WO2007088964A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2007088964A1
WO2007088964A1 PCT/JP2007/051779 JP2007051779W WO2007088964A1 WO 2007088964 A1 WO2007088964 A1 WO 2007088964A1 JP 2007051779 W JP2007051779 W JP 2007051779W WO 2007088964 A1 WO2007088964 A1 WO 2007088964A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat transfer
condensed water
heat exchanger
drain
Prior art date
Application number
PCT/JP2007/051779
Other languages
French (fr)
Japanese (ja)
Inventor
Shun Yoshioka
Naoyuki Ohta
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07713779.2A priority Critical patent/EP1983270A4/en
Priority to CN2007800036868A priority patent/CN101375108B/en
Priority to AU2007210492A priority patent/AU2007210492B2/en
Publication of WO2007088964A1 publication Critical patent/WO2007088964A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Definitions

  • the first invention provides a heat exchanger (5) having a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals, and the heat exchanger ( Targeting an air conditioner equipped with a blower (21) that exchanges heat by sending indoor air to 5) and a drain pan (22) that stores condensed water generated in the heat exchanger (5)! / Speak.
  • the drain pump (23) drains the condensed water stored in the drain pan (22), and the condensed water stored in the drain pan (22) And a water level detection means (24) for detecting that a predetermined water level has been reached, which is lower than the heat transfer tube (6).
  • the drain pump (23) is configured to drain condensed water based on the detection result of the water level detection means (24).
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the internal configuration of the indoor unit of the air-conditioning apparatus according to the present embodiment.
  • FIG. 3 is a side view showing the configuration of the refrigerant path of the indoor heat exchanger according to the present embodiment.
  • the indoor heat exchanger (5) has a branch flow for depressurizing the refrigerant condensed in the outdoor heat exchanger (3) during cooling operation and branching it to each refrigerant path of the indoor heat exchanger (5).
  • the heat exchanger (13) and the confluencer (15) that reflows the refrigerant evaporated in the refrigerant paths of the indoor heat exchanger (5) and flows them into the outdoor heat exchanger (3)!
  • the indoor heat exchanger (5) has a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals. Specifically, in the present embodiment, 24 heat transfer tubes (6) are arranged, and the ends of the plurality of heat transfer tubes (6) are connected to each other by U-shaped tubes, so that a total of 11 refrigerant paths can be formed. Formed (see Figure 3). In FIGS. 2 and 3, the refrigerant circulation direction during the cooling operation is indicated by arrows.
  • the float switch (24) detects that the condensed water stored in the drain pan (22) is lower than the heat transfer pipe (6) on the outlet side and reaches a predetermined water level, and based on the detection result. Because the condensate is drained by the drain pump (23), the drain pump (23) that has been operated at all times regardless of the level of the condensate in the past to prevent the refrigerant path from being submerged. It can be operated intermittently based on the water level of the condensed water, and power consumption can be reduced. Industrial applicability

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An indoor heat exchanger (5) has refrigerant passes, and the lowermost refrigerant pass of the refrigerant passes is laid such that, in cooling operation, it allows refrigerant to flow to heat transmission tubes (6) on both the windward and the leeward of air that is sent from a fan device (21) and also allows the refrigerant to flow out of an exit side heat transmission tube (6) that is located on the windward side, at the second row from the lowermost part of the indoor heat exchanger (5).

Description

空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、熱交換器の冷媒偏流を抑制するための空気調和装置に関するもので ある。  [0001] The present invention relates to an air conditioner for suppressing refrigerant drift in a heat exchanger.
背景技術  Background art
[0002] 近年、省エネルギ化の要求が大きくなり、大能力の空気調和装置の熱交換器で は、蒸発器における圧力損失による機器の性能低下を回避するため、 1本の U字型 の伝熱管を 1つの冷媒流路にするといつた多パス構成が必要となっている。  [0002] In recent years, the demand for energy saving has increased, and in a heat exchanger of a large-capacity air conditioner, a single U-shaped transmission is used in order to avoid degradation of equipment performance due to pressure loss in the evaporator. When a heat pipe is used as one refrigerant flow path, a multi-pass configuration is required.
[0003] ここで、冷媒パス数を多くした場合には、風速分布の差による冷媒パスごとの熱交 換量の差を抑制し、吸い込んだ室内空気を漏れのないように室内熱交換器に導く必 要がある。そのために、その下端部をドレンパンの底面に直接載置するようにしてい た (例えば、特許文献 1参照)。  [0003] Here, when the number of refrigerant paths is increased, the difference in the heat exchange amount for each refrigerant path due to the difference in the wind speed distribution is suppressed, and the sucked room air is not leaked to the indoor heat exchanger. Need to guide. For this purpose, the lower end portion is directly placed on the bottom surface of the drain pan (for example, see Patent Document 1).
[0004] 以下、従来の冷媒パスのパス取りの一例について図 4〜図 6を用いて説明する。  [0004] Hereinafter, an example of a conventional refrigerant path removal will be described with reference to FIGS.
なお、図 4〜図 6では、室内熱交翻 (5)を蒸発器として使用した場合について説明 している。  4 to 6 illustrate the case where indoor heat exchange (5) is used as an evaporator.
[0005] 図 4に示す複数の冷媒パスのうち最下段の冷媒パスは、最下部から 2段目で且つ 風下側の伝熱管 (6)から冷媒が流入し、風上側の 2段目及び風下側の最下段の伝 熱管 (6)を順に流通し、風上側の最下段の伝熱管 (6)から冷媒が流出するように配管 されている。  [0005] Of the plurality of refrigerant paths shown in FIG. 4, the lowermost refrigerant path is the second stage from the lowermost part and the refrigerant flows from the heat transfer pipe (6) on the leeward side, and the second stage and the leeward side on the leeward side. The lowermost heat transfer pipe (6) on the side is circulated in order, and the refrigerant flows out from the lowermost heat transfer pipe (6) on the windward side.
[0006] また、図 5に示す最下段の冷媒パスは、風上側の最下段の伝熱管 (6)から冷媒が 流入し、風上側の 2段目及び風下側の 2段目の伝熱管(6)を順に流通し、風下側の 最下段の伝熱管 (6)から冷媒が流出するように配管されて 、る。  [0006] In addition, in the lowermost refrigerant path shown in FIG. 5, the refrigerant flows in from the lowermost heat transfer pipe (6) on the windward side, and the second stage on the windward side and the second stage heat transfer pipe on the leeward side ( 6) is circulated in order, and is piped so that the refrigerant flows out from the lowermost heat transfer pipe (6) on the leeward side.
[0007] また、図 6に示す最下段の冷媒パスは、風上側の最下段の伝熱管 (6)から冷媒が 流入し、風上側の 2段目及び風下側の最下段の伝熱管(6)を順に流通し、風下側の 2段目の伝熱管 (6)から冷媒が流出するように配管されて 、る。  [0007] Further, in the lowermost refrigerant path shown in FIG. 6, the refrigerant flows in from the lowermost heat transfer pipe (6) on the windward side, and the second uppermost stage and the lowermost heat transfer pipe (6 ) In order, and piped so that the refrigerant flows out from the second heat transfer pipe (6) on the leeward side.
特許文献 1 :特開 2005— 315455号公報 発明の開示 Patent Document 1: JP-A-2005-315455 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、図 4に示す冷媒パスでは、室内熱交 (5)を蒸発器として使用し た場合、室内熱交 (5)で生成される凝縮水がドレンパン (22)内に貯留されること で、室内熱交換器 (5)の最下段の冷媒パスの出口側の伝熱管 (6)が水没し、能力の 一部が凝縮水との熱交換に使用され、出口側能力の極端な低下を招いてしまうとい つた問題があった。  [0008] However, in the refrigerant path shown in Fig. 4, when the indoor heat exchange (5) is used as an evaporator, the condensed water generated in the indoor heat exchange (5) enters the drain pan (22). As a result of the storage, the heat transfer pipe (6) on the outlet side of the lowermost refrigerant path of the indoor heat exchanger (5) is submerged, and a part of the capacity is used for heat exchange with the condensed water. There was a problem that would cause an extreme decline in
[0009] また、図 5及び図 6に示す冷媒パスでは、冷媒パスの出口側の伝熱管(6)が風下 側に配置されているため、室内熱交 (5)の熱交換効率が悪くなるという問題があ つた o  Further, in the refrigerant path shown in FIGS. 5 and 6, the heat transfer tube (6) on the outlet side of the refrigerant path is arranged on the leeward side, so that the heat exchange efficiency of the indoor heat exchange (5) is deteriorated. O
[0010] 本発明は、力かる点に鑑みてなされたものであり、その目的は、熱交^^の冷媒 偏流を抑制して、冷房能力や熱交換効率に優れた空気調和装置を提供すること〖こ ある。  [0010] The present invention has been made in view of power, and an object of the present invention is to provide an air conditioner excellent in cooling capacity and heat exchange efficiency by suppressing refrigerant drift of heat exchange. That's true.
課題を解決するための手段  Means for solving the problem
[0011] 前記の目的を達成するため、本発明では、最下段の冷媒パスの出口側の伝熱管  In order to achieve the above object, in the present invention, the heat transfer tube on the outlet side of the lowermost refrigerant path
(6)の水没を防止すベぐ最下部から 2段目以上の風上側に出口側の伝熱管 (6)を 設けるようにした。  The heat transfer tube (6) on the outlet side was installed on the windward side of the second and higher tiers from the bottom of the bottom (6) to prevent submersion.
[0012] すなわち、第 1の発明は、所定間隔おきに配設された複数の伝熱管 (6)で形成さ れた複数の冷媒パスを有する熱交換器 (5)と、前記熱交換器 (5)に室内の空気を送 風して熱交換させる送風機 (21)と、前記熱交換器 (5)で発生する凝縮水を貯留する ドレンパン (22)とを備えた空気調和装置を対象として!/ヽる。  That is, the first invention provides a heat exchanger (5) having a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals, and the heat exchanger ( Targeting an air conditioner equipped with a blower (21) that exchanges heat by sending indoor air to 5) and a drain pan (22) that stores condensed water generated in the heat exchanger (5)! / Speak.
[0013] そして、前記複数の冷媒パスのうち最下段の冷媒パスは、冷房運転時に、前記送 風機 (21)から送風される空気の風上側と風下側とにそれぞれ位置する伝熱管 (6)に またがって冷媒を流通させるとともに、前記熱交 (5)の最下部から 2段目以上で 且つ風上側に位置する出口側の伝熱管 (6)から冷媒を流出させるように配管されて いる。  [0013] And, the lowermost refrigerant path among the plurality of refrigerant paths is a heat transfer pipe (6) positioned respectively on the windward side and leeward side of the air blown from the air blower (21) during the cooling operation. Further, the refrigerant is circulated across the pipe, and the refrigerant is flown out from the heat transfer pipe (6) on the outlet side located at the second or higher stage from the lowermost part of the heat exchanger (5) and on the windward side.
[0014] 前記第 1の発明では、最下段の冷媒パスは、冷房運転時に、風上側と風下側とに それぞ 立置する伝熱管 (6)にまたがって冷媒が流通されるとともに、熱交 (5) の最下部から 2段目以上で且つ風上側に位置する出口側の伝熱管 (6)から冷媒が 流出される。 [0014] In the first aspect of the invention, the lowermost refrigerant path distributes the refrigerant across the heat transfer tubes (6) installed on the windward side and the leeward side during the cooling operation, and performs heat exchange. (Five) Refrigerant flows out from the heat transfer tube (6) on the outlet side located at the second or higher stage and on the windward side.
[0015] このため、伝熱管 (6)のターン数を多くして、熱交換器 (5)の最下段の冷媒パスの 熱交換能力を大きくし、熱交 (5)としての蒸発能力の低下を抑える上で有利とな る。さらに、冷媒の出口側となる伝熱管 (6)を、熱交翻 (5)の最下部から 2段目以上 で且つ風上側に配置したから、ドレンパン (22)に貯留する凝縮水による熱交換効率 の低下を最小限に抑えることができる。  [0015] For this reason, the number of turns of the heat transfer tube (6) is increased, the heat exchange capacity of the lowermost refrigerant path of the heat exchanger (5) is increased, and the evaporation capacity as the heat exchange (5) is reduced. This is advantageous in suppressing In addition, the heat transfer tube (6) on the refrigerant outlet side is located at the second and higher levels from the bottom of the heat exchanger (5) and on the windward side, so heat exchange with the condensed water stored in the drain pan (22) The decrease in efficiency can be minimized.
[0016] 第 2の発明は、前記第 1の発明において、前記ドレンパン (22)に貯留した凝縮水 を排水するドレンポンプ (23)を備えている。そして、前記ドレンポンプ (23)は、前記ド レンパン (22)に貯留した凝縮水が前記出口側の伝熱管 (6)に達するまでに凝縮水 の排水を行うように構成されて 、る。  [0016] A second invention includes the drain pump (23) for draining the condensed water stored in the drain pan (22) in the first invention. The drain pump (23) is configured to drain the condensed water until the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side.
[0017] 前記第 2の発明では、ドレンパン (22)に貯留した凝縮水が前記出口側の伝熱管( 6)に達するまでに凝縮水の排水が行われる。このため、冷媒パスの出口側の伝熱管 (6)が凝縮水で水没することがなぐ能力の一部が凝縮水との熱交換に使用されるこ とを防止して熱交換効率の低下を抑えることができる。  In the second invention, the condensed water is drained until the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side. For this reason, the heat transfer tube (6) on the outlet side of the refrigerant path is prevented from being used for heat exchange with the condensed water by preventing a part of the ability of the heat transfer tube (6) from being submerged in the condensed water. Can be suppressed.
[0018] 第 3の発明は、前記第 1の発明において、前記ドレンパン (22)に貯留した凝縮水 を排水するドレンポンプ (23)と、前記ドレンパン (22)に貯留した凝縮水が前記出口 側の伝熱管 (6)よりも低 、所定水位に達したことを検知する水位検知手段 (24)とを備 えている。そして、前記ドレンポンプ (23)は、前記水位検知手段 (24)の検知結果に 基づ 、て凝縮水の排水を行うように構成されて 、る。  [0018] In a third aspect based on the first aspect, the drain pump (23) drains the condensed water stored in the drain pan (22), and the condensed water stored in the drain pan (22) And a water level detection means (24) for detecting that a predetermined water level has been reached, which is lower than the heat transfer tube (6). The drain pump (23) is configured to drain condensed water based on the detection result of the water level detection means (24).
[0019] 前記第 3の発明では、ドレンパン (22)に貯留した凝縮水が出口側の伝熱管 (6)よ りも低 、所定水位に達したことが水位検知手段 (24)で検知され、検知結果に基づ!/、 てドレンポンプ (23)により凝縮水の排水が行われる。このため、従来は冷媒パスの水 没を防止するために凝縮水の水位にかかわらず常時に動作させて 、たドレンポンプ (23)を、凝縮水の水位に基づいて間欠的に動作させることができ、消費電力低減が 可能となる。  [0019] In the third invention, the water level detection means (24) detects that the condensed water stored in the drain pan (22) is lower than the heat transfer pipe (6) on the outlet side and has reached a predetermined water level. Based on the detection result! /, The drain water (23) drains the condensed water. For this reason, conventionally, in order to prevent the refrigerant path from being submerged, the drain pump (23) is operated continuously regardless of the water level of the condensed water, and the drain pump (23) is operated intermittently based on the water level of the condensed water. And power consumption can be reduced.
発明の効果  The invention's effect
[0020] 以上説明したように、本発明によれば、伝熱管(6)のターン数を多くして、熱交換 器 (5)の最下段の冷媒パスの熱交換能力を大きくし、熱交換器 (5)としての蒸発能力 の低下を抑える上で有利となる。さらに、冷媒の出口側となる伝熱管 (6)を、熱交換 器 (5)の最下部から 2段目以上で且つ風上側に配置したから、ドレンパン (22)に貯留 する凝縮水による熱交換効率の低下を最小限に抑えることができる。 [0020] As described above, according to the present invention, the number of turns of the heat transfer tube (6) is increased, and heat exchange is performed. This is advantageous in increasing the heat exchange capacity of the lowermost refrigerant path of the heat exchanger (5) and suppressing the decrease in the evaporation capacity of the heat exchanger (5). Furthermore, since the heat transfer tube (6) on the refrigerant outlet side is arranged on the windward side at the second and higher stages from the lowermost part of the heat exchanger (5), heat exchange by the condensed water stored in the drain pan (22) is performed. The decrease in efficiency can be minimized.
[0021] また、第 2の発明によれば、冷媒パスの出口側の伝熱管 (6)が凝縮水で水没する ことがなぐ能力の一部が凝縮水との熱交換に使用されることを防止して熱交換効率 の低下を抑えることができる。  [0021] Further, according to the second invention, a part of the ability of the heat transfer tube (6) on the outlet side of the refrigerant path to be submerged in the condensed water is used for heat exchange with the condensed water. This can prevent the decrease in heat exchange efficiency.
[0022] また、第 3の発明によれば、従来は冷媒パスの水没を防止するために凝縮水の水 位にかかわらず常時に動作させて 、たドレンポンプ (23)を、凝縮水の水位に基づ 、 て間欠的に動作させることができ、消費電力低減が可能となる。  [0022] Further, according to the third invention, the drain pump (23) is conventionally operated regardless of the water level of the condensed water in order to prevent the refrigerant path from being submerged, and the water level of the condensed water is reduced. Therefore, it is possible to operate intermittently and reduce power consumption.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]図 1は、本発明の実施形態に係る空気調和装置の冷媒回路図である。  FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
[図 2]図 2は、本実施形態に係る空気調和装置の室内機の内部構成を示す概略図で ある。  FIG. 2 is a schematic diagram showing the internal configuration of the indoor unit of the air-conditioning apparatus according to the present embodiment.
[図 3]図 3は、本実施形態に係る室内熱交換器の冷媒パスの構成を示す側面図であ る。  FIG. 3 is a side view showing the configuration of the refrigerant path of the indoor heat exchanger according to the present embodiment.
[図 4]図 4は、従来の空気調和装置の他の室内機の内部構成を示す概略図である。  FIG. 4 is a schematic diagram showing the internal configuration of another indoor unit of a conventional air conditioner.
[図 5]図 5は、従来の空気調和装置の他の室内機の内部構成を示す概略図である。  FIG. 5 is a schematic diagram showing the internal configuration of another indoor unit of a conventional air conditioner.
[図 6]図 6は、従来の空気調和装置の他の室内機の内部構成を示す概略図である。 符号の説明  FIG. 6 is a schematic diagram showing the internal configuration of another indoor unit of a conventional air conditioner. Explanation of symbols
[0024] 5 室内熱交換器 (熱交換器) [0024] 5 Indoor heat exchanger (heat exchanger)
6 伝熱管  6 Heat transfer tube
21 送風機  21 Blower
22 ドレンノ ン  22 Drain non
23 ドレンポンプ  23 Drain pump
24 フロートスィッチ (水位検知手段)  24 Float switch (water level detection means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実 施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を 制限することを意図するものでは全くない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following preferred fruit The description of the embodiments is merely illustrative in nature and is not intended to limit the present invention, its application, or its use at all.
[0026] 図 1は本発明の実施形態における空気調和装置の冷媒回路の構成を示す図で ある。図 1に示すように、冷媒回路(1)は、圧縮機構である圧縮機 (7)と、冷媒制御手 段である四路切替弁 (9)と、室外熱交 (3)と、膨張機構である膨張弁(11)と、室 内熱交翻(5)とが順に接続されて閉回路となっている。この冷媒回路(1)には、冷 媒が充填されており、この冷媒が循環して蒸気圧縮式の冷凍サイクルを行うように構 成されている。なお、前記四路切替弁 (9)には、冷媒回路(1)の配管が接続可能な 第 1から第 4のポート(9a, 9b, 9c, 9d)が設けられている。  FIG. 1 is a diagram showing a configuration of a refrigerant circuit of an air conditioner according to an embodiment of the present invention. As shown in FIG. 1, the refrigerant circuit (1) includes a compressor (7) as a compression mechanism, a four-way switching valve (9) as a refrigerant control means, an outdoor heat exchanger (3), and an expansion mechanism. The expansion valve (11) and the indoor heat exchange (5) are sequentially connected to form a closed circuit. The refrigerant circuit (1) is filled with a refrigerant, and the refrigerant circulates to perform a vapor compression refrigeration cycle. The four-way switching valve (9) is provided with first to fourth ports (9a, 9b, 9c, 9d) to which the piping of the refrigerant circuit (1) can be connected.
[0027] また、前記室内熱交換器 (5)には、冷房運転時において室外熱交換器 (3)で凝 縮された冷媒を減圧し室内熱交 (5)の各冷媒パスに分岐させる分流器 (13)と、 室内熱交換器 (5)の複数の冷媒パスでそれぞれ蒸発させた冷媒を再度合流させて 室外熱交 (3)に流入させる合流器 (15)とが接続されて!ヽる。  [0027] In addition, the indoor heat exchanger (5) has a branch flow for depressurizing the refrigerant condensed in the outdoor heat exchanger (3) during cooling operation and branching it to each refrigerant path of the indoor heat exchanger (5). Connected to the heat exchanger (13) and the confluencer (15) that reflows the refrigerant evaporated in the refrigerant paths of the indoor heat exchanger (5) and flows them into the outdoor heat exchanger (3)! The
[0028] この冷媒回路(1)において、圧縮機(7)の吐出口は、四路切替弁 (9)の第 1ポート  [0028] In this refrigerant circuit (1), the discharge port of the compressor (7) is the first port of the four-way switching valve (9).
(9a)に接続されている。また、四路切替弁 (9)の第 3ポート (9c)は、室外熱交換器 (3 )の一端と接続されている。室外熱交 (3)の他端は、膨張弁(11)を介して室内熱 交 (5)の一端と接続されている。室内熱交 (5)の他端は、四路切替弁 (9)の 第 4ポート (9d)に接続されている。また、四路切替弁 (9)の第 2ポート (9b)は、圧縮機 (7)の吸引口と接続されている。  Connected to (9a). The third port (9c) of the four-way switching valve (9) is connected to one end of the outdoor heat exchanger (3). The other end of the outdoor heat exchanger (3) is connected to one end of the indoor heat exchanger (5) via the expansion valve (11). The other end of the indoor heat exchanger (5) is connected to the fourth port (9d) of the four-way switching valve (9). The second port (9b) of the four-way switching valve (9) is connected to the suction port of the compressor (7).
[0029] 前記四路切替弁 (9)は、第 1ポート (9a)と第 3ポート (9c)とが連通すると同時に第 2ポート (9b)と第 4ポート (9d)とが連通する状態(図 1 (a)に示す状態)と、第 1ポート ( 9a)と第 4ポート (9d)とが連通すると同時に第 2ポート (9b)と第 3ポート (9c)とが連通 する状態(図 1 (b)に示す状態)とに切り替え自在となって!/、る。  [0029] In the four-way switching valve (9), the first port (9a) and the third port (9c) communicate with each other, and at the same time the second port (9b) and the fourth port (9d) communicate with each other ( (The state shown in Fig. 1 (a)), the first port (9a) and the fourth port (9d) communicate with each other, and the second port (9b) and the third port (9c) communicate with each other (Fig. 1). (The state shown in (b)).
[0030] すなわち、前記四路切替弁 (9)は、冷媒回路(1)内の冷媒の循環方向を切り替え ることにより、室外熱交 (3)の冷媒を凝縮させると同時に室内熱交 (5)の冷 媒を蒸発させる状態と、室外熱交換器 (3)の冷媒を蒸発させると同時に室内熱交換 器 (5)の冷媒を凝縮させる状態とを切り替え可能に構成されて ヽる。  [0030] That is, the four-way switching valve (9) condenses the refrigerant in the outdoor heat exchange (3) and switches the indoor heat exchange (5) by switching the circulation direction of the refrigerant in the refrigerant circuit (1). ) And a state in which the refrigerant in the outdoor heat exchanger (3) evaporates and at the same time the refrigerant in the indoor heat exchanger (5) is condensed.
[0031] 図 2は、本実施形態に係る空気調和装置の室内機の内部構成を示す概略図であ る。図 2において、室内機は、室内熱交換器 (5)と、室内熱交換器 (5)に室内の空気 を送風して熱交換させる送風機 (21)と、室内熱交 (5)が載置されるとともに該室 内熱交換器 (5)で発生した凝縮水を貯溜するドレンパン (22)と、ドレンパン (22)に貯 留した凝縮水を排水するドレンポンプ (23)と、ドレンパン (22)に貯留した凝縮水が所 定水位に達したことを検知する水位検知手段としてのフロートスィッチ(24)とを備えて いる。 [0031] FIG. 2 is a schematic diagram showing the internal configuration of the indoor unit of the air-conditioning apparatus according to the present embodiment. The In FIG. 2, the indoor unit includes an indoor heat exchanger (5), a fan (21) that blows indoor air to the indoor heat exchanger (5) to exchange heat, and an indoor heat exchanger (5). The drain pan (22) for storing the condensed water generated in the indoor heat exchanger (5), the drain pump (23) for draining the condensed water stored in the drain pan (22), and the drain pan (22) A float switch (24) is provided as a water level detection means for detecting that the condensed water stored in the tank has reached a predetermined water level.
[0032] 前記室内熱交換器 (5)は、所定間隔おきに配設された複数の伝熱管 (6)で形成 された複数の冷媒パスを有している。具体的に、本実施形態では、伝熱管 (6)は 24 本配設され、複数の伝熱管 (6)の端部同士を U字管で接続することで、計 11本の冷 媒パスが形成されている(図 3参照)。なお、図 2及び図 3では、冷房運転時における 冷媒の循環方向を矢印で示している。  [0032] The indoor heat exchanger (5) has a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals. Specifically, in the present embodiment, 24 heat transfer tubes (6) are arranged, and the ends of the plurality of heat transfer tubes (6) are connected to each other by U-shaped tubes, so that a total of 11 refrigerant paths can be formed. Formed (see Figure 3). In FIGS. 2 and 3, the refrigerant circulation direction during the cooling operation is indicated by arrows.
[0033] 前記分流器(13)で分流させた冷媒は、前記複数の冷媒パスのそれぞれに流入 する。そして、複数の冷媒パス力もそれぞれ流出した冷媒は、合流器(15)で合流し、 その後、室外熱交翻 (3)に流入するようになっている。  [0033] The refrigerant divided by the flow divider (13) flows into each of the plurality of refrigerant paths. The refrigerant that has also flowed out of the plurality of refrigerant path forces joins at the junction (15), and then flows into the outdoor heat exchanger (3).
[0034] ここで、前記複数の冷媒パスは、最下段のパス取りのみが異なっており、他の冷 媒パスのパス取りは同じである。具体的には、最下段の冷媒パスは 4本の伝熱管(6) で形成され、室内熱交換器 (5)の最下部の風上側の伝熱管 (6)から冷媒が流入し、 風下側の最下部及び風下側の 2段目の伝熱管(6)を順に流通して、風上側の 2段目 の伝熱管 (6)から冷媒が流出するように配管されて 、る。  [0034] Here, the plurality of refrigerant paths are different only in the lowermost path, and the other refrigerant paths have the same path. Specifically, the lowermost refrigerant path is formed by four heat transfer tubes (6), and the refrigerant flows from the lowermost windward heat transfer tube (6) of the indoor heat exchanger (5), and the leeward side The second heat transfer pipe (6) on the lowermost part and the leeward side are circulated in order, and the refrigerant flows out from the second heat transfer pipe (6) on the leeward side.
[0035] 一方、最下段の冷媒パスを除く他の冷媒パスは 2本の伝熱管 (6)で形成され、風 上側の伝熱管 (6)力も冷媒が流入し風下側の伝熱管 (6)から冷媒が流出するように 配管されている。  [0035] On the other hand, the other refrigerant paths excluding the lowermost refrigerant path are formed by two heat transfer tubes (6), and the windward heat transfer tube (6) also receives the refrigerant and the leeward heat transfer tube (6) Piping so that the refrigerant flows out of the pipe.
[0036] なお、暖房運転時には、室内熱交換器 (5)の冷媒パスに対する冷媒の流通方向 は、冷房運転時とは逆方向となっている。すなわち、最下段の冷媒パスでは、室内熱 交換器 (5)の風上側の 2段目の伝熱管 (6)から冷媒が流入し、風下側の 2段目及び 風下側の最下部の伝熱管(6)を順に流通して、風上側の最下部の伝熱管(6)力も冷 媒が流出するようになって!/、る。  [0036] During the heating operation, the refrigerant flow direction with respect to the refrigerant path of the indoor heat exchanger (5) is opposite to that during the cooling operation. That is, in the lowermost refrigerant path, the refrigerant flows from the second-stage heat transfer pipe (6) on the leeward side of the indoor heat exchanger (5), and the second-stage leeward side and the lowermost heat-transfer pipe on the leeward side. (6) is circulated in order, so that the heat flows out from the heat transfer tube (6) at the bottom of the windward side.
[0037] 一方、最下段の冷媒パスを除く他の冷媒パスでは、風下側の伝熱管 (6)から冷媒 が流入し、風上側の伝熱管(6)から冷媒が流出するようになって!/、る。 [0037] On the other hand, in the other refrigerant paths excluding the lowermost refrigerant path, the refrigerant flows from the leeward heat transfer tube (6). Flows in and refrigerant flows out from the heat transfer tube (6) on the windward side!
[0038] 前記フロートスィッチ(24)は、ドレンパン (22)に貯留した凝縮水が出口側の伝熱 管 (6)よりも低い所定水位に達したことを検知するものであり、具体的に、所定水位と は、室内熱交換器 (5)の最下部から 2段目の風上側の伝熱管 (6)の高さ位置よりも低 い水位である。 [0038] The float switch (24) detects that the condensed water stored in the drain pan (22) has reached a predetermined water level lower than that of the heat transfer pipe (6) on the outlet side. The predetermined water level is a water level lower than the height position of the second-stage windward heat transfer tube (6) from the bottom of the indoor heat exchanger (5).
[0039] 前記ドレンポンプ(23)は、フロートスィッチ (24)の検知結果に基づ!/、てドレンパン  [0039] The drain pump (23) is based on the detection result of the float switch (24)!
(22)内の凝縮水の排水を行うように構成されている。これにより、最下段の冷媒パス における出口側の伝熱管 (6)が水没することを防止して熱交換効率を確保する上で 有利となる。  It is configured to drain the condensed water in (22). This is advantageous in ensuring heat exchange efficiency by preventing the heat transfer tube (6) on the outlet side in the lowermost refrigerant path from being submerged.
[0040] 以上のように、本発明の実施形態に係る空気調和装置によれば、伝熱管(6)のタ 一ン数を多くして、熱交翻 (5)の最下段の冷媒パスの熱交換能力を大きくし、熱交 (5)としての蒸発能力の低下を抑える上で有利となる。さらに、冷媒の出口側と なる伝熱管 (6)を、熱交換器 (5)の最下部力も 2段目の風上側に配置したから、ドレン パン (22)に貯留する凝縮水による熱交換効率の低下を最小限に抑えることができる  [0040] As described above, according to the air conditioner according to the embodiment of the present invention, the number of tans of the heat transfer tube (6) is increased, and the lowermost refrigerant path of the heat exchange (5) is increased. This is advantageous in increasing the heat exchange capacity and suppressing the decrease in evaporation capacity as heat exchange (5). Furthermore, because the heat transfer tube (6) on the refrigerant outlet side is located on the second windward side of the heat exchanger (5), the heat exchange efficiency by the condensed water stored in the drain pan (22) Can be minimized
[0041] また、前記ドレンパン (22)に貯留した凝縮水が前記出口側の伝熱管 (6)に達する までに凝縮水の排水が行われるから、冷媒パスの出口側の伝熱管(6)が凝縮水で水 没することがなぐ能力の一部が凝縮水との熱交換に使用されることを防止して熱交 換効率の低下を抑えることができる。 [0041] In addition, since the condensed water is drained before the condensed water stored in the drain pan (22) reaches the heat transfer pipe (6) on the outlet side, the heat transfer pipe (6) on the outlet side of the refrigerant path It is possible to prevent a decrease in heat exchange efficiency by preventing a part of the ability to be submerged in the condensed water from being used for heat exchange with the condensed water.
[0042] また、前記ドレンパン (22)に貯留した凝縮水が出口側の伝熱管 (6)よりも低 、所 定水位に達したことがフロートスィッチ (24)で検知され、検知結果に基づ!/、てドレン ポンプ (23)により凝縮水の排水が行われるから、従来は冷媒パスの水没を防止する ために凝縮水の水位にかかわらず常時に動作させていたドレンポンプ (23)を、凝縮 水の水位に基づいて間欠的に動作させることができ、消費電力低減が可能となる。 産業上の利用可能性  [0042] Further, the float switch (24) detects that the condensed water stored in the drain pan (22) is lower than the heat transfer pipe (6) on the outlet side and reaches a predetermined water level, and based on the detection result. Because the condensate is drained by the drain pump (23), the drain pump (23) that has been operated at all times regardless of the level of the condensate in the past to prevent the refrigerant path from being submerged. It can be operated intermittently based on the water level of the condensed water, and power consumption can be reduced. Industrial applicability
[0043] 以上説明したように、本発明は、冷房運転時に発生する凝縮水による熱交換効率 の低下を最小限に抑える場合に有用である。 [0043] As described above, the present invention is useful for minimizing a decrease in heat exchange efficiency due to condensed water generated during cooling operation.

Claims

請求の範囲 The scope of the claims
[1] 所定間隔おきに配設された複数の伝熱管 (6)で形成された複数の冷媒パスを有 する熱交換器 (5)と、  [1] a heat exchanger (5) having a plurality of refrigerant paths formed by a plurality of heat transfer tubes (6) arranged at predetermined intervals;
前記熱交換器 (5)に室内の空気を送風して熱交換させる送風機 (21)と、 前記熱交換器 (5)で発生する凝縮水を貯留するドレンパン (22)とを備えた空気調 和装置であって、  An air conditioner comprising: a blower (21) that blows indoor air to the heat exchanger (5) to exchange heat; and a drain pan (22) that stores condensed water generated in the heat exchanger (5). A device,
前記複数の冷媒パスのうち最下段の冷媒パスは、冷房運転時に、前記送風機 (2 1)から送風される空気の風上側と風下側とにそれぞれ位置する伝熱管(6)にまたが つて冷媒を流通させるとともに、前記熱交 (5)の最下部から 2段目以上で且つ風 上側に位置する出口側の伝熱管 (6)力も冷媒を流出させるように配管されて!、る ことを特徴とする空気調和装置。  Among the plurality of refrigerant paths, the lowermost refrigerant path is a refrigerant straddling the heat transfer tubes (6) positioned on the windward side and the leeward side of the air blown from the blower (21) during the cooling operation. The heat transfer pipe (6) on the outlet side located at the second or higher stage from the lowest part of the heat exchange (5) and on the windward side is also piped so that the refrigerant flows out! Air conditioner.
[2] 請求項 1において、 [2] In claim 1,
前記ドレンパン (22)に貯留した凝縮水を排水するドレンポンプ (23)を備え、 前記ドレンポンプ (23)は、前記ドレンパン (22)に貯留した凝縮水が前記出口側の 伝熱管(6)に達するまでに凝縮水の排水を行うように構成されて!、る  A drain pump (23) is provided for draining the condensed water stored in the drain pan (22), and the drain pump (23) condenses the condensed water stored in the drain pan (22) to the heat transfer tube (6) on the outlet side. Constructed to drain condensate before it reaches!
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
[3] 請求項 1において、 [3] In claim 1,
前記ドレンパン (22)に貯留した凝縮水を排水するドレンポンプ (23)と、 前記ドレンパン (22)に貯留した凝縮水が前記出口側の伝熱管 (6)よりも低 、所定 水位に達したことを検知する水位検知手段 (24)とを備え、  The drain pump (23) for draining the condensed water stored in the drain pan (22), and the condensed water stored in the drain pan (22) has reached a predetermined water level lower than the heat transfer pipe (6) on the outlet side. Water level detection means (24) for detecting
前記ドレンポンプ (23)は、前記水位検知手段 (24)の検知結果に基づ!/、て凝縮水 の排水を行うように構成されて 、る  The drain pump (23) is configured to drain condensed water based on the detection result of the water level detection means (24).
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
PCT/JP2007/051779 2006-02-03 2007-02-02 Air conditioner WO2007088964A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07713779.2A EP1983270A4 (en) 2006-02-03 2007-02-02 Air conditioner
CN2007800036868A CN101375108B (en) 2006-02-03 2007-02-02 Air conditioner
AU2007210492A AU2007210492B2 (en) 2006-02-03 2007-02-02 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-026576 2006-02-03
JP2006026576A JP4495090B2 (en) 2006-02-03 2006-02-03 Air conditioner

Publications (1)

Publication Number Publication Date
WO2007088964A1 true WO2007088964A1 (en) 2007-08-09

Family

ID=38327532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051779 WO2007088964A1 (en) 2006-02-03 2007-02-02 Air conditioner

Country Status (6)

Country Link
EP (1) EP1983270A4 (en)
JP (1) JP4495090B2 (en)
KR (1) KR100981246B1 (en)
CN (1) CN101375108B (en)
AU (1) AU2007210492B2 (en)
WO (1) WO2007088964A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631608B2 (en) * 2017-09-25 2020-01-15 ダイキン工業株式会社 Air conditioner
JP6878511B2 (en) * 2019-07-17 2021-05-26 日立ジョンソンコントロールズ空調株式会社 Heat exchanger, air conditioner, indoor unit and outdoor unit
KR20220112584A (en) 2021-02-04 2022-08-11 엘지전자 주식회사 Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194370A (en) * 1989-12-22 1991-08-26 Hitachi Ltd Heat exchanger for air conditioner
JPH04139347A (en) * 1990-09-28 1992-05-13 Matsushita Electric Ind Co Ltd Drain pump controller for air conditioner
JP2000154991A (en) * 1998-11-20 2000-06-06 Kimura Kohki Co Ltd Heat exchanging coil for small water quantity fan coil unit
JP2000249479A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005308291A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Air conditioner
JP2005315455A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979926B2 (en) * 1993-10-18 1999-11-22 株式会社日立製作所 Air conditioner
JPH07208821A (en) * 1994-01-17 1995-08-11 Toshiba Corp Air conditioner
JPH10132480A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Heat exchanger for air conditioner
US6276443B1 (en) * 1999-11-29 2001-08-21 Lendell Martin, Sr. Air conditioning coil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194370A (en) * 1989-12-22 1991-08-26 Hitachi Ltd Heat exchanger for air conditioner
JPH04139347A (en) * 1990-09-28 1992-05-13 Matsushita Electric Ind Co Ltd Drain pump controller for air conditioner
JP2000154991A (en) * 1998-11-20 2000-06-06 Kimura Kohki Co Ltd Heat exchanging coil for small water quantity fan coil unit
JP2000249479A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005308291A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Air conditioner
JP2005315455A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
EP1983270A4 (en) 2013-10-16
JP4495090B2 (en) 2010-06-30
CN101375108B (en) 2010-10-06
KR20080083356A (en) 2008-09-17
CN101375108A (en) 2009-02-25
AU2007210492A1 (en) 2007-08-09
KR100981246B1 (en) 2010-09-10
EP1983270A1 (en) 2008-10-22
JP2007205661A (en) 2007-08-16
AU2007210492B2 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
ES2929389T3 (en) Multi-split heat pump system with variable frequency of heat recovery and its control method
US20090173091A1 (en) Multi-range composite-evaporator type cross-defrosting system
JP4997004B2 (en) Air conditioner
JP6179414B2 (en) Heat exchanger for heat source unit of refrigeration apparatus, and heat source unit including the same
JP6972158B2 (en) Dehumidifier
KR20130092249A (en) Heat pump
JP2014152985A (en) Heating system
EP3607252B1 (en) Chiller system with an economizer module and method of operating such a system
JP2012136152A (en) Air conditioning system for ship
JP4495090B2 (en) Air conditioner
KR20030087822A (en) Condensing system of refrigerator
JP6972348B2 (en) Refrigeration cycle device
CN105258249A (en) Dehumidification device and method
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
JP7378502B2 (en) air conditioner
KR20070042437A (en) Air conditioner
JP2006038306A (en) Freezer
EP2568233B1 (en) Air conditioner
KR100930762B1 (en) air conditioner
JP2005315455A (en) Air conditioner
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment
WO2018037452A1 (en) Air conditioning device
KR102058051B1 (en) Plate type exchanger for air conditioning system
KR20160058453A (en) Air conditioner
JP2009281592A (en) Outdoor evaporator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780003686.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007210492

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2007713779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007713779

Country of ref document: EP