JP2007198791A - Surface property measuring instrument - Google Patents

Surface property measuring instrument Download PDF

Info

Publication number
JP2007198791A
JP2007198791A JP2006015110A JP2006015110A JP2007198791A JP 2007198791 A JP2007198791 A JP 2007198791A JP 2006015110 A JP2006015110 A JP 2006015110A JP 2006015110 A JP2006015110 A JP 2006015110A JP 2007198791 A JP2007198791 A JP 2007198791A
Authority
JP
Japan
Prior art keywords
detector
measured
measurement
moving mechanism
surface texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006015110A
Other languages
Japanese (ja)
Other versions
JP5000894B2 (en
Inventor
Hirato Sonobe
平人 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2006015110A priority Critical patent/JP5000894B2/en
Publication of JP2007198791A publication Critical patent/JP2007198791A/en
Application granted granted Critical
Publication of JP5000894B2 publication Critical patent/JP5000894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface property measuring instrument which enables high-precision setting and measurement in auto-set operation and a measuring instrument following function. <P>SOLUTION: The surface property measuring instrument comprises: a Y-axis movement mechanism, a Z-axis movement mechanism (a Z slider 4), and an X-axis movement mechanism 6, which move an object under measurement W and a detector 8 relatively in the three-axis directions orthogonal to each other; a tilting mechanism (a swivel plate 5) for tilting the X-axis movement mechanism 6 so that the relative movement direction becomes parallel to the measurement surface of the object under measurement; a tilt angle storage means for storing the tilt angle; and a control means for controlling the drive of the Z-axis movement mechanism (the Z slider 4) and the X-axis movement mechanism 6 so that the relative distance between the object under measurement W and the detector 8 is changed to the perpendicular direction with respect to the measurement surface of the object under measurement W on the basis of the tilt angle stored in the tilt angle storage means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定物の表面粗さ、うねり、形状等の表面性状を測定する表面性状測定機に関する。   The present invention relates to a surface texture measuring instrument that measures surface texture such as surface roughness, swell, and shape of an object to be measured.

表面性状測定機として、被測定物の形状等の表面性状を測定する形状測定機が知られている(たとえば、特許文献1参照)。
従来の形状測定機は、図9に示すように、被測定物Wを載置するベース1と、このベース1の上面に垂直に立設されたZ軸コラム3と、このZ軸コラム3に上下方向(Z軸方向)へ昇降可能に設けられたZスライダ4と、このZスライダ4にY軸を中心として旋回可能に設けられた旋回プレート5と、この旋回プレート5に取り付けられたX軸移動機構6と、このX軸移動機構6に連結された検出器8とから構成されている。
検出器8は、X軸移動機構6に連結された検出器本体8Aと、この検出器本体8AにY軸を中心として回動可能に支持されたスタイラス8Bと、このスタイラス8Bの先端に直角に設けられた触針8Cと、この触針8Cの上下方向変位(スタイラス8Bの揺動量)を検出する検出部(図示省略)とから構成されている。
2. Description of the Related Art A shape measuring machine that measures surface properties such as the shape of an object to be measured is known as a surface texture measuring instrument (see, for example, Patent Document 1).
As shown in FIG. 9, the conventional shape measuring machine includes a base 1 on which a workpiece W is placed, a Z-axis column 3 erected vertically on the upper surface of the base 1, and a Z-axis column 3. A Z-slider 4 provided so as to be movable up and down (Z-axis direction), a turning plate 5 provided on the Z-slider 4 so as to be turnable about the Y-axis, and an X-axis attached to the turning plate 5 The moving mechanism 6 and a detector 8 connected to the X-axis moving mechanism 6 are configured.
The detector 8 includes a detector main body 8A connected to the X-axis moving mechanism 6, a stylus 8B supported by the detector main body 8A so as to be rotatable about the Y axis, and a right angle to the tip of the stylus 8B. The stylus 8C is provided, and a detection unit (not shown) that detects the vertical displacement of the stylus 8C (the amount by which the stylus 8B swings).

被測定物Wを測定するにあたっては、次のような手順で行われる。
(a)Zスライダ4をZ軸コラム3の上方へ移動させる。
(b)ベース1に被測定物Wを載置する。
(c)Zスライダ4をZ軸コラム3の下方へ移動させて、検出器8の触針8Cを被測定物Wの測定面近傍に位置決めする(触針8Cは被測定物Wに接触させない)。
(d)測定スタートボタンを押す。
(e)Zスライダ4がZ軸コラム3に沿って下降する。
(f)検出器8の触針8Cが被測定物Wに接触し始める。
(g)検出器8の検出値が所定値(例えば、0点)を超えたら、Zスライダ4の下降を停止させる。
(h)Zスライダ4をZ軸コラム3に沿って微速で上昇させ、検出器8の検出値が所定値(例えば、0点)に達した時点で、Zスライダ4の上昇を停止させる。(なお、このステップは省略させる場合がある)
(i)X軸移動機構6を駆動させ、検出器8をX軸方向へ走査させて測定を開始する。
Measurement of the workpiece W is performed in the following procedure.
(A) The Z slider 4 is moved above the Z axis column 3.
(B) Place the workpiece W on the base 1.
(C) The Z slider 4 is moved below the Z-axis column 3 to position the stylus 8C of the detector 8 in the vicinity of the measurement surface of the workpiece W (the stylus 8C is not brought into contact with the workpiece W). .
(D) Press the measurement start button.
(E) The Z slider 4 descends along the Z axis column 3.
(F) The stylus 8C of the detector 8 starts to contact the workpiece W.
(G) When the detection value of the detector 8 exceeds a predetermined value (for example, 0 point), the lowering of the Z slider 4 is stopped.
(H) The Z slider 4 is raised along the Z-axis column 3 at a slow speed, and when the detection value of the detector 8 reaches a predetermined value (for example, 0 point), the raising of the Z slider 4 is stopped. (This step may be omitted)
(I) The X axis moving mechanism 6 is driven, the detector 8 is scanned in the X axis direction, and measurement is started.

特開2004−257958号公報JP 2004-257958 A

上述した測定手順のうち、(e)〜(h)のステップが、測定スタートボタンの操作に基づいて自動的に行われる、いわゆる、オートセット動作と呼ばれている。
ところが、このオートセット動作は、Zスライダ4をZ軸コラム3に沿って昇降させるのみであるため、例えば、図10のように、被測定物Wの測定面W1と平行になるように、X軸移動機構6を傾斜させた場合、Zスライダ4が触針8Cの軸方向とは異なる方向へ移動することになる。つまり、図11に示すように、Zスライダ4が触針8Cの軸方向とは異なるZ軸コラム3に沿って昇降するため、測定者に対して違和感を与えると同時に、検出器8の検出値とZスライダ4の昇降量が等しくないため、停止したときの誤差量が大きくなるという課題がある。
Among the measurement procedures described above, steps (e) to (h) are called so-called auto-set operations, which are automatically performed based on the operation of the measurement start button.
However, since this auto-set operation only moves the Z slider 4 up and down along the Z-axis column 3, for example, as shown in FIG. 10, the X slider is parallel to the measurement surface W1 of the object W to be measured. When the shaft moving mechanism 6 is tilted, the Z slider 4 moves in a direction different from the axial direction of the stylus 8C. That is, as shown in FIG. 11, the Z slider 4 moves up and down along the Z-axis column 3 different from the axial direction of the stylus 8C. Since the amount of elevation of the Z slider 4 is not equal to that of the Z slider 4, there is a problem that the amount of error when stopped is large.

また、測定にあたって、検出器8を被測定物Wの測定面に沿って移動させ、このときの検出器8からの検出値を基に測定面の表面性状を測定する機種のほかに、測定レンジの拡大を目的として、検出器8を被測定物Wの測定面に沿って移動させるとともに、検出器8からの検出値が所定値(予め設定した所定範囲内)になるようにZスライダ4をZ軸コラム3に沿って昇降させ、このZスライダ4の昇降量を基に測定面の表面性状を測定する、いわゆる、測定器追従型の機種の場合でも、X軸移動機構6の旋回角度に拘わらず、Zスライダ4がZ軸コラム3に沿って昇降するだけであるため、上述した課題がある。   In addition to the model that moves the detector 8 along the measurement surface of the object W to be measured and measures the surface properties of the measurement surface based on the detection value from the detector 8 at this time, the measurement range The Z slider 4 is moved so that the detection value from the detector 8 becomes a predetermined value (within a predetermined range set in advance) while moving the detector 8 along the measurement surface of the object W to be measured. Even in the case of a so-called measuring instrument follow-up type model that moves up and down along the Z-axis column 3 and measures the surface properties of the measurement surface based on the amount of movement of the Z-slider 4, the turning angle of the X-axis moving mechanism 6 is adjusted. Regardless, since the Z slider 4 only moves up and down along the Z-axis column 3, there is the above-described problem.

また、この種の測定機の中には、図12に示すように、触針8Cの向きをスタイラス8Bの軸線に対して回転できるようにした機種も知られているが、このものも、オートセット動作の方向がZ軸およびY軸方向に規定されているため、触針8Cの向きも90°毎に制限されている。その結果、触針8Cが被測定物Wの測定面に対して当接できない場合が生じるという課題がある。   In addition, as shown in FIG. 12, this type of measuring machine is known to be capable of rotating the direction of the stylus 8C with respect to the axis of the stylus 8B. Since the direction of the set operation is defined in the Z-axis and Y-axis directions, the direction of the stylus 8C is also limited every 90 °. As a result, there is a problem that the stylus 8C may not come into contact with the measurement surface of the workpiece W.

本発明の目的は、このような課題を解決すべくなされたもので、オートセット動作や測定器追従機能においても、高精度な設定や測定が期待できる表面性状測定機を提供することにある。   An object of the present invention is to provide a surface texture measuring instrument that can be expected to perform highly accurate setting and measurement even in an auto-set operation and a measuring instrument tracking function.

本発明の表面性状測定機は、被測定物と検出器とを被測定物の測定面に沿って相対移動させ、このときの検出器からの検出値を基に測定面の表面性状を測定する表面性状測定機、または、被測定物と検出器とを被測定物の測定面に沿って相対移動させるとともに、検出器からの検出値が所定値になるように検出器と被測定物との相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する表面性状測定機において、前記被測定物と前記検出器とを互いに直交する2軸方向へ相対移動させる第1移動機構および第2移動機構と、前記相対移動方向が前記被測定物の測定面と平行になるように前記第2移動機構を前記第1移動機構に対して傾斜させる傾斜機構と、この傾斜機構の傾斜角を記憶する傾斜角記憶手段と、この傾斜角記憶手段に記憶された傾斜角に基づいて、前記被測定物と前記検出器との相対距離が前記被測定物の測定面に対して垂直方向に変化するように、前記第1移動機構および第2移動機構の駆動を制御する制御手段とを備えたことを特徴とする。   The surface texture measuring instrument of the present invention relatively moves the object to be measured and the detector along the measurement surface of the object to be measured, and measures the surface texture of the measurement surface based on the detection value from the detector at this time. The surface texture measuring device or the object to be measured and the detector are relatively moved along the measurement surface of the object to be measured, and the detector and the object to be measured are adjusted so that the detection value from the detector becomes a predetermined value. In a surface texture measuring instrument that changes the relative distance and measures the surface texture of the measurement surface based on the relative distance data, a first movement for relatively moving the object to be measured and the detector in two axial directions perpendicular to each other. A mechanism and a second moving mechanism; a tilting mechanism for tilting the second moving mechanism with respect to the first moving mechanism so that the relative moving direction is parallel to the measurement surface of the object to be measured; and Inclination angle storage means for storing the inclination angle and the inclination angle Based on the inclination angle stored in the memory means, the first moving mechanism and the first moving mechanism are arranged so that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. And a control means for controlling the driving of the two-movement mechanism.

この発明によれば、傾斜機構によって、被測定物と検出器との相対移動方向が、被測定物の測定面と平行になるように、第2移動機構を第1移動機構に対して傾斜させると、この傾斜機構の傾斜角が傾斜角記憶手段に記憶される。すると、制御手段によって、傾斜角記憶手段に記憶された傾斜角に基づいて、被測定物と検出器との相対距離が被測定物の測定面に対して垂直方向に変化するように、第1移動機構および第2移動機構の駆動が制御される。
従って、オートセット動作では、第1移動機構および第2移動機構の駆動制御により、被測定物と検出器との相対距離が被測定物の測定面に対して垂直方向に変化されるから、違和感がなく、しかも、検出器の向きと、被測定物と検出器との相対距離変化方向とが一致しているから、誤差量が少なく、高精度なオートセット動作を実現できる。
また、検出器追従型の機種にあっても、検出器の向きと、被測定物と検出器との相対距離変化方向とが一致しているから、誤差量が少なく、高精度な測定が期待できる。
According to this invention, the second moving mechanism is tilted with respect to the first moving mechanism by the tilting mechanism so that the relative movement direction of the measured object and the detector is parallel to the measurement surface of the measured object. Then, the tilt angle of the tilt mechanism is stored in the tilt angle storage means. Then, the control means causes the first distance so that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured based on the inclination angle stored in the inclination angle storage means. Driving of the moving mechanism and the second moving mechanism is controlled.
Therefore, in the auto-set operation, the relative distance between the object to be measured and the detector is changed in the direction perpendicular to the measurement surface of the object to be measured due to the drive control of the first moving mechanism and the second moving mechanism. In addition, since the direction of the detector and the relative distance change direction between the object to be measured and the detector coincide with each other, the amount of error is small and a highly accurate autoset operation can be realized.
Even in detector-following models, the direction of the detector and the relative distance change direction between the object to be measured and the detector match, so there is little error and high-precision measurements are expected. it can.

本発明の表面性状測定機は、被測定物と検出器とを被測定物の測定面に沿って相対移動させ、このときの検出器からの検出値を基に測定面の表面性状を測定する表面性状測定機、または、被測定物と検出器とを被測定物の測定面に沿って相対移動させるとともに、検出器からの検出値が所定値になるように検出器と被測定物との相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する表面性状測定機において、前記被測定物と前記検出器とを互いに直交する3軸方向へ相対移動させる第1移動機構、第2移動機構および第3移動機構と、前記検出器の向きを前記第3移動機構の移動方向軸線を中心として回転させる回転機構と、この回転機構の回転角を記憶する回転角記憶手段と、この回転角記憶手段に記憶された回転角に基づいて、前記被測定物と前記検出器との相対距離が被測定物の測定面に対して垂直方向に変化するように、前記第1移動機構および第2移動機構の駆動を制御する制御手段とを備えたことを特徴とする。   The surface texture measuring instrument of the present invention relatively moves the object to be measured and the detector along the measurement surface of the object to be measured, and measures the surface texture of the measurement surface based on the detection value from the detector at this time. The surface texture measuring device or the object to be measured and the detector are relatively moved along the measurement surface of the object to be measured, and the detector and the object to be measured are adjusted so that the detection value from the detector becomes a predetermined value. In a surface texture measuring machine that changes the relative distance and measures the surface texture of the measurement surface based on the relative distance data, a first movement that relatively moves the object to be measured and the detector in three axial directions orthogonal to each other. Mechanism, second moving mechanism and third moving mechanism, a rotating mechanism for rotating the direction of the detector around the moving direction axis of the third moving mechanism, and a rotation angle storage means for storing the rotation angle of the rotating mechanism And the rotation stored in the rotation angle storage means And controlling the driving of the first moving mechanism and the second moving mechanism so that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. Means.

この発明によれば、回転機構によって、検出器の向きを被測定物の測定面に対して垂直方向になるように、第3移動機構の移動方向軸線を中心として回転させると、この回転機構の回転角が回転角記憶手段に記憶される。すると、制御手段によって、回転角記憶手段に記憶された回転角に基づいて、被測定物と検出器との相対距離が被測定物の測定面に対して垂直方向に変化するように、第1移動機構および第2移動機構の駆動が制御される。
従って、オートセット動作では、第1移動機構および第2移動機構の駆動制御により、被測定物と検出器との相対距離が被測定物の測定面に対して垂直方向に変化されるから、違和感がなく、しかも、検出器の向き(変位量)と、被測定物と検出器との相対距離変化方向とが一致しているから、誤差量が少なく、高精度なオートセット動作を実現できる。
また、検出器追従型の機種にあっても、検出器の向き(変位量)と、被測定物と検出器との相対距離変化方向とが一致しているから、誤差量が少なく、高精度な測定が期待できる。
According to the present invention, when the rotation mechanism is rotated about the movement direction axis of the third movement mechanism so that the direction of the detector is perpendicular to the measurement surface of the object to be measured, The rotation angle is stored in the rotation angle storage means. Then, the control means causes the first distance so that the relative distance between the object to be measured and the detector changes in the direction perpendicular to the measurement surface of the object to be measured based on the rotation angle stored in the rotation angle storage means. Driving of the moving mechanism and the second moving mechanism is controlled.
Therefore, in the auto-set operation, the relative distance between the object to be measured and the detector is changed in the direction perpendicular to the measurement surface of the object to be measured due to the drive control of the first moving mechanism and the second moving mechanism. In addition, since the direction of the detector (displacement amount) and the relative distance change direction between the object to be measured and the detector coincide with each other, the amount of error is small and a highly accurate autoset operation can be realized.
Even in detector-following models, the direction of the detector (displacement) matches the direction of relative distance change between the object to be measured and the detector, so there is little error and high accuracy. Can be expected.

本発明の表面性状測定機は、被測定物と検出器とを被測定物の測定面に沿って相対移動させ、このときの検出器からの検出値を基に測定面の表面性状を測定する表面性状測定機、または、被測定物と検出器とを被測定物の測定面に沿って相対移動させるとともに、検出器からの検出値が所定値になるように検出器と被測定物との相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する表面性状測定機において、前記被測定物と前記検出器とを互いに直交する3軸方向へ相対移動させる第1移動機構、第2移動機構および第3移動機構と、前記相対移動方向が前記被測定物の測定面と平行になるように前記第3移動機構を前記第2移動機構に対して傾斜させる傾斜機構と、この傾斜機構の傾斜角を記憶する傾斜角記憶手段と、前記検出器の向きを前記第3移動機構の移動方向軸線を中心として回転させる回転機構と、この回転機構の回転角を記憶する回転角記憶手段と、前記傾斜角記憶手段に記憶された傾斜角に基づいて、前記被測定物と前記検出器との相対距離が前記被測定物の測定面に対して垂直方向に変化するように、前記第2移動機構および第3移動機構の駆動を制御するとともに、前記回転角記憶手段に記憶された回転角に基づいて、前記被測定物と前記検出器との相対距離が被測定物の測定面に対して垂直方向に変化するように、前記第1移動機構および第2移動機構の駆動を制御する制御手段とを備えたことを特徴とする。
この発明によれば、上述した効果を同時に期待できる。
The surface texture measuring instrument of the present invention relatively moves the object to be measured and the detector along the measurement surface of the object to be measured, and measures the surface texture of the measurement surface based on the detection value from the detector at this time. The surface texture measuring device or the object to be measured and the detector are relatively moved along the measurement surface of the object to be measured, and the detector and the object to be measured are adjusted so that the detection value from the detector becomes a predetermined value. In a surface texture measuring machine that changes the relative distance and measures the surface texture of the measurement surface based on the relative distance data, a first movement that relatively moves the object to be measured and the detector in three axial directions orthogonal to each other. A mechanism, a second moving mechanism, and a third moving mechanism, and an inclination mechanism for inclining the third moving mechanism with respect to the second moving mechanism so that the relative moving direction is parallel to the measurement surface of the object to be measured. Inclination angle storage means for storing the inclination angle of the inclination mechanism A rotation mechanism for rotating the direction of the detector around the movement direction axis of the third movement mechanism, a rotation angle storage means for storing the rotation angle of the rotation mechanism, and an inclination stored in the inclination angle storage means Based on the angle, the driving of the second moving mechanism and the third moving mechanism is controlled so that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. And, based on the rotation angle stored in the rotation angle storage means, the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. And a control means for controlling driving of the first moving mechanism and the second moving mechanism.
According to the present invention, the above-described effects can be expected at the same time.

本発明の表面性状測定機において、前記制御手段は、スタート指令が与えられたことを条件に、前記検出器が被測定物の測定面に対して垂直方向から接近するように、いずれかの移動機構を移動させ、前記検出器からの検出値が予め設定した所定値を超えた際に移動機構の駆動を停止させることが好ましい。
この発明によれば、スタート指令が与えられると、検出器が被測定物の測定面に対して垂直方向から接近するように、いずれかの移動機構が動作される。やがて、検出器からの検出値が予め設定した所定値を超えると、移動機構の駆動が停止されるから、スタート指令を与えるだけでオートセット動作を実行できる。
In the surface texture measuring instrument according to the present invention, the control means may move either so that the detector approaches from the vertical direction with respect to the measurement surface of the object under the condition that a start command is given. It is preferable to stop the driving of the moving mechanism when the mechanism is moved and the detection value from the detector exceeds a predetermined value set in advance.
According to the present invention, when a start command is given, one of the moving mechanisms is operated so that the detector approaches the measurement surface of the object to be measured from the vertical direction. Eventually, when the detection value from the detector exceeds a predetermined value set in advance, the driving of the moving mechanism is stopped, so that the auto-set operation can be executed simply by giving a start command.

本発明の表面性状測定機において、前記制御手段は、前記移動機構の駆動を停止させたのち、前記移動機構を前記とは逆方向へかつ前記速度より低速で駆動させ、前記検出器からの検出値が予め設定した所定値に達した際に移動機構の駆動を停止させることが好ましい。
この発明によれば、オートセット動作において、移動機構の駆動を停止させたのち、移動機構を前記とは逆方向へかつ前記速度より低速で駆動させ、検出器からの検出値が予め設定した所定値に達した際に移動機構の駆動が停止されるから、検出器を所定位置に高精度に位置決めできる。
In the surface texture measuring instrument according to the present invention, the control means stops the driving of the moving mechanism, and then drives the moving mechanism in the opposite direction and at a speed lower than the speed to detect from the detector. It is preferable to stop driving the moving mechanism when the value reaches a predetermined value.
According to the present invention, in the auto-set operation, after the driving of the moving mechanism is stopped, the moving mechanism is driven in the opposite direction and at a lower speed than the speed, and the detection value from the detector is set to a predetermined value. Since the driving of the moving mechanism is stopped when the value is reached, the detector can be positioned at a predetermined position with high accuracy.

本発明の表面性状測定機において、前記検出器は、前記移動機構によって移動される検出器本体と、この検出器本体に揺動可能に支持されたスタイラスと、このスタイラスの先端に設けられた触針と、前記スタイラスの揺動量を検出する検出部とから構成されていることが好ましい。
この発明によれば、接触式の表面性状測定機において、高精度な測定を保障できる。
In the surface texture measuring instrument of the present invention, the detector includes a detector main body moved by the moving mechanism, a stylus supported by the detector main body so as to be swingable, and a touch provided at the tip of the stylus. It is preferable that it is comprised from the needle | hook and the detection part which detects the rocking | fluctuation amount of the said stylus.
According to the present invention, highly accurate measurement can be ensured in a contact-type surface texture measuring machine.

<全体構成(図1)の説明>
図1は、本発明の一実施形態を示す表面粗さ測定機の正面図である。この表面粗さ測定機は、被測定物Wを載置するベース1と、このベース1上に前後方向(Y軸方向)へ移動可能に設けられたYスライダ2と、このYスライダ2の上面に垂直に立設されたZ軸コラム3と、このZ軸コラム3に上下方向(Z軸方向)へ昇降可能に設けられたZスライダ4と、このZスライダ4にY軸を中心として旋回可能に設けられた旋回プレート5と、この旋回プレート5に取り付けられたX軸移動機構6と、このX軸移動機構6によってZ軸コラム3に対して直交する方向(X軸方向)へ移動される回転機構としての検出器回転機構7と、この検出器回転機構7によってX軸を中心として回転される粗さ検出器8とから構成されている。
<Description of overall configuration (FIG. 1)>
FIG. 1 is a front view of a surface roughness measuring machine showing an embodiment of the present invention. The surface roughness measuring machine includes a base 1 on which a workpiece W is placed, a Y slider 2 provided on the base 1 so as to be movable in the front-rear direction (Y-axis direction), and an upper surface of the Y slider 2. A Z-axis column 3 erected vertically, a Z-slider 4 provided on the Z-axis column 3 so as to be movable up and down (Z-axis direction), and the Z-slider 4 can be swiveled around the Y-axis. , The X-axis moving mechanism 6 attached to the rotating plate 5, and the X-axis moving mechanism 6 moves in a direction orthogonal to the Z-axis column 3 (X-axis direction). A detector rotating mechanism 7 serving as a rotating mechanism and a roughness detector 8 rotated about the X axis by the detector rotating mechanism 7 are configured.

つまり、本実施形態の表面粗さ測定機は、被測定物Wと粗さ検出器8とが、Yスライダ2をY軸方向へ移動させる第1移動機構、Zスライダ4をZ軸方向へ移動させる第2移動機構および第3移動機構であるX軸移動機構6によって、互いに直交する3軸(Y,Z,X軸)方向へ相対移動可能に構成されている。また、旋回プレート5を傾斜させる傾斜機構によって、被測定物Wと粗さ検出器8との相対移動方向が被測定物の測定面と平行になるように、第3移動機構であるX軸移動機構6がZスライダ4の移動方向に対して傾斜可能に構成され、更に、検出器回転機構7によって、粗さ検出器8の向きがX軸移動機構6の移動方向軸線(X軸線)を中心として回転可能に構成されている。   That is, in the surface roughness measuring machine of this embodiment, the workpiece W and the roughness detector 8 are the first moving mechanism for moving the Y slider 2 in the Y axis direction, and the Z slider 4 is moved in the Z axis direction. The second moving mechanism and the X moving mechanism 6 that is the third moving mechanism are configured to be relatively movable in the directions of three axes (Y, Z, X axes) orthogonal to each other. Further, the tilting mechanism that tilts the swivel plate 5 moves the X-axis that is the third moving mechanism so that the relative movement direction of the workpiece W and the roughness detector 8 is parallel to the measurement surface of the workpiece. The mechanism 6 is configured to be tiltable with respect to the moving direction of the Z slider 4, and the direction of the roughness detector 8 is centered on the moving direction axis (X axis) of the X axis moving mechanism 6 by the detector rotating mechanism 7. Is configured to be rotatable.

<検出器回転機構(図2)の説明>
図2は、検出器回転機構7を示す概略図である。検出器回転機構7は、X軸駆動装置6によってX軸方向へ移動される筐体10と、この筐体10内に固定されたモータ11と、筐体10内に軸受12を介してモータ11の出力軸11Aと同軸上で回転可能に支持され先端に粗さ検出器8を保持した回転軸14と、この回転軸14とモータ11の出力軸11Aとを連結する軸継手15とから構成されている。
回転軸14(粗さ検出器8)の回転角を検出する回転角検出器16は、回転軸14に固定された外周縁に沿って一定ピッチで透孔を有する回転円盤17と、この回転円盤17を挟んで対向配置された発光素子および受光素子からなる検出ヘッド18とから構成されている。
なお、粗さ検出器8は、X軸移動機構6によって移動される検出器本体8Aと、この検出器本体8Aに揺動可能に支持されたスタイラス8Bと、このスタイラス8Bの先端に直角に突設された触針8Cと、このスタイラス8Bの揺動を検出する検出部8Dとから構成されている。
<Description of detector rotation mechanism (FIG. 2)>
FIG. 2 is a schematic view showing the detector rotating mechanism 7. The detector rotation mechanism 7 includes a housing 10 that is moved in the X-axis direction by the X-axis drive device 6, a motor 11 that is fixed in the housing 10, and a motor 11 that is provided in the housing 10 via a bearing 12. The rotary shaft 14 is rotatably supported on the same axis as the output shaft 11A and holds the roughness detector 8 at the tip thereof, and a shaft coupling 15 that connects the rotary shaft 14 and the output shaft 11A of the motor 11 to each other. ing.
The rotation angle detector 16 for detecting the rotation angle of the rotation shaft 14 (roughness detector 8) includes a rotation disk 17 having through holes at a constant pitch along the outer peripheral edge fixed to the rotation shaft 14, and the rotation disk. And a detection head 18 composed of a light emitting element and a light receiving element which are arranged to face each other with 17 interposed therebetween.
The roughness detector 8 includes a detector main body 8A that is moved by the X-axis moving mechanism 6, a stylus 8B that is swingably supported by the detector main body 8A, and a protrusion perpendicular to the tip of the stylus 8B. The stylus 8C is provided, and a detection unit 8D that detects the swing of the stylus 8B.

<制御装置(図3)の説明>
図3は、制御装置のブロック図である。制御装置30には、Y軸移動機構32およびY軸位置検出器33と、Z軸移動機構34およびZ軸位置検出器35と、傾斜機構36および傾斜角検出器37と、X軸移動機構6およびX軸位置検出器38と、検出器回転機構7および回転角検出器16と、粗さ検出器8と、入力装置39と、表示装置41と、記憶装置42とがそれぞれ接続されている。
Y軸移動機構32は、Yスライダ2をY軸方向へ移動させる機構、Y軸位置検出器33は、Yスライダ2のY軸位置を検出する。Z軸移動機構34は、Zスライダ4をZ軸方向へ移動させる機構、Z軸位置検出器35は、Zスライダ4のZ軸位置を検出する。傾斜機構36は、旋回プレート5をY軸を中心として傾斜させる機構、傾斜角検出器37は、旋回プレート5の傾斜角を検出する。X軸移動機構6は、粗さ検出器8をX軸方向へ移動させる機構、X軸位置検出器38は、粗さ検出器8のX軸位置を検出する。
<Description of Control Device (FIG. 3)>
FIG. 3 is a block diagram of the control device. The control device 30 includes a Y-axis movement mechanism 32 and a Y-axis position detector 33, a Z-axis movement mechanism 34 and a Z-axis position detector 35, an inclination mechanism 36 and an inclination angle detector 37, and an X-axis movement mechanism 6. The X-axis position detector 38, the detector rotation mechanism 7 and the rotation angle detector 16, the roughness detector 8, the input device 39, the display device 41, and the storage device 42 are connected to each other.
The Y-axis moving mechanism 32 is a mechanism for moving the Y slider 2 in the Y-axis direction, and the Y-axis position detector 33 detects the Y-axis position of the Y slider 2. The Z-axis moving mechanism 34 moves the Z slider 4 in the Z-axis direction, and the Z-axis position detector 35 detects the Z-axis position of the Z slider 4. The tilt mechanism 36 is a mechanism for tilting the swivel plate 5 around the Y axis, and the tilt angle detector 37 detects the tilt angle of the swivel plate 5. The X-axis moving mechanism 6 is a mechanism for moving the roughness detector 8 in the X-axis direction, and the X-axis position detector 38 detects the X-axis position of the roughness detector 8.

入力装置39からは、測定項目の選択、測定開始指令などのほか、各種指令情報が入力される。
表示装置41には、測定項目や測定結果などが表示される。
記憶装置42には、測定項目に対応した動作指令プログラムや、測定結果が記憶されるようになっているとともに、Yスライダ2のY軸位置を記憶するY軸メモリ43、Zスライダ4のZ軸位置を記憶するZ軸メモリ44、旋回プレート5の傾斜角θを記憶する傾斜角記憶手段としての傾斜角メモリ45、粗さ検出器8のX軸位置を記憶するX軸メモリ46、粗さ検出器8の回転角γを記憶する回転角記憶手段としての回転角メモリ47、粗さ検出器8の検出値δを記憶する検出値メモリ48などが設けられている。
From the input device 39, various command information is input in addition to measurement item selection, measurement start command, and the like.
The display device 41 displays measurement items, measurement results, and the like.
The storage device 42 stores an operation command program corresponding to a measurement item and a measurement result, and also stores a Y-axis memory 43 for storing the Y-axis position of the Y slider 2 and a Z-axis of the Z slider 4. Z-axis memory 44 for storing the position, tilt-angle memory 45 as tilt-angle storage means for storing the tilt angle θ of the swivel plate 5, X-axis memory 46 for storing the X-axis position of the roughness detector 8, and roughness detection A rotation angle memory 47 as a rotation angle storage means for storing the rotation angle γ of the device 8, a detection value memory 48 for storing the detection value δ of the roughness detector 8, and the like are provided.

制御装置30は、記憶装置42に記憶された各種測定項目の動作指令プログラムに基づいて、Y軸移動機構32、Z軸移動機構34、傾斜機構36、X軸移動機構6、回転機構7などの駆動を制御し、被測定物Wと粗さ検出器8とを被測定物Wの測定面に沿って相対移動させ、このときの粗さ検出器8からの検出値を基に測定面の表面性状を測定する。または、被測定物Wと粗さ検出器8とを被測定物Wの測定面に沿って相対移動させるとともに、粗さ検出器8からの検出値が所定値になるように粗さ検出器8と被測定物Wとの相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する。   Based on the operation command program for various measurement items stored in the storage device 42, the control device 30 includes a Y-axis movement mechanism 32, a Z-axis movement mechanism 34, a tilt mechanism 36, an X-axis movement mechanism 6, a rotation mechanism 7, and the like. The driving is controlled, and the workpiece W and the roughness detector 8 are relatively moved along the measurement surface of the workpiece W, and the surface of the measurement surface is based on the detection value from the roughness detector 8 at this time. Measure properties. Alternatively, the object to be measured W and the roughness detector 8 are relatively moved along the measurement surface of the object to be measured W, and the roughness detector 8 is set so that the detection value from the roughness detector 8 becomes a predetermined value. The surface distance of the measurement surface is measured based on the relative distance data.

また、制御装置30は、オートセット動作のスタート指令が与えられると、粗さ検出器8が被測定物Wの測定面に対して垂直方向から接近するように、各移動機構を移動させる。具体的には、傾斜角メモリ45に記憶された傾斜角に基づいて、被測定物Wと粗さ検出器8との相対距離が被測定物Wの測定面に対して垂直方向に変化するように、第2移動機構であるZ軸移動機構34および第3移動機構であるX軸移動機構6の駆動を制御するとともに、回転角メモリ47に記憶された回転角に基づいて、被測定物Wと粗さ検出器8との相対距離が被測定物Wの測定面に対して垂直方向に変化するように、第1移動機構であるY軸移動機構32および第2移動機構であるZ軸移動機構34の駆動を制御する。
この際、粗さ検出器8からの検出値が予め設定した所定値を超えた際に各移動機構の駆動を停止させたのち、各移動機構を前記とは逆方向へかつ前記速度より低速で駆動させ、粗さ検出器8からの検出値が予め設定した所定値に達した際に各移動機構の駆動を停止させる。
Further, when the start command for the auto-set operation is given, the control device 30 moves each moving mechanism so that the roughness detector 8 approaches the measurement surface of the workpiece W from the vertical direction. Specifically, based on the tilt angle stored in the tilt angle memory 45, the relative distance between the workpiece W and the roughness detector 8 changes in a direction perpendicular to the measurement surface of the workpiece W. In addition, while controlling the driving of the Z-axis moving mechanism 34, which is the second moving mechanism, and the X-axis moving mechanism 6, which is the third moving mechanism, based on the rotation angle stored in the rotation angle memory 47, the workpiece W The Y-axis movement mechanism 32 that is the first movement mechanism and the Z-axis movement that is the second movement mechanism so that the relative distance between the roughness detector 8 and the roughness detector 8 changes in the direction perpendicular to the measurement surface of the workpiece W. The drive of the mechanism 34 is controlled.
At this time, after the detection value from the roughness detector 8 exceeds a predetermined value set in advance, the driving of each moving mechanism is stopped, and then each moving mechanism is moved in the opposite direction and at a lower speed than the above speed. When the detected value from the roughness detector 8 reaches a predetermined value set in advance, the driving of each moving mechanism is stopped.

<オートセット動作(図4〜図6)の説明>
被測定物Wの表面性状を測定するにあたっては、まず、ベース1上にテーブルなどを使って被測定物Wを載置し、粗さ検出器8の触針8Cを被測定物Wの測定面に当接させる。これには、まず、粗さ検出器8の触針8Cが被測定物Wの測定面に対して垂直になるように、粗さ検出器8の姿勢を変化させる。
例えば、図4に示すように、被測定物Wの測定面W1がX軸に対して傾斜していた場合には、旋回プレート5の旋回動作によりX軸移動機構6を傾斜させ、粗さ検出器8の触針8Cを被測定物Wの測定面W1に対して垂直になるように調整するとともに、走査方向(X軸移動機構6の移動方向)が被測定物Wの測定面W1に対して平行になるように調整する。すると、旋回プレート5の傾斜角度が傾斜角検出器37によって検出されたのち、記憶装置42の傾斜角メモリ45に記憶される。
<Description of Auto Set Operation (FIGS. 4 to 6)>
In measuring the surface property of the workpiece W, first, the workpiece W is placed on the base 1 using a table or the like, and the stylus 8C of the roughness detector 8 is placed on the measurement surface of the workpiece W. Abut. For this purpose, first, the posture of the roughness detector 8 is changed so that the stylus 8C of the roughness detector 8 is perpendicular to the measurement surface of the workpiece W.
For example, as shown in FIG. 4, when the measurement surface W1 of the workpiece W is inclined with respect to the X axis, the X axis moving mechanism 6 is inclined by the turning operation of the turning plate 5 to detect the roughness. The stylus 8C of the device 8 is adjusted to be perpendicular to the measurement surface W1 of the object W to be measured, and the scanning direction (the moving direction of the X-axis moving mechanism 6) is relative to the measurement surface W1 of the object W to be measured. Adjust so that they are parallel. Then, the inclination angle of the turning plate 5 is detected by the inclination angle detector 37 and then stored in the inclination angle memory 45 of the storage device 42.

この後、入力装置39からオートセット動作のスタート指令を与える。すると、制御装置30は、傾斜角メモリ45に記憶された傾斜角に基づいて、被測定物Wと粗さ検出器8との相対距離が被測定物Wの測定面W1に対して垂直方向に変化するように、Z軸移動機構34およびX軸移動機構6の駆動を制御する。つまり、図5に示すように、粗さ検出器8が触針8Cの軸方向へ移動するように、Zスライダ4を下降させると同時に、X軸移動機構6を図5中右方向へ駆動させる。
これにより、粗さ検出器8が触針8Cの軸方向へ移動されていく。やがて、粗さ検出器8からの検出値が予め設定した所定値を超えた時点で、Z軸移動機構34およびX軸移動機構6の駆動を停止させる。続いて、各移動機構を前記とは逆方向へかつ前記速度より低速で駆動させ、粗さ検出器8からの検出値が予め設定した所定値に達した際に各移動機構の駆動を停止させる。
この状態において、X軸移動機構6を駆動させると、粗さ検出器8が被測定物Wの測定面W1に沿って移動される。すると、そのときの触針8C(スタイラス8B)の上下方向の変位が検出されるから、この粗さ検出器8からの検出値を基に測定面W1の表面粗さ等を検出することができる。
Thereafter, a start command for auto-set operation is given from the input device 39. Then, based on the tilt angle stored in the tilt angle memory 45, the control device 30 causes the relative distance between the workpiece W and the roughness detector 8 to be perpendicular to the measurement surface W1 of the workpiece W. The driving of the Z-axis moving mechanism 34 and the X-axis moving mechanism 6 is controlled so as to change. That is, as shown in FIG. 5, the Z-slider 4 is lowered so that the roughness detector 8 moves in the axial direction of the stylus 8C, and at the same time, the X-axis moving mechanism 6 is driven rightward in FIG. .
Thereby, the roughness detector 8 is moved in the axial direction of the stylus 8C. Eventually, when the detected value from the roughness detector 8 exceeds a predetermined value set in advance, the driving of the Z-axis moving mechanism 34 and the X-axis moving mechanism 6 is stopped. Subsequently, each moving mechanism is driven in a direction opposite to the above and at a lower speed than the above speed, and when the detected value from the roughness detector 8 reaches a predetermined value set in advance, the driving of each moving mechanism is stopped. .
In this state, when the X-axis moving mechanism 6 is driven, the roughness detector 8 is moved along the measurement surface W1 of the workpiece W. Then, since the vertical displacement of the stylus 8C (stylus 8B) at that time is detected, the surface roughness or the like of the measurement surface W1 can be detected based on the detection value from the roughness detector 8. .

また、図6に示すように、被測定物Wの測定面W2がY軸に対して傾斜していた場合には、回転機構7の回転動作により粗さ検出器8の向き(触針8Cの向き)を回転させ、粗さ検出器8の触針8Cを被測定物Wの測定面W2に対して垂直になるように調整するとともに、走査方向(X軸移動機構6による移動方向)が被測定物Wの測定面W2に対して平行になるように調整する。
具体的には、スタイラス8Bの触針8Cの向きを変える場合、入力装置39から触針8Cの向きを指令する。すると、検出器回転機構7のモータ11が回転される。モータ11が回転すると、回転軸14も回転される結果、粗さ検出器8が回転される。粗さ検出器8の回転角は、回転角検出器16によって検出されたのち、記憶装置42の回転角メモリ47に記憶される。
Also, as shown in FIG. 6, when the measurement surface W2 of the workpiece W is inclined with respect to the Y axis, the direction of the roughness detector 8 (the stylus 8C of the stylus 8C) The stylus 8C of the roughness detector 8 is adjusted to be perpendicular to the measurement surface W2 of the workpiece W, and the scanning direction (moving direction by the X-axis moving mechanism 6) is adjusted. Adjustment is made so as to be parallel to the measurement surface W2 of the workpiece W.
Specifically, when changing the direction of the stylus 8C of the stylus 8B, the input device 39 commands the direction of the stylus 8C. Then, the motor 11 of the detector rotating mechanism 7 is rotated. When the motor 11 is rotated, the rotation shaft 14 is also rotated. As a result, the roughness detector 8 is rotated. The rotation angle of the roughness detector 8 is detected by the rotation angle detector 16 and then stored in the rotation angle memory 47 of the storage device 42.

この後、入力装置39からオートセット動作のスタート指令を与える。すると、制御装置30は、回転角メモリ47に記憶された回転角に基づいて、被測定物Wと粗さ検出器8との相対距離が被測定物Wの測定面W2に対して垂直方向に変化するように、第1移動機構であるY軸移動機構32および第2移動機構であるZ軸移動機構34の駆動を制御する。つまり、粗さ検出器8が触針8Cの軸方向へ移動するように、Zスライダ4を下降させると同時に、Yスライダ2をY軸方向へ移動させる。
これにより、粗さ検出器8が触針8Cの軸方向へ移動していくが、以後の動作は上記と同じである。
Thereafter, a start command for auto-set operation is given from the input device 39. Then, the control device 30 determines that the relative distance between the workpiece W and the roughness detector 8 is perpendicular to the measurement surface W2 of the workpiece W based on the rotation angle stored in the rotation angle memory 47. The driving of the Y-axis moving mechanism 32 that is the first moving mechanism and the Z-axis moving mechanism 34 that is the second moving mechanism is controlled so as to change. In other words, the Z slider 4 is lowered and the Y slider 2 is moved in the Y-axis direction so that the roughness detector 8 moves in the axial direction of the stylus 8C.
As a result, the roughness detector 8 moves in the axial direction of the stylus 8C, but the subsequent operation is the same as described above.

従って、オートセット動作において、被測定物Wの測定面W1,W2に対して、粗さ検出器8の触針8Cが垂直になるように、走査軸であるX軸移動機構6を傾斜させた場合、あるいは、粗さ検出器8の触針8Cの向きをX軸移動機構6の移動軸を中心として回転させた場合でも、粗さ検出器8は触針8Cの軸方向へ変位されるため、従来の誤差の問題も少なく、高精度なオートセット動作が実現できる。
しかも、粗さ検出器8の触針8Cの向きが、従来のように90°間隔に制限されないので、被測定物のどのような角度の測定面に対しても粗さ検出器8の触針8Cを当接させることができる。そのため、測定部位が制限されることが少ない。
Accordingly, in the auto-set operation, the X-axis moving mechanism 6 that is the scanning axis is inclined so that the stylus 8C of the roughness detector 8 is perpendicular to the measurement surfaces W1 and W2 of the workpiece W. In this case, or even when the direction of the stylus 8C of the roughness detector 8 is rotated about the movement axis of the X-axis moving mechanism 6, the roughness detector 8 is displaced in the axial direction of the stylus 8C. Therefore, there are few problems of conventional errors, and a highly accurate auto-set operation can be realized.
In addition, since the orientation of the stylus 8C of the roughness detector 8 is not limited to 90 ° intervals as in the prior art, the stylus of the roughness detector 8 can be applied to the measurement surface at any angle of the object to be measured. 8C can be brought into contact. Therefore, the measurement site is rarely limited.

<検出器追従機能(図4〜図6)の説明>
検出器追従機能では、被測定物Wと粗さ検出器8とを被測定物Wの測定面に沿って相対移動させるとともに、粗さ検出器8からの検出値が所定値(予め設定した所定範囲内)になるように粗さ検出器8と被測定物Wとの相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する。
この場合でも、図4に示すように、被測定物Wの測定面W1がX軸に対して傾斜していた場合には、制御装置30は、傾斜角メモリ45に記憶された傾斜角に基づいて、被測定物Wと粗さ検出器8との相対距離が被測定物Wの測定面W1に対して垂直方向に変化するように、Z軸移動機構34およびX軸移動機構6の駆動を制御する。つまり、図5に示すように、粗さ検出器8が触針8Cの軸方向へ移動するように、Zスライダ4を昇降させると同時に、X軸移動機構6を駆動させる。
<Description of detector tracking function (FIGS. 4 to 6)>
In the detector tracking function, the object to be measured W and the roughness detector 8 are relatively moved along the measurement surface of the object to be measured W, and the detection value from the roughness detector 8 is a predetermined value (predetermined predetermined value). The relative distance between the roughness detector 8 and the workpiece W is changed so as to be within the range, and the surface properties of the measurement surface are measured based on the relative distance data.
Even in this case, as shown in FIG. 4, when the measurement surface W <b> 1 of the workpiece W is tilted with respect to the X axis, the control device 30 is based on the tilt angle stored in the tilt angle memory 45. Thus, the Z-axis moving mechanism 34 and the X-axis moving mechanism 6 are driven so that the relative distance between the object to be measured W and the roughness detector 8 changes in the direction perpendicular to the measurement surface W1 of the object to be measured W. Control. That is, as shown in FIG. 5, the Z-slider 4 is moved up and down and the X-axis moving mechanism 6 is driven so that the roughness detector 8 moves in the axial direction of the stylus 8C.

また、図6に示すように、被測定物Wの測定面W2がY軸に対して傾斜していた場合には、制御装置30は、回転角メモリ47に記憶された回転角に基づいて、被測定物Wと粗さ検出器8との相対距離が被測定物Wの測定面W2に対して垂直方向に変化するように、Y軸移動機構32およびZ軸移動機構34の駆動を制御する。つまり、粗さ検出器8が触針8Cの軸方向へ移動するように、Zスライダ4を昇降させると同時に、Y軸移動機構32を駆動させる。   Further, as shown in FIG. 6, when the measurement surface W2 of the workpiece W is inclined with respect to the Y axis, the control device 30 is based on the rotation angle stored in the rotation angle memory 47. The driving of the Y-axis moving mechanism 32 and the Z-axis moving mechanism 34 is controlled so that the relative distance between the measured object W and the roughness detector 8 changes in the direction perpendicular to the measurement surface W2 of the measured object W. . That is, the Z-slider 4 is moved up and down so that the roughness detector 8 moves in the axial direction of the stylus 8C, and at the same time, the Y-axis moving mechanism 32 is driven.

従って、検出器追従機能において、被測定物Wの測定面W1,W2に対して、粗さ検出器8の触針8Cが垂直になるように、走査軸であるX軸移動機構6を傾斜させた場合、あるいは、粗さ検出器8の触針8Cの向きをX軸移動機構の移動軸を中心として回転させた場合でも、粗さ検出器8は触針8Cの軸方向へ追従されるため、従来の誤差の問題も少なく、高精度な測定が実現できる。
しかも、粗さ検出器8の触針8Cの向きが、従来のように90°間隔に制限されないので、被測定物のどのような角度の測定面に対しても粗さ検出器8の触針8Cを当接させることができる。そのため、測定部位が制限されることが少ない。
Therefore, in the detector tracking function, the X-axis moving mechanism 6 that is the scanning axis is inclined so that the stylus 8C of the roughness detector 8 is perpendicular to the measurement surfaces W1 and W2 of the workpiece W. Or when the direction of the stylus 8C of the roughness detector 8 is rotated about the movement axis of the X-axis movement mechanism, the roughness detector 8 follows the axial direction of the stylus 8C. Therefore, there are few problems of conventional errors, and highly accurate measurement can be realized.
In addition, since the orientation of the stylus 8C of the roughness detector 8 is not limited to 90 ° intervals as in the prior art, the stylus of the roughness detector 8 can be applied to the measurement surface at any angle of the object to be measured. 8C can be brought into contact. Therefore, the measurement site is rarely limited.

<変形例(図7〜図8)の説明>
本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は、本発明に含まれる。
たとえば、上記実施形態では、被測定物Wをベース1上に固定し、粗さ検出器8を互いに直交する3軸(Y,Z,X軸)方向へ移動可能に構成したが、これとは逆に、被測定物Wを粗さ検出器8に対して互いに直交する3軸(Y,Z,X軸)方向へ移動可能に構成してもよく、あるいは、被測定物Wと粗さ検出器8とが3軸のいずれか1軸以上の方向へ移動可能に構成されていてもよい。
<Description of Modified Examples (FIGS. 7 to 8)>
The present invention is not limited to the above-described embodiment, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, the workpiece W is fixed on the base 1 and the roughness detector 8 is configured to be movable in the directions of three axes (Y, Z, and X axes) orthogonal to each other. Conversely, the object to be measured W may be configured to be movable in directions of three axes (Y, Z, and X axes) orthogonal to the roughness detector 8, or the object to be measured W and the roughness detection. The container 8 may be configured to be movable in the direction of any one of the three axes.

また、検出器回転機構7の構成については、図2で説明した構成に限らず、次に示す構成でもよい。
図7に示す検出器回転機構7は、図2に示す検出器回転機構7に対して、モータ11からの回転を2つの伝達ギア13A,13Bを介して回転軸14に伝達している点が異なるのみである。
図8に示す検出器回転機構7は、図7に示す検出器回転機構7において、モータ11に代わって手動つまみ19が設けられた点が異なるのみである。
Further, the configuration of the detector rotation mechanism 7 is not limited to the configuration described in FIG.
The detector rotating mechanism 7 shown in FIG. 7 transmits the rotation from the motor 11 to the rotating shaft 14 via the two transmission gears 13A and 13B with respect to the detector rotating mechanism 7 shown in FIG. Only different.
The detector rotating mechanism 7 shown in FIG. 8 differs from the detector rotating mechanism 7 shown in FIG. 7 only in that a manual knob 19 is provided in place of the motor 11.

また、上記実施形態では、検出器として、先端に触針8Cを備えた粗さ検出器8を用いたが、これに限らず、例えば、光などによって被測定物Wの測定面までの距離情報を検知できる非接触式の検出器を用いてもよい。   In the above embodiment, the roughness detector 8 provided with the stylus 8C at the tip is used as the detector. However, the present invention is not limited to this, and for example, distance information to the measurement surface of the workpiece W by light or the like. You may use the non-contact type detector which can detect.

本発明は、被測定物の表面粗さを測定する表面粗さ測定機のほかに、たとえば、形状測定機、真円度測定機、画像測定機、三次元測定機などにも適用可能である。   The present invention can be applied to, for example, a shape measuring machine, a roundness measuring machine, an image measuring machine, a three-dimensional measuring machine in addition to a surface roughness measuring machine for measuring the surface roughness of an object to be measured. .

本発明の一実施形態に係る表面粗さ測定機を示す正面図。The front view which shows the surface roughness measuring machine which concerns on one Embodiment of this invention. 同上実施形態の検出器回転機構を示す図。The figure which shows the detector rotation mechanism of embodiment same as the above. 同上実施形態の制御装置を示すブロック図。The block diagram which shows the control apparatus of embodiment same as the above. 同上実施形態においてX軸移動機構を傾斜させた状態を示す図。The figure which shows the state which inclined the X-axis movement mechanism in embodiment same as the above. 図4の部分拡大図。The elements on larger scale of FIG. 同上実施形態において粗さ検出器を回転させた状態の斜視図。The perspective view of the state which rotated the roughness detector in embodiment same as the above. 検出器回転機構の変形例を示す概略図。Schematic which shows the modification of a detector rotation mechanism. 検出器回転機構の他の変形例を示す概略図。Schematic which shows the other modification of a detector rotation mechanism. 従来の表面粗さ測定機を示す図。The figure which shows the conventional surface roughness measuring machine. 従来の表面粗さ測定機においてX軸移動機構を傾斜させた状態を示す図。The figure which shows the state which inclined the X-axis moving mechanism in the conventional surface roughness measuring machine. 図10の部分拡大図。The elements on larger scale of FIG. 従来の表面粗さ測定機において検出器を回転させた状態を示す図。The figure which shows the state which rotated the detector in the conventional surface roughness measuring machine.

符号の説明Explanation of symbols

6…X軸移動機構(第3移動機構)
7…検出器回転機構
8…粗さ検出器
8A…検出器本体
8B…スタイラス
8C…触針
8D…検出部
30…制御装置(制御手段)
32…Y軸移動機構(第1移動機構)
34…Z軸移動機構(第2移動機構)
36…傾斜機構
45…傾斜角メモリ(傾斜角記憶手段)
47…回転角メモリ(回転角記憶手段)
W…被測定物
W1,W2…測定面。
6 ... X-axis moving mechanism (third moving mechanism)
DESCRIPTION OF SYMBOLS 7 ... Detector rotation mechanism 8 ... Roughness detector 8A ... Detector main body 8B ... Stylus 8C ... Stylus 8D ... Detection part 30 ... Control apparatus (control means)
32 ... Y-axis moving mechanism (first moving mechanism)
34 ... Z-axis moving mechanism (second moving mechanism)
36: Inclination mechanism 45 ... Inclination angle memory (inclination angle storage means)
47 ... Rotation angle memory (rotation angle storage means)
W: measurement object W1, W2: measurement surface.

Claims (6)

被測定物と検出器とを被測定物の測定面に沿って相対移動させ、このときの検出器からの検出値を基に測定面の表面性状を測定する表面性状測定機、または、被測定物と検出器とを被測定物の測定面に沿って相対移動させるとともに、検出器からの検出値が所定値になるように検出器と被測定物との相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する表面性状測定機において、
前記被測定物と前記検出器とを互いに直交する2軸方向へ相対移動させる第1移動機構および第2移動機構と、
前記相対移動方向が前記被測定物の測定面と平行になるように前記第2移動機構を前記第1移動機構に対して傾斜させる傾斜機構と、
この傾斜機構の傾斜角を記憶する傾斜角記憶手段と、
この傾斜角記憶手段に記憶された傾斜角に基づいて、前記被測定物と前記検出器との相対距離が前記被測定物の測定面に対して垂直方向に変化するように、前記第1移動機構および第2移動機構の駆動を制御する制御手段とを備えたことを特徴とする表面性状測定機。
A surface texture measuring machine that measures the surface texture of the measurement surface based on the detection value from the detector at this time, relative to the measurement object and the detector along the measurement surface of the measurement object, or the measurement object The relative distance between the detector and the object to be measured is changed so that the object and the detector are relatively moved along the measurement surface of the object to be measured, and the detected value from the detector becomes a predetermined value. In the surface texture measuring machine that measures the surface texture of the measurement surface based on the data,
A first movement mechanism and a second movement mechanism for relatively moving the object to be measured and the detector in two axial directions perpendicular to each other;
An inclination mechanism for inclining the second movement mechanism with respect to the first movement mechanism so that the relative movement direction is parallel to the measurement surface of the object to be measured;
Tilt angle storage means for storing the tilt angle of the tilt mechanism;
Based on the inclination angle stored in the inclination angle storage means, the first movement is performed so that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. A surface texture measuring machine comprising: a mechanism and a control means for controlling driving of the second moving mechanism.
被測定物と検出器とを被測定物の測定面に沿って相対移動させ、このときの検出器からの検出値を基に測定面の表面性状を測定する表面性状測定機、または、被測定物と検出器とを被測定物の測定面に沿って相対移動させるとともに、検出器からの検出値が所定値になるように検出器と被測定物との相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する表面性状測定機において、
前記被測定物と前記検出器とを互いに直交する3軸方向へ相対移動させる第1移動機構、第2移動機構および第3移動機構と、
前記検出器の向きを前記第3移動機構の移動方向軸線を中心として回転させる回転機構と、
この回転機構の回転角を記憶する回転角記憶手段と、
この回転角記憶手段に記憶された回転角に基づいて、前記被測定物と前記検出器との相対距離が被測定物の測定面に対して垂直方向に変化するように、前記第1移動機構および第2移動機構の駆動を制御する制御手段とを備えたことを特徴とする表面性状測定機。
A surface texture measuring machine that measures the surface texture of the measurement surface based on the detection value from the detector at this time, relative to the measurement object and the detector along the measurement surface of the measurement object, or the measurement object The relative distance between the detector and the object to be measured is changed so that the object and the detector are relatively moved along the measurement surface of the object to be measured, and the detected value from the detector becomes a predetermined value. In the surface texture measuring machine that measures the surface texture of the measurement surface based on the data,
A first moving mechanism, a second moving mechanism, and a third moving mechanism for relatively moving the object to be measured and the detector in three axial directions orthogonal to each other;
A rotating mechanism for rotating the direction of the detector around the moving direction axis of the third moving mechanism;
Rotation angle storage means for storing the rotation angle of the rotation mechanism;
Based on the rotation angle stored in the rotation angle storage means, the first moving mechanism is arranged such that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. And a surface texture measuring machine comprising a control means for controlling driving of the second moving mechanism.
被測定物と検出器とを被測定物の測定面に沿って相対移動させ、このときの検出器からの検出値を基に測定面の表面性状を測定する表面性状測定機、または、被測定物と検出器とを被測定物の測定面に沿って相対移動させるとともに、検出器からの検出値が所定値になるように検出器と被測定物との相対距離を変化させ、この相対距離データを基に測定面の表面性状を測定する表面性状測定機において、
前記被測定物と前記検出器とを互いに直交する3軸方向へ相対移動させる第1移動機構、第2移動機構および第3移動機構と、
前記相対移動方向が前記被測定物の測定面と平行になるように前記第3移動機構を前記第2移動機構に対して傾斜させる傾斜機構と、
この傾斜機構の傾斜角を記憶する傾斜角記憶手段と、
前記検出器の向きを前記第3移動機構の移動方向軸線を中心として回転させる回転機構と、
この回転機構の回転角を記憶する回転角記憶手段と、
前記傾斜角記憶手段に記憶された傾斜角に基づいて、前記被測定物と前記検出器との相対距離が前記被測定物の測定面に対して垂直方向に変化するように、前記第2移動機構および第3移動機構の駆動を制御するとともに、前記回転角記憶手段に記憶された回転角に基づいて、前記被測定物と前記検出器との相対距離が被測定物の測定面に対して垂直方向に変化するように、前記第1移動機構および第2移動機構の駆動を制御する制御手段とを備えたことを特徴とする表面性状測定機。
A surface texture measuring machine that measures the surface texture of the measurement surface based on the detection value from the detector at this time, relative to the measurement object and the detector along the measurement surface of the measurement object, or the measurement object The relative distance between the detector and the object to be measured is changed so that the object and the detector are relatively moved along the measurement surface of the object to be measured, and the detected value from the detector becomes a predetermined value. In the surface texture measuring machine that measures the surface texture of the measurement surface based on the data,
A first moving mechanism, a second moving mechanism, and a third moving mechanism for relatively moving the object to be measured and the detector in three axial directions orthogonal to each other;
An inclination mechanism for inclining the third movement mechanism with respect to the second movement mechanism so that the relative movement direction is parallel to the measurement surface of the object to be measured;
Tilt angle storage means for storing the tilt angle of the tilt mechanism;
A rotating mechanism for rotating the direction of the detector around the moving direction axis of the third moving mechanism;
Rotation angle storage means for storing the rotation angle of the rotation mechanism;
Based on the inclination angle stored in the inclination angle storage means, the second movement is performed so that the relative distance between the object to be measured and the detector changes in a direction perpendicular to the measurement surface of the object to be measured. And controlling the driving of the mechanism and the third moving mechanism, and based on the rotation angle stored in the rotation angle storage means, the relative distance between the object to be measured and the detector is relative to the measurement surface of the object to be measured. A surface texture measuring machine comprising control means for controlling driving of the first moving mechanism and the second moving mechanism so as to change in the vertical direction.
請求項1〜請求項3のいずれかに記載の表面性状測定機において、
前記制御手段は、スタート指令が与えられたことを条件に、前記検出器が被測定物の測定面に対して垂直方向から接近するように、いずれかの移動機構を移動させ、前記検出器からの検出値が予め設定した所定値を超えた際に移動機構の駆動を停止させることを特徴とする表面性状測定機。
In the surface texture measuring instrument according to any one of claims 1 to 3,
The control means moves one of the moving mechanisms so that the detector approaches from the vertical direction with respect to the measurement surface of the object to be measured on the condition that a start command is given. A surface texture measuring machine which stops driving of the moving mechanism when the detected value exceeds a predetermined value set in advance.
請求項4に記載の表面性状測定機において、
前記制御手段は、前記移動機構の駆動を停止させたのち、前記移動機構を前記とは逆方向へかつ前記速度より低速で駆動させ、前記検出器からの検出値が予め設定した所定値に達した際に移動機構の駆動を停止させることを特徴とする表面性状測定機。
In the surface texture measuring machine according to claim 4,
The control means stops driving the moving mechanism, and then drives the moving mechanism in the opposite direction and at a lower speed than the speed, so that the detection value from the detector reaches a predetermined value set in advance. A surface texture measuring machine which stops driving of the moving mechanism when it is done.
請求項1〜請求項5のいずれかに記載の表面性状測定機において、
前記検出器は、前記移動機構によって移動される検出器本体と、この検出器本体に揺動可能に支持されたスタイラスと、このスタイラスの先端に設けられた触針と、前記スタイラスの揺動量を検出する検出部とから構成されていることを特徴とする表面性状測定機。
In the surface texture measuring instrument according to any one of claims 1 to 5,
The detector includes a detector main body that is moved by the moving mechanism, a stylus that is swingably supported by the detector main body, a stylus provided at the tip of the stylus, and a swing amount of the stylus. A surface texture measuring device comprising a detecting unit for detecting.
JP2006015110A 2006-01-24 2006-01-24 Surface texture measuring machine Active JP5000894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015110A JP5000894B2 (en) 2006-01-24 2006-01-24 Surface texture measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015110A JP5000894B2 (en) 2006-01-24 2006-01-24 Surface texture measuring machine

Publications (2)

Publication Number Publication Date
JP2007198791A true JP2007198791A (en) 2007-08-09
JP5000894B2 JP5000894B2 (en) 2012-08-15

Family

ID=38453546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015110A Active JP5000894B2 (en) 2006-01-24 2006-01-24 Surface texture measuring machine

Country Status (1)

Country Link
JP (1) JP5000894B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085400A (en) * 2009-10-13 2011-04-28 Mitsutoyo Corp Surface property measuring instrument
KR101198779B1 (en) * 2010-10-29 2012-11-09 정준오 The ostensible precision processing of measuring equipment
CN103028617A (en) * 2011-09-30 2013-04-10 鞍钢股份有限公司 Hot-rolled strip steel wave-shaped defect online detection method and measurement device thereof
US8650939B2 (en) 2009-10-13 2014-02-18 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method
KR101553384B1 (en) 2009-12-23 2015-09-17 재단법인 포항산업과학연구원 Tactile sensation measuring apparatus for vehicle interior materials
JP2016191653A (en) * 2015-03-31 2016-11-10 株式会社ミツトヨ Posture adjuster of shape measuring instrument
JP2018025507A (en) * 2016-08-12 2018-02-15 株式会社ミツトヨ Drive part tilt adjustment method, and drive part tilt adjustment program
JP2020003436A (en) * 2018-06-30 2020-01-09 株式会社ミツトヨ Control method of surface property measuring device
WO2022153706A1 (en) * 2021-01-13 2022-07-21 三菱電機株式会社 Eccentricity correction method and diameter measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102375430B1 (en) * 2020-05-29 2022-03-18 한국전력공사 Measuring device for cable connection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122506U (en) * 1981-01-23 1982-07-30
JPS59190607A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Contactless measuring device for measuring shape of body
JPH04369419A (en) * 1991-06-17 1992-12-22 Mitsutoyo Corp Surface property measuring apparatus
JPH06194139A (en) * 1992-10-15 1994-07-15 Mitsutoyo Corp Shape measuring method
JPH08304065A (en) * 1995-05-02 1996-11-22 Nikon Corp Three-dimensional coordinate measuring instrument using rotary head
JP2000111334A (en) * 1998-09-30 2000-04-18 Mitsutoyo Corp Surface follow-up type measuring machine
JP2001165629A (en) * 1999-12-03 2001-06-22 Ricoh Co Ltd Shape measuring device and shape measuring method
JP2002340503A (en) * 2001-05-16 2002-11-27 Mitsutoyo Corp Method for adjusting relative attitude of object to be measured for surface properties measuring machine
JP2005326402A (en) * 2004-04-23 2005-11-24 Corning Inc Shape measurement for optical surface of globe shape and approximate globe shape

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122506U (en) * 1981-01-23 1982-07-30
JPS59190607A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Contactless measuring device for measuring shape of body
JPH04369419A (en) * 1991-06-17 1992-12-22 Mitsutoyo Corp Surface property measuring apparatus
JPH06194139A (en) * 1992-10-15 1994-07-15 Mitsutoyo Corp Shape measuring method
JPH08304065A (en) * 1995-05-02 1996-11-22 Nikon Corp Three-dimensional coordinate measuring instrument using rotary head
JP2000111334A (en) * 1998-09-30 2000-04-18 Mitsutoyo Corp Surface follow-up type measuring machine
JP2001165629A (en) * 1999-12-03 2001-06-22 Ricoh Co Ltd Shape measuring device and shape measuring method
JP2002340503A (en) * 2001-05-16 2002-11-27 Mitsutoyo Corp Method for adjusting relative attitude of object to be measured for surface properties measuring machine
JP2005326402A (en) * 2004-04-23 2005-11-24 Corning Inc Shape measurement for optical surface of globe shape and approximate globe shape

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085400A (en) * 2009-10-13 2011-04-28 Mitsutoyo Corp Surface property measuring instrument
US8650939B2 (en) 2009-10-13 2014-02-18 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method
KR101553384B1 (en) 2009-12-23 2015-09-17 재단법인 포항산업과학연구원 Tactile sensation measuring apparatus for vehicle interior materials
KR101198779B1 (en) * 2010-10-29 2012-11-09 정준오 The ostensible precision processing of measuring equipment
CN103028617A (en) * 2011-09-30 2013-04-10 鞍钢股份有限公司 Hot-rolled strip steel wave-shaped defect online detection method and measurement device thereof
JP2016191653A (en) * 2015-03-31 2016-11-10 株式会社ミツトヨ Posture adjuster of shape measuring instrument
JP2018025507A (en) * 2016-08-12 2018-02-15 株式会社ミツトヨ Drive part tilt adjustment method, and drive part tilt adjustment program
JP2020003436A (en) * 2018-06-30 2020-01-09 株式会社ミツトヨ Control method of surface property measuring device
JP7073211B2 (en) 2018-06-30 2022-05-23 株式会社ミツトヨ Control method of surface quality measuring device
WO2022153706A1 (en) * 2021-01-13 2022-07-21 三菱電機株式会社 Eccentricity correction method and diameter measuring apparatus
JPWO2022153706A1 (en) * 2021-01-13 2022-07-21
JP7412607B2 (en) 2021-01-13 2024-01-12 三菱電機株式会社 diameter measuring device

Also Published As

Publication number Publication date
JP5000894B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5000894B2 (en) Surface texture measuring machine
JP4568621B2 (en) Straightness correction method for surface texture measuring instrument and surface texture measuring instrument
EP1659363B1 (en) Probe Supporting Mechanism
CN102042813B (en) Surface texture measuring machine and a surface texture measuring method
JP6518421B2 (en) Roundness measuring machine and control method thereof
JP5292564B2 (en) Shape measuring apparatus, calibration method thereof, and calibration program
JP5324510B2 (en) Roundness measuring machine
JP6927734B2 (en) Drive control method of drive stage device
JP2002340503A (en) Method for adjusting relative attitude of object to be measured for surface properties measuring machine
JP5060915B2 (en) Stylus, shape measuring machine and part program
JP2011122898A (en) Spectacle frame shape measuring instrument
JP6784539B2 (en) Roundness measuring machine
JP2011122899A (en) Spectacle frame shape measuring instrument
JP2020125937A (en) Eyeglass lens shape measuring device
JP2000266534A (en) Surface profile measuring apparatus, inclination adjuster therefor and method for adjusting attitude of object
JP2001201340A (en) Circularity measuring device
JP4317639B2 (en) Laser surveyor
JP2021139711A (en) Measuring method and measuring apparatus
US20230032119A1 (en) Roundness measuring machine
JP6726566B2 (en) Drive unit tilt adjusting method and drive unit tilt adjusting program
JP2003302218A (en) Roundness measuring device
JP4686125B2 (en) Width measuring method and surface texture measuring machine
JP2006112861A (en) Three-dimensions coordinate measuring system and part program used for same
JP4706137B2 (en) Workpiece positioning method and apparatus for surface profile measuring machine
JP5350170B2 (en) Surface texture measuring machine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5000894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250