glass substrate
JP2009525883A5 (en)
JP5116500B2 (en) Automatic shelf position teaching device used for automatic drug storage
WO2023061017A1 (en) Three-dimensional warehouse storage article inspection method and system
CN110316558A (en) A kind of transfer robot chucking position control method and system
CN112697112A (en) Method and device for measuring horizontal plane inclination angle of camera
JP4982150B2 (en) Robot movement system
JP5762514B2 (en) Tool magazine device
KR101867390B1 (en) Laser processing apparatus and laser processing method
JP2017116401A (en) Substrate position adjustment device and substrate position adjustment method
GB2541636A (en) System and method for the determination of a position of a pipettor needle
Zhang et al. Robotic de-palletizing using uncalibrated vision and 3D laser-assisted image analysis
CN215910644U (en) Vertical position positioning device and automatic feeding system
JP2020082231A (en) Measurement method
CN220419179U (en) Inner rib flaw detection device of front opening type substrate conveying box
US5982495A (en) Object counting method and apparatus
CN115598652A (en) Vertical position positioning method, vertical position positioning device and automatic loading and unloading system
JP2005181023A (en) Measuring device and method of height difference and tilt angle between planes
JP6835641B2 (en) As-built measurement method
KR20090097363A (en) Automatic position detecting system of memory module tray and method of the same
JP2018109531A (en) Measurement device, system and manufacturing method of article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees