JP2007205661A - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP2007205661A JP2007205661A JP2006026576A JP2006026576A JP2007205661A JP 2007205661 A JP2007205661 A JP 2007205661A JP 2006026576 A JP2006026576 A JP 2006026576A JP 2006026576 A JP2006026576 A JP 2006026576A JP 2007205661 A JP2007205661 A JP 2007205661A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- heat transfer
- condensed water
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F13/222—Means for preventing condensation or evacuating condensate for evacuating condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0067—Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、熱交換器の冷媒偏流を抑制するための空気調和装置に関するものである。 The present invention relates to an air conditioner for suppressing refrigerant drift in a heat exchanger.
近年、省エネ要求が大きくなり、大能力の空気調和装置の熱交換器では、蒸発器における圧力損失による機器の性能低下を回避するため、1本のU字型の伝熱管を1つの冷媒流路にするといった多パス構成が必要となっている。 In recent years, the demand for energy saving has increased, and in a heat exchanger of a high-capacity air conditioner, one U-shaped heat transfer tube is connected to one refrigerant flow path in order to avoid degradation of equipment performance due to pressure loss in the evaporator. A multi-path configuration is required.
ここで、冷媒パス数を多くした場合には、風速分布の差による冷媒パスごとの熱交換量の差を抑制し、吸い込んだ室内空気を漏れのないように室内熱交換器に導くために、その下端部をドレンパンの底面に直接載置するようにしていた(例えば、特許文献1参照)。 Here, when the number of refrigerant paths is increased, in order to suppress the difference in heat exchange amount for each refrigerant path due to the difference in wind speed distribution, and to guide the sucked indoor air to the indoor heat exchanger so as not to leak, The lower end portion is directly placed on the bottom surface of the drain pan (for example, see Patent Document 1).
以下、従来の冷媒パスのパス取りの一例について図4〜図6を用いて説明する。なお、図4〜図6では、室内熱交換器(5)を蒸発器として使用した場合について説明している。 In the following, an example of taking a conventional refrigerant path will be described with reference to FIGS. In addition, in FIGS. 4-6, the case where an indoor heat exchanger (5) is used as an evaporator is demonstrated.
図4に示す複数の冷媒パスのうち最下段の冷媒パスは、最下部から2段目で且つ風下側の伝熱管(6)から冷媒が流入し、風上側の2段目及び風下側の最下段の伝熱管(6)を順に流通して、風上側の最下段の伝熱管(6)から冷媒が流出するように配管されている。 Among the plurality of refrigerant paths shown in FIG. 4, the refrigerant path in the lowermost stage is the second stage from the bottom and the refrigerant flows from the heat transfer pipe (6) on the leeward side. The lower heat transfer tube (6) is circulated in order, and the refrigerant flows out from the lowermost heat transfer tube (6) on the windward side.
また、図5に示す最下段の冷媒パスは、風上側の最下段の伝熱管(6)から冷媒が流入し、風上側の2段目及び風下側の2段目の伝熱管(6)を順に流通して、風下側の最下段の伝熱管(6)から冷媒が流出するように配管されている。 In the lowermost refrigerant path shown in FIG. 5, the refrigerant flows in from the lowermost heat transfer pipe (6) on the windward side, and passes through the second uppermost heat transfer pipe (6) and the second lowermost heat transfer pipe (6). It is circulated in order, and is piped so that the refrigerant flows out from the heat transfer tube (6) on the leeward side.
また、図6に示す最下段の冷媒パスは、風上側の最下段の伝熱管(6)から冷媒が流入し、風上側の2段目及び風下側の最下段の伝熱管(6)を順に流通して、風下側の2段目の伝熱管(6)から冷媒が流出するように配管されている。
しかしながら、図4に示す冷媒パスでは、室内熱交換器(5)を蒸発器として使用した場合、室内熱交換器(5)で生成される凝縮水がドレンパン(22)内に貯留されることで、室内熱交換器(5)の最下段の冷媒パスの出口側の伝熱管(6)が水没し、能力の一部が凝縮水との熱交換に使用され、出口側能力の極端な低下を招いてしまうといった問題があった。 However, in the refrigerant path shown in FIG. 4, when the indoor heat exchanger (5) is used as an evaporator, the condensed water generated in the indoor heat exchanger (5) is stored in the drain pan (22). , The heat transfer pipe (6) on the outlet side of the refrigerant path at the bottom of the indoor heat exchanger (5) is submerged, and part of the capacity is used for heat exchange with the condensed water, resulting in an extreme decrease in the outlet side capacity. There was a problem of being invited.
また、図5,図6に示す冷媒パスでは、冷媒パスの出口側の伝熱管(6)が風下側に配置されているため、室内熱交換器(5)の熱交換効率が悪くなるという問題があった。 Moreover, in the refrigerant | coolant path | pass shown in FIG.5, FIG.6, since the heat exchanger tube (6) of the exit side of a refrigerant | coolant path | pass is arrange | positioned on the leeward side, the problem that the heat exchange efficiency of an indoor heat exchanger (5) worsens. was there.
本発明は、かかる点に鑑みてなされたものであり、その目的は、熱交換器の冷媒偏流を抑制して、冷房能力や熱交換効率に優れた空気調和装置を提供することにある。 This invention is made | formed in view of this point, The objective is suppressing the refrigerant | coolant drift of a heat exchanger, and providing the air conditioning apparatus excellent in the air_conditioning | cooling capability and heat exchange efficiency.
前記の目的を達成するため、本発明では、最下段の冷媒パスの出口側の伝熱管(6)の水没を防止すべく、最下部から2段目以上の風上側に出口側の伝熱管(6)を設けるようにした。 In order to achieve the above object, in the present invention, in order to prevent the heat transfer tube (6) on the outlet side of the lowermost refrigerant path from being submerged, the heat transfer tube on the outlet side ( 6) is provided.
すなわち、第1の発明は、所定間隔おきに配設された複数の伝熱管(6)で形成された複数の冷媒パスを有する熱交換器(5)と、
前記熱交換器(5)に室内の空気を送風して熱交換させる送風機(21)と、
前記熱交換器(5)で発生する凝縮水を貯留させるドレンパン(22)とを備えた空気調和装置であって、
前記複数の冷媒パスのうち最下段の冷媒パスは、冷房運転時に、前記送風機(21)から送風される空気の風上側と風下側とにそれぞれ位置する伝熱管(6)にまたがって冷媒を流通させるとともに、前記熱交換器(5)の最下部から2段目以上で且つ風上側に位置する出口側の伝熱管(6)から冷媒を流出させるように配管されていることを特徴とするものである。
That is, the first invention includes a heat exchanger (5) having a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals,
A blower (21) that blows indoor air to the heat exchanger (5) to exchange heat;
An air conditioner comprising a drain pan (22) for storing condensed water generated in the heat exchanger (5),
The lowermost refrigerant path among the plurality of refrigerant paths circulates the refrigerant across the heat transfer tubes (6) positioned on the windward side and the leeward side of the air blown from the blower (21) during the cooling operation. In addition, the heat exchanger (5) is piped so that the refrigerant flows out from the heat transfer pipe (6) on the outlet side located at the second and higher stages from the lowermost part of the heat exchanger (5). It is.
第1の発明では、最下段の冷媒パスは、冷房運転時に、風上側と風下側とにそれぞれ位置する伝熱管(6)にまたがって冷媒が流通されるとともに、熱交換器(5)の最下部から2段目以上で且つ風上側に位置する出口側の伝熱管(6)から冷媒が流出される。 In the first invention, the lowermost refrigerant path allows the refrigerant to flow across the heat transfer pipes (6) positioned on the windward side and the leeward side during the cooling operation, and at the same time the heat exchanger (5). The refrigerant flows out from the heat transfer tube (6) on the outlet side located at the second or higher stage from the lower side and on the windward side.
このため、伝熱管(6)のターン数を多くして、熱交換器(5)の最下段の冷媒パスの熱交換能力を大きくし、熱交換器(5)としての蒸発能力の低下を抑える上で有利となる。さらに、冷媒の出口側となる伝熱管(6)を、熱交換器(5)の最下部から2段目以上で且つ風上側に配置したから、ドレンパン(22)に貯留する凝縮水による熱交換効率の低下を最小限に抑えることができる。 For this reason, the number of turns of the heat transfer tube (6) is increased to increase the heat exchange capacity of the lowermost refrigerant path of the heat exchanger (5), thereby suppressing a decrease in the evaporation capacity of the heat exchanger (5). This is advantageous. Furthermore, since the heat transfer tube (6) on the refrigerant outlet side is arranged at the second or higher stage from the bottom of the heat exchanger (5) and on the windward side, heat exchange by the condensed water stored in the drain pan (22) The decrease in efficiency can be minimized.
第2の発明は、第1の発明において、
前記ドレンパン(22)に貯留した凝縮水を排水するドレンポンプ(23)を備え、
前記ドレンポンプ(23)は、前記ドレンパン(22)に貯留した凝縮水が前記出口側の伝熱管(6)に達するまでに凝縮水の排水を行うように構成されていることを特徴とするものである。
According to a second invention, in the first invention,
A drain pump (23) for draining the condensed water stored in the drain pan (22);
The drain pump (23) is configured to drain condensed water before the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side. It is.
第2の発明では、ドレンパン(22)に貯留した凝縮水が前記出口側の伝熱管(6)に達するまでに凝縮水の排水が行われる。このため、冷媒パスの出口側の伝熱管(6)が凝縮水で水没することがなく、能力の一部が凝縮水との熱交換に使用されることを防止して熱交換効率の低下を抑えることができる。 In the second invention, the condensed water is drained until the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side. For this reason, the heat transfer tube (6) on the outlet side of the refrigerant path is not submerged in the condensed water, and a part of the capacity is prevented from being used for heat exchange with the condensed water, thereby reducing the heat exchange efficiency. Can be suppressed.
第3の発明は、第1の発明において、
前記ドレンパン(22)に貯留した凝縮水を排水するドレンポンプ(23)と、
前記ドレンパン(22)に貯留した凝縮水が前記出口側の伝熱管(6)よりも低い所定水位に達したことを検知する水位検知手段(24)とを備え、
前記ドレンポンプ(23)は、前記水位検知手段(24)の検知結果に基づいて凝縮水の排水を行うように構成されていることを特徴とするものである。
According to a third invention, in the first invention,
A drain pump (23) for draining the condensed water stored in the drain pan (22);
Water level detection means (24) for detecting that the condensed water stored in the drain pan (22) has reached a predetermined water level lower than the heat transfer pipe (6) on the outlet side,
The drain pump (23) is configured to drain condensed water based on the detection result of the water level detection means (24).
第3の発明では、ドレンパン(22)に貯留した凝縮水が出口側の伝熱管(6)よりも低い所定水位に達したことが水位検知手段(24)で検知され、検知結果に基づいてドレンポンプ(23)により凝縮水の排水が行われる。このため、従来は冷媒パスの水没を防止するために凝縮水の水位にかかわらず常時に動作させていたドレンポンプ(23)を、凝縮水の水位に基づいて間欠的に動作させることができ、消費電力低減が可能となる。 In the third aspect of the invention, the water level detection means (24) detects that the condensed water stored in the drain pan (22) has reached a predetermined water level lower than that of the heat transfer pipe (6) on the outlet side. Condensate is drained by the pump (23). For this reason, the drain pump (23) that has been conventionally operated regardless of the water level of the condensed water in order to prevent the refrigerant path from being submerged can be operated intermittently based on the water level of the condensed water, Power consumption can be reduced.
以上説明したように、本発明によれば、伝熱管(6)のターン数を多くして、熱交換器(5)の最下段の冷媒パスの熱交換能力を大きくし、熱交換器(5)としての蒸発能力の低下を抑える上で有利となる。さらに、冷媒の出口側となる伝熱管(6)を、熱交換器(5)の最下部から2段目以上で且つ風上側に配置したから、ドレンパン(22)に貯留する凝縮水による熱交換効率の低下を最小限に抑えることができる。 As described above, according to the present invention, the number of turns of the heat transfer tube (6) is increased, the heat exchange capacity of the lowermost refrigerant path of the heat exchanger (5) is increased, and the heat exchanger (5 This is advantageous in suppressing a decrease in evaporation capability. Furthermore, since the heat transfer tube (6) on the refrigerant outlet side is arranged at the second or higher stage from the bottom of the heat exchanger (5) and on the windward side, heat exchange by the condensed water stored in the drain pan (22) The decrease in efficiency can be minimized.
また、第2の発明によれば、冷媒パスの出口側の伝熱管(6)が凝縮水で水没することがなく、能力の一部が凝縮水との熱交換に使用されることを防止して熱交換効率の低下を抑えることができる。 Further, according to the second invention, the heat transfer tube (6) on the outlet side of the refrigerant path is not submerged in the condensed water, and a part of the capacity is prevented from being used for heat exchange with the condensed water. Thus, it is possible to suppress a decrease in heat exchange efficiency.
また、第3の発明によれば、従来は冷媒パスの水没を防止するために凝縮水の水位にかかわらず常時に動作させていたドレンポンプ(23)を、凝縮水の水位に基づいて間欠的に動作させることができ、消費電力低減が可能となる。 Further, according to the third invention, the drain pump (23) that has been conventionally operated at all times regardless of the water level of the condensed water in order to prevent the refrigerant path from being submerged is intermittently based on the water level of the condensed water. The power consumption can be reduced.
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or its application.
図1は本発明の実施形態における空気調和装置の冷媒回路の構成を示す図である。図1に示すように、冷媒回路(1)は、圧縮機構である圧縮機(7)と、冷媒制御手段である四路切替弁(9)と、室外熱交換器(3)と、膨張機構である膨張弁(11)と、室内熱交換器(5)とが順に接続されて閉回路となっている。この冷媒回路(1)には、冷媒が充填されており、この冷媒が循環して蒸気圧縮式の冷凍サイクルを行うように構成されている。なお、前記四路切替弁(9)には、冷媒回路(1)の配管が接続可能な第1から第4のポート(9a,9b,9c,9d)が設けられている。 FIG. 1 is a diagram showing a configuration of a refrigerant circuit of an air conditioner according to an embodiment of the present invention. As shown in FIG. 1, the refrigerant circuit (1) includes a compressor (7) as a compression mechanism, a four-way switching valve (9) as a refrigerant control means, an outdoor heat exchanger (3), and an expansion mechanism. The expansion valve (11) and the indoor heat exchanger (5) are sequentially connected to form a closed circuit. The refrigerant circuit (1) is filled with a refrigerant, and the refrigerant circulates to perform a vapor compression refrigeration cycle. The four-way switching valve (9) is provided with first to fourth ports (9a, 9b, 9c, 9d) to which the piping of the refrigerant circuit (1) can be connected.
また、前記室内熱交換器(5)には、冷房運転時において室外熱交換器(3)で凝縮された冷媒を減圧し室内熱交換器(5)の各冷媒パスに分岐させる分流器(13)と、室内熱交換器(5)の複数の冷媒パスでそれぞれ蒸発させた冷媒を再度合流させて室外熱交換器(3)に流入させる合流器(15)とが接続されている。 Further, the indoor heat exchanger (5) includes a shunt (13) that decompresses the refrigerant condensed in the outdoor heat exchanger (3) during the cooling operation and branches it to each refrigerant path of the indoor heat exchanger (5). ) And a merger (15) that causes the refrigerants evaporated in the plurality of refrigerant paths of the indoor heat exchanger (5) to rejoin and flow into the outdoor heat exchanger (3).
この冷媒回路(1)において、圧縮機(7)の吐出口は、四路切替弁(9)の第1ポート(9a)に接続されている。また、四路切替弁(9)の第3ポート(9c)は、室外熱交換器(3)の一端と接続されている。室外熱交換器(3)の他端は、膨張弁(11)を介して室内熱交換器(5)の一端と接続されている。室内熱交換器(5)の他端は、四路切替弁(9)の第4ポート(9d)に接続されている。また、四路切替弁(9)の第2ポート(9b)は、圧縮機(7)の吸引口と接続されている。 In this refrigerant circuit (1), the discharge port of the compressor (7) is connected to the first port (9a) of the four-way switching valve (9). The third port (9c) of the four-way switching valve (9) is connected to one end of the outdoor heat exchanger (3). The other end of the outdoor heat exchanger (3) is connected to one end of the indoor heat exchanger (5) via the expansion valve (11). The other end of the indoor heat exchanger (5) is connected to the fourth port (9d) of the four-way switching valve (9). The second port (9b) of the four-way switching valve (9) is connected to the suction port of the compressor (7).
前記四路切替弁(9)は、第1ポート(9a)と第3ポート(9c)とが連通すると同時に第2ポート(9b)と第4ポート(9d)とが連通する状態(図1(a)に示す状態)と、第1ポート(9a)と第4ポート(9d)とが連通すると同時に第2ポート(9b)と第3ポート(9c)とが連通する状態(図1(b)に示す状態)とに切り替え自在となっている。 In the four-way switching valve (9), the first port (9a) and the third port (9c) communicate with each other, and at the same time the second port (9b) and the fourth port (9d) communicate with each other (FIG. 1 ( a state shown in a), and the first port (9a) and the fourth port (9d) communicate with each other, and at the same time the second port (9b) and the third port (9c) communicate with each other (FIG. 1 (b)). It is possible to switch to the state shown in FIG.
すなわち、前記四路切替弁(9)は、冷媒回路(1)内の冷媒の循環方向を切り替えることにより、室外熱交換器(3)の冷媒を凝縮させると同時に室内熱交換器(5)の冷媒を蒸発させる状態と、室外熱交換器(3)の冷媒を蒸発させると同時に室内熱交換器(5)の冷媒を凝縮させる状態とを切り替え可能に構成されている。 That is, the four-way selector valve (9) condenses the refrigerant in the outdoor heat exchanger (3) by switching the refrigerant circulation direction in the refrigerant circuit (1), and at the same time the indoor heat exchanger (5) The state in which the refrigerant is evaporated and the state in which the refrigerant in the outdoor heat exchanger (3) is evaporated and at the same time the refrigerant in the indoor heat exchanger (5) is condensed can be switched.
図2は、本実施形態に係る空気調和装置の室内機の内部構成を示す概略図である。図2において、室内機は、室内熱交換器(5)と、室内熱交換器(5)に室内の空気を送風して熱交換させる送風機(21)と、室内熱交換器(5)が載置されるとともに該室内熱交換器(5)で発生した凝縮水を貯溜するドレンパン(22)と、ドレンパン(22)に貯留した凝縮水を排水するドレンポンプ(23)と、ドレンパン(22)に貯留した凝縮水が所定水位に達したことを検知する水位検知手段としてのフロートスイッチ(24)とを備えている。 FIG. 2 is a schematic diagram illustrating an internal configuration of the indoor unit of the air-conditioning apparatus according to the present embodiment. In FIG. 2, the indoor unit includes an indoor heat exchanger (5), a blower (21) that blows indoor air to the indoor heat exchanger (5) to exchange heat, and an indoor heat exchanger (5). The drain pan (22) for storing the condensed water generated in the indoor heat exchanger (5), the drain pump (23) for draining the condensed water stored in the drain pan (22), and the drain pan (22) And a float switch (24) as water level detecting means for detecting that the stored condensed water has reached a predetermined water level.
前記室内熱交換器(5)は、所定間隔おきに配設された複数の伝熱管(6)で形成された複数の冷媒パスを有しており、具体的に、本実施形態では、伝熱管(6)は24本配設され、複数の伝熱管(6)の端部同士をU字管で接続することで、計11本の冷媒パスが形成されている(図3参照)。なお、図2,図3では、冷房運転時における冷媒の循環方向を矢印で示している。 The indoor heat exchanger (5) has a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals. Specifically, in the present embodiment, the heat transfer tubes In (6), 24 are arranged, and a total of 11 refrigerant paths are formed by connecting ends of the plurality of heat transfer tubes (6) with U-shaped tubes (see FIG. 3). In FIGS. 2 and 3, the direction of refrigerant circulation during cooling operation is indicated by arrows.
前記分流器(13)で分流させた冷媒は、前記複数の冷媒パスのそれぞれに流入する。そして、複数の冷媒パスからそれぞれ流出した冷媒は、合流器(15)で合流し、その後、室外熱交換器(3)に流入するようになっている。 The refrigerant divided by the flow divider (13) flows into each of the plurality of refrigerant paths. And the refrigerant | coolant which each flowed out from the some refrigerant | coolant path | pass joins with a merger (15), and flows in into an outdoor heat exchanger (3) after that.
ここで、前記複数の冷媒パスは、最下段のパス取りのみが異なっており、他の冷媒パスのパス取りは同じである。具体的には、最下段の冷媒パスは4本の伝熱管(6)で形成され、室内熱交換器(5)の最下部の風上側の伝熱管(6)から冷媒が流入し、風下側の最下部及び風下側の2段目の伝熱管(6)を順に流通して、風上側の2段目の伝熱管(6)から冷媒が流出するように配管されている。 Here, the plurality of refrigerant paths are different only in the lowermost path, and the other refrigerant paths have the same path. Specifically, the lowermost refrigerant path is formed by four heat transfer tubes (6), and the refrigerant flows from the lowermost windward heat transfer tube (6) of the indoor heat exchanger (5), so that the leeward side The second heat transfer tube (6) on the lowermost part and the leeward side are circulated in order, and the refrigerant flows out from the second heat transfer tube (6) on the leeward side.
一方、最下段の冷媒パスを除く他の冷媒パスは2本の伝熱管(6)で形成され、風上側の伝熱管(6)から冷媒が流入し風下側の伝熱管(6)から冷媒が流出するように配管されている。 On the other hand, the other refrigerant paths other than the lowermost refrigerant path are formed by two heat transfer tubes (6), and the refrigerant flows from the windward heat transfer tube (6) and flows from the leeward heat transfer tube (6). It is piped to flow out.
なお、暖房運転時には、室内熱交換器(5)の冷媒パスに対する冷媒の流通方向は、冷房運転時とは逆方向となっている。すなわち、最下段の冷媒パスでは、室内熱交換器(5)の風上側の2段目の伝熱管(6)から冷媒が流入し、風下側の2段目及び風下側の最下部の伝熱管(6)を順に流通して、風上側の最下部の伝熱管(6)から冷媒が流出するようになっている。 During the heating operation, the refrigerant flow direction with respect to the refrigerant path of the indoor heat exchanger (5) is opposite to that during the cooling operation. That is, in the lowermost refrigerant path, the refrigerant flows from the second-stage heat transfer pipe (6) on the windward side of the indoor heat exchanger (5), and the second-stage on the leeward side and the lowermost heat transfer pipe on the leeward side. (6) is circulated in order, and the refrigerant flows out from the lowest heat transfer tube (6) on the windward side.
一方、最下段の冷媒パスを除く他の冷媒パスでは、風下側の伝熱管(6)から冷媒が流入し、風上側の伝熱管(6)から冷媒が流出するようになっている。 On the other hand, in other refrigerant paths excluding the lowermost refrigerant path, the refrigerant flows in from the leeward heat transfer pipe (6) and flows out from the leeward heat transfer pipe (6).
前記フロートスイッチ(24)は、ドレンパン(22)に貯留した凝縮水が出口側の伝熱管(6)よりも低い所定水位に達したことを検知するものであり、具体的に、所定水位とは、室内熱交換器(5)の最下部から2段目の風上側の伝熱管(6)の高さ位置よりも低い水位である。 The float switch (24) detects that the condensed water stored in the drain pan (22) has reached a predetermined water level lower than that of the heat transfer pipe (6) on the outlet side. Specifically, the predetermined water level is The water level is lower than the height position of the heat transfer tube (6) on the second windward side from the bottom of the indoor heat exchanger (5).
前記ドレンポンプ(23)は、フロートスイッチ(24)の検知結果に基づいてドレンパン(22)内の凝縮水の排水を行うように構成されている。これにより、最下段の冷媒パスにおける出口側の伝熱管(6)が水没することを防止して熱交換効率を確保する上で有利となる。 The drain pump (23) is configured to drain the condensed water in the drain pan (22) based on the detection result of the float switch (24). This is advantageous in ensuring heat exchange efficiency by preventing the outlet heat transfer tube (6) in the lowermost refrigerant path from being submerged.
以上のように、本発明の実施形態に係る空気調和装置によれば、伝熱管(6)のターン数を多くして、熱交換器(5)の最下段の冷媒パスの熱交換能力を大きくし、熱交換器(5)としての蒸発能力の低下を抑える上で有利となる。さらに、冷媒の出口側となる伝熱管(6)を、熱交換器(5)の最下部から2段目の風上側に配置したから、ドレンパン(22)に貯留する凝縮水による熱交換効率の低下を最小限に抑えることができる。 As described above, according to the air conditioner according to the embodiment of the present invention, the number of turns of the heat transfer tube (6) is increased, and the heat exchange capacity of the lowermost refrigerant path of the heat exchanger (5) is increased. However, this is advantageous in suppressing a decrease in the evaporation capacity of the heat exchanger (5). Furthermore, since the heat transfer tube (6) on the refrigerant outlet side is arranged on the second windward side from the bottom of the heat exchanger (5), the heat exchange efficiency of the condensed water stored in the drain pan (22) is improved. Degradation can be minimized.
また、前記ドレンパン(22)に貯留した凝縮水が前記出口側の伝熱管(6)に達するまでに凝縮水の排水が行われるから、冷媒パスの出口側の伝熱管(6)が凝縮水で水没することがなく、能力の一部が凝縮水との熱交換に使用されることを防止して熱交換効率の低下を抑えることができる。 Further, since the condensed water is drained before the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side, the heat transfer pipe (6) on the outlet side of the refrigerant path is condensed water. Without being submerged, it is possible to prevent a part of the capacity from being used for heat exchange with condensed water, and to suppress a decrease in heat exchange efficiency.
また、前記ドレンパン(22)に貯留した凝縮水が出口側の伝熱管(6)よりも低い所定水位に達したことがフロートスイッチ(24)で検知され、検知結果に基づいてドレンポンプ(23)により凝縮水の排水が行われるから、従来は冷媒パスの水没を防止するために凝縮水の水位にかかわらず常時に動作させていたドレンポンプ(23)を、凝縮水の水位に基づいて間欠的に動作させることができ、消費電力低減が可能となる。 Further, the float switch (24) detects that the condensed water stored in the drain pan (22) has reached a predetermined water level lower than that of the heat transfer pipe (6) on the outlet side, and the drain pump (23) Since the condensate is drained by this, the drain pump (23), which has been operated at all times regardless of the condensate water level in order to prevent the refrigerant path from being submerged, is intermittently based on the condensate water level. The power consumption can be reduced.
以上説明したように、本発明は、冷房運転時に発生する凝縮水による熱交換効率の低下を最小限に抑えることができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As described above, the present invention provides a highly practical effect that the reduction in heat exchange efficiency due to the condensed water generated during cooling operation can be minimized. The possibility is high.
5 室内熱交換器(熱交換器)
6 伝熱管
21 送風機
22 ドレンパン
23 ドレンポンプ
24 フロートスイッチ(水位検知手段)
5 Indoor heat exchanger (heat exchanger)
6 Heat transfer tube
21 Blower
22 Drain pan
23 Drain pump
24 Float switch (water level detection means)
Claims (3)
前記熱交換器(5)に室内の空気を送風して熱交換させる送風機(21)と、
前記熱交換器(5)で発生する凝縮水を貯留させるドレンパン(22)とを備えた空気調和装置であって、
前記複数の冷媒パスのうち最下段の冷媒パスは、冷房運転時に、前記送風機(21)から送風される空気の風上側と風下側とにそれぞれ位置する伝熱管(6)にまたがって冷媒を流通させるとともに、前記熱交換器(5)の最下部から2段目以上で且つ風上側に位置する出口側の伝熱管(6)から冷媒を流出させるように配管されていることを特徴とする空気調和装置。 A heat exchanger (5) having a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals;
A blower (21) that blows indoor air to the heat exchanger (5) to exchange heat;
An air conditioner comprising a drain pan (22) for storing condensed water generated in the heat exchanger (5),
The lowermost refrigerant path among the plurality of refrigerant paths circulates the refrigerant across the heat transfer tubes (6) positioned on the windward side and the leeward side of the air blown from the blower (21) during the cooling operation. And air that is piped so that the refrigerant flows out from the heat transfer pipe (6) on the outlet side located at the second and higher stages from the lowermost part of the heat exchanger (5). Harmony device.
前記ドレンパン(22)に貯留した凝縮水を排水するドレンポンプ(23)を備え、
前記ドレンポンプ(23)は、前記ドレンパン(22)に貯留した凝縮水が前記出口側の伝熱管(6)に達するまでに凝縮水の排水を行うように構成されていることを特徴とする空気調和装置。 In claim 1,
A drain pump (23) for draining the condensed water stored in the drain pan (22);
The drain pump (23) is configured to drain condensed water until the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side. Harmony device.
前記ドレンパン(22)に貯留した凝縮水を排水するドレンポンプ(23)と、
前記ドレンパン(22)に貯留した凝縮水が前記出口側の伝熱管(6)よりも低い所定水位に達したことを検知する水位検知手段(24)とを備え、
前記ドレンポンプ(23)は、前記水位検知手段(24)の検知結果に基づいて凝縮水の排水を行うように構成されていることを特徴とする空気調和装置。
In claim 1,
A drain pump (23) for draining the condensed water stored in the drain pan (22);
Water level detection means (24) for detecting that the condensed water stored in the drain pan (22) has reached a predetermined water level lower than the heat transfer pipe (6) on the outlet side,
The air conditioner characterized in that the drain pump (23) is configured to drain condensed water based on a detection result of the water level detection means (24).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006026576A JP4495090B2 (en) | 2006-02-03 | 2006-02-03 | Air conditioner |
CN2007800036868A CN101375108B (en) | 2006-02-03 | 2007-02-02 | Air conditioner |
EP07713779.2A EP1983270A4 (en) | 2006-02-03 | 2007-02-02 | Air conditioner |
PCT/JP2007/051779 WO2007088964A1 (en) | 2006-02-03 | 2007-02-02 | Air conditioner |
KR1020087019332A KR100981246B1 (en) | 2006-02-03 | 2007-02-02 | Air conditioner |
AU2007210492A AU2007210492B2 (en) | 2006-02-03 | 2007-02-02 | Air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006026576A JP4495090B2 (en) | 2006-02-03 | 2006-02-03 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007205661A true JP2007205661A (en) | 2007-08-16 |
JP4495090B2 JP4495090B2 (en) | 2010-06-30 |
Family
ID=38327532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006026576A Expired - Fee Related JP4495090B2 (en) | 2006-02-03 | 2006-02-03 | Air conditioner |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1983270A4 (en) |
JP (1) | JP4495090B2 (en) |
KR (1) | KR100981246B1 (en) |
CN (1) | CN101375108B (en) |
AU (1) | AU2007210492B2 (en) |
WO (1) | WO2007088964A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019059316A1 (en) * | 2017-09-25 | 2019-03-28 | ダイキン工業株式会社 | Heat exchanger and air conditioning device provided with same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6878511B2 (en) * | 2019-07-17 | 2021-05-26 | 日立ジョンソンコントロールズ空調株式会社 | Heat exchanger, air conditioner, indoor unit and outdoor unit |
KR20220112584A (en) | 2021-02-04 | 2022-08-11 | 엘지전자 주식회사 | Air conditioner |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2753354B2 (en) * | 1989-12-22 | 1998-05-20 | 株式会社日立製作所 | Heat exchanger for air conditioner |
JPH04139347A (en) * | 1990-09-28 | 1992-05-13 | Matsushita Electric Ind Co Ltd | Drain pump controller for air conditioner |
JP2979926B2 (en) * | 1993-10-18 | 1999-11-22 | 株式会社日立製作所 | Air conditioner |
JPH07208821A (en) * | 1994-01-17 | 1995-08-11 | Toshiba Corp | Air conditioner |
JPH10132480A (en) * | 1996-10-31 | 1998-05-22 | Daikin Ind Ltd | Heat exchanger for air conditioner |
JP2000154991A (en) * | 1998-11-20 | 2000-06-06 | Kimura Kohki Co Ltd | Heat exchanging coil for small water quantity fan coil unit |
JP2000249479A (en) * | 1999-02-26 | 2000-09-14 | Matsushita Electric Ind Co Ltd | Heat exchanger |
US6276443B1 (en) * | 1999-11-29 | 2001-08-21 | Lendell Martin, Sr. | Air conditioning coil |
JP2005308291A (en) * | 2004-04-21 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Air conditioner |
JP2005315455A (en) * | 2004-04-27 | 2005-11-10 | Matsushita Electric Ind Co Ltd | Air conditioner |
-
2006
- 2006-02-03 JP JP2006026576A patent/JP4495090B2/en not_active Expired - Fee Related
-
2007
- 2007-02-02 WO PCT/JP2007/051779 patent/WO2007088964A1/en active Application Filing
- 2007-02-02 AU AU2007210492A patent/AU2007210492B2/en not_active Ceased
- 2007-02-02 CN CN2007800036868A patent/CN101375108B/en not_active Expired - Fee Related
- 2007-02-02 EP EP07713779.2A patent/EP1983270A4/en not_active Withdrawn
- 2007-02-02 KR KR1020087019332A patent/KR100981246B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019059316A1 (en) * | 2017-09-25 | 2019-03-28 | ダイキン工業株式会社 | Heat exchanger and air conditioning device provided with same |
CN111065867A (en) * | 2017-09-25 | 2020-04-24 | 大金工业株式会社 | Heat exchanger and air conditioner provided with same |
US20200256597A1 (en) * | 2017-09-25 | 2020-08-13 | Daikin Industries, Ltd. | Heat exchanger and air conditioning device provided with same |
US11692748B2 (en) | 2017-09-25 | 2023-07-04 | Daikin Industries, Ltd. | Heat exchanger and air conditioning apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
KR100981246B1 (en) | 2010-09-10 |
CN101375108A (en) | 2009-02-25 |
KR20080083356A (en) | 2008-09-17 |
JP4495090B2 (en) | 2010-06-30 |
AU2007210492B2 (en) | 2010-12-02 |
EP1983270A4 (en) | 2013-10-16 |
WO2007088964A1 (en) | 2007-08-09 |
CN101375108B (en) | 2010-10-06 |
EP1983270A1 (en) | 2008-10-22 |
AU2007210492A1 (en) | 2007-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4997004B2 (en) | Air conditioner | |
WO2014054178A1 (en) | Heat pump device | |
WO2012043377A1 (en) | Refrigeration circuit | |
JP6972158B2 (en) | Dehumidifier | |
EP3607252B1 (en) | Chiller system with an economizer module and method of operating such a system | |
JP2007163013A (en) | Refrigerating cycle device | |
JP2008139001A (en) | Refrigerating plant | |
JP2012136152A (en) | Air conditioning system for ship | |
JP4495090B2 (en) | Air conditioner | |
KR20030087822A (en) | Condensing system of refrigerator | |
JPWO2020017036A1 (en) | Refrigeration cycle equipment | |
JP2004293904A (en) | Air conditioner | |
JP2014109416A (en) | Air conditioner | |
JP2008121984A (en) | Heat exchanger unit | |
JP6641070B1 (en) | Air conditioner | |
CN114502887A (en) | Refrigerating device | |
JP5268136B2 (en) | Heat pump air conditioner | |
JP2005315455A (en) | Air conditioner | |
JP2008121995A (en) | Air conditioner | |
WO2011111602A1 (en) | Air conditioner | |
JP2007127333A (en) | Air conditioner | |
JPWO2019106755A1 (en) | Air conditioner | |
JP7258151B2 (en) | Heat exchanger and refrigeration cycle equipment | |
JP2009281595A (en) | Refrigerating device | |
JP2007147133A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100304 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4495090 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |