JP2007201858A - Crystal resonator, and highly accurate crystal oscillator - Google Patents

Crystal resonator, and highly accurate crystal oscillator Download PDF

Info

Publication number
JP2007201858A
JP2007201858A JP2006018566A JP2006018566A JP2007201858A JP 2007201858 A JP2007201858 A JP 2007201858A JP 2006018566 A JP2006018566 A JP 2006018566A JP 2006018566 A JP2006018566 A JP 2006018566A JP 2007201858 A JP2007201858 A JP 2007201858A
Authority
JP
Japan
Prior art keywords
crystal
temperature
case
crystal resonator
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006018566A
Other languages
Japanese (ja)
Other versions
JP4591364B2 (en
Inventor
Hiroyuki Kobayashi
博之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006018566A priority Critical patent/JP4591364B2/en
Publication of JP2007201858A publication Critical patent/JP2007201858A/en
Application granted granted Critical
Publication of JP4591364B2 publication Critical patent/JP4591364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal resonator with high accuracy and high stability wherein the frequency temperature characteristic is almost flat that achieves downsizing and weight reduction and to provide a highly accurate crystal oscillator. <P>SOLUTION: The crystal resonator 10 includes: a crystal resonator chip 30; a case 20 for housing the crystal resonator reed 30; a thermistor 40 fixed to an inner face of the case 20 and measuring the temperature inside the case 20; and a conductive heating paint 80 coated to the outside surface of the case 20, Heat generating power is supplied to the conductive heating paint 80 on the basis of a measurement value of the thermistor 40 and heat generation by the conductive heating paint 80 controls the crystal resonator reed 30 within a prescribed setting temperature range. The highly accurate crystal oscillator 100 includes the crystal resonator 10 and a control circuit 90 and the highly accurate crystal oscillator 100 whose frequency temperature characteristic is almost flat is realized by managing the crystal resonator 10 within the setting temperature range of a reference temperature or over. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水晶振動子及びこの水晶振動子を備える高精度水晶発振器に関し、詳しくは、水晶振動子に導電性発熱塗料を設け、水晶振動子を周波数温度特性が概ねフラットな温度範囲内に保持するよう構成した水晶振動子と高精度水晶発振器の構造に関する。   The present invention relates to a crystal resonator and a high-accuracy crystal oscillator including the crystal resonator. More specifically, the crystal resonator is provided with a conductive heat-generating paint, and the crystal resonator is held within a temperature range in which the frequency temperature characteristic is substantially flat. The present invention relates to a structure of a crystal resonator and a high-precision crystal oscillator configured as described above.

従来、移動体通信機器や伝送通信機器に用いる周波数制御デバイスである水晶発振器は、広い使用温度範囲において、外部の温度変化に影響されることなくフラットな周波数温度特性が要求される。このような高精度水晶発振器の実現のために、水晶振動片のカット角の工夫により一定の温度領域においてフラットな周波数温度特性を得るものや、温度を一定範囲に保持するために恒温槽を備えるものなどが提案されている。   Conventionally, a crystal oscillator, which is a frequency control device used in mobile communication equipment and transmission communication equipment, is required to have a flat frequency temperature characteristic over a wide operating temperature range without being affected by external temperature changes. In order to realize such a high-accuracy crystal oscillator, a device that obtains flat frequency temperature characteristics in a constant temperature range by devising the cut angle of the crystal resonator element, and a thermostatic chamber for maintaining the temperature in a certain range Things have been proposed.

水晶振動片のカット角としては、水晶結晶のZ軸回りに、基準角度1度30分から13度の範囲にある角度で回転した新座標軸Y’軸に対し、水晶板面の法線のなす角度が新座標軸X’軸の回りでAT板側にそれぞれ基準角度35度10分から36度50分の範囲にある水晶振動片を用いた水晶振動子というものが知られている(例えば、特許文献1参照)。   As the cut angle of the quartz crystal resonator piece, the angle formed by the normal line of the quartz plate surface with respect to the new coordinate axis Y ′ axis rotated around the Z axis of the quartz crystal at an angle in the range of the reference angle of 1 degree 30 minutes to 13 degrees. Is known as a quartz crystal resonator using a quartz crystal vibrating piece having a reference angle of 35 degrees 10 minutes to 36 degrees 50 minutes on the AT plate side around the new coordinate axis X ′ axis (for example, Patent Document 1). reference).

また、水晶のX軸とZ軸を含む平面をZ軸の回りに基準角度7度から14度40分の範囲のある角度で回転すると共に、新座標軸X’の回りに、AT板側に基準角度34度00分から35度10分の範囲(35度10分は除く)のある角度で回転して得られる面を主面として切り出した水晶振動片を用いた水晶振動子というものも知られている(例えば、特許文献2参照)。   In addition, the plane including the X and Z axes of the crystal is rotated around the Z axis at an angle in the range of 7 degrees to 14 degrees and 40 minutes, and the reference plane on the AT plate side around the new coordinate axis X ′. There is also known a crystal resonator using a crystal vibrating piece cut out with a surface obtained by rotating at an angle in a range of 34 degrees 00 minutes to 35 degrees 10 minutes (excluding 35 degrees 10 minutes) as a main surface. (For example, refer to Patent Document 2).

さらに、水晶結晶のZ軸の回りに時計方向にX軸を−5.0度未満、または+1度よりも大きく(1.0度は含まない)、且つ15.9度以下回転させて設定したX’軸に平行な辺を有し、X’軸の回りに時計方向にZ軸を34.6度以上且つ35.1度以下のある角度で回転させたZ’軸に平行な辺を有する水晶振動片を用いた水晶振動子というものも知られている(例えば、特許文献3参照)。   Furthermore, the X axis is set to be less than −5.0 degrees or greater than +1 degree (not including 1.0 degree) and rotated by 15.9 degrees or less clockwise around the Z axis of the crystal crystal. It has a side parallel to the X ′ axis, and a side parallel to the Z ′ axis obtained by rotating the Z axis clockwise around the X ′ axis at an angle of 34.6 degrees or more and 35.1 degrees or less. A crystal resonator using a crystal vibrating piece is also known (see, for example, Patent Document 3).

恒温槽型水晶発振器としては、水晶振動子と、この水晶振動子を収容する恒温槽と、恒温槽内に配設されるヒータ線と、を備えており、このヒータ線に電力を供給することで発熱させ、水晶振動子の温度を一定の温度範囲に制御するというものが知られている(例えば、特許文献4参照)。   The thermostat crystal oscillator includes a crystal resonator, a thermostat housing the crystal resonator, and a heater wire disposed in the thermostat, and supplies power to the heater wire. It is known that the temperature of the crystal unit is controlled within a certain temperature range by generating heat at the temperature (for example, see Patent Document 4).

特開平10−284978号公報Japanese Patent Laid-Open No. 10-284978 特開2003−324332号公報JP 2003-324332 A 特開2004−7420号公報JP 2004-7420 A 特開2001−16034号公報JP 2001-16034 A

上述したような特許文献1〜特許文献3によれば、基準温度(常温と表すことがある)よりも高温領域において周波数温度特性が概ねフラットになり、ある温度範囲において優れた周波数温度特性が示される。しかしながら、基準温度以下の低温領域においては周波数温度特性の変位幅が大きく満足できる特性が得られず、広範囲の使用温度環境には対応できないという課題を有している。   According to Patent Documents 1 to 3 as described above, the frequency temperature characteristic is substantially flat in a region higher than the reference temperature (sometimes referred to as normal temperature), and excellent frequency temperature characteristics are exhibited in a certain temperature range. It is. However, in the low temperature region below the reference temperature, the frequency temperature characteristic has a large displacement width and satisfactory characteristics cannot be obtained, and there is a problem that it cannot cope with a wide range of operating temperature environments.

このような課題を解決する方法として、基準温度よりも低温側において温度補償回路を備えなければならないというような課題もある。   As a method for solving such a problem, there is a problem that a temperature compensation circuit must be provided on a lower temperature side than the reference temperature.

また、恒温槽型水晶発振器では、水晶振動子を恒温槽内に収容することにより外部の温度に影響されにくい構造を実現しようとしているが、水晶振動子を収容する恒温槽を採用することから、その構造が複雑になり、このことから小型化や軽量化が困難になる他、コストも高くなるというような課題がある。   In addition, in the thermostatic chamber type crystal oscillator, it is intended to realize a structure that is less affected by the external temperature by accommodating the crystal resonator in the thermostatic chamber. The structure becomes complicated, which makes it difficult to reduce the size and weight, and increases the cost.

本発明の目的は、前述した課題を解決することを要旨とし、低温領域の温度補償回路を用いることなく、周波数温度特性が概ねフラットな高精度、高安定、且つ小型化、軽量化を実現する水晶振動子及び高精度水晶発振器を提供することである。   SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, and without using a temperature compensation circuit in a low temperature region, realizes high accuracy, high stability, miniaturization, and weight reduction with a substantially flat frequency temperature characteristic. To provide a crystal resonator and a high-precision crystal oscillator.

本発明の水晶振動子は、水晶振動片と、前記水晶振動片を収容するケースと、前記ケースの内面に固着されると共に前記ケースの内部の温度を測定する感温素子と、前記ケースの外側表面に設けられる導電性発熱塗料を含む発熱部材と、を備え、前記感温素子の測定値に基づき前記導電性発熱塗料に発熱電力を供給し、前記発熱部材の発熱により前記水晶振動片を所定の設定温度範囲内に制御することを特徴とする。
ここで、導電性発熱塗料としては、例えば、導電性を有する炭素同素体の微粉末と水分とを含有する有機系天然高分子接着剤が混合される材料を採用することができる。
The crystal resonator according to the present invention includes a crystal resonator element, a case that accommodates the crystal resonator element, a thermosensitive element that is fixed to the inner surface of the case and measures the temperature inside the case, and an outer side of the case. A heat generating member including a conductive heat generating paint provided on the surface, supplying heat generation power to the conductive heat generating paint based on the measured value of the temperature sensing element, and the crystal vibrating piece is predetermined by the heat generated by the heat generating member. The temperature is controlled within the set temperature range.
Here, as the conductive heat-generating paint, for example, a material in which an organic natural polymer adhesive containing fine powder of conductive carbon allotrope and moisture is mixed can be employed.

この発明によれば、発熱素材として導電性発熱塗料を採用し、導電性発熱塗料を所定の設定温度範囲まで発熱させ、水晶振動子の温度を制御していることから、外部温度の影響が少ない高精度な周波数特性を得ることができる。さらに、前述した恒温槽型水晶発振器に比べ、構造を簡素化でき、このことから軽量化と小型化が実現できる。   According to the present invention, the conductive heat generating paint is adopted as the heat generating material, the conductive heat generating paint is heated to a predetermined set temperature range, and the temperature of the crystal unit is controlled, so that the influence of the external temperature is small. A highly accurate frequency characteristic can be obtained. Furthermore, the structure can be simplified as compared with the above-described constant-temperature bath type crystal oscillator, and this makes it possible to reduce the weight and size.

また、発熱素材として導電性発熱塗料を採用しているため、ケース外側表面に塗布等の手段で容易に形成可能であり、加熱対象部材としての水晶振動子の形状、つまりケースの形状に関わらず形成することができるという効果がある。   In addition, since conductive heat-generating paint is used as the heat generating material, it can be easily formed on the outer surface of the case by means such as coating, regardless of the shape of the crystal unit as the heating target member, that is, the shape of the case. There is an effect that it can be formed.

また、設定温度の範囲及びレベルに対応して、導電性発熱塗料の厚さ、塗布面積、塗布形状を任意に設定することができるというような効果がある。
さらに、導電性発熱塗料はケースの外側表面に形成されることから、導電性発熱塗料から発生すると考えられるガス、水分による水晶振動子の振動に影響を与えないという効果もある。
Further, there is an effect that the thickness, application area, and application shape of the conductive heat-generating paint can be arbitrarily set in accordance with the range and level of the set temperature.
Further, since the conductive heat-generating paint is formed on the outer surface of the case, there is an effect that the vibration of the crystal unit due to the gas and moisture considered to be generated from the conductive heat-generating paint is not affected.

また、感温素子をケースの内面に固着しているため、ケース内部の温度、つまり水晶振動片の温度を正確に測定することが可能である。仮に感温素子をサーミスタとすれば、サーミスタは、変形に弱いという特性が知られているが、ケース内部に設けているので、変形等の影響を受けにくく良好な性能を維持することができる。   Further, since the temperature sensitive element is fixed to the inner surface of the case, the temperature inside the case, that is, the temperature of the crystal vibrating piece can be accurately measured. If the temperature sensitive element is a thermistor, it is known that the thermistor is vulnerable to deformation. However, since the thermistor is provided inside the case, it is difficult to be affected by deformation or the like and can maintain good performance.

また、前記水晶振動片が、直交座標軸X,Y,Zを結晶軸とする水晶結晶のZ軸の回りに所定の角度で回転し、さらに新座標軸X’軸の回りに所定の角度で回転する2回回転水晶振動片であって、周波数温度特性が基準温度より高い領域で概ねフラットな特性を有しており、基準温度より低い領域にあるとき、前記導電性発熱塗料の発熱により前記水晶振動片を基準温度より高い所定の設定温度範囲に制御することが好ましい。
ここで、基準温度とは、一般に常温とされる25℃近傍を意味する。また、2回回転水晶振動片としては、例えば前述した特許文献1〜特許文献3において示されるカット角にて切り出された水晶振動片が含まれる。
The quartz crystal resonator element rotates at a predetermined angle around the Z axis of the crystal crystal having the orthogonal coordinate axes X, Y, and Z as crystal axes, and further rotates at a predetermined angle around the new coordinate axis X ′. When the quartz crystal resonator element is a twice-rotated quartz crystal resonator, the frequency temperature characteristic is substantially flat in a region higher than the reference temperature, and when the frequency temperature property is in a region lower than the reference temperature, It is preferable to control the piece to a predetermined set temperature range higher than the reference temperature.
Here, the reference temperature means a temperature around 25 ° C., which is generally room temperature. Moreover, as a 2 times rotation quartz-crystal vibrating piece, the quartz-crystal vibrating piece cut out by the cut angle shown in patent document 1-patent document 3 mentioned above, for example is contained.

上述したようなカット角で切り出された水晶振動片は、基準温度より高い温度領域で周波数温度特性が概ねフラットになる領域が存在することが知られている。ここで、基準温度より低い温度領域にあるときに、導電性発熱塗料を発熱させて水晶振動子を基準温度より高い所定の設定温度範囲まで加熱維持することで、低温領域の温度補償回路を用いることなく、外部の温度環境に影響されない周波数温度特性がほぼフラットな高精度な水晶振動子を提供することができる。   It is known that the quartz crystal resonator element cut out with the cut angle as described above has a region where the frequency temperature characteristic is substantially flat in a temperature region higher than the reference temperature. Here, when the temperature is lower than the reference temperature, the conductive heat-generating paint is heated to maintain the crystal resonator to a predetermined set temperature range higher than the reference temperature, thereby using a temperature compensation circuit in a low temperature range. Therefore, it is possible to provide a high-accuracy crystal resonator having a substantially flat frequency temperature characteristic that is not affected by the external temperature environment.

また、前記導電性発熱塗料が前記ケースの外側表面に直接被覆されていることが好ましい。   Moreover, it is preferable that the conductive exothermic paint is directly coated on the outer surface of the case.

導電性発熱塗料としては前述したような構成のものを使用することができることから、ケース表面に塗布等の手段で容易に形成可能である。このようにすれば、ケースの形状に関わらずケース表面に発熱部材を形成することが可能で、構造がより一層簡素化でき、ケース表面のわずかな厚み増加でよく軽量化、小型化を実現できる。
また、設定温度の範囲及びレベルに対応して、導電性発熱塗料の厚さ、塗布面積、塗布形状を任意に設定することができるというような効果がある。
Since the conductive heat-generating paint having the above-described structure can be used, it can be easily formed on the case surface by means such as coating. In this way, it is possible to form a heat generating member on the case surface regardless of the shape of the case, the structure can be further simplified, and a slight increase in thickness of the case surface can be achieved, thereby realizing a reduction in weight and size. .
Further, there is an effect that the thickness, application area, and application shape of the conductive heat-generating paint can be arbitrarily set in accordance with the range and level of the set temperature.

さらに、前記発熱部材が、ベース部材と、前記ベース部材の表面に被覆される前記導電性発熱塗料と、を備え、前記発熱部材が前記ケースに装着されていることが望ましい。   Furthermore, it is preferable that the heat generating member includes a base member and the conductive heat generating paint coated on a surface of the base member, and the heat generating member is attached to the case.

発熱部材は、水晶振動子とは別体のベース部材の表面に導電性発熱塗料を被覆して発熱部材を形成するため、被覆作業がやり易くなるという効果がある。
なお、ベース部材は、シート状でも、キャップ状でもよく任意に選択することができる。また、ベース部材の材料としては熱伝導性がよい材料を選択し、熱伝導性がよい接着剤で固着すればなおよい。
Since the heat generating member forms the heat generating member by covering the surface of the base member separate from the crystal resonator with the conductive heat generating paint, there is an effect that the covering operation becomes easy.
The base member may be a sheet shape or a cap shape, and can be arbitrarily selected. Further, as the material of the base member, it is more preferable to select a material having good thermal conductivity and fix it with an adhesive having good thermal conductivity.

また、前記感温素子が、PTCサーミスタであることが望ましい。
PTC(Positive Tempreture Coefficient Thermistor)サーミスタは、ジュール熱による自己発熱を伴わない程度の微小電圧で電気抵抗の変化から温度を測定することが可能な素子であるため、水晶振動子内に備えていても正確な温度測定を可能にする。
The temperature sensitive element is preferably a PTC thermistor.
A PTC (Positive Temperature Coefficient Thermistor) thermistor is an element that can measure temperature from a change in electrical resistance with a minute voltage that does not involve self-heating due to Joule heat. Enables accurate temperature measurement.

また、本発明の高精度水晶発振器は、前述したように構成される水晶振動子と、前記水晶振動子の励振を制御する発振回路と、感温素子による温度測定を制御する温度制御回路と、前記温度制御回路の信号に基づき、導電性発熱塗料に発熱電力を供給する電圧制御回路と、を備えていることを特徴とする。   The high-precision crystal oscillator of the present invention includes a crystal resonator configured as described above, an oscillation circuit that controls excitation of the crystal resonator, a temperature control circuit that controls temperature measurement by a temperature-sensitive element, And a voltage control circuit that supplies heat generation power to the conductive heat generation paint based on a signal from the temperature control circuit.

本発明によれば、基準温度より低い温度領域にあるときに、導電性発熱塗料を発熱させて水晶振動子を基準温度より高い所定の設定温度範囲まで加熱維持することで、外部の温度環境に影響されない周波数温度特性がほぼフラットな高精度水晶発振器を提供することができる。   According to the present invention, when the temperature is lower than the reference temperature, the conductive heat-generating paint is heated to maintain the crystal resonator to a predetermined set temperature range higher than the reference temperature. It is possible to provide a high-accuracy crystal oscillator having a substantially flat frequency temperature characteristic that is not affected.

また、従来の低温領域の温度補償回路を用いる水晶発振器や従来の恒温槽型水晶発振器に比べ構造を簡素化でき、このことから軽量化と小型化が実現できる。   Further, the structure can be simplified as compared with a conventional crystal oscillator using a temperature compensation circuit in a low temperature region or a conventional thermostatic chamber crystal oscillator, and thus, weight reduction and downsizing can be realized.

以下、本発明の実施の形態を図面に基づいて説明する。
図1、図2は本発明の実施形態1に係る水晶振動子の構造を示し、図3〜図8は代表的な2回回転カット水晶振動片とそれらの周波数温度特性、図9は実施形態1の変形例、図10は実施形態2、図11は本発明の高精度水晶発振器の概略構成を示している。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show the structure of a crystal resonator according to Embodiment 1 of the present invention, FIGS. 3 to 8 show typical two-turn cut crystal resonator elements and their frequency-temperature characteristics, and FIG. 9 shows the embodiment. FIG. 10 shows a second embodiment, and FIG. 11 shows a schematic configuration of a high-precision crystal oscillator of the present invention.
(Embodiment 1)

図1は、実施形態1に係る水晶振動子の構造を模式的に示し、(a)は斜視図であり、蓋体を透視した状態を示し、(b)は、図1(a)のA−A切断面の断面図である。図1(a)、(b)において、水晶振動子10は、箱状のケース20の内部に水晶振動片30と、感温素子としてのサーミスタ40とを収容し、ケース裏面24に導電性発熱塗料80が形成されて構成されている。   1A and 1B schematically show the structure of a crystal resonator according to the first embodiment. FIG. 1A is a perspective view showing a state seen through a lid, and FIG. It is sectional drawing of -A cut surface. 1A and 1B, a crystal resonator 10 houses a crystal vibrating piece 30 and a thermistor 40 as a temperature sensitive element inside a box-shaped case 20, and conductive heat generation on the case back surface 24. A paint 80 is formed and configured.

ケース20は、セラミックスにて形成されており、内部に段状に形成される基台部21が設けられ、この基台部21に水晶振動片30の基部(図示は省略する)が固着されている。また、ケース20内側の底部22にはサーミスタ40が固着されている。   The case 20 is formed of ceramics, and a base portion 21 formed in a step shape is provided inside. The base portion (not shown) of the crystal vibrating piece 30 is fixed to the base portion 21. Yes. A thermistor 40 is fixed to the bottom 22 inside the case 20.

これら水晶振動片30及びサーミスタ40が収納された状態において、ケース20の開口部は蓋体50によって気密封止される。ケース20と蓋体50によって形成される空間23は、高度な真空状態である。   In the state where the crystal vibrating piece 30 and the thermistor 40 are housed, the opening of the case 20 is hermetically sealed by the lid 50. The space 23 formed by the case 20 and the lid 50 is in a high vacuum state.

水晶振動片30は図示しないリード電極に接続され、リード電極がケース裏面24にまで延在されてin/out端子61,63、GND端子62、Vcc端子64に接続されている(図2も参照する)。また、ケース裏面24の表面には2本の電極71,72が形成されており、これら電極71,72の表面及びケース裏面24には、導電性発熱塗料80が形成されている。   The quartz crystal vibrating piece 30 is connected to a lead electrode (not shown), and the lead electrode extends to the back surface 24 of the case and is connected to the in / out terminals 61 and 63, the GND terminal 62, and the Vcc terminal 64 (see also FIG. 2). To do). Further, two electrodes 71 and 72 are formed on the surface of the case back surface 24, and a conductive heat generating paint 80 is formed on the surface of the electrodes 71 and 72 and the case back surface 24.

導電性発熱塗料80の構成材料としては特に限定されるものではないが、本実施形態では、導電性を有する炭素同素体の微粉末と水分を含む有機系天然高分子バインダーを構成要素として構成されている。炭素同素体の具体例としては、石墨粉末(グラファイト)または炭素粉末(カーボンブラック)が、有機系天然高分子バインダーとしては糊精(一般に澱粉糊と呼ばれる)があげられる。また、目標の抵抗値を得るために炭化珪素等の抵抗剤を混入することがある。   The constituent material of the conductive heat-generating paint 80 is not particularly limited, but in this embodiment, the conductive natural carbon polymer fine powder and water-containing organic natural polymer binder are used as constituent elements. Yes. Specific examples of carbon allotropes include graphite powder (graphite) or carbon powder (carbon black), and organic natural polymer binders include paste (generally called starch paste). Moreover, in order to obtain a target resistance value, a resistance agent such as silicon carbide may be mixed.

続いて、この導電性発熱塗料80の被覆方法について説明する。上述した炭素同素体の微粉末と水分を含む有機系天然高分子バインダー及び抵抗剤を混合攪拌調整した導電性発熱塗料80をケース裏面24に塗布する。塗布方法としては刷毛塗り、吹き付け等を採用することができる。塗布後、塗膜の厚みを一定にするために自然乾燥する。   Next, a method for coating the conductive heat generating paint 80 will be described. The conductive exothermic paint 80 prepared by mixing and adjusting the above-mentioned fine carbon allotrope powder, moisture-containing organic natural polymer binder, and resistance agent is applied to the back surface 24 of the case. As an application method, brush coating, spraying, or the like can be employed. After application, the film is naturally dried to keep the thickness of the coating film constant.

次に、水晶振動片30、サーミスタ40、導電性発熱塗料80の配設関係について説明する。
図2は、水晶振動子10のケース裏面24側を視認した平面説明図である。図2において、ケース裏面24の4隅方向にin/out端子61,63、GND端子62、Vcc端子64とが形成されている。GND端子62は、リード電極75を介して、一方の発熱用電極としての電極71に接続される。
Next, the arrangement relationship of the crystal vibrating piece 30, the thermistor 40, and the conductive heat generating paint 80 will be described.
FIG. 2 is an explanatory plan view in which the case back surface 24 side of the crystal unit 10 is visually recognized. In FIG. 2, in / out terminals 61 and 63, a GND terminal 62, and a Vcc terminal 64 are formed in the four corner directions of the case back surface 24. The GND terminal 62 is connected to an electrode 71 as one heating electrode through a lead electrode 75.

また、サーミスタ40は、Vcc端子64と他方の発熱用電極としての電極72とに接続される。導電性発熱塗料80は、in/out端子61,63、GND端子62、Vcc端子64に接触しない範囲に形成され、電極71,72の端部が露出され、この露出部分において、サーミスタ40及びリード電極75(すなわち、GND端子62)と接続される。   The thermistor 40 is connected to a Vcc terminal 64 and an electrode 72 as the other heating electrode. The conductive heat generating paint 80 is formed in a range that does not contact the in / out terminals 61 and 63, the GND terminal 62, and the Vcc terminal 64, and the ends of the electrodes 71 and 72 are exposed. In the exposed portions, the thermistor 40 and the lead are formed. It is connected to the electrode 75 (that is, the GND terminal 62).

なお、サーミスタ40の接続は、2本の端子をケース20の外部に引き出し、ケース裏面24において電極72及びVcc端子64と接続してもよく、一方の端子をケース20の内部においてVcc端子64と接続するリード電極と接続し、他方の端子をリード電極にてケース裏面24まで引出して電極72と接続する構造としてもよい。   The thermistor 40 may be connected with two terminals drawn out of the case 20 and connected to the electrode 72 and the Vcc terminal 64 on the case back surface 24, and one terminal connected to the Vcc terminal 64 inside the case 20. The lead electrode to be connected may be connected, and the other terminal may be led to the case back surface 24 by the lead electrode and connected to the electrode 72.

続いて、2回回転カット水晶振動片の代表的な例をあげ、カット角と周波数温度特性との関係及び本発明の作用について図面を参照して説明する。
図3は、前述した特許文献1に提案されている2回回転カット水晶振動片のカット角を示す説明図である。この水晶振動子は、直交座標軸X,Y,Zを結晶軸とする水晶結晶のZ軸の回りに基準角度1度30分から13度の範囲にある角度φ1で回転した新座標軸Y’軸に対し、水晶板面の法線のなす角度φ2が新座標軸X’軸の回りでAT板側にそれぞれ基準角度35度10分から36度50分の範囲に切り出した水晶振動片を用いている。
Subsequently, a typical example of the twice-rotation cut quartz crystal vibrating piece will be given, and the relationship between the cut angle and the frequency temperature characteristic and the operation of the present invention will be described with reference to the drawings.
FIG. 3 is an explanatory view showing a cut angle of the two-time rotation cut quartz crystal vibrating piece proposed in Patent Document 1 described above. This quartz crystal resonator is rotated with respect to a new coordinate axis Y′-axis rotated at an angle φ1 in the range of a reference angle of 1 degree 30 minutes to 13 degrees around the Z-axis of the crystal crystal having orthogonal coordinate axes X, Y, Z as crystal axes. The quartz crystal resonator element is used in which the angle φ2 formed by the normal line of the quartz plate surface is cut around the new coordinate axis X ′ axis in the range of the reference angle of 35 ° 10 minutes to 36 ° 50 minutes on the AT plate side.

このカット角の範囲の中からφ1の大、中、小を選択して周波数温度特性を示す。
図4は、基準温度Tpが25℃(常温と表すことがある)のときにΔf/fを0と規格化した周波数温度特性を示すグラフである。横軸に温度(℃)、縦軸に周波数温度特性(Δf/f、ppm)を示している。ここでグラフは、φ1をAは1度30分、Bは7度、Cは13度にした場合を表している。
From this cut angle range, φ1, large, medium and small are selected to show frequency temperature characteristics.
FIG. 4 is a graph showing frequency temperature characteristics in which Δf / f is normalized to 0 when the reference temperature Tp is 25 ° C. (sometimes referred to as normal temperature). The horizontal axis shows temperature (° C.), and the vertical axis shows frequency temperature characteristics (Δf / f, ppm). Here, the graph represents a case where φ1 is set to 1 degree 30 minutes, B is 7 degrees, and C is 13 degrees.

図4に示すように、各カット角において、基準温度25℃〜+80℃までの領域では、周波数温度特性Δf/fは低温領域よりもフラットな特性を示し、目標とする5ppmの範囲にある。基準温度25℃以下の領域では、周波数温度特性Δf/fは5ppm以上となっている。   As shown in FIG. 4, at each cut angle, the frequency temperature characteristic Δf / f is flatter than the low temperature region in the range from the reference temperature of 25 ° C. to + 80 ° C., and is in the target range of 5 ppm. In the region where the reference temperature is 25 ° C. or less, the frequency temperature characteristic Δf / f is 5 ppm or more.

図5は、前述した特許文献2に提案されている2回回転カット水晶振動片のカット角を示す説明図である。この水晶振動子は、直交座標軸X,Y,Zを結晶軸とする水晶結晶のZ軸の回りに基準角度7度から14度40分の範囲にある角度φ1で回転すると共に、新座標軸X’軸の回りにAT板側に基準角度34度から35度10分の範囲(35度10分は除く)のある角度で回転して得られる面を主面として切り出した水晶板を用いて構成された2回回転カット水晶振動片を用いている。   FIG. 5 is an explanatory view showing the cut angle of the two-turn cut quartz crystal vibrating piece proposed in Patent Document 2 described above. This crystal resonator rotates around the Z axis of the crystal crystal having the orthogonal coordinate axes X, Y, Z as crystal axes at an angle φ1 in the range of 7 degrees to 14 degrees 40 minutes, and a new coordinate axis X ′. It is composed of a quartz plate cut out with the surface obtained by rotating around the axis at an angle within the range of 34 degrees to 35 degrees and 10 minutes (excluding 35 degrees and 10 minutes) as the main surface on the AT plate side. In addition, a two-turn cut quartz crystal vibrating piece is used.

このカット角の範囲の中からφ1の大、中、小を選択して周波数温度特性を示す。
図6は、基準温度Tpが25℃のときにΔf/fを0と規格化した周波数温度特性を示すグラフである。横軸に温度(℃)、縦軸に周波数温度特性(Δf/f、ppm)を示している。個々でグラフは、φ1をDは7度、Eは12度、Fは14度にした場合を表している。
From this cut angle range, φ1, large, medium and small are selected to show frequency temperature characteristics.
FIG. 6 is a graph showing frequency temperature characteristics in which Δf / f is normalized to 0 when the reference temperature Tp is 25 ° C. The horizontal axis shows temperature (° C.), and the vertical axis shows frequency temperature characteristics (Δf / f, ppm). The individual graphs show the case where φ1 is 7 degrees, E is 12 degrees, and F is 14 degrees.

図6に示すように、各カット角において、基準温度25℃〜+80℃までの領域では、周波数温度特性Δf/fは低温領域よりもフラットな特性を示し、目標とする5ppmの範囲にあり、基準温度25℃以下の領域では、周波数温度特性Δf/fは5ppm以上となっている。   As shown in FIG. 6, at each cut angle, in the region from the reference temperature of 25 ° C. to + 80 ° C., the frequency temperature characteristic Δf / f is flatter than the low temperature region and is in the target 5 ppm range, In the region where the reference temperature is 25 ° C. or less, the frequency temperature characteristic Δf / f is 5 ppm or more.

図7は、前述した特許文献3に提案されている2回回転カット水晶振動片のカット角を示す説明図である。この水晶振動子は、直交座標軸X,Y,Zを結晶軸とする水晶結晶のZ軸の回りに時計回り方向に角度φを−5度以上且つ−1度以下、または、+1度よりも大きく且つ15.9度以下回転させて設定したX’軸に平行な辺を有すると共に、X’軸の回りに時計回り方向にZ軸の角度θを34.6度以上であって、35.1度以下回転させたZ’軸に平行な辺を有する水晶板、または、Z軸の周りに時計回り方向にX軸の角度φを−15.9度以上であって−5度以下回転させて設定したX’軸に平行な辺を有すると共に、X’軸の回りに時計回り方向にZ軸の角度θを34.2度以上であって、35.3度以下回転させたZ’軸に平行な辺を有して切り出された水晶振動片を用いている。   FIG. 7 is an explanatory diagram showing the cut angle of the two-turn cut quartz crystal vibrating piece proposed in Patent Document 3 described above. In this crystal resonator, the angle φ is greater than or equal to −5 degrees and less than or equal to −1 degree, or greater than +1 degree in the clockwise direction around the Z axis of the crystal crystal having the orthogonal coordinate axes X, Y, and Z as crystal axes. And has a side parallel to the X ′ axis set by rotating it by 15.9 degrees or less, and the angle θ of the Z axis in the clockwise direction around the X ′ axis is 34.6 degrees or more, and 35.1 A crystal plate having a side parallel to the Z ′ axis rotated by less than 1 degree, or an angle φ of the X axis in the clockwise direction around the Z axis is rotated from −15.9 degrees to −5 degrees. The Z ′ axis has a side parallel to the set X ′ axis and the angle θ of the Z axis in the clockwise direction around the X ′ axis is 34.2 degrees or more and rotated by 35.3 degrees or less. A quartz crystal vibrating piece cut out with parallel sides is used.

このカット角の範囲の中からφの大、小を選択して周波数温度特性を示す。
図8は、基準温度Tpが25℃のときにΔf/fを0と規格化した周波数温度特性を示すグラフである。横軸に温度(℃)、縦軸に周波数温度特性(Δf/f、ppm)を示している。ここでグラフはθ=34.7度のときにφ1をGは8.3度、Hは12度の場合を表している。
The frequency temperature characteristic is shown by selecting large or small φ from this cut angle range.
FIG. 8 is a graph showing frequency temperature characteristics in which Δf / f is normalized to 0 when the reference temperature Tp is 25 ° C. The horizontal axis shows temperature (° C.), and the vertical axis shows frequency temperature characteristics (Δf / f, ppm). Here, the graph represents a case where θ = 34.7 degrees, φ1, G is 8.3 degrees, and H is 12 degrees.

図8に示すように、各カット角において、基準温度25℃〜+80℃までの領域では、周波数温度特性Δf/fは、低温領域に比べフラットな特性を示し、目標とする5ppmの範囲にある。また、基準温度25℃以下の領域では、周波数温度特性Δf/fは5ppm以上となっている。   As shown in FIG. 8, at each cut angle, the frequency temperature characteristic Δf / f is flat in the region from the reference temperature of 25 ° C. to + 80 ° C. compared to the low temperature region, and is in the target range of 5 ppm. . In the region where the reference temperature is 25 ° C. or less, the frequency temperature characteristic Δf / f is 5 ppm or more.

上述した各カット角の周波数温度特性Δf/fは共に、基準温度25℃〜80℃の範囲において5ppm以下を示し、基準温度25度以下の領域では共に、5ppm以下の目標値を満足していない。従って、使用温度環境が基準温度以下の場合には、水晶振動子を基準温度25℃〜80℃(80℃を使用温度範囲の上限とした場合)に加熱維持すれば、周波数温度特性Δf/fを5ppmの範囲に抑えることが可能になる。   The frequency temperature characteristics Δf / f of the cut angles described above both show 5 ppm or less in the reference temperature range of 25 ° C. to 80 ° C., and both do not satisfy the target value of 5 ppm or less in the region where the reference temperature is 25 degrees or less. . Therefore, when the operating temperature environment is equal to or lower than the reference temperature, if the crystal resonator is heated and maintained at the reference temperature of 25 ° C. to 80 ° C. (when 80 ° C. is the upper limit of the operating temperature range), the frequency temperature characteristic Δf / f In the range of 5 ppm.

次に、本実施形態における水晶振動子の加熱維持作用について図11を参照して説明する。水晶振動子10には、水晶振動片30とサーミスタ40と、発熱部材としての導電性発熱塗料80を備えている。サーミスタ40及び温度制御回路93によってケース20内の温度を測定し、基準温度以下の場合には、その測定結果に基づき昇温すべき温度との差異と供給すべき電力を算出する。   Next, the heating maintenance action of the crystal resonator in the present embodiment will be described with reference to FIG. The crystal resonator 10 includes a crystal vibrating piece 30, a thermistor 40, and a conductive heat generating paint 80 as a heat generating member. The temperature in the case 20 is measured by the thermistor 40 and the temperature control circuit 93. When the temperature is equal to or lower than the reference temperature, the difference between the temperature to be raised and the power to be supplied are calculated based on the measurement result.

その結果に基づき、電圧制御回路92から必要な電圧を導電性発熱塗料80に印加する。そして、サーミスタ40において設定温度範囲に達したことを検出すると、導電性発熱塗料80への電圧印加を停止する。このようなことを繰り返すことで水晶振動片30を目標とする周波数温度特性Δf/fが得られる温度範囲に維持制御する。   Based on the result, a necessary voltage is applied from the voltage control circuit 92 to the conductive heat generating paint 80. When the thermistor 40 detects that the set temperature range has been reached, the voltage application to the conductive heat-generating paint 80 is stopped. By repeating this, the quartz vibrating piece 30 is maintained and controlled within a temperature range in which the target frequency temperature characteristic Δf / f can be obtained.

本発明では、仮に使用温度範囲の上限を+80℃とすれば、温度管理範囲は、基準温度25℃〜80℃とすればよい。従って、温度管理範囲が広く容易に管理可能である。   In the present invention, if the upper limit of the operating temperature range is + 80 ° C., the temperature management range may be the reference temperature 25 ° C. to 80 ° C. Therefore, the temperature management range is wide and can be easily managed.

なお、本実施形態では、サーミスタ40としてはPTCサーミスタを採用することが好ましい。PTCサーミスタが好ましいのは、ジュール熱による自己発熱を伴わない程度の微小電圧で電気抵抗の変化から温度を測定することが可能な感温素子であるためである。   In the present embodiment, it is preferable to employ a PTC thermistor as the thermistor 40. The PTC thermistor is preferable because it is a temperature-sensitive element capable of measuring temperature from a change in electrical resistance with a minute voltage that does not involve self-heating due to Joule heat.

従って、実施形態1によれば、前述した特許文献1〜特許文献3で提案されている2回回転カットで切り出された水晶振動片30は、基準温度25℃より高い温度領域で周波数温度特性Δf/fが小さい領域が存在する。しかし、基準温度25℃以下では満足できる周波数温度特性は得られない。そこで、基準温度25℃より低い温度領域にあるときに、導電性発熱塗料80を発熱させて水晶振動片30を基準温度より高い所定の設定温度範囲80℃まで加熱し、25℃〜80℃の範囲に維持することで、低温領域の温度補償回路を用いることなく、外部の温度環境に影響されない周波数温度特性がほぼフラットな高精度な水晶振動子を提供することができる。   Therefore, according to the first embodiment, the quartz crystal vibrating piece 30 cut out by the two-time rotation cut proposed in Patent Documents 1 to 3 described above has a frequency temperature characteristic Δf in a temperature region higher than the reference temperature 25 ° C. There is a region where / f is small. However, satisfactory frequency temperature characteristics cannot be obtained at a reference temperature of 25 ° C. or lower. Therefore, when the temperature is lower than the reference temperature of 25 ° C., the conductive heat generating paint 80 is heated to heat the crystal vibrating piece 30 to a predetermined set temperature range of 80 ° C. higher than the reference temperature. By maintaining the range, it is possible to provide a high-accuracy crystal resonator having a substantially flat frequency temperature characteristic that is not affected by the external temperature environment without using a temperature compensation circuit in a low temperature region.

また、前述した恒温槽型水晶発振器に比べ、構造を簡素化できることから軽量化、小型化及び低コスト化が実現できる。   In addition, since the structure can be simplified as compared to the above-described constant-temperature bath type crystal oscillator, it is possible to realize weight reduction, size reduction, and cost reduction.

導電性発熱塗料80は、ケース20の表面に塗布等の手段で容易に形成可能である。従って、ケース20の形状に関わらずケース20の表面に導電性発熱塗料80を形成することが可能となるというような効果がある。
また、設定温度の範囲及びレベルに対応して、導電性発熱塗料80の厚さ、塗布面積、塗布形状を任意に設定することができるというような効果がある。
The conductive heat generating paint 80 can be easily formed on the surface of the case 20 by means such as coating. Therefore, there is an effect that the conductive heat generating paint 80 can be formed on the surface of the case 20 regardless of the shape of the case 20.
Further, there is an effect that the thickness, application area, and application shape of the conductive heat generating paint 80 can be arbitrarily set in accordance with the range and level of the set temperature.

また、サーミスタ40をケース20の内面に固着しているため、ケース20内部の温度、つまり水晶振動片30の温度を正確に測定することが可能である。サーミスタ40は、変形に弱いという特性が知られているが、ケース20の内部に設けているので、変形等の影響を受けにくく良好な性能を維持することができる。   Further, since the thermistor 40 is fixed to the inner surface of the case 20, the temperature inside the case 20, that is, the temperature of the crystal vibrating piece 30 can be accurately measured. The thermistor 40 is known to be susceptible to deformation. However, since the thermistor 40 is provided inside the case 20, the thermistor 40 is not easily affected by deformation or the like and can maintain good performance.

また、TPCサーミスタは、ジュール熱による自己発熱を伴わない程度の微小電圧で電気抵抗の変化から温度を測定することができ、さらに、TPCサーミスタは、正の温度−抵抗特性を有しているために、図4,6,8に表わされる低温領域の周波数温度特性が正特性を示していることから、演算処理が容易になることが推測できる。
(実施形態1の変形例)
In addition, the TPC thermistor can measure the temperature from the change in electric resistance with a minute voltage that does not cause self-heating due to Joule heat, and the TPC thermistor has a positive temperature-resistance characteristic. Furthermore, since the frequency temperature characteristics in the low temperature region shown in FIGS. 4, 6 and 8 show positive characteristics, it can be estimated that the arithmetic processing becomes easy.
(Modification of Embodiment 1)

続いて、本発明の実施形態1に係る水晶振動子の変形例について図面を参照して説明する。この変形例は、前述した実施形態1(図1,2、参照)に対して導電性発熱塗料の形成範囲を変えていることに特徴を有している。他は実施形態1と同じであるため説明を省略する。
図9は、実施形態1の変形例を模式的に示す断面図であり、(a)は、変形例1、(b)は変形例2を表している。
Subsequently, a modification of the crystal resonator according to the first embodiment of the present invention will be described with reference to the drawings. This modification is characterized in that the formation range of the conductive heat-generating paint is changed with respect to the first embodiment (see FIGS. 1 and 2). Since others are the same as Embodiment 1, description is abbreviate | omitted.
FIG. 9 is a cross-sectional view schematically showing a modification of the first embodiment. FIG. 9A shows a first modification, and FIG. 9B shows a second modification.

まず、変形例1について説明する。変形例1は、導電性発熱塗料80をケース裏面24及び側面25にわたって形成されていることに特徴を有する。ケース裏面24に形成されているin/out端子61,63、GND端子62、Vcc端子64(図2、参照)は図示を省略しているが、導電性発熱塗料80は、これら端子を開口して形成される。   First, Modification 1 will be described. The first modification is characterized in that the conductive heat generating paint 80 is formed over the case back surface 24 and the side surface 25. The in / out terminals 61 and 63, the GND terminal 62, and the Vcc terminal 64 (see FIG. 2) formed on the case back surface 24 are not shown, but the conductive heating paint 80 opens these terminals. Formed.

変形例2は、ケース裏面24、側面25及び蓋体50の表面にわたって導電性発熱塗料80が形成されていることに特徴を有する。導電性発熱塗料80の形成は、水晶振動子10をパッケージングした後に、表面全体にわたって塗布することでなし得る。   The modification 2 is characterized in that the conductive heat-generating paint 80 is formed over the case back surface 24, the side surface 25, and the surface of the lid 50. The conductive heat generating paint 80 can be formed by coating the entire surface of the quartz crystal resonator 10 after packaging.

なお、上述した変形例1,2に限らず、導電性発熱塗料80形成範囲は、その厚さと共に自在である。   In addition, it is not restricted to the modifications 1 and 2 mentioned above, The formation range of the conductive exothermic paint 80 is free with the thickness.

このような変形例1,2によれば、導電性発熱塗料80の形成面積が広くなること、水晶振動子10の周囲を広く被覆できることから、昇温のレスポンスを高めることができる。
(実施形態2)
According to such modifications 1 and 2, since the formation area of the conductive heat-generating paint 80 is widened and the periphery of the crystal unit 10 can be covered widely, the response to temperature rise can be enhanced.
(Embodiment 2)

続いて、本発明の実施形態2に係る水晶振動子について図面を参照して説明する。本実施形態は、前述した実施形態1が、導電性発熱塗料80をケース20に直接形成していることに対して、ベース部材に導電性発熱塗料80を形成した発熱部材をケース20に装着していることに特徴を有している。相違部分のみ説明する。他の共通部分については同じ符号を付している。
図10は、本実施形態に係る水晶振動子を模式的に示し、(a)は断面図、(b)はケース裏面24を視認した平面図である。
Subsequently, a crystal resonator according to a second embodiment of the present invention will be described with reference to the drawings. In the present embodiment, while the conductive heat generating paint 80 is directly formed on the case 20 in the first embodiment, a heat generating member in which the conductive heat generating paint 80 is formed on the base member is attached to the case 20. It has the feature in being. Only the differences will be described. Other common parts are denoted by the same reference numerals.
FIG. 10 schematically shows the crystal resonator according to the present embodiment, where (a) is a cross-sectional view and (b) is a plan view of the case back surface 24 visually recognized.

水晶振動子10は、パッケージングした後、発熱部材85がケース裏面24に貼着されて構成されている。発熱部材85は、ベース部材としての絶縁性を有するシート86と、シート86の表面に形成される電極71,72と、これら電極を含んでシート86の表面に形成される導電性発熱塗料80とから構成されている。   The crystal unit 10 is configured by packaging a heat generating member 85 on the case back surface 24 after packaging. The heat generating member 85 includes an insulating sheet 86 as a base member, electrodes 71 and 72 formed on the surface of the sheet 86, and a conductive heat generating paint 80 formed on the surface of the sheet 86 including these electrodes. It is composed of

図10(b)に示すように、電極71,72の両端部は、導電性発熱塗料80の周縁部から一部が露出されている。電極71の一方の端部は、GND端子62から延在されているリード電極75と導電性接着剤等を用いて接続される。また、電極72の一方の端部は、サーミスタ40から延在されるリード電極と導電性接着剤等を用いて接続される。   As shown in FIG. 10B, both ends of the electrodes 71 and 72 are partially exposed from the peripheral edge of the conductive heat-generating paint 80. One end of the electrode 71 is connected to the lead electrode 75 extending from the GND terminal 62 using a conductive adhesive or the like. Also, one end of the electrode 72 is connected to a lead electrode extending from the thermistor 40 using a conductive adhesive or the like.

なお、導電性発熱塗料80を含む発熱部材85は、図10(b)のような形状でもよいが、ケース20の側面25まで延在する形状としてもよい。   The heat generating member 85 including the conductive heat generating paint 80 may have a shape as shown in FIG. 10B, or may have a shape that extends to the side surface 25 of the case 20.

また、図示しないが、ベース部材としてシート86よりも剛性を有するキャップとすることができる。キャップとしては、ケース20に装着可能な箱型とし、その表面に電極及び導電性発熱塗料80を形成し、ケース20に貼着する構造とすることができる。このような構造では、導電性発熱塗料80をキャップの内側に形成することも、外側に形成することも可能である。   Although not shown, the base member can be a cap that is more rigid than the sheet 86. As a cap, it can be set as the box shape which can be mounted | worn with the case 20, and it can be set as the structure which forms the electrode and the conductive heat-generation coating material 80 on the surface, and affixes on the case 20. In such a structure, the conductive heat-generating paint 80 can be formed on the inner side or the outer side of the cap.

このような実施形態2によれば、ケース20とは別体のシート86またはキャップの表面に導電性発熱塗料80を塗布して発熱部材85を形成するため、塗布作業がやり易くなるという効果がある。   According to the second embodiment, since the heat generating member 85 is formed by applying the conductive heat generating paint 80 to the surface of the sheet 86 or the cap that is separate from the case 20, there is an effect that the application work becomes easy. is there.

また、導電性発熱塗料80の材料、厚さ、塗布面積などを、設定される水晶発振器の所定の周波数温度特性、管理温度領域に対応した発熱部材85を複数種類用意しておき、水晶振動子10の設定仕様に合わせた発熱部材85をを選択して装着することにより、所望の高精度な水晶振動子を容易に提供することが可能となり、製造コスト低減にも寄与する。
(高精度水晶発振器)
A plurality of types of heat generating members 85 corresponding to the predetermined frequency temperature characteristics and management temperature region of the crystal oscillator in which the material, thickness, application area, etc. of the conductive heat generating paint 80 are set are prepared. By selecting and mounting the heat generating member 85 according to the 10 setting specifications, it becomes possible to easily provide a desired high-precision crystal resonator, which contributes to a reduction in manufacturing cost.
(High-precision crystal oscillator)

続いて、前述した実施形態1または実施形態2による水晶振動子10を備える高精度水晶発振器について説明する。
図11は、本発明の高精度水晶発振器の主たる構成を示す構成図である。高精度水晶発振器100は、前述した水晶振動子10と制御回路90とから構成されている。
Subsequently, a high-precision crystal oscillator including the crystal resonator 10 according to Embodiment 1 or Embodiment 2 described above will be described.
FIG. 11 is a configuration diagram showing the main configuration of the high-precision crystal oscillator of the present invention. The high-accuracy crystal oscillator 100 is composed of the crystal resonator 10 and the control circuit 90 described above.

制御回路90は、水晶振動片30の励振を制御する発振回路91と、サーミスタ40による温度測定を制御する温度制御回路93と、温度制御回路93の信号に基づき、導電性発熱塗料80に発熱電力を供給する電圧制御回路92とを含んだ半導体装置で1チップ化され、ケース20内に実装されている。   The control circuit 90 includes an oscillation circuit 91 that controls excitation of the crystal vibrating piece 30, a temperature control circuit 93 that controls temperature measurement by the thermistor 40, and a heat generation power applied to the conductive heating paint 80 based on a signal from the temperature control circuit 93. Is integrated into one chip by a semiconductor device including a voltage control circuit 92 for supplying the signal.

このような高精度水晶発振器100は、基準温度25℃より低い温度領域にあるときに、導電性発熱塗料80を発熱させて水晶振動子10を基準温度25℃より高い所定の設定温度80℃の範囲に加熱、維持することで、外部の温度環境に影響されない周波数温度特性がほぼフラットな高精度水晶発振器100を提供することができる。   When such a high-precision crystal oscillator 100 is in a temperature range lower than the reference temperature of 25 ° C., the conductive heat generating paint 80 generates heat to cause the crystal unit 10 to have a predetermined set temperature of 80 ° C. higher than the reference temperature of 25 ° C. By heating and maintaining the temperature within the range, it is possible to provide a high-precision crystal oscillator 100 having a substantially flat frequency temperature characteristic that is not affected by the external temperature environment.

また、従来の低温領域の温度補償回路を用いる水晶発振器や従来の恒温槽型水晶発振器に比べ構造を簡素化でき、このことから軽量化と小型化が実現できる。   Further, the structure can be simplified as compared with a conventional crystal oscillator using a temperature compensation circuit in a low temperature region or a conventional thermostatic chamber crystal oscillator, and thus, weight reduction and downsizing can be realized.

なお、本発明は前述の実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明しているが、本発明の技術的思想及び目的の範囲に逸脱することなく、以上説明した実施形態に対し、形状、材質、組み合わせ、その他の詳細な構成、及び製造工程間の加工方法において、当業者が様々な変形を加えることができるものである。
It should be noted that the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
That is, although the present invention has been illustrated and described with particular reference to particular embodiments, it is not intended to depart from the technical spirit and scope of the invention. Various modifications can be made by those skilled in the art in terms of materials, combinations, other detailed configurations, and processing methods between manufacturing processes.

例えば、前述した実施の形態では、導電性発熱塗料80に電力を供給する電極71,72を設けているが、電極71,72を省略することができる。つまり、リード電極75及びサーミスタ40の一方の端子を直接導電性発熱塗料80に接続してもよい。   For example, in the above-described embodiment, the electrodes 71 and 72 for supplying electric power to the conductive heat generating paint 80 are provided, but the electrodes 71 and 72 can be omitted. That is, one terminal of the lead electrode 75 and the thermistor 40 may be directly connected to the conductive heat generating paint 80.

従って、前述した本発明によれば、周波数温度特性が概ねフラットとなる高精度、高安定で、且つ小型化、軽量化を実現する水晶振動子及び高精度水晶発振器を提供することができる。   Therefore, according to the present invention described above, it is possible to provide a crystal oscillator and a high-accuracy crystal oscillator that achieves a highly accurate and highly stable frequency temperature characteristic that is substantially flat, and that can be reduced in size and weight.

本発明の実施形態1に係る水晶振動子の構造を模式的に示し、(a)は斜視図、(b)は、(a)のA−A切断面の断面図。BRIEF DESCRIPTION OF THE DRAWINGS The structure of the crystal oscillator concerning Embodiment 1 of this invention is shown typically, (a) is a perspective view, (b) is sectional drawing of the AA cut surface of (a). 本発明の実施形態1に係る水晶振動子のケース裏面を視認した平面説明図。FIG. 3 is an explanatory plan view of the crystal case according to the first embodiment of the present invention when the case back surface is visually confirmed. 従来技術(特許文献1)による2回回転カット水晶振動片のカット角を示す説明図。Explanatory drawing which shows the cut angle of the 2 times rotation cut quartz crystal vibrating piece by a prior art (patent document 1). 特許文献1の周波数温度特性を示すグラフ。The graph which shows the frequency temperature characteristic of patent document 1. FIG. 従来技術(特許文献2)による2回回転カット水晶振動片のカット角を示す説明図。Explanatory drawing which shows the cut angle of the 2 times rotation cut quartz crystal vibrating piece by a prior art (patent document 2). 特許文献2の周波数温度特性を示すグラフ。The graph which shows the frequency temperature characteristic of patent document 2. FIG. 従来技術(特許文献3)による2回回転カット水晶振動片のカット角を示す説明図。Explanatory drawing which shows the cut angle of the 2 times rotation cut quartz crystal vibrating piece by a prior art (patent document 3). 特許文献3の周波数温度特性を示すグラフ。The graph which shows the frequency temperature characteristic of patent document 3. FIG. 本発明の実施形態1に係る水晶振動子の変形例を模式的に示す断面図。Sectional drawing which shows typically the modification of the crystal resonator which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る水晶振動子を模式的に示し、(a)は断面図、(b)はケース裏面を視認した平面図。The crystal resonator which concerns on Embodiment 2 of this invention is shown typically, (a) is sectional drawing, (b) is the top view which visually recognized the case back surface. 本発明の高精度水晶発振器の主たる構成を示す構成図。The block diagram which shows the main structures of the high precision crystal oscillator of this invention.

符号の説明Explanation of symbols

10…水晶振動子、20…ケース、24…ケース裏面、30…水晶振動片、40…サーミスタ、80…導電性発熱塗料、90…制御回路、100…高精度水晶発振器。
DESCRIPTION OF SYMBOLS 10 ... Crystal oscillator, 20 ... Case, 24 ... Case back surface, 30 ... Crystal vibrating piece, 40 ... Thermistor, 80 ... Conductive heating paint, 90 ... Control circuit, 100 ... High precision crystal oscillator.

Claims (6)

水晶振動片と、前記水晶振動片を収容するケースと、
前記ケースの内面に固着されると共に前記ケースの内部の温度を測定する感温素子と、
前記ケースの外側表面に設けられる導電性発熱塗料を含む発熱部材と、を備え、
前記感温素子の測定値に基づき前記導電性発熱塗料に発熱電力を供給し、前記発熱部材の発熱により前記水晶振動片を所定の設定温度範囲内に制御することを特徴とする水晶振動子。
A crystal vibrating piece, a case for housing the crystal vibrating piece,
A temperature sensitive element that is fixed to the inner surface of the case and measures the temperature inside the case;
A heating member including a conductive heating paint provided on the outer surface of the case, and
A crystal resonator, wherein heat generation power is supplied to the conductive heat generating paint based on a measured value of the temperature sensing element, and the crystal vibrating piece is controlled within a predetermined set temperature range by heat generation of the heat generating member.
請求項1に記載の水晶振動子において、
前記水晶振動片が、直交座標軸X,Y,Zを結晶軸とする水晶結晶のZ軸の回りに所定の角度で回転し、さらに新座標軸X’軸の回りに所定の角度で回転する2回回転水晶振動片であって、周波数温度特性が基準温度より高い領域で概ねフラットな特性を有しており、
基準温度より低い領域にあるとき、前記導電性発熱塗料の発熱により前記水晶振動片を基準温度より高い所定の設定温度範囲に制御することを特徴とする水晶振動子。
The crystal resonator according to claim 1,
The crystal vibrating piece is rotated twice at a predetermined angle around the Z axis of the crystal crystal having the orthogonal coordinate axes X, Y, Z as crystal axes, and further rotated at a predetermined angle around the new coordinate axis X ′. It is a rotating quartz crystal vibrating piece, and has a substantially flat characteristic in a region where the frequency temperature characteristic is higher than the reference temperature.
A quartz resonator, wherein the quartz resonator element is controlled to a predetermined set temperature range higher than a reference temperature by heat generation of the conductive heat-generating paint when in a region lower than a reference temperature.
請求項1または請求項2に記載の水晶振動子において、
前記導電性発熱塗料が前記ケースの外側表面に直接被覆されていることを特徴とする水晶振動子。
In the crystal unit according to claim 1 or 2,
A crystal resonator, wherein the conductive heat-generating paint is directly coated on an outer surface of the case.
請求項1または請求項2に記載の水晶振動子において、
前記発熱部材が、ベース部材と、前記ベース部材の表面に被覆される前記導電性発熱塗料と、を備え、
前記発熱部材が前記ケースに装着されていることを特徴とする水晶振動子。
In the crystal unit according to claim 1 or 2,
The heat generating member comprises a base member, and the conductive heat generating paint coated on the surface of the base member,
A crystal resonator, wherein the heat generating member is attached to the case.
請求項1ないし請求項4のいずれか一項に記載の水晶振動子において、
前記感温素子が、PTCサーミスタであることを特徴とする水晶振動子。
In the crystal unit according to any one of claims 1 to 4,
The quartz resonator, wherein the temperature sensitive element is a PTC thermistor.
請求項1ないし請求項5のいずれか一項に記載の水晶振動子と、
前記水晶振動子の励振を制御する発振回路と、
感温素子による温度測定を制御する温度制御回路と、
前記温度制御回路の信号に基づき、導電性発熱塗料に発熱電力を供給する電圧制御回路と、
を備えていることを特徴とする高精度水晶発振器。
A crystal resonator according to any one of claims 1 to 5, and
An oscillation circuit for controlling excitation of the crystal resonator;
A temperature control circuit for controlling temperature measurement by the temperature sensing element;
A voltage control circuit that supplies heat generation power to the conductive heat generation paint based on the signal of the temperature control circuit;
A high-precision crystal oscillator characterized by comprising:
JP2006018566A 2006-01-27 2006-01-27 Crystal oscillator, high precision crystal oscillator Expired - Fee Related JP4591364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018566A JP4591364B2 (en) 2006-01-27 2006-01-27 Crystal oscillator, high precision crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018566A JP4591364B2 (en) 2006-01-27 2006-01-27 Crystal oscillator, high precision crystal oscillator

Publications (2)

Publication Number Publication Date
JP2007201858A true JP2007201858A (en) 2007-08-09
JP4591364B2 JP4591364B2 (en) 2010-12-01

Family

ID=38455989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018566A Expired - Fee Related JP4591364B2 (en) 2006-01-27 2006-01-27 Crystal oscillator, high precision crystal oscillator

Country Status (1)

Country Link
JP (1) JP4591364B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205938A (en) * 2007-02-21 2008-09-04 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2010081052A (en) * 2008-09-24 2010-04-08 Nippon Dempa Kogyo Co Ltd Constant temperature crystal oscillator
WO2011030572A1 (en) * 2009-09-14 2011-03-17 株式会社村田製作所 Crystal oscillating device
JP2012099928A (en) * 2010-10-29 2012-05-24 Kyocera Kinseki Corp Piezoelectric device
JP2013258452A (en) * 2012-06-11 2013-12-26 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, mobile body, and manufacturing method of vibration element
JP2014007693A (en) * 2012-06-27 2014-01-16 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile body
US9391586B2 (en) 2012-11-29 2016-07-12 Seiko Epson Corporation Resonator device, electronic device, and moving object
US9923544B2 (en) 2011-06-03 2018-03-20 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
WO2024050842A1 (en) * 2022-09-09 2024-03-14 华为技术有限公司 Package structure and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081286B2 (en) * 2012-07-09 2017-02-15 日本電波工業株式会社 Crystal oscillator with temperature chamber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171808A (en) * 1989-11-30 1991-07-25 Kinseki Ltd High-stability crystal oscillator
JP2003224422A (en) * 2002-01-31 2003-08-08 Kinseki Ltd Piezoelectric vibrator with function of retaining temperature and piezoelectric oscillator with the same function
JP2006014208A (en) * 2004-06-29 2006-01-12 Nippon Dempa Kogyo Co Ltd Crystal oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171808A (en) * 1989-11-30 1991-07-25 Kinseki Ltd High-stability crystal oscillator
JP2003224422A (en) * 2002-01-31 2003-08-08 Kinseki Ltd Piezoelectric vibrator with function of retaining temperature and piezoelectric oscillator with the same function
JP2006014208A (en) * 2004-06-29 2006-01-12 Nippon Dempa Kogyo Co Ltd Crystal oscillator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205938A (en) * 2007-02-21 2008-09-04 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2010081052A (en) * 2008-09-24 2010-04-08 Nippon Dempa Kogyo Co Ltd Constant temperature crystal oscillator
US8076983B2 (en) 2008-09-24 2011-12-13 Nihon Dempa Kogyo Co., Ltd. Constant-temperature type crystal oscillator
WO2011030572A1 (en) * 2009-09-14 2011-03-17 株式会社村田製作所 Crystal oscillating device
CN102484465A (en) * 2009-09-14 2012-05-30 株式会社村田制作所 Crystal oscillating device
JP5093355B2 (en) * 2009-09-14 2012-12-12 株式会社村田製作所 Crystal oscillator
JP2012099928A (en) * 2010-10-29 2012-05-24 Kyocera Kinseki Corp Piezoelectric device
US9923544B2 (en) 2011-06-03 2018-03-20 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP2013258452A (en) * 2012-06-11 2013-12-26 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, mobile body, and manufacturing method of vibration element
JP2014007693A (en) * 2012-06-27 2014-01-16 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile body
US9391586B2 (en) 2012-11-29 2016-07-12 Seiko Epson Corporation Resonator device, electronic device, and moving object
WO2024050842A1 (en) * 2022-09-09 2024-03-14 华为技术有限公司 Package structure and electronic device

Also Published As

Publication number Publication date
JP4591364B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4591364B2 (en) Crystal oscillator, high precision crystal oscillator
JP4298580B2 (en) Highly stable crystal oscillator using a thermostatic chamber
US7649423B2 (en) Oven controlled crystal oscillator
JP5218169B2 (en) Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator
JP4629744B2 (en) Constant temperature crystal oscillator
JP5218372B2 (en) Piezoelectric oscillator and frequency control method of piezoelectric oscillator
JP2011077963A (en) Constant-temperature type crystal oscillator
WO2003088474A1 (en) Highly stable piezo-oscillator
JP2005286892A (en) Piezoelectric vibrator with built-in temperature sensor and piezoelectric oscillator using the same
TWI475797B (en) Constant-temperature type crystal oscillator
JP4499478B2 (en) Constant temperature crystal oscillator using crystal resonator for surface mounting
JP4483138B2 (en) Structure of highly stable piezoelectric oscillator
JP2009284372A (en) Constant temperature structure of crystal unit
US9929337B2 (en) Piezoelectric device package and method of fabricating the same
JP2007201673A (en) Highly stable piezoelectric oscillator
JP5741869B2 (en) Piezoelectric device
JP2010187060A (en) Constant temperature piezoelectric oscillator
JP2010183228A (en) Constant-temperature piezoelectric oscillator
JP5003079B2 (en) Temperature controlled piezoelectric oscillator
JP2004007420A (en) Piezoelectric vibration chip, piezoelectric vibrator, and piezoelectric device
JP5205822B2 (en) Piezoelectric oscillator
JP4890927B2 (en) Piezoelectric oscillator
JP2011066649A (en) Method of manufacturing piezoelectric device
JP5135018B2 (en) Constant temperature crystal oscillator
JP6376681B2 (en) Surface-mount type piezoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees