JP2007192970A - 光学部品及びその製造方法 - Google Patents

光学部品及びその製造方法 Download PDF

Info

Publication number
JP2007192970A
JP2007192970A JP2006009563A JP2006009563A JP2007192970A JP 2007192970 A JP2007192970 A JP 2007192970A JP 2006009563 A JP2006009563 A JP 2006009563A JP 2006009563 A JP2006009563 A JP 2006009563A JP 2007192970 A JP2007192970 A JP 2007192970A
Authority
JP
Japan
Prior art keywords
optical
light
test sample
ultraviolet laser
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006009563A
Other languages
English (en)
Inventor
Yoshihiro Kiyomura
圭博 清村
Hitoshi Asahi
仁志 朝飛
Noriaki Seki
則彰 関
Takatoshi Minoda
孝敏 蓑田
Eiji Okuzono
英治 奥園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006009563A priority Critical patent/JP2007192970A/ja
Priority to US11/438,685 priority patent/US20060285231A1/en
Priority to PCT/JP2006/310834 priority patent/WO2006126722A1/en
Publication of JP2007192970A publication Critical patent/JP2007192970A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Filters (AREA)

Abstract

【課題】光学部品のハイパワー紫外線レーザー光への耐光性改良を図る。
【解決手段】複合レンズ10Aは、所定の波長の光、例えば少なくとも略青色から略青紫色の光を透過する材質からなる光学部材101、102及び103を備え、これらの光学部材101〜103は、上記所定の波長の光を透過する接着層201A、202Aにより接着されている。接着層201A、202Aは、シロキサン結合を繰り返し単位とする主鎖を持ち、且つ側鎖にメチル基のみを有するシリコーン樹脂を、付加重合反応により硬化させた硬化物から構成される。また、光学部材101〜103は、略紫色から略青紫色の光を透過又は反射する材質、例えば石英から作製されている。
【選択図】図1

Description

本発明は、少なくとも略青色から略青紫色の光を透過、反射する機能を有する光学部品及びその製造方法に関し、特に2つ以上の光学部材を接着することにより作製され、ハイパワー紫外線レーザーを適用し得る光学部品及びその製造方法に関するものである。
従来、カメラや光ピックアップなどの光学機器では、レンズなどの複数の光学素子を貼り合わせることによって、複合レンズや複合プリズムなど、種々の光学部品が構成されている(特許文献1参照)。
図1は本発明の一実施の形態又は従来の複合レンズを示す斜視図であり、図2は本発明の一実施の形態又は従来の複合レンズを示す断面図である。図1及び図2において、複合レンズ10は、所定の波長の光を透過する材質からなる光学部材101、102及び103を備え、これらの光学部材101〜103は、所定の波長の光を透過する接着層201、202により接着されている。
また、図3は本発明の一実施の形態又は従来の複合プリズムを示す斜視図であり、図4は本発明の一実施の形態又は従来の複合プリズムを示す断面図である。図3及び図4において、複合プリズム20は、所定の波長の光を透過、又は反射する材質からなる光学部材104、105及び106を備えており、これらの光学部材104〜106は、所定の波長の光を透過する接着層203、204により接着されている。
このような接着層201〜204には、光学部材101〜106を接着する機能、光学部材101〜106を透過、反射する光により変質しない機能、及び光学部材101〜106がおかれる環境変化、すなわち、温度変化、湿度変化等により変質しない機能が求められる。光学部品である複合レンズ10及び複合プリズム20における接着層201〜204が、このような機能を満足することにより、光学部品はその性能を維持することができる。
複合レンズ10及び複合プリズム20の性能を維持するために、前述の接着層201〜204は、接着性、透明性、環境変化に優れたエポキシ樹脂、アクリル樹脂等の接着剤が用いられている。また、前述の接着層201〜204は、光密度が小さい紫外線に対しても、接着層201〜204の紫外領域における透過率を高めることにより、光学部品の性能を維持することができる。
特開2004−13061号公報
しかしながら、上記従来の接着層201〜204では、近年用いられるようになったハイパワー紫外線レーザー光を透過、反射させると、接着層201〜204が変質し、接着層201〜204の着色による透過率の低下や接着面での剥離により、光学部材101〜106を透過、反射する光の波面の変化により収差が大きくなるという課題があった。ここで、ハイパワー紫外線とは、1平方ミリメートル当たりの面積に照射される光の密度が5ミリワット以上の紫外線のことを言う。
本発明は、このような従来の課題を解決するためになされたものであり、ハイパワー紫外線レーザーを用いた際にも光学部品を形成する接着層が変質することなく、光学部品の性能を維持することができる光学部品及びその製造方法を提供することを目的とする。
上記課題を解決するために、本発明にかかる光学部品は、少なくとも略紫色から略青紫色の光を透過、反射する少なくとも2つの光学部材と、シロキサン結合を繰り返し単位とする主鎖を持ち且つ側鎖にメチル基のみを持つと共に付加重合反応により硬化するシリコーン樹脂からなり、前記少なくとも2つの光学部材を貼り合わせるための接着層とを備えている。
また、本発明にかかる光学部品の製造方法は、少なくとも略青色から略青紫色の光を透過、反射する少なくとも2つの光学部材における接着面の少なくとも一方に、シロキサン結合を繰り返し単位とする主鎖を持ち且つ側鎖にメチル基のみを持つシリコーン樹脂を配置し、前記シリコーン樹脂を付加重合反応により硬化させることにより、前記少なくとも2つの光学部材を貼り合わせる。
本発明の構成により、所定のシリコーン樹脂からなる接着層が接着層と光学部材との接着性を良好にし、ハイパワー紫外線レーザーが接着層を透過、反射しても接着層が変質することなく、光学部品の性能を維持することができるという効果を奏する。
本発明の請求項1に記載の光学部品は、少なくとも略青色から略青紫色の光を透過、反射する光学部品であって、少なくとも略紫色から略青紫色の光を透過、反射する少なくとも2つの光学部材と、シロキサン結合を繰り返し単位とする主鎖を持ち且つ側鎖にメチル基のみを持つと共に付加重合反応により硬化するシリコーン樹脂からなり、前記少なくとも2つの光学部材を貼り合わせるための接着層とを備える。この構成により、所定のシリコーン樹脂からなる接着層が接着層と光学部材との接着性を良好にし、接着層が高エネルギーのレーザーを使用したとしても変質し難いので、ハイパワー紫外線レーザーが接着層を透過、反射しても接着層が変質することなく、光学部品の性能を維持することができる。
本発明の請求項2に記載の光学部品は、シリコーン樹脂が付加重合反応により硬化する際に、反応副産物として揮発成分を生成しない。この構成により、光学部材を貼り合わせる際に、反応副産物として揮発成分が発生しないので、接着層と光学部材との接着性を良好にし、接着層中への揮発成分の拡散による接着層の均質性阻害を防ぐことができる。
本発明の請求項3に記載の光学部品は、接着層の厚みが5μm〜15μmの範囲である。この構成により、光学的な特性を損なうことなく、光学部材同士を接着することができる。
本発明の請求項4に記載の光学部品は、ハイパワー紫外線レーザーを適用し得ることを特徴とする。この構成により、接着層が変質することなく光学部品の性能を維持することができるので、ハイパワーの紫外線レーザーを実用的に使用することができる。
本発明の請求項5に記載の光学部品の製造方法は、少なくとも略青色から略青紫色の光を透過、反射する少なくとも2つの光学部材における接着面の少なくとも一方に、シロキサン結合を繰り返し単位とする主鎖を持ち且つ側鎖にメチル基のみを有するシリコーン樹脂を配置し、前記シリコーン樹脂を付加重合反応により硬化させることにより、前記少なくとも2つの光学部材を貼り合わせて光学部品を製造する。この構成により、ハイパワー紫外線レーザーを適用し得る耐光性のある光学部品を容易に作製することができる。
(実施の形態)
以下、本発明にかかる光学部品及びその製造方法の一実施の形態について、図面に基づいてさらに詳細に説明する。なお、この一実施の形態により本発明が限定されるものではない。
図1は本発明の一実施の形態又は従来の複合レンズを示す斜視図であり、図2は本発明の一実施の形態又は従来の複合レンズを示す断面図である。なお、図1及び図2は、従来の複合レンズの説明に使用したが、本発明の一実施の形態による複合レンズを説明する場合にも援用する。同様に、従来の複合プリズムを説明した図3及び図4を、後述する本発明の一実施の形態による複合プリズムにも援用する。
図1及び図2において、複合レンズ10Aは、所定の波長の光を透過する材質からなる光学部材101、102及び103を備え、これらの光学部材101〜103は、所定の波長の光を透過する接着層201A、202Aにより接着されている。
また、図3は本発明の一実施の形態又は従来の複合プリズムを示す斜視図であり、図4は本発明の一実施の形態又は従来の複合プリズムを示す断面図である。図3及び図4において、複合プリズム20Aは、所定の波長の光を透過、又は反射する材質からなる光学部材104、105及び106を備えており、これらの光学部材104〜106は、所定の波長の光を透過する接着層203A、204Aにより接着されている。
複合レンズ10A及び複合プリズム20Aを構成する光学部材104〜106は、略紫色から略青紫色の光を透過又は反射する材質、例えば石英から作製されている。
また、接着層201A〜204Aは、シロキサン結合を繰り返し単位とする主鎖を持ち、且つ側鎖にメチル基のみを持つシリコーン樹脂を、付加重合反応により硬化させた硬化物から構成される。このような接着層201A〜204Aは、高エネルギーのレーザー等によっても変質し難い特性を有する。従って、接着層201A〜204Aを使用することにより、光学部材101〜106との接着性を良好にし、ハイパワー紫外線レーザーが接着層を透過、反射しても接着層が変質することなく、光学部品である複合レンズ10A及び複合プリズム20Aの性能を維持することができる。
上記シリコーン樹脂は、付加重合反応により硬化する際に反応副産物として揮発成分を生成しないことが好ましい。これにより、接着層201A〜204Aで光学部材101〜106を貼り合わせる際に、反応副産物として揮発成分が発生しないため、接着層201A〜204Aと光学部材101〜106との接着性を良好にし、接着層201A〜204A中への揮発成分の拡散による接着層201A〜204Aの均質性阻害を防ぐことができる。また、上記シリコーン樹脂の分子量は、350〜3500の範囲であることが好ましい。また、上記シリコーン樹脂の粘度は、0.2Pa(パスカル)・秒〜5Pa・秒の範囲であることが好ましい。これらの範囲のシリコーン樹脂によれば、光学部材への滴下、圧着などの作業性が良好であり、十分な接着強度を備えながらも光学的特性に影響を及ぼさないように、薄い接着層を形成することが可能となる。
接着層201A〜204Aの厚みは、5μm〜15μmの範囲であることが好ましい。接着層201A〜204Aの厚みが5μm未満であると、光学部材の接着力が不十分となり好ましくなく、15μmを超えると光学部品の光学的特性に影響を与えるため好ましくない。
複合レンズ10A及び複合プリズム20Aを含む光学部品を製造するには、貼り合わせる光学部材の接着面の少なくとも一方に、上記シリコーン樹脂の適当量を塗布又は付着などにより配置する。次に、貼り合わせる光学部材を互いに押圧してシリコーン樹脂を接着面に押し広げる。この状態で、貼り合わせた光学部材を、加熱温度として例えば150℃〜240℃、加熱時間として例えば0.5時間〜6時間保持することにより、シリコーン樹脂を硬化することができる。これらの加熱条件でシリコーン樹脂を硬化することにより、十分な接着強度を有する接着層を形成することができる。なお、上記加熱条件で硬化を行う前に、予め予備加熱を行っても良い。予備加熱によって、シリコーン樹脂の硬化を確実に行うことができる。このようして、シリコーン樹脂を硬化させることにより接着層が形成され、この接着層で光学部材が張り合わされた光学部品を作製することができる。
なお、前述では、光学部品として複合レンズ及び複合プリズムについて説明したが、本発明はこれに限定されるものではなく、回折格子光学部品、光学フィルタ、偏光フィルタ、位相フィルタなど、種々の光学部品に適用することができる。また、光学部品を構成する光学部材としては、板状、ブロック状、基板状など、特に限定することなく種々の形状や大きさの光学部材を使用することができる。
次に、本発明者らは、ハイパワー紫外線レーザーの光が透過、反射しても耐えうる複合光学部品を開発するために、光学部品を構成する各種光学部材、及び光学部材を接合する各種接着剤を用いて、光学部品の作製検討を行った。また、作製した各種光学部品について、ハイパワー紫外線レーザー露光試験を行った。その後、露光試験サンプルについて、露光面の観察、紫外線の透過率変化の測定、接着層の赤外分光透過率の測定による接着層組成の変化を調べた。また、作製した光学部品の実用性評価のために、接着層の接着性評価等の検討を行い、ハイパワー紫外線レーザーに対して、実用的に耐えうる光学部品を見出し、前述した本発明にかかる光学部品及びその製造方法を完成するに至った。
本発明に至る過程において、ハイパワー紫外線レーザーに耐性を有する光学部品を開発するために、耐光性についてクリヤーすべき基準を策定した。さらに、光学部品の接着サンプルを作製すると共に、露光試験を行った。以下、このような耐光性の基準、接着サンプルの作製、及び露光試験について説明する。
(1)耐光性の基準
まず、光学部品の耐光性の試験を行うために、試験サンプルの構造、形状を取り決めた。照射するレーザー光を99%以上透過する(反射光を除いて)光学ガラスを用い、4×4×2mmサイズに切り出した基板を作製した。この基板2枚について、4×4mmの面同士を、接着剤を用いて貼り合せたものを試験サンプルとした。接着層の厚みは、5μmから15μmの範囲とした。
次に、後述の図7に示す露光試験装置のように、露光試験サンプル1の接着面に対して、紫外線レーザー光3を垂直に入射するように光学系を組んだ。照射される紫外線レーザー光3は、厚さ2mmの光学ガラス、厚さ5μmから15μmの接着(剤)層、厚さ2mmの光学ガラスの順に透過して行き、接着層に入射する光の形状はφ0.3mmの円形とし、このときの紫外線レーザー光のパワー密度は、5mW/mm2以上とした。
試験サンプルの耐光性の合否判定基準として、上記条件にて、3000時間の紫外線レーザー光連続照射を行い、試験前後で試験サンプルを透過するレーザー光の強度変化が5%以内であることを設けた。
また、前述の試験サンプルについて、露光試験の前後で、試験サンプルを構成する接着層の接着強度を測定した。試験サンプルの接着強度測定では、まず、試験サンプルの光学ガラス面(4×4mm対向面2面)にフックのついた金具を瞬間接着剤で接着、固定したものを接着強度試験サンプルとした。
次に、引っ張り試験機を用い引っ張り試験を行った。接着強度試験サンプルに取り付けたフックをそれぞれ、引っ張り試験機のチャックに掛けて、接着強度試験サンプルを上下に引っ張った。引っ張り速度は、毎分10mmとし、接着硬度試験サンプルの接着面にかかる力を計測した。このとき、接着性の合否の判定基準として、接着強度1kg/mm2以上であることを設けた。
(2)接着サンプルの作製
本発明における光学部品作製のために用いる接着剤について、紫外線レーザー耐性を評価するための試験サンプルを作製した。図5及び図6は、それぞれ試験サンプル30A及び30Bを示す概略断面図である。
図5に示した試験サンプル30Aは、4×4×2mmの光学ガラス(BK7)301及び302を接着層303で貼り合せたものであり、接着層303の厚みは5μmから15μmになるように、接着時に適当量の接着剤を塗布する。
図6に示した試験サンプル30Bは、φ8×1mmの臭化カリウム単結晶板304及び305を接着層306で貼り合せたものであり、接着層306の厚みは5μmから15μmになるように、接着時に適当量の接着剤を塗布する。
試験サンプル30Aについては、後述の露光試験で試験サンプルの紫外線レーザー光の透過率変化を評価するために用いた。試験サンプルの紫外線レーザー光の透過率変化は、パワーメーターを用いて計測した。また、試験サンプル30Bについては、後述の露光試験で試験サンプルの赤外線分光透過率変化を評価するために用いた。試験サンプルの赤外線分光透過率変化は、顕微FTIR(Fourier Transform Infrared Spectroscopy)を用いて測定した。
ここで、試験サンプル30A及び30Bの作製方法について、以下に述べる。まず、光学ガラス(BK7)301及び302、並びに臭化カリウム単結晶板304及び305を、それぞれイソプロピルアルコール及びトルエンで洗浄し、洗浄後に乾燥する。接着層303及び306を形成する各接着剤は、それぞれ接着剤中に含まれるごみ等の異物や気泡を除くために、ろ過、脱泡したものを用いる。雰囲気中にごみ等の異物がない清浄な環境で、洗浄、乾燥した光学ガラス(BK7)301の片面に、針先に付着した接着剤を接触させることにより接着剤を塗布した。光学ガラス301の接着剤を塗布した面に、光学ガラス(BK7)302を乗せ、接着剤を押し広げた。
同様に、洗浄、乾燥した臭化カリウム単結晶板304の片面に、針先に付着した接着剤を接触させることにより接着剤を塗布した。臭化カリウム単結晶板304の接着剤を塗布した面に、臭化カリウム単結晶板305を乗せ、接着剤を押し広げた。次に、それぞれの試験サンプル30A及び30Bについて、接着剤を乾燥させるために乾燥炉内で乾燥した。乾燥条件については、それぞれの接着剤を乾燥させるために必要な所定の温度と時間とした。
(3)露光試験
図7は、本発明の光学部品について、光学部品の耐光性を評価するために用いた、露光試験装置を示す概略構成図である。図7において、露光試験装置40における紫外線レーザー発生装置2は、405nmのレーザー光を発生するレーザーダイオードを有しており、このレーザーダイオードは密封空間内に配置されている。
なお、本実施の形態では、青紫色の光を出射するレーザーダイオードを用いたが、青色〜紫色の光を出射するレーザーダイオードを用いても良い。このような短波長のレーザー光を出射するレーザーダイオードとしては、GaNにInなどの発光中心を添加した活性層を、GaNを主成分としp型不純物をドープしたp型層と、GaNを主成分としn型不純物をドープしたn型層とで挟み込んだものが好適に用いられる。所謂、窒化物半導体レーザーが好適に用いられる。
紫外線レーザー発生装置2から出射される紫外線レーザー光3は、レーザーダイオードから所定の角度の広がりをもって出て行く。ハイパワーのレーザー光を得るためには、広がったレーザー光を集光する必要があり、このため、集光レンズ4を用いて、光を集光する。次に、レーザー光の照射方向に垂直な断面の形状を整えるために、ピンホール又はスリット5を用い、レーザー光をスリット5に通すことにより、所定形状のレーザー光を得る。スリット5を通り、広がったレーザー光を更に集光レンズ6で集光し、露光試験サンプル1へ導く。
このとき、露光試験サンプル1に照射するレーザー光の面積を一定に保つために、スリット7を用いる。このようにして、露光試験サンプル1に照射されるレーザー光の断面のサイズは、約φ300μmとした。露光試験において、露光試験サンプル1に入射するレーザー光の強度、及び露光サンプル1を透過したレーザー光の強度は、受光素子8により受光し、パワーメーター(図示せず)を用いて計測した。露光試験装置40に用いた集光レンズ4、6としては、略紫色から略青紫色の光を透過する材質である石英ガラスを用いた。
前述のような(1)耐光性の基準、(2)接着サンプルの作製、(3)露光試験に従って、光学部品のサンプルを作製し、その露光試験によって評価を行った。このような評価の結果、本発明による光学部品及びその製造方法を完成するに至ったものである。以下、本発明による光学部品及びその製造方法について、実施例及び比較例に基づき、さらに具体的に説明する。
(実施例1)
実施例1では、光学部品を構成するために、光学ガラスを張り合わせるための接着剤として、特定のシリコーン樹脂を用いた。本発明に用いたシリコーン樹脂は、シロキサン結合を繰り返し単位とする主鎖を持ち、且つ側鎖にメチル基を持ち、付加重合反応により硬化する樹脂であり、組成中に揮発性の溶剤を含まず、25℃における粘度が約1000cpsの樹脂を用いた。光学ガラスの貼り合わせに用いる上記シリコーン樹脂は、予め、5μm以上の粒子をカットする精密ろ過器に通し、更に、樹脂中に含まれる気泡を除いたものを用いた。
紫外線レーザー露光試験サンプルにおける紫外線レーザー光の透過率変化を測定するために、4×4×2mm光学ガラス(BK7)2枚を貼り合せた露光試験サンプルを作製した。また、紫外線レーザー露光試験サンプルの赤外線分光透過率変化を測定するために、φ8×1mm臭化カリウム単結晶板2枚を貼り合せた露光試験サンプルを作製した。いずれの露光試験サンプルについても、上述のシリコーン樹脂を用いて貼り合せた試験サンプルを、オーブンで加熱硬化させて作製した。オーブンでの加熱硬化は、80℃で30分間の予備加熱の後、200℃で120分間の加熱硬化を行った。加熱硬化後、接着層の厚みを計測したところ、いずれも、10μmであった。
次に、それぞれの露光試験サンプルについて、紫外線レーザー照射試験を行った。試験サンプルに照射する紫外線レーザー光のパワー密度は、5mW/mm2、50mW/mm2、300mW/mm2であり、それぞれ3000時間の連続照射を行った。紫外線レーザー光のパワー密度、5mW/mm2、50mW/mm2、300mW/mm2で露光した紫外線レーザー光透過率変化測定用の試験サンプルについて、紫外線レーザー光透過率変化を測定したところ、露光試験前の透過率に対して、いずれのサンプルも2%以内の透過率変化に留まった。
また、紫外線レーザー光のパワー密度、5mW/mm2、50mW/mm2、300mW/mm2で露光した赤外分光透過率変化測定用の試験サンプルについて、顕微FTIRを用いて、波長域2.5μmから25μmの間の透過率変化を測定したところ、露光試験前の透過率に対して、いずれのサンプルについても透過率変化の変化は見られなかった。なお、赤外分光透過率の測定は、ニコレー社製顕微FTIRを用い、分析エリア100μm×100μm、透過モード、分解能4cm-1、スキャン回数100回で行った。
また、紫外線レーザー光のパワー密度、5mW/mm2、50mW/mm2、300mW/mm2で露光した紫外線レーザー光透過率変化測定用の試験サンプルについて、接着強度を測定したところ、引っ張り試験機で1.5kg/mm2の引っ張り荷重をかけても、接着層の変形、剥離は見られなかった。
以上のように本実施例1によれば、上記の構成により、ハイパワーの紫外線レーザーを用いた際にも光学部品を形成する接着層が変質することなく、光学部品の性能を維持することができるので、ハイパワーの紫外線レーザーを用いる光学系を組む際にも、耐光性を有する光学部品を提供することができる。
(比較例1)
比較例1として、従来、光学ガラスを張り合わせるために用いられている接着剤として、紫外線硬化型アクリル系樹脂を用いた。比較例1に用いたアクリル系樹脂は、電気化学社製OP−1030Mであり、組成中に揮発性の溶剤を含まず、25℃における粘度が約500cpsであった。光学ガラスの貼り合わせに用いる上記アクリル系樹脂は、予め、5μm以上の粒子をカットする精密ろ過器に通し、更に、樹脂中に含まれる気泡を除いたものを用いた。
紫外線レーザー露光試験サンプルの紫外線レーザー光透過率変化を測定するために、4×4×2mm光学ガラス(BK7)2枚を貼り合せた露光試験サンプルを作製した。また、紫外線レーザー露光試験サンプルの赤外線分光透過率変化を測定するために、φ8×1mm臭化カリウム単結晶板2枚を貼り合せた露光試験サンプルを作製した。いずれの露光試験サンプルについても、上述のアクリル系樹脂を用いて貼り合せた試験サンプルは、紫外線照射装置を用いて硬化させ作製した。この紫外線照射装置は、ウシオ電機社製UV照射装置を用い、露光量は1000mJ/cm2とした。樹脂を硬化後、接着層の厚みを計測したところ、いずれも、8μmであった。
次に、それぞれの露光試験サンプルについて、紫外線レーザー照射試験を行った。試験サンプルに照射する紫外線レーザー光のパワー密度は、5mW/mm2、50mW/mm2、300mW/mm2で、それぞれ連続照射を行った。紫外線レーザー光のパワー密度、5mW/mm2、50mW/mm2、300mW/mm2で露光した紫外線レーザー光透過率変化測定用の試験サンプルについて、紫外線レーザー光透過率変化を測定したところ、いずれのサンプルについても、紫外線レーザー光連続照射100時間以内に透過率変化が50%以上となり、照射試験を中止した。
(比較例2)
比較例2として、従来、光学ガラスを張り合わせるために用いられている接着剤として、紫外線硬化型シリコーン系樹脂を用いた。比較例2に用いたシリコーン系樹脂は、NTTアドバンステクノロジー社製E3213であり、組成中に揮発性の溶剤を含まない。光学ガラスの貼り合わせに用いる樹脂は、予め、5μm以上の粒子をカットする精密ろ過器に通し、更に、樹脂中に含まれる気泡を除いたものを用いた。
紫外線レーザー露光試験サンプルの紫外線レーザー光透過率変化を測定するために、4×4×2mm光学ガラス(BK7)2枚を貼り合せた露光試験サンプルを作製した。また、紫外線レーザー露光試験サンプルの赤外線分光透過率変化を測定するために、φ8×1mm臭化カリウム単結晶板2枚を貼り合せた露光試験サンプルを作製した。いずれの露光試験サンプルについても、上述のシリコーン系樹脂を用い、貼り合せた試験サンプルは、紫外線照射装置を用いて硬化させ作製した。紫外線照射装置は、ウシオ電機社製UV照射装置を用い、露光量は1000mJ/cm2とした。シリコーン系樹脂を硬化した後、接着層の厚みを計測したところ、いずれも、8μmであった。
次に、それぞれの露光試験サンプルについて、紫外線レーザー照射試験を行った。試験サンプルに照射する紫外線レーザー光のパワー密度は、5mW/mm2、50mW/mm2、300mW/mm2で、それぞれ連続照射を行った。紫外線レーザー光のパワー密度、5mW/mm2、50mW/mm2、300mW/mm2で露光した紫外線レーザー光透過率変化測定用の試験サンプルについて、紫外線レーザー光透過率変化を測定した。その結果、5mW/mm2露光品では、紫外線レーザー光連続照射1000時間で透過率変化が50%以上となり、50mW/mm2露光品では、紫外線レーザー光連続照射500時間で透過率変化が50%以上となった。また、300mW/mm2露光品では、紫外線レーザー光連続照射100時間で透過率変化が50%以上となり、照射試験を中止した。
(比較例3)
比較例3として、従来、光学ガラスを張り合わせるために用いられている接着剤として、熱硬化型シリコーン系樹脂を用いた。比較例3に用いたシリコーン系樹脂は、昭和電工社製グラスレジンGR−100であり、粉末状の樹脂をトルエンに30重量%溶解したものを用いた。光学ガラスの貼り合わせに用いる上記シリコーン系樹脂は、予め、5μm以上の粒子をカットする精密ろ過器に通し、更に、樹脂中に含まれる気泡を除いたものを用いた。
紫外線レーザー露光試験サンプルの紫外線レーザー光透過率変化を測定するために、4×4×2mm光学ガラス(BK7)2枚を貼り合せた露光試験サンプルを作製した。また、紫外線レーザー露光試験サンプルの赤外線分光透過率変化を測定するために、φ8×1mm臭化カリウム単結晶板2枚を貼り合せた露光試験サンプルを作製した。いずれの露光試験サンプルについても、上述のシリコーン系樹脂を用いて貼り合せた試験サンプルは、オーブンを用いて加熱硬化させ作製した。試験サンプル作製時には、まず、光学ガラスの片面にシリコーン系樹脂を塗布し、樹脂中に含まれる溶剤を揮発させるために、80℃60分間の予備加熱を行い、その後、もう一枚の光学ガラスを貼り合わせ、更に、180℃60分間の加熱硬化を行った。加熱硬化後、接着層の厚みを計測したところ、いずれも、15μmであった。
前述の試験サンプルについて、接着強度を測定したところ、引っ張り試験機で0.05kg/mm2の引っ張り荷重をかけたとき、光学ガラスと接着層との界面で剥離し、以降の試験を中止した。
(比較例4)
比較例4として、熱硬化型シリコーン系樹脂を用いた。用いたシリコーン樹脂は、シロキサン結合を繰り返し単位とする主鎖を持ち、側鎖にメチル基及びフェニル基を持ち、付加重合反応により硬化する樹脂であり、組成中に揮発性の溶剤を含まず、25℃における粘度が約3000cpsの樹脂を用いた。光学ガラスの貼り合わせに用いる上記シリコーン樹脂は、予め、5μm以上の粒子をカットする精密ろ過器に通し、更に、樹脂中に含まれる気泡を除いたものを用いた。
紫外線レーザー露光試験サンプルの紫外線レーザー光透過率変化を測定するために、4×4×2mm光学ガラス(BK7)2枚を貼り合せた露光試験サンプルを作製した。また、紫外線レーザー露光試験サンプルの赤外線分光透過率変化を測定するために、φ8×1mm臭化カリウム単結晶板2枚を貼り合せた露光試験サンプルを作製した。いずれの露光試験サンプルについても、上述のシリコーン樹脂を用い貼り合せた試験サンプルを、オーブンで加熱硬化させて作製した。オーブンでの加熱硬化は、150℃240分間の加熱硬化を行った。加熱硬化後、接着層の厚みを計測したところ、いずれも、15μmであった。
次に、それぞれの露光試験サンプルについて、紫外線レーザー照射試験を行った。試験サンプルに照射する紫外線レーザー光のパワー密度は、5mW/mm2、50mW/mm2、300mW/mm2で、それぞれ連続照射を行った。紫外線レーザー光のパワー密度、5mW/mm2、50mW/mm2、300mW/mm2で露光した紫外線レーザー光透過率変化測定用の試験サンプルについて、紫外線レーザー光透過率変化を測定した。その結果、5mW/mm2露光品では、紫外線レーザー光連続照射100時間で透過率変化が50%以上となり、50mW/mm2露光品では、紫外線レーザー光連続照射400時間で透過率変化が50%以上となり、また300mW/mm2露光品では、紫外線レーザー光連続照射70時間で透過率変化が50%以上となり、照射試験を中止した。
本発明にかかる光学部品は、ハイパワー紫外線レーザー光に耐性を有することから、例えばハイパワー紫外線レーザー光を透過、反射する光学系に用いられる光学部品などへの利用が可能である。
本発明の一実施の形態又は従来の複合レンズを示す斜視図 本発明の一実施の形態又は従来の複合レンズを示す断面図 本発明の一実施の形態又は従来の複合プリズムを示す斜視図 本発明の一実施の形態又は従来の複合プリズムを示す断面図 本発明の一実施の形態における試験サンプルを示す断面図 本発明の一実施の形態における他の試験サンプルを示す断面図 本発明の一実施の形態による光学部品の耐光性を評価するため露光試験装置を示す概略構成図
符号の説明
1 露光試験サンプル
2 紫外線レーザー発生装置
3 紫外線レーザー光
4 集光レンズ
5 スリット
6 集光レンズ
7 スリット
8 受光素子
10A 複合レンズ
20A 複合プリズム
30A、30B 試験サンプル
40 露光試験装置
101、102、103、104、105、106 光学部材
201A、202A、203A、204A 接着層
301、302 光学ガラス
303、306 接着層
304、305 臭化カリウム単結晶板

Claims (5)

  1. 少なくとも略青色から略青紫色の光を透過、反射する光学部品であって、
    少なくとも略紫色から略青紫色の光を透過、反射する少なくとも2つの光学部材と、
    シロキサン結合を繰り返し単位とする主鎖を持ち且つ側鎖にメチル基のみを持つと共に付加重合反応により硬化するシリコーン樹脂からなり、前記少なくとも2つの光学部材を貼り合わせるための接着層とを備えることを特徴とする光学部品。
  2. 前記シリコーン樹脂は、付加重合反応により硬化する際に反応副産物として揮発成分を生成しないことを特徴とする請求項1に記載の光学部品。
  3. 前記接着層の厚みは、5μm〜15μmの範囲であることを特徴とする請求項1又は請求項2に記載の光学部品。
  4. 前記光学部品は、ハイパワー紫外線レーザーを適用し得ることを特徴とする請求項1から請求項3のうち、いずれか1項に記載の光学部品。
  5. 少なくとも略青色から略青紫色の光を透過、反射する少なくとも2つの光学部材における接着面の少なくとも一方に、シロキサン結合を繰り返し単位とする主鎖を持ち且つ側鎖にメチル基のみを持つシリコーン樹脂を配置し、
    前記シリコーン樹脂を付加重合反応により硬化させることにより、前記少なくとも2つの光学部材を貼り合わせることを特徴とする光学部品の製造方法。
JP2006009563A 2005-05-24 2006-01-18 光学部品及びその製造方法 Withdrawn JP2007192970A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006009563A JP2007192970A (ja) 2006-01-18 2006-01-18 光学部品及びその製造方法
US11/438,685 US20060285231A1 (en) 2005-05-24 2006-05-23 Optical component and optical pickup device
PCT/JP2006/310834 WO2006126722A1 (en) 2005-05-24 2006-05-24 Optical component and optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009563A JP2007192970A (ja) 2006-01-18 2006-01-18 光学部品及びその製造方法

Publications (1)

Publication Number Publication Date
JP2007192970A true JP2007192970A (ja) 2007-08-02

Family

ID=38448736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009563A Withdrawn JP2007192970A (ja) 2005-05-24 2006-01-18 光学部品及びその製造方法

Country Status (1)

Country Link
JP (1) JP2007192970A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119699A (ja) * 2009-11-05 2011-06-16 Nichia Corp 半導体レーザ装置及びその製造方法
US7964047B2 (en) 2007-10-23 2011-06-21 Seiko Epson Corporation Manufacturing method of three-dimensional structure and manufacturing device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964047B2 (en) 2007-10-23 2011-06-21 Seiko Epson Corporation Manufacturing method of three-dimensional structure and manufacturing device therefor
JP2011119699A (ja) * 2009-11-05 2011-06-16 Nichia Corp 半導体レーザ装置及びその製造方法

Similar Documents

Publication Publication Date Title
Nordström et al. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications
JP6449429B2 (ja) 光合波器の製造方法
JP2011519071A (ja) 回折格子カプラー、システムおよび方法
Uddin et al. Adhesive technology for photonics
JP3155014B2 (ja) 接着性の赤外線透過ポリマー層を含む赤外線透過構造
JP2011056519A (ja) 接合方法および接合体の製造方法
JP2015045875A (ja) 溶接接合方法及び溶接接合されたコンポーネントを有するデバイス
JP6767925B2 (ja) 光モジュールおよびその作製方法
JP2007192970A (ja) 光学部品及びその製造方法
CN101929957A (zh) 利用透射光谱法测量涂层uv隔离性的方法
WO2003029856A2 (en) Bonding technique for optical components using an intermediate glass layer
JP4352133B2 (ja) 隣接した光学部品の接着法
Malak et al. Polymer based single mode optical waveguide for spectroscopy applications
Rothhardt et al. New approach to fabrication of a Faraday isolator for high power laser applications
US20060285231A1 (en) Optical component and optical pickup device
Uddin et al. Uneven curing induced interfacial delamination of UV adhesive-bonded fiber array in V-groove for photonic packaging
Uddin et al. Delamination problems of UV-cured adhesive bonded optical fiber in V-groove for photonic packaging
KR100994278B1 (ko) 광학 소자, 광출사 장치 및 광학 소자의 제조 방법
JP2010185916A (ja) ビームスプリット膜及びそれを用いたビームスプリッタ
JP2003215140A (ja) マイクロチップの製造方法
US20040142187A1 (en) Cemented optical element
Priyadarshi et al. Refractive indices variation with temperature and humidity of optical adhesive
JP2002228420A (ja) シリコン薄膜の膜厚測定方法並びにその方法によりシリコン薄膜の膜厚が測定される半導体素子及び半導体装置
JP2006038547A (ja) 薄膜フィルタの評価方法
JP3882784B2 (ja) ポリマー光導波路及び光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

RD01 Notification of change of attorney

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100914