JPH03194370A - Heat exchanger for air conditioner - Google Patents

Heat exchanger for air conditioner

Info

Publication number
JPH03194370A
JPH03194370A JP33117089A JP33117089A JPH03194370A JP H03194370 A JPH03194370 A JP H03194370A JP 33117089 A JP33117089 A JP 33117089A JP 33117089 A JP33117089 A JP 33117089A JP H03194370 A JPH03194370 A JP H03194370A
Authority
JP
Japan
Prior art keywords
heat exchanger
windward
heat transfer
fin
leeward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33117089A
Other languages
Japanese (ja)
Other versions
JP2753354B2 (en
Inventor
Hiroshi Kogure
博志 小暮
Yoshikazu Tsuyukuchi
露口 嘉和
Tetsuo Kitano
北埜 哲夫
Shinya Yoshinaga
信也 吉永
Masaaki Ito
正昭 伊藤
Iwao Harada
原田 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP1331170A priority Critical patent/JP2753354B2/en
Publication of JPH03194370A publication Critical patent/JPH03194370A/en
Application granted granted Critical
Publication of JP2753354B2 publication Critical patent/JP2753354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To still more enhance the heat efficiency of a heat exchanger to a degree exceeding conventional common sense hy positioning the fin joints left between slits in the vicinity of the intermediate parts of the stage pitches of heat transfer pipes on the windward side. CONSTITUTION:Windward heat transfer pipes 12a and leeward heat transfer pipes 12b are arranged in a zigzag pattern as a whole and the end parts of the respective heat transfer pipes are successively connected to the end parts of the other heat transfer pipes adjacent in a vertical direction and the end part of the windward heat transfer pipe 12a of the lowermost part is connected to the end part of the leeward heat transfer pipe 12b of the lowermost part in the same way to form one continuous cooling medium passage as a whole. The cooling medium from a compressor flows in a heat exchanger from an upper right-hand inlet pipe 13 to pass through the leeward heat transfer pipes 12b and subsequently passes through the windward heat transfer pipes 12a to flow out from an upper left-hand outlet pipe 14. A plurality of slits 15 are formed to fins in the central longitudinal direction of the fins so as to leave fin joints 16 having predetermined length. The fin joints 16 are positioned in the vicinity of the intermediate parts of the stage pitches of the windward heat transfer pipes 12a.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気調和機用熱交換器、特にヒートポンプ暖
房用の凝縮器に使用して好適なりロスフィンチューブ型
熱交換器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a heat exchanger for air conditioners, particularly a Rossfin tube type heat exchanger suitable for use in a condenser for heat pump heating.

〔従来の技術〕[Conventional technology]

ヒートポンプ型空気調和機によって室内を暖房する場合
、室内用熱交換器は凝縮器として使用し。
When heating a room with a heat pump type air conditioner, the indoor heat exchanger is used as a condenser.

室外用熱交換器は蒸発器として使用する。この場合、凝
縮器として使用することが可能な熱交換器の代表的なも
のは、所謂クロスフィンチューブ型熱交換器である。こ
の種の交換器は、熱伝導が良好な金属(例えばアルミニ
ウム、銅など)からなる多数の薄板(フィン)を所定の
間隔をおいて並置し、その風上側半部及び風下側半部に
夫々複数の伝熱管を全体として千鳥状になるように貫通
することによって構成される。
The outdoor heat exchanger is used as an evaporator. In this case, a typical heat exchanger that can be used as a condenser is a so-called cross-fin tube heat exchanger. This type of exchanger has a large number of thin plates (fins) made of metal with good thermal conductivity (e.g. aluminum, copper, etc.) arranged side by side at a predetermined interval, and has one half on the windward side and one half on the leeward side. It is constructed by penetrating a plurality of heat exchanger tubes in a staggered manner as a whole.

圧縮機からの冷媒は、入口管から風下側の伝熱管に流入
し、フィンを通過する空気との間で熱交換を行った後、
風上側の伝熱管に流れ込む。風上側の伝熱管に流れ込ん
だ冷媒は、フィンを通過する空気との間で更に熱交換を
行った後、出口管から流出し、減圧器及び蒸発器を経由
して再び圧縮機に戻る。
The refrigerant from the compressor flows into the leeward heat transfer tube from the inlet pipe, and after exchanging heat with the air passing through the fins,
Flows into the windward heat transfer tube. The refrigerant flowing into the windward heat transfer tube further exchanges heat with the air passing through the fins, flows out from the outlet tube, and returns to the compressor via the pressure reducer and evaporator.

冷媒の温度は、伝熱管を通過する間に可成り低下する。The temperature of the refrigerant decreases considerably while passing through the heat transfer tubes.

そのため、風上側の伝熱管と風下側の伝熱管との間の温
度差、特に出口管付近の伝熱管と入口管付近の伝熱管と
の間の温度差は、少なくとも10℃程度、運転条件によ
っては60℃を越えることが屡々ある。しかも、商機熱
管が一組のフィンを共用しているため、風下側の温熱が
フィンを伝って不必要に風上側に移動する現象が発生し
、凝縮器としての熱効率が著しく低下する。
Therefore, the temperature difference between the windward side heat exchanger tube and the leeward side heat exchanger tube, especially the temperature difference between the heat exchanger tube near the outlet tube and the heat exchanger tube near the inlet tube, is at least about 10℃, depending on the operating conditions. often exceeds 60°C. Moreover, since the commercial heat tubes share a set of fins, a phenomenon occurs in which heat from the leeward side is transmitted through the fins and unnecessarily moves to the windward side, resulting in a significant decrease in thermal efficiency as a condenser.

風下側から風上側への熱伝導を遮断するには、フィンの
風上側半部と風下側半部との間を適当な長さ又は形状の
複数のスリットによって熱的に分離すれば良い(例えば
特開昭58−108394号公報参照)。
In order to block heat conduction from the leeward side to the windward side, the windward half and the leeward half of the fin may be thermally separated by a plurality of slits of appropriate length or shape (e.g. (See Japanese Patent Application Laid-open No. 108394/1983).

フィンの風上側半部と風下側半部との間を複数のスリッ
トによって熱的に分離すれば、風上側の熱は、スリット
相互間に残されたフィン接続部を通って移動せざるを慢
ず、熱伝導の経路が狭隘かつ長尺となって熱抵抗が増加
し、凝縮器としての熱効率を改善することができる。し
かしながら、熱の良導体であるフィン接続部がスリット
相互間に存在する以と、この種の熱交換器の熱効率は、
フィンの風上側と風下側とを熱的にも物理的にも完全に
分離切断した熱交換器の熱効率を超えることは絶対に不
可能である考えられていた。
If the windward and leeward halves of the fin are thermally separated by a plurality of slits, the heat on the windward side is forced to move through the fin connections left between the slits. First, the heat conduction path becomes narrower and longer, increasing thermal resistance and improving the thermal efficiency of the condenser. However, since the fin connections, which are good conductors of heat, exist between the slits, the thermal efficiency of this type of heat exchanger is
It was thought that it would be absolutely impossible to exceed the thermal efficiency of a heat exchanger in which the windward and leeward sides of the fins were completely separated both thermally and physically.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、クロスフィンチューブ型熱交換器にお
いて、フィンの風上側半部と風下側半部との間に設ける
複数のスリットの形成条件を最適化することにより、フ
ィンの風上側と風下側とを熱的にも物理的にも完全に分
離切断した熱交換器の熱効率を超える良好な熱効率を得
ようとするものである。
An object of the present invention is to optimize the formation conditions of a plurality of slits provided between the windward half and the leeward half of the fin in a cross-fin tube heat exchanger. The aim is to obtain better thermal efficiency that exceeds that of a heat exchanger in which both sides are completely separated both thermally and physically.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の熱交換器においては、フィンの風上側半部と風
下側半部との間に複数のスリットを設けるに当り、スリ
ット相互間に残されるフィン接続部を風上側伝熱管の段
ピッチの中間部付近に位置せしめるようにする。この場
合、フィン接続部の長さは、風上側伝熱管の段ピッチの
2%乃至30%の範囲とし、できれば同ピッチの10%
前後とすることが望ましい。
In the heat exchanger of the present invention, when providing a plurality of slits between the windward half and the leeward half of the fins, the fin connection portions left between the slits are adjusted to match the step pitch of the windward heat exchanger tubes. Try to position it near the middle part. In this case, the length of the fin connection part should be in the range of 2% to 30% of the step pitch of the windward heat exchanger tube, preferably 10% of the same pitch.
It is desirable to do it before and after.

フィン接続部は、風上側の伝熱管の段ピッチ毎に夫々設
けることが望ましいが、必要に応じて同ピッチの一つ置
き又は複数個置きに夫々設けることも可能である。風下
側の伝熱管は、その段ピッチを風上側の伝熱管と同一と
し、かつ1通過空気に対してフィン接続部の背後に位置
せしめることが望ましい。
It is desirable that the fin connection parts be provided at each step pitch of the windward heat exchanger tubes, but if necessary, it is also possible to provide them at every other or every plural number of the same pitches. It is desirable that the heat exchanger tubes on the leeward side have the same stage pitch as the heat exchanger tubes on the windward side, and are located behind the fin connection portions with respect to the one-pass air.

〔作用〕[Effect]

本発明は、フィンの風上側と風下側とを熱的に完全に分
離するよりも、両者の間に一定の熱的相関関係を積極的
に持たせた方が、凝縮器としての熱効率をより一段と高
め得るという新しい知見に基づくものである。
In the present invention, rather than completely thermally separating the windward and leeward sides of the fins, it is better to actively create a certain thermal correlation between the windward and leeward sides of the fins, thereby increasing the thermal efficiency of the condenser. This is based on new knowledge that shows that it can be further improved.

第1図は1本発明の基本概念を説明するための図面であ
る。同図において11は、熱伝導が良好なアルミニウム
、銅などの金属からなるフィンである。図面では便宜上
−枚のフィンしか示されていないが、実際には多数のフ
ィンを所定の間隔をおいて並べて配置する。1.2a及
び12bは、フィン11の風上側半部(図面左a)及び
風下側半部(図面右側)を貫通して設けた夫々複数本の
伝熱管である。矢印Aは、熱交換器に対する空気の通過
方向を示す。伝熱管]、2a及び12bは全体として千
鳥状に配置する。圧縮機からの冷媒は、右上から流入し
、風下側の伝熱管12bを順次通過した後、熱交換器下
部において風上側の伝熱管1.2aに流れ込み、聞伝熱
イaを順次通過して左上から流出する。
FIG. 1 is a drawing for explaining the basic concept of the present invention. In the figure, reference numeral 11 denotes a fin made of a metal such as aluminum or copper that has good thermal conductivity. Although only one fin is shown in the drawing for convenience, in reality, a large number of fins are arranged side by side at predetermined intervals. 1.2a and 12b are a plurality of heat exchanger tubes provided to penetrate through the windward half (a on the left in the drawing) and the leeward half (on the right in the drawing) of the fin 11, respectively. Arrow A indicates the direction of air passage to the heat exchanger. Heat exchanger tubes], 2a and 12b are generally arranged in a staggered manner. The refrigerant from the compressor flows in from the upper right, passes sequentially through the heat transfer tubes 12b on the leeward side, flows into the heat transfer tubes 1.2a on the windward side at the bottom of the heat exchanger, sequentially passes through the heat transfer tubes 1. flows out from

15は、フィン11の風上側半部と風下側半部とを熱的
に分離するための複数のスリットであり、ここでは、打
抜等によって形成した短冊状の細長い開口として示され
ている。これらのスリット15は、フィンの一部である
一定の長さの接続部1Gを残して縦方向(空気の通過向
Aと直角の方向)に並べて形成される。
Reference numeral 15 denotes a plurality of slits for thermally separating the windward half and the leeward half of the fin 11, which are shown here as elongated strip-shaped openings formed by punching or the like. These slits 15 are arranged in the vertical direction (direction perpendicular to the air passage direction A), leaving a connecting portion 1G of a certain length that is a part of the fin.

説明の便宜上、スリット15の長さをL、フィン接続部
16の長さをS1両伝熱管の列ピッチ(風上側伝熱管1
2aと風下側伝熱管12bとの間の間隔)をPl、風上
側伝熱管12aの段ピッチ(風上側伝熱管12aの相互
間の間隔)をP2、風上側伝熱管12aの位置に対する
フィン接続部16の変位量をHとして表現する。なお、
簡単のため、風下側伝熱管12bの段ピッチは、風上側
伝熱管12aの段ピッチと同じのP2であると仮定し、
風下側伝熱管12bは。
For convenience of explanation, the length of the slit 15 is L, and the length of the fin connection part 16 is S1.
2a and the leeward heat transfer tube 12b) is Pl, the step pitch of the windward heat transfer tubes 12a (the distance between the windward heat transfer tubes 12a) is P2, and the fin connection portion with respect to the position of the windward heat transfer tube 12a. The displacement amount of 16 is expressed as H. In addition,
For simplicity, it is assumed that the stage pitch of the leeward heat exchanger tubes 12b is P2, which is the same as the stage pitch of the windward side heat exchanger tubes 12a,
The leeward heat exchanger tube 12b is.

風上側伝熱管12aに対して1段ピッチP2の丁度半分
だけ変位して配列されているものと仮定する。
It is assumed that the heat exchanger tubes are arranged so as to be displaced from the windward side heat exchanger tubes 12a by exactly half of the one-stage pitch P2.

本発明者等は、段ピッチP2に対するフィン接続部16
の相対位置(H/P2)及び同接続部の相対長(S/P
2)が凝縮器としての熱交換特性に密接な関係があると
予測のもとで、その最適値を計算及び実測によって求め
ることとした。その結果を第2図及び第3図に示す。こ
こで、縦軸はフィンj1にスリット15を全く設けない
場合を1とした熱交換能力比を示す。
The inventors have proposed that the fin connection portion 16 for the step pitch P2 be
relative position (H/P2) and relative length of the connection part (S/P2)
Based on the prediction that 2) is closely related to the heat exchange characteristics of the condenser, we decided to find its optimum value through calculations and actual measurements. The results are shown in FIGS. 2 and 3. Here, the vertical axis indicates the heat exchange capacity ratio, with the case where no slit 15 is provided in the fin j1 being 1.

計算と実験は、市販の標準的な伝熱管及びフィンを使用
し、流入空気温度を0℃、風上側伝熱管1.2aの温度
を60℃、風下側伝熱管12bの温度を100℃、伝熱
管の列ピッチP、を12.5+1m、段ピッチP2を2
5mm、スリット15の幅を1 、5 mm、流入空気
の速度を0.5m/seeに設定することによって行な
った。
The calculations and experiments were performed using commercially available standard heat exchanger tubes and fins, with the inlet air temperature at 0°C, the temperature of the windward heat exchanger tube 1.2a at 60°C, and the temperature of the leeward heat exchanger tube 12b at 100°C. Heat tube row pitch P is 12.5+1m, stage pitch P2 is 2
The width of the slit 15 was set to 1.5 mm, and the velocity of the incoming air was set to 0.5 m/see.

第2図の特性曲線は、フィン接続部16の相対長(S/
P、)を0.2に固定し、同接続部の相対位置(H/P
2)を変化させた場合における能力比の変化を示す。同
図から明らかなように、凝縮器としての熱交換能力は、
H/P2=0.5の場合、換言すれば、フィン接続部1
6が風上側伝熱管12bの段ピッチの中間部付近にある
場合に最大となる。
The characteristic curve in FIG. 2 shows the relative length (S/
P, ) is fixed at 0.2, and the relative position of the connection part (H/P
2) shows the change in capacity ratio when changing. As is clear from the figure, the heat exchange capacity as a condenser is
In the case of H/P2=0.5, in other words, the fin connection part 1
6 is maximum when it is near the middle part of the stage pitch of the windward side heat exchanger tubes 12b.

次に、第2図の測定結果に基づき、フィン接続部16の
相対位置(H/P’2)を最適値の0.5に固定し、同
接続部の相対長(S/P2)を変化させて見た。その結
果が第3図の特性曲線である。同図から明らかなように
、凝縮器としての熱交換能力は。
Next, based on the measurement results shown in Fig. 2, the relative position (H/P'2) of the fin connection part 16 is fixed at the optimum value of 0.5, and the relative length (S/P2) of the connection part is changed. I let it happen. The result is the characteristic curve shown in FIG. As is clear from the figure, the heat exchange capacity of the condenser is.

S/P2=0.1の場合(フィン接続部16の長さSが
段ピッチP2の1/10である場合)に最大となる。し
かも、その値は、S/P2=Oの場合(フィン11が連
続スリットによって完全に分断されている場合)よりも
寧ろ大きい。
It is maximum when S/P2=0.1 (when the length S of the fin connection portion 16 is 1/10 of the step pitch P2). Furthermore, the value is actually larger than that in the case where S/P2=O (in the case where the fins 11 are completely divided by continuous slits).

これまでの斯界の常識に従えば、熱の良導体であるフィ
ン接続部が少しでも残っている場合は、風下側から風上
側への熱伝導を完全に阻止することができず、凝縮器と
しての熱効率はその分だけ必ず悪くなる(フィンが連続
スリットによって完全に分断されている場合より良くな
る筈がない)。
According to conventional wisdom in the industry, if even a small portion of the fin connection, which is a good conductor of heat, remains, it will not be possible to completely prevent heat conduction from the leeward side to the windward side, and the condenser will not function as a condenser. Thermal efficiency will inevitably deteriorate accordingly (there is no way it will be better than if the fins were completely separated by continuous slits).

現に第3図でも、フィン接続部の長さSが段ピッチP2
の30%を超える場合(S/P、>0.3)には、凝縮
器としての能力比は、フィンが連続スリットによって完
全に分断されている場合(S/p2=o)に比較して明
らかに低下している。
In fact, in Fig. 3, the length S of the fin connection part is equal to the step pitch P2.
(S/P, > 0.3), the capacity ratio as a condenser is greater than when the fins are completely separated by continuous slits (S/p2=o). It is clearly declining.

それでは、何故、S/P、=0.1の場合(正確にはS
/P2<0.3の場合)に限って、このような予想外の
熱交換能力極大化現象が発生するのであろうか0本発明
者等は、次のように理解している。
Then, why in the case of S/P = 0.1 (to be exact, S
Does such an unexpected heat exchange capacity maximization phenomenon occur only when /P2<0.3? The present inventors understand as follows.

フィンを連続スリットによって完全に分離した場合は、
風下側の熱が風上側に移動すること自体は有効に阻止し
得るが、その反面、フィンの風上側半部の温度、特に風
上側伝熱管の段ピッチの中間部付近の温度が異常に低下
してその部分の熱効率が悪くなる。それ故、高温である
風下側の熱を必要最小限の量だけ風上側に分流させ、そ
の部分の温度を高く維持すれば、凝縮器としての熱効率
を一段と向上させることができる。フィン接続部を風上
側伝熱管の段ピッチの中間部付近に位置せしめた場合に
能力比が最大となるのは、そのためである。
If the fins are completely separated by continuous slits,
Although it is possible to effectively prevent the heat from the leeward side from moving to the windward side, on the other hand, the temperature in the windward half of the fins, especially the temperature near the middle part of the step pitch of the windward heat transfer tubes, decreases abnormally. As a result, the thermal efficiency of that part deteriorates. Therefore, if the minimum necessary amount of heat on the leeward side, which is high temperature, is diverted to the windward side and the temperature of that portion is maintained high, the thermal efficiency of the condenser can be further improved. This is why the capacity ratio is maximized when the fin connection portion is located near the middle of the stage pitch of the windward heat exchanger tubes.

尤も、分流させる熱の量が必要以上に多いと、好ましく
ない温度低下が風下側に発生して凝縮器としての熱効率
が却って悪くなる。しかし、フィン接続部の長さSを段
ピッチの2%乃至3o%の範囲(望ましくは段ピッチの
10%前後)に選定することにより、風上側への熱の分
流量が適正化され、凝縮器としての熱効率を一段と高め
ることができる。ここで、フィン接続部の長さSを段ピ
ッチの2%乃至30%の範囲としたのは、2%未満であ
ると、フィン11の風上側半部と風下側半部とが熱的の
みならず機械的にも事実上分離してしまうからであり、
30%を超えると、風上側への熱の分流量が多過ぎ、却
って熱効率の低下が生ずるからである。
However, if the amount of heat to be diverted is larger than necessary, an undesirable temperature drop will occur on the leeward side, and the thermal efficiency of the condenser will deteriorate. However, by selecting the length S of the fin connection part in the range of 2% to 3o% of the step pitch (preferably around 10% of the step pitch), the amount of heat diverted to the windward side can be optimized, resulting in condensation. The thermal efficiency of the container can be further increased. Here, the length S of the fin connection part is set in the range of 2% to 30% of the step pitch, because if it is less than 2%, the windward half and the leeward half of the fin 11 will be thermally isolated. This is because they are effectively separated mechanically.
This is because if it exceeds 30%, the amount of heat diverted to the windward side will be too large, which will actually cause a decrease in thermal efficiency.

第1表は、幾つかのフィン形態の熱交換器を試作し、流
出空気の温度と熱交換の能力比を実測した結果を整理し
たものである。設定条件は、流入空気の速度が0.4m
/seeであることのほかは第2図及び第3図の場合と
同様である。なお、フィン接続部の設定位置の詳細につ
いては、第4図を参照願いたい。
Table 1 summarizes the results of experimentally fabricating several fin-shaped heat exchangers and actually measuring the temperature of outflow air and the heat exchange capacity ratio. The setting conditions are that the velocity of the incoming air is 0.4 m.
/see is the same as in FIGS. 2 and 3. In addition, please refer to FIG. 4 for details of the setting position of the fin connection part.

木表を見れば1本発明の条件を満足する試作品5 (H
/P2=0.5、S/P2=0.1)は、出口空気の温
度及び熱交換の能力比の何れにおいても分離フィン型の
試作品2 (S/P2=O)に勝っていることが自ずか
ら明らかであろう。
If you look at the wooden surface, you will see 1 Prototype 5 (H
/P2=0.5, S/P2=0.1) is superior to the separated fin type prototype 2 (S/P2=O) in both the outlet air temperature and heat exchange capacity ratio. should be obvious.

なお、風下側伝熱管の段ピッチを風上側伝熱管の段ピッ
チと同一にすること及び風下側伝熱管を通過空気に対し
てフィン接続部の背後に位置せしめることは、風上側の
フィンの温度を最適化するための望ましい条件ではある
が、必ずしも必要不可欠な条件でない。フィン接続部を
風上側伝熱管の段ピッチの中間部付近に位置せしめると
いう条件を満足させれば、上記条件を満足させない場合
であっても、風上側のフィンの当該部分に風下側の熱を
分流させることが一応可能であるからである。
In addition, making the step pitch of the leeward side heat transfer tubes the same as the step pitch of the windward side heat transfer tubes, and positioning the leeward side heat transfer tubes behind the fin connection part with respect to the passing air, will reduce the temperature of the windward side fins. Although this is a desirable condition for optimizing, it is not necessarily an essential condition. If the condition of locating the fin connection part near the middle of the step pitch of the windward heat transfer tube is satisfied, even if the above condition is not satisfied, the heat from the leeward side can be transferred to the relevant part of the windward side fin. This is because it is possible to separate the flow.

フィン接続部を風上側伝熱管の段ピッチ毎に配置するこ
とも、必ずしも必要不可欠の条件ではない。熱交換器の
使用条件等の如何によっては、風上側伝熱管の段ピッチ
の一つ置き又は複数個置きにフィン接続部を配置するこ
とで所望の効果を得ることが充分に可能である。
It is also not always an essential condition to arrange the fin connection portions at every stage pitch of the windward heat exchanger tubes. Depending on the conditions of use of the heat exchanger, it is fully possible to obtain the desired effect by arranging the fin connection portions at every other step pitch or every plural step pitches of the windward heat exchanger tubes.

〔実施例〕〔Example〕

以下、実施例を参照して本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

第5図は、ヒートポンプ型の空気調和機を暖房機として
使用する場合の冷凍サイクルを示す。同図において、1
は圧縮機、2は四方弁、3は室内側熱交換器、4は減圧
器、5は室外側熱交換器、6は室外側送風機、7は室内
側送風機である。
FIG. 5 shows a refrigeration cycle when a heat pump type air conditioner is used as a heater. In the same figure, 1
2 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a pressure reducer, 5 is an outdoor heat exchanger, 6 is an outdoor fan, and 7 is an indoor fan.

圧縮機1によって圧縮された冷媒は、実線矢印で示すよ
うに、四方弁2を通って室内側熱交換器3に流れ込む。
The refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 3 through the four-way valve 2, as shown by the solid arrow.

同熱交換器は、凝縮器として作用し、温熱を放出して室
内の空気を暖める。室内側熱交換器3を通過した冷媒は
、減圧器4によって減圧されて室外側熱交換器5に至る
。同然交換器は、蒸発器として作用し、室外の空気から
熱を吸収する。室外側熱交換器5を通過した冷媒は、四
方弁2を通って圧縮機1に戻り、同圧縮機によって再び
圧縮される。
The heat exchanger acts as a condenser and releases heat to warm the air in the room. The refrigerant that has passed through the indoor heat exchanger 3 is reduced in pressure by a pressure reducer 4 and reaches the outdoor heat exchanger 5 . The air exchanger acts as an evaporator and absorbs heat from the outdoor air. The refrigerant that has passed through the outdoor heat exchanger 5 returns to the compressor 1 through the four-way valve 2 and is compressed again by the compressor.

室内側熱交換器3は、第6図(a)乃至(c)に示す構
造となっている。同図において、矢印Aは熱交換器3に
対する空気の通過方向を示す。11は。
The indoor heat exchanger 3 has a structure shown in FIGS. 6(a) to 6(c). In the figure, arrow A indicates the direction in which air passes through the heat exchanger 3. 11 is.

所定の間隔をおいて並置された多数のフィン、12a及
び12bは、フィン11の風上側半部及び風下側半部に
所定の間隔をもって貫通せしめられた複数の伝熱管であ
る。
A large number of fins 12a and 12b arranged side by side at predetermined intervals are a plurality of heat transfer tubes that are passed through the windward half and the leeward half of the fins 11 at predetermined intervals.

風上側伝熱管12a及び風下側伝熱管12bは、第6図
(a)に示すように全体として千鳥状に配置する。名伝
熱管の端部は垂直方向に隣接する他の伝熱管の端部に順
繰りに連結し、かつ、最下部の風上側伝熱管の端部は同
じく最下部の風下側伝熱管の端部に連結し、全体として
一つの連続した冷媒通路を形成する。圧縮機からの冷媒
は、右上の入口管13から流入し、風下側の伝熱管12
bを通過した後、風上側の伝熱管12aを通って左上の
出口管14から流出する。
The windward heat exchanger tubes 12a and the leeward heat exchanger tubes 12b are generally arranged in a staggered manner as shown in FIG. 6(a). The ends of the heat exchanger tubes are connected in turn to the ends of other heat exchanger tubes adjacent to each other in the vertical direction, and the ends of the lowermost windward heat exchanger tubes are connected to the ends of the lowermost leeward heat exchanger tubes. are connected to form one continuous refrigerant passage as a whole. The refrigerant from the compressor flows into the upper right inlet pipe 13 and passes through the heat transfer pipe 12 on the leeward side.
After passing through the heat exchanger tube 12a on the windward side, it flows out from the outlet tube 14 on the upper left.

フィン11の中央縦方向(空気の通過方向Aと直角の方
向)には、所定の長さのフィン接続部16を残して複数
のスリット15が形成されている。なお、ここでは、ス
リット15が一定の幅及び長さを有する開口として記載
されているが、風上側と風下側との間の熱伝導を妨げる
機能を有するものであれば、他の任意の形状のスリット
を使用することができる。従って、例えば、所定の間隔
ごとにフィン材に線状の切込を入れ、互いに反対側にず
らせて曲げることによってスリットを構成しても構わな
い。但し、互いにずれ合ったフィン材の切込縁相互間に
所定の空隙を設けるか、切込縁同士がせいぜい線接触す
る程度とすることにより、風上側と風下側との間の熱伝
導が生じないように配慮する必要がある。
A plurality of slits 15 are formed in the central longitudinal direction of the fin 11 (in a direction perpendicular to the air passage direction A), leaving a fin connection part 16 of a predetermined length. Although the slit 15 is described here as an opening having a certain width and length, it may have any other shape as long as it has the function of preventing heat conduction between the windward side and the leeward side. slits can be used. Therefore, for example, the slits may be formed by making linear cuts in the fin material at predetermined intervals and bending them in opposite directions. However, by providing a predetermined gap between the cut edges of the fin materials that are offset from each other, or by making the cut edges at least in line contact with each other, heat conduction between the windward side and the leeward side will occur. Care must be taken to ensure that this does not occur.

フィン接続部16は、風上側伝熱管12bの段ピッチの
中間部付近に位置せしめる。前述した理由により、フィ
ン接続部16の長さは1段ピッチの2%乃至30%の範
囲、できれば段ピッチの10%前後とすることが望まし
い。なお、本実施例の場合は、風下側伝熱管]、2bの
段ピッチは、風上側伝熱管12aの段ピッチと同一に選
定され、しかも、個々の風下側伝熱管12bは、通過空
気に対してフィン接続部16の背後に位置するように配
設されている。このような配置を採用すれば、フィンの
風上側半部の温度制御を容易に最適化することができる
The fin connection portion 16 is located near the middle of the step pitch of the windward heat exchanger tubes 12b. For the reasons mentioned above, it is desirable that the length of the fin connection portion 16 be in the range of 2% to 30% of the single step pitch, preferably around 10% of the step pitch. In the case of this embodiment, the stage pitch of the leeward heat exchanger tubes] and 2b is selected to be the same as the stage pitch of the windward side heat exchanger tubes 12a, and each leeward side heat exchanger tube 12b is The fin connecting portion 16 is located behind the fin connecting portion 16. If such an arrangement is adopted, temperature control of the windward half of the fin can be easily optimized.

〔発明の効果〕〔Effect of the invention〕

本発明を採用することにより、凝縮器としてのクロスフ
ィンチューブ型熱交換器の熱効率を従来の常識を超えて
一段と改善することができる。しかも、フィン接続部1
6の長さを段ピッチの2%乃至30%の範囲に設定し得
るということは、充分な機械的強度を有する熱交換器を
安価に製造できることを意味し、この面でも実用的価値
が高い。
By employing the present invention, the thermal efficiency of a cross-fin tube heat exchanger as a condenser can be further improved beyond conventional wisdom. Moreover, the fin connection part 1
The fact that the length of 6 can be set in the range of 2% to 30% of the stage pitch means that a heat exchanger with sufficient mechanical strength can be manufactured at low cost, and in this respect also has high practical value. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本概念を説明するためのクロスフィ
ンチューブ型熱交換器の概要図、第2図及び第3図はフ
ィン接続部の相対位置及び相対長の最適値を求めるため
の実験結果を示す曲線図、第4図は各種試作品のフィン
接続部配置を示す図面、第5図はヒートポンプ型空気調
和機の暖房時の冷凍サイクルを示す系統図、第6図は本
発明に係る熱交換器の一実施例を示す図面である。なお
、第6図(a)は熱交換器の斜視図、第6図(b)は同
図(a)のI−I断面図、第6図(c)は同図(a)の
n−n断面図である。 く符号の説明〉 11・・・熱交換器のフィン、12a・・・熱交換器の
風上側伝熱管、12b・・・熱交換器の風下側伝熱管、
15・・・スリット、16・・・フィン接続部
Figure 1 is a schematic diagram of a cross-fin tube heat exchanger for explaining the basic concept of the present invention, and Figures 2 and 3 are experiments to determine the optimal values of the relative positions and relative lengths of the fin connections. A curve diagram showing the results, Fig. 4 is a diagram showing the arrangement of fin connections of various prototypes, Fig. 5 is a system diagram showing the refrigeration cycle during heating of a heat pump type air conditioner, and Fig. 6 is a diagram according to the present invention. It is a drawing showing one example of a heat exchanger. 6(a) is a perspective view of the heat exchanger, FIG. 6(b) is a sectional view taken along line II in FIG. 6(a), and FIG. 6(c) is a sectional view taken along line n-- It is an n cross-sectional view. Explanation of symbols> 11... Fin of heat exchanger, 12a... Windward side heat exchanger tube of heat exchanger, 12b... Leeward side heat exchanger tube of heat exchanger,
15...Slit, 16...Fin connection part

Claims (1)

【特許請求の範囲】 1、多数のフィンを並べて配置し、その風上側半部及び
風下側半部に夫々複数の伝熱管を全体として千鳥状に貫
通させ、かつ、フィンの風上側半部と風下側半部とを複
数のスリットによって熱的に分離したクロスフィンチュ
ーブ型熱交換器において、スリットとスリットとの間に
残されたフィンの接続部は、風上側の伝熱管の段ピッチ
の中間部付近に位置せしめられていることを特徴とする
空気調和機用熱交換器。 2、風下側の伝熱管は、その段ピッチを風上側の伝熱管
と同一とし、かつ、通過空気に対して上記フィン接続部
の背後に夫々位置せしめられていることを特徴とする特
許請求の範囲第1項記載の空気調和機用熱交換器。 3、上記フィン接続部の長さは、風上側の伝熱管の段ピ
ッチの2%乃至30%の範囲に選定されていることを特
徴とする特許請求の範囲第1項記載の空気調和機用熱交
換器。 4、上記フィン接続部の長さは、風上側の伝熱管の段ピ
ッチの10%前後に選定されていることを特徴とする特
許請求の範囲第3項記載の空気調和機用熱交換器。 5、上記フィン接続部は、風上側の伝熱管の段ピッチ毎
に夫々設けられていることを特徴とする特許請求の範囲
第1項記載の空気調和機用熱交換器。 6、上記フィン接続部は、風上側の伝熱管の段ピッチの
一つ置き又は複数個置きに夫々設けられていることを特
徴とする特許請求の範囲第1項記載の空気調和機用熱交
換器。 7、室内用熱交換器を凝縮器として使用し、室外用熱交
換器を蒸発器として使用するヒートポンプ型空気調和機
において、少なくとも上記室内用熱交換器は、特許請求
の範囲第1項乃至第6項の何れか一に記載された熱交換
器であることを特徴とする空気調和機。
[Claims] 1. A large number of fins are arranged side by side, and a plurality of heat transfer tubes are passed through the windward half and the leeward half in a staggered manner as a whole, and the windward half and the leeward half of the fins In a cross-fin tube heat exchanger in which the leeward half is thermally separated from the leeward half by multiple slits, the fin connections left between the slits are located at the middle of the stage pitch of the windward heat exchanger tubes. A heat exchanger for an air conditioner, characterized in that the heat exchanger is located near the air conditioner. 2. The heat exchanger tubes on the leeward side have the same stage pitch as the heat exchanger tubes on the windward side, and are respectively positioned behind the fin connection portions with respect to the passing air. A heat exchanger for an air conditioner according to Scope 1. 3. The air conditioner according to claim 1, wherein the length of the fin connection portion is selected within a range of 2% to 30% of the step pitch of the windward heat exchanger tubes. Heat exchanger. 4. The heat exchanger for an air conditioner according to claim 3, wherein the length of the fin connection portion is selected to be approximately 10% of the stage pitch of the windward side heat transfer tubes. 5. The heat exchanger for an air conditioner according to claim 1, wherein the fin connection portions are provided for each step pitch of the windward heat transfer tubes. 6. The heat exchanger for an air conditioner according to claim 1, wherein the fin connection portions are provided at every other step pitch or every plural number of step pitches of the windward side heat transfer tubes. vessel. 7. In a heat pump type air conditioner that uses an indoor heat exchanger as a condenser and an outdoor heat exchanger as an evaporator, at least the indoor heat exchanger has the following features: An air conditioner characterized by being a heat exchanger according to any one of Item 6.
JP1331170A 1989-12-22 1989-12-22 Heat exchanger for air conditioner Expired - Fee Related JP2753354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331170A JP2753354B2 (en) 1989-12-22 1989-12-22 Heat exchanger for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331170A JP2753354B2 (en) 1989-12-22 1989-12-22 Heat exchanger for air conditioner

Publications (2)

Publication Number Publication Date
JPH03194370A true JPH03194370A (en) 1991-08-26
JP2753354B2 JP2753354B2 (en) 1998-05-20

Family

ID=18240669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331170A Expired - Fee Related JP2753354B2 (en) 1989-12-22 1989-12-22 Heat exchanger for air conditioner

Country Status (1)

Country Link
JP (1) JP2753354B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019126A1 (en) 1996-10-31 1998-05-07 Daikin Industries, Ltd. Heat exchanger for air conditioners
US6142220A (en) * 1996-10-02 2000-11-07 Matsushita Electric Industrial Co., Ltd. Finned heat exchanger
WO2007088964A1 (en) * 2006-02-03 2007-08-09 Daikin Industries, Ltd. Air conditioner
CN103148643A (en) * 2011-12-06 2013-06-12 日立空调·家用电器株式会社 Air conditioner
US20140284031A1 (en) * 2013-03-25 2014-09-25 Lg Electronics Inc. Heat exchanger
JP2015169364A (en) * 2014-03-06 2015-09-28 昭和電工株式会社 Heat exchanger and plate fins
US9976820B2 (en) 2013-05-15 2018-05-22 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486050U (en) * 1971-06-03 1973-01-23
JPS4819656U (en) * 1971-07-15 1973-03-06
JPS5049757A (en) * 1973-09-03 1975-05-02
JPS58108394A (en) * 1981-12-21 1983-06-28 Hitachi Ltd Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486050U (en) * 1971-06-03 1973-01-23
JPS4819656U (en) * 1971-07-15 1973-03-06
JPS5049757A (en) * 1973-09-03 1975-05-02
JPS58108394A (en) * 1981-12-21 1983-06-28 Hitachi Ltd Heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142220A (en) * 1996-10-02 2000-11-07 Matsushita Electric Industrial Co., Ltd. Finned heat exchanger
WO1998019126A1 (en) 1996-10-31 1998-05-07 Daikin Industries, Ltd. Heat exchanger for air conditioners
WO2007088964A1 (en) * 2006-02-03 2007-08-09 Daikin Industries, Ltd. Air conditioner
CN103148643A (en) * 2011-12-06 2013-06-12 日立空调·家用电器株式会社 Air conditioner
CN103148643B (en) * 2011-12-06 2015-06-10 日立空调·家用电器株式会社 Air conditioner
US20140284031A1 (en) * 2013-03-25 2014-09-25 Lg Electronics Inc. Heat exchanger
US9976820B2 (en) 2013-05-15 2018-05-22 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
JP2015169364A (en) * 2014-03-06 2015-09-28 昭和電工株式会社 Heat exchanger and plate fins

Also Published As

Publication number Publication date
JP2753354B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
AU2012208123B2 (en) Heat exchanger and air conditioner
KR950007282B1 (en) Condenser with small hydraulic diameter flow path
KR101451057B1 (en) Heat exchanger and air conditioner
EP2857785B1 (en) Heat exchanger and air conditioner
US5076353A (en) Liquefier for the coolant in a vehicle air-conditioning system
EP2972037B1 (en) Heat exchanger for air-cooled chiller
US4676304A (en) Serpentine-type heat exchanger having fin plates with louvers
JP2002188895A (en) Tube structure of microchannel heat exchanger
JP4889011B2 (en) Air conditioning system
JP5079857B2 (en) Air conditioner indoor unit
WO2015004720A1 (en) Heat exchanger, and air conditioner
JP3264525B2 (en) Heat exchanger
JP3068761B2 (en) Heat exchanger
EP2956728B1 (en) Multiple bank flattened tube heat exchanger
JPH03194370A (en) Heat exchanger for air conditioner
JP3256634B2 (en) Heat exchanger
KR20060012303A (en) Heat exchanger fin, heat exchanger, condensers, and evaporators
JP5627635B2 (en) Air conditioner
EP3224565B1 (en) Frost tolerant microchannel heat exchanger
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP4168333B2 (en) Manufacturing method of heat exchanger plate fins
JP5815128B2 (en) Heat exchanger and air conditioner
JPS63131993A (en) Heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees