JP2007187474A - 分光光度計計測システムおよび分光光度計計測方法 - Google Patents

分光光度計計測システムおよび分光光度計計測方法 Download PDF

Info

Publication number
JP2007187474A
JP2007187474A JP2006003879A JP2006003879A JP2007187474A JP 2007187474 A JP2007187474 A JP 2007187474A JP 2006003879 A JP2006003879 A JP 2006003879A JP 2006003879 A JP2006003879 A JP 2006003879A JP 2007187474 A JP2007187474 A JP 2007187474A
Authority
JP
Japan
Prior art keywords
sample
needle
flow cell
cleaning liquid
spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006003879A
Other languages
English (en)
Inventor
Michinari Kamitsuma
道成 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Manufacturing and Service Corp
Original Assignee
Hitachi High Tech Manufacturing and Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Manufacturing and Service Corp filed Critical Hitachi High Tech Manufacturing and Service Corp
Priority to JP2006003879A priority Critical patent/JP2007187474A/ja
Publication of JP2007187474A publication Critical patent/JP2007187474A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract


【課題】洗浄液と試料とのコンタミネーションを効果的に防止することができ、かつ、フローセルやニードルの洗浄から試料の吸光度の計測までの所要時間を短縮することのできる分光光度計計測システムおよび分光光度計計測方法を提供すること。
【解決手段】分光光度計計測システム100は、フローセル8を備えた分光光度計2と、試料をフローセル8に自動注入するオートサンプラ1と、から構成される。オートサンプラ1は、流体の吸引および吐出をおこなうシリンジ3と、シリンジ3と連通する流路切替え用の三方バルブ4と、流路91を介して三方バルブ4に連通する洗浄液収容部6と、流路93を介して三方バルブ4に連通するとともに流路93,94の端部に接続されたニードル7とからなり、流路93,94の途中にフローセル8が配設されている。
【選択図】図1

Description

本発明は、発色する試料の吸光度または試料自体の吸光度を計測する分光光度計計測システムと分光光度計計測方法に係る。例えば、洗浄液と試料とのコンタミネーションを効果的に防止することができ、かつ、フローセルやニードルの洗浄から試料の吸光度の計測までの所要時間を短縮することのできる分光光度計計測システムおよび分光光度計計測方法に関するものである。
分光光度計は、シアンやりんなどの上水試験法やJISに指定されている項目を計測することに用いられている。このような項目の計測では、試料に反応試薬を用いてその発色程度を計測することにより、目的成分の濃度を求めることができる。
分光光度計測においては、メスフラスコなどを用いて手作業で発色させ、それを角セル等を用いて計測する方法と、試料を混合できる機能を持つオートサンプラを用いる方法がある。また、試料を測光するために試料を計測部に設置する方法としては、角セルを用いる方法とフローセルを用いる方法が一般に適用されている。
角セルを用いる方法は、キャリオーバやコンタミネーション等の影響を無くして計測できることから計測結果の再現性としては有利であるが、別の試料を計測する際に、その都度セルを入れ替えなくてはならないことから、異なる試料の連続計測にはフローセルを用いた方法が有利である。フローセルに試料を吸引させるシステムとしては、「よくわかる分析化学のすべて」((社)日本分析機器工業会)(非特許文献1)に示すようなオートサンプラを用いたシステムを挙げることができる。
フローセルとシリンジ機構をもったオートサンプラを用いた分光光度計システムの場合、計測までの手順は、フローセルや液体の流路やニードルの洗浄、試料の吸引、試料のフローセルへの送液、計測、再度の洗浄といったサイクルとなる。洗浄時には、まずニードルを洗浄ポートに移動させる。次にバルブを洗浄液側に設定してシリンジを引くことにより、洗浄液がシリンジ内に満たされる。次いで、バルブをニードル側に切替えてシリンジを押すことにより、洗浄液がシリンジによって押し出され、ニードルから洗浄液が吐出され、ニードルの先端部分が洗浄される。この試料の吸引に際しては、試料の全量を吸引できるようにニードル先端を試料最下部まで落として試料吸引をおこなう。試料をフローセルへ送液する際には、ニードルを注入ポートに移動させ、吸引された試料はシリンジを押すことによってフローセルへ送液され、試料がフローセルを満たすこととなる。試料がフローセル内で安定した段階で、信号が光度計本体に送信されて吸光計測がおこなわれる。ニードルは計測が完了するまで注入ポートにある。最後の洗浄段階では、ニードルは注入ポートにあり、ここで最初の洗浄と同様に洗浄液をシリンジに取り込み、バルブを切替えた後に洗浄液を吐出し、洗浄液がフローセルに送液されることでフローセルやニードル、流路の洗浄がおこなわれる。ここでも、シリンジを引くことによって洗浄液がニードルを通り、チューブ内に吸引される。計測時には、注入ポートにニードルをセットし、シリンジを押し出すことによってフローセルに試料が注入され、フローセル内で試料が安定した段階で計測がおこなわれる。
よくわかる分析化学のすべて((社)日本分析機器工業会、2001年10月25日初版、47ページ)
本願発明者が鋭意検討した結果、上記する従来の計測方法では、サンプルと洗浄液とのコンタミネーションにより、結果的に該サンプルが希釈されてしまい、図7のように検量線が正規の直線から曲がる場合が往々にしてあることが判明した。これは、フローセル内や流路内に残存した洗浄液と試料が混ざり合うことによって試料が希釈される、いわゆるコンタミネーションに起因するものであることが発明者等によって特定されている。試料が低濃度域にいくにつれて、コンタミネーションの影響はより大きくなる。さらに、フローセルや流路、ニードルの洗浄、試料の吸引、試料のフローセルへの送液、計測、洗浄からなるサイクル工程は比較的長時間を要するといった問題があった。特に、従来のアートサンプラを適用した分光光度計計測システムでは、シリンジが流路を介してバルブに接続され、さらに流路を介してニードルが接続され、ニードルから試料を吸引した後、フローセルの吸入ポートにニードルを設置し、ニードルを介して吸引された試料をフローセルに送液する方法が適用されており、システムを構成する各機器の配設順序が上記サイクル工程に要する所要時間を長くしている大きな原因であった。
本発明は、洗浄液と試料とのコンタミネーションを効果的に防止するとともに、フローセルやニードルの洗浄から試料の吸光度の計測までの所要時間を短縮することのできる分光光度計計測システムおよび分光光度計計測方法を提供することを目的としている。
本発明による分光光度計計測システムは、フローセルを備えた分光光度計と、試料を該フローセルに自動注入するオートサンプラと、を少なくとも含み、発色する試料の吸光度または試料自体の吸光度を計測する分光光度計計測システムである。前記オートサンプラは、流体の吸引および吐出をおこなうポンプと、ポンプと連通する流路切替え用のバルブと、第1の流路を介してバルブに連通する洗浄液収容部と、第2の流路を介してバルブに連通するとともに該第2の流路の端部に接続されたニードルと、を少なくとも含んでおり、第2の流路の途中にフローセルが配設されており、ニードルから吸引された試料は少なくともフローセルに送液可能となっており、洗浄液収容部からの洗浄液がフローセルおよびニードルに送液可能となっている。
また、本発明による分光光度計計測方法は、ポンプと連通するバルブと、バルブに連通する洗浄液収容部と、バルブに連通するとともに試料を吸引するニードルと、からなるオートサンプラと、バルブとニードルとの間に配設されたフローセルと、を含む分光光度計計測システムを使用して、発色する試料の吸光度または試料自体の吸光度を計測する分光光度計計測方法である。ポンプにて洗浄液を吸引するとともに洗浄液を吐出することによって少なくともフローセルとニードルを洗浄する第1の工程と、ニードルから吸引された試料をフローセルに導き、試料の吸光度を計測する第2の工程と、を少なくとも含んでおり、試料ごとに前記第1の工程と第2の工程が繰り返されるようになっており、少なくともエアー吸引と試料吸引を1回以上繰り返すように試料の吸引がおこなわれることを特徴とするものである。
本発明によれば、残存した洗浄液による試料の希釈化を防止することができるとともに、洗浄から計測までの所要時間を短縮することができる。
以下、図面を参照して本発明の実施の形態を説明する。図1は、本発明の計測システムの一実施形態の構成を示した模式図を、図2は、図1において、分光光度計と制御部の構成を詳細に示した模式図をそれぞれ示している。図3は、本発明の計測方法の一実施形態を示したフローを、図4は、本発明の計測方法の一実施形態を詳細に示したフローをそれぞれ示している。図5は、試料の注入量とコンタミネーションの関係を示したグラフを、図6は、本発明の計測システムによって作成された検量線を示したグラフをそれぞれ示している。
図1は、本発明の計測システムの一実施形態を示したものである。この計測システム100は、オートサンプラ1と分光光度計2とから大略構成されている。オートサンプラ1は、試料の分注、反応液と試料との混合/攪拌、発色液のフローセルへの送液機能を有している。試料、洗浄液の流路は、ニードル7、フローセル8、三方バルブ4、シリンジ3、洗浄液収容部6と、ニードル7とフローセル8を繋ぐチューブ94、フローセル8と三方バルブ4を繋ぐチューブ93、三方バルブ4とシリンジ3を繋ぐチューブ92、三方バルブ4と洗浄液収容部6を繋ぐチューブ91とから構成されている。なお、各機器同士を繋ぐチューブ91,92,93,94は、適宜の内径および長さを有するチューブを使用することができる。
ニードル7は、試料の分注時にはその先端が試料内に配設されることで試料が吸引される。洗浄時には、ニードル7の先端は洗浄ポート55に配設されて洗浄液が吐出される。
三方バルブ4は洗浄水の流路を変更するものであり、シリンジ側、洗浄液収容部側、フローセルおよびニードル側の3方と連通している。そのうち2つの方向を同時に開にすることができ、その一つは、シリンジ側と洗浄液収容部側を連通させるルートであり、他の一つは、シリンジ側とニードル側を連通させるルートであり、バルブの切替えによって双方のルートを適宜選択することができる。洗浄時には、まず三方バルブ4をシリンジ側と洗浄液収容部側にし、シリンジ3を引くことにより、シリンジ3内に洗浄液が入り、次いで三方バルブ4をシリンジ側とニードル側に切替え、シリンジ3を押し出すとシリンジ3内の洗浄液がフローセル8およびニードル7側に流れていく。試料吸引時には、三方バルブ4をシリンジ側とニードル側に設定し、シリンジ3を引くことによって試料がニードル7を介して吸引される。それを吐出する際にも、三方バルブ4はシリンジ側とニードル側にしておく。シリンジ3を押し出すと、吸引された試料がニードルの先端から吐出される。
シリンジ3はポンプ機能を有しており、試料吸引時には、シリンジ3が引かれることによって試料がニードル先端から吸引され、シリンジ3を押し出すと、洗浄液やニードル7から吸引された試料が吐出される。洗浄時には洗浄液収容部6から洗浄液をシリンジ3内に吸引し、三方バルブ4を切替え、シリンジ3を押し出すことで洗浄液がフローセル8およびニードル7の方向へ送液される。ここで、ニードル7とフローセル8をつなぐチューブ94の長さは、ニードル7が洗浄ポート55と試験管51との間を移動するに十分な長さに設定しておくのがよい。また、フローセル8と三方バルブ4を繋ぐチューブ93の長さは、試料を吸引しても三方バルブ4の位置まで試料が到達しないだけの長さに設定しておくのがよい。
試験管51は、発色試薬と試料を混合し、発色させる場所である。最初は試験管51内は空な状態となっている。試料を一定量取り、この試験管51内に入れる。次いで発色試薬も一定量取り、試験管51内に入れる。ここで、試薬管53は試薬を入れる容器であり、サンプル数分の試薬が入れられている。また、試薬管54も同様に別途の試薬を入れる容器である。
試料収容管52は試料を入れておく容器である。発色作業においては、まず試料収容管52から一定量の試料を吸引し、試験管51に吐出する。次いで試薬管53と試薬管54から一定量の発色試薬を取り、試験管51に加え、攪拌しながら所定の反応時間を待つ。攪拌はニードル7から試料と試薬を混合したものを、吸引/吐出を数回繰り返しておこなわれる。フローセル8は、吸光計測部であるため、分光光度計2の本体の中にセットされることとなる。ニードル7から吸引された試料がフローセル8に到達するように、ニードル7、ニードル7とフローセル8をつなぐチューブ94、フローセル8内の容量を勘案しながら試料吸引がおこなわれる。
また、オートサンプラ1にはニードル7のX,Y,Z方向(3次元方向)の位置制御、三方バルブ4の切替制御、シリンジ3を押し出す際と吸引する際の速度の設定、接点信号の発信、タイマー機能などの制御機能を有しており、また、それらを組み合わせたプログラムがパーソナルコンピュータ内に収容されている。このため、試料の吸引量や吐出量の変更、吸引速度と吐出速度の変更も適宜おこなうことが可能となる。発色作業から計測までの工程は、適宜にプログラミングされ、例えばシーケンス制御にてオートサンプラ1を構成する各機器が作動することができる。計測システム100によれば、反応試薬や試料、洗浄液を予めセットしておくことで、発色作業や洗浄作業を自動化することができる。
図2は、分光光度計と制御部の構成を詳細に示した模式図である。分光光度計2は、試料中の特性成分に吸収される度合いを計測して、その特定成分を定量するものであり、オートセル8に注入された試料をブランク液と比較しながら計測する装置である。タングステンランプや水素放電管などの光源20から出射された光は分光器21により、可視光線や赤外線等の単色光となり、この単色光がフローセル8内の試料に照射され、試料を透過した光が検出器22に入射される。試料は、オートサンプラ1によってフローセル8に導入されて計測される。制御用のパーソナルコンピュータ23内には、検出器22からの信号を処理する信号処理部23bと、光源20や分光器21、オートサンプラ1を制御する制御部23a、計測結果を画面表示する表示部23cが備えられている。
本発明の計測システム100によれば、シリンジ3(ポンプ)、三方バルブ4、フローセル8、ニードル7の順に各機器が流路にて接続された構成となっていることにより、ニードル7から吸引された試料を直接フローセル8に送液することができるため、計測時間の短縮を図ることが可能となる。また、流路内を移動する試料の移動量が従来のシステムに比べて格段に短縮されるため、流路内に残存する洗浄液による試料の希釈化(コンタミネーション)を効果的に防止することが可能となる。
図3は、計測システム100を使用して、例えば排水中のりん成分を計測する計測方法のフローを示している。図示するように、計測方法は、洗浄(ステップS1)、試料吸引(ステップS2)、計測(ステップS3)の順でおこなわれる。より具体的には、洗浄工程(ステップS1)においては、ニードル7、フローセル8に洗浄液を流す。洗浄液を流すに際し、ニードル7を洗浄ポート55に移動しておく。
次いで、三方バルブ4を洗浄液収容部側に設定してシリンジ3を引くことにより、洗浄液がシリンジ3内に入って充満する。
次いで、三方バルブ4をニードル側に切替えてシリンジ3を押し出すことにより、洗浄液がフローセル8、ニードル7を通って洗浄ポート55に排出される。試料吸引工程(ステップS2)において、ニードル7は発色液の入った試験管51に移動し、発色液が吸引できるように液底部分まで下ろされる。三方バルブ4をニードル側にしてシリンジ3を引く。発色液はニードルを通過し、フローセル8まで到達する。
計測工程(ステップS3)においては、試料吸引工程が終了し、試料がフローセル8内で安定するまで数秒待ち、オートサンプラ1から分光光度計2に信号を送る。信号を受け取った分光光度計2は発色液の吸光度を計測する。計測終了後、再度洗浄工程(ステップS1)に移行する。
洗浄後のフローセル8やニードル7、さらにはそれらを繋ぐ流路内は、常時洗浄液にて満たされた状態となっているのが一般的である。この状態で、ニードルから試料を吸引すると、流路やニードル内に満たされた洗浄液と試料とが混ざり合うことで、試料が希釈化される可能性が高い。
そこで、試料の吸引の際には、まず、エアーを吸引し、次いで試料を吸引し、さらにエアーを吸引するといった吸引方法を適用することで、残存する洗浄液と試料との混合をエアー層にて確実に縁切りすることができ、双方の混合を防止することができる。エアーおよび試料の吸引方法として、試料外にて一定量のエアーを吸引後にニードル7を試料内に浸漬させて試料を吸引し、次いでニードル7を試料外に移動させてエアーを吸引するといったニードル7の移動制御をおこなうことにより実現することができる。
上記する計測システム100や計測方法によれば、洗浄液による試料の希釈化を確実に防止することが可能となり、したがって、高精度な吸光度計測(相関係数の高い検量線の作成)を実現することができる。
次に、本発明の計測システムおよび計測方法により、JISK0102に記載のリン酸イオンの計測をおこなった実験およびその結果に関して以下に詳細に説明する。なお、計測システムにおいて、5mLのシリンジ、内径がφ0.8mmで長さが1mのチューブ94,91、内径がφ0.8mmで長さが10mのチューブ93、約10mLの容量の内径φ12mm、長さ105mmの試験管51と試料収容管52、50mL容量の試薬管53,54、セルの内容量が70μLのフローセル8をそれぞれ使用した。
ここで、図4は本発明の計測方法によってリン成分を計測する際の、オートサンプラの具体的な作用を示したフローであり、オートサンプラを稼動させる一連のプログラムでもある。すなわち、オートサンプラ1は、パーソナルコンピュータの制御部にて、かかる一連の流れでシーケンス制御されている。JISK0102に記載のリン酸イオンの計測方法は、発色試薬のモリブデン酸アンモニウム溶液とアスコルビン酸溶液を体積比5:1で混ぜ、その混合液を試料に対して2:25の割合で混ぜ、発色させるようになっている。この計測方法では、反応試薬は混合せずに個々に扱うこととする。反応液R1はモリブデン酸アンモニウム溶液、反応液R2はアスコルビン酸溶液を使用できる。反応液R1は試薬管53に、反応液R2は試薬管54にそれぞれ入れておく。また、洗浄液収容部6には精製水を入れておく。また、試料収容管52には試料が充分に入っている。
まず、ステップS200では、ニードル7からチューブ94、フローセル8、チューブ93の流路に洗浄液を流すことによって洗浄がおこなわれる。次に試料と試薬の発色工程に入る。ステップS201では、反応液R1を266μL吸引し、空な試験管51に反応液R1を入れる。このとき、反応液R1をエアーで挟むようにエアー、反応液R1、エアーの順で吸引する。
ステップS202では、試料を4000μL吸引し、反応液R1が入った試験管に入れる。このときもステップS201のときと同じようにエアーの層を挟んでいる。次いで、ステップS203において、反応液R2を54μL吸引し、反応液R1と試料が入った試験管51に入れる。ステップS204では、試料と反応液を混ぜるためにエアーを吸引するとともに試料内で吐出し、混合する(バブリング)。このステップでは、試料を吸引するとともに、吐出して混合させる方法であってもよい。
ステップS205では、精製水をフローセル8に満たすために、流路内の洗浄を行う。ここでの精製水は洗浄液と同じである。精製水が入っている洗浄液収容部6からシリンジ3を引くことにより、シリンジ3内に精製水が取り込まれ、次いで三方バルブ4を切替えてニードル側に精製水を流すことにより、フローセル8とニードル7の双方を洗浄することができ、フローセル8内が精製水で満たされた状態となる。
ステップS206では、オートサンプラ1から計測信号を発信させ、オートゼロ計測を行う。次いで、ステップS207において発色液を吸引する。このときもエアー、発色液、エアー、発色液の順に吸引する。ここでフローセル内には発色液が満たされた状態となる。次いで、ステップS208において、フローセル8内のよどみがなくなるまで待つ。ステップS209に移行し、よどみがなくなった段階でオートサンプラ側から信号が発信され、計測がおこなわれる。計測が終わると、計測結果がパーソナルコンピュータ23の表示部23cに表示される。
ステップS210に移行し、次の試料を計測するために流路内の洗浄がおこなわれる。そしてステップS200に戻り、次の試料の計測が同様におこなわれる。
図5は、フローセルに流す試料量とコンタミネーションの関係を示したものである。試料量を増やすとコンタミネーションが少なくなるが、逆に試料量が少ないとコンタミネーションが多くなる。コンタミネーションは、チューブ内面やフローセル内面に残った洗浄液が計測時に送液されてくるとき、試料と混ざり希釈される現象である。よって、ある程度以上の試料量を吸引すればコンタミネーションの影響がなく、計測できるようになる。ただし、送液できる試料量には限りがあり、シリンジによる吸引量以上の試料を送液することはできない。通常は試料を吸引する前はニードルからシリンジまで洗浄液で満たされている。試料を吸引すると、試料と洗浄液の境界面は接しているために双方が混合されながら、ニードルからシリンジ方向に流れていくことになる。
本実験では、それを極力少なくするために試料を吸引する前にエアーの層をはさみ、エアー、試料、エアー、試料、エアー、試料という具合にチューブ内で試料と洗浄液が接しないように試料と洗浄液の間に幾層かのエアー層を含むようにしている。従来の方法では、試料吸引後、フローセル部へ送液する必要があったが、そのときも試料吸引時と同じように、注入ポートからフローセルまでの間が洗浄液で満たされているため、その洗浄液との接液を防ぐために、ニードルから試料吸引後もエアー、試料、エアー、試料、エアーという層をはさんでフローセル側に送液することもおこなわれていたが、試料が動く流路が長いため、その効果があまりなかった。それは、従来の計測システムが、シリンジ、バルブ、ニードル、フローセルという機器の配設構造となっており、したがって、吸引された試料は一気にフローセルに送液されず、吸引の後に吐出(送液)という試料の流れとなっていたことによる。
本実施例では、ニードル、フローセル、バルブ、シリンジの順の流路にすることにより、ニードルで吸引された試料はそのままフローセルに送液されることから、試料が動く流路も従来に比して格段に短くすることができ、その結果としてコンタミネーションの影響も少なくすることができた。本実験によって得られた計測結果を表1に、図6にその際の検量線を示している。
Figure 2007187474
表1は、検量線用の標準液の0.00〜0.80mg/Lの濃度に対する吸光度の値である。コンタミネーションの少ない結果が得られており、図6からも明らかなように、検量線の相関係数も0.999以上と極めて良好な結果を得ることができた。
本実施例は従来のフローセル、ニードル、バルブ、シリンジの機器構成から、ニードル、フローセル、バルブ、シリンジの機器構成の流路とすることにより、ニードルからフローセルに送液される際の洗浄液によるコンタミネーションの影響を少なくすることができ、したがって精度の高い吸光計測が可能となった。また、かかる流路の変更により、洗浄工程内のニードルの洗浄回数やニードルの移動に要する工程を省略することができるので、計測時間の短縮を図ることができ、作業効率を高めることが可能となった。
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。なお、本発明の計測システムおよび計測方法は多様な試料分析に適用することができ、例えば、生体試料、工業材料、食品などの試料分析に適用可能である。
本発明の計測システムの一実施形態の構成を示した模式図。 図1において、分光光度計と制御部の構成を詳細に示した模式図。 本発明の計測方法の一実施形態を示したフロー。 本発明の計測方法の一実施形態を詳細に示したフロー。 試料の注入量とコンタミネーションの関係を示したグラフ。 本発明の計測システムによって作成された検量線を示したグラフ。 従来の計測システムによって作成された検量線を示したグラフ。
符号の説明
1…オートサンプラ、2…分光光度計、20…光源、21…分光器、22…検出器、23…パーソナルコンピュータ、23a…制御部、23b…信号処理部、23c…表示部、3…シリンジ(ポンプ)、4…三方バルブ、51…試験管、52…試料収容管、53,54…試薬管、55…洗浄ポート、6…洗浄液収容部、7…ニードル、8…フローセル、91,92,93,94…チューブ(流路)、100…計測システム

Claims (4)

  1. フローセルを備えた分光光度計と、試料を該フローセルに自動注入するオートサンプラと、を含み、発色する試料の吸光度または試料自体の吸光度を計測する分光光度計計測システムであって、
    前記オートサンプラは、流体の吸引および吐出をおこなうポンプと、ポンプと連通する流路切替え用のバルブと、第1の流路を介してバルブに連通する洗浄液収容部と、第2の流路を介してバルブに連通するとともに該第2の流路の端部に接続されたニードルと、を含み、
    第2の流路の途中にフローセルが配設されており、ニードルから吸引された試料は少なくともフローセルに送液可能となっており、洗浄液収容部からの洗浄液がフローセルおよびニードルに送液可能となっていることを特徴とする分光光度計計測システム。
  2. 前記オートサンプラは、前記ポンプによる流体の吸引速度または吐出速度、および/または、流体の吸引量または吐出量を調整する制御部をさらに備えていることを特徴とする請求項1に記載の分光光度計計測システム。
  3. 少なくともエアー吸引と試料吸引を1回以上繰り返すように試料吸引方法が制御されていることを特徴とする請求項1または2に記載の分光光度計計測システム。
  4. ポンプと連通するバルブと、バルブに連通する洗浄液収容部と、バルブに連通するとともに試料を吸引するニードルと、からなるオートサンプラと、バルブとニードルとの間に配設されたフローセルと、を含む分光光度計計測システムを使用して、発色する試料の吸光度または試料自体の吸光度を計測する分光光度計計測方法であって、
    ポンプにて洗浄液を吸引するとともに洗浄液を吐出することによって少なくともフローセルとニードルを洗浄する第1の工程と、
    ニードルから吸引された試料をフローセルに導き、試料の吸光度を計測する第2の工程と、を含み、
    試料ごとに前記第1の工程と第2の工程が繰り返されるようになっており、少なくともエアー吸引と試料吸引を1回以上繰り返すように試料の吸引がおこなわれることを特徴とする分光光度計計測方法。
JP2006003879A 2006-01-11 2006-01-11 分光光度計計測システムおよび分光光度計計測方法 Pending JP2007187474A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003879A JP2007187474A (ja) 2006-01-11 2006-01-11 分光光度計計測システムおよび分光光度計計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003879A JP2007187474A (ja) 2006-01-11 2006-01-11 分光光度計計測システムおよび分光光度計計測方法

Publications (1)

Publication Number Publication Date
JP2007187474A true JP2007187474A (ja) 2007-07-26

Family

ID=38342751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003879A Pending JP2007187474A (ja) 2006-01-11 2006-01-11 分光光度計計測システムおよび分光光度計計測方法

Country Status (1)

Country Link
JP (1) JP2007187474A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367606A (zh) * 2017-09-18 2017-11-21 苏州翊讯生物科技有限公司 闪光型检测系统
CN107831328A (zh) * 2017-12-06 2018-03-23 深圳市水务科技有限公司 一种分时注射系统和水质在线监测仪器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367606A (zh) * 2017-09-18 2017-11-21 苏州翊讯生物科技有限公司 闪光型检测系统
CN107367606B (zh) * 2017-09-18 2023-11-24 苏州翊讯生物科技有限公司 闪光型检测系统和闪光型检测装置
CN107831328A (zh) * 2017-12-06 2018-03-23 深圳市水务科技有限公司 一种分时注射系统和水质在线监测仪器

Similar Documents

Publication Publication Date Title
US9989548B2 (en) Automatic analyzer and method
US8580198B2 (en) Automatic analyzer
US20090137062A1 (en) Analysis system and method for the analysis of a body fluid sample for an analyte contained therein
CN109283138B (zh) 一种定量进样系统
WO2006132211A1 (ja) 自動分析装置
JPH08178824A (ja) 粒子測定装置
DK160730B (da) Kontinuert stroemningsanlaeg for vaesker
KR102219833B1 (ko) 액체 시료 분석을 위한 자동측정장치, 및 이를 이용한 시료 분석 방법
US20220315449A1 (en) Automatic Analyzer
US11808671B2 (en) Automatic analysis device
JP6126387B2 (ja) 二重管構造試料吸引ノズルを備えた電解質分析装置
KR101581230B1 (ko) 총질소 및 총인 측정 장치
US11885781B2 (en) Titration apparatus and titration method
JP5489283B2 (ja) 自動分析装置
JP2007187474A (ja) 分光光度計計測システムおよび分光光度計計測方法
WO2003006953A9 (en) Liquid sample take-up device
NL1006211C2 (nl) Analyse-inrichting.
JPH03100455A (ja) 電解質分析装置および電解質分析方法
JPH06130072A (ja) 自動分析装置
JP2000227428A (ja) 滴定方法及び装置
JP2010060550A (ja) 検体分注方法および分析装置
US11579159B2 (en) Automatic analysis device
JP7378477B2 (ja) 自動分析装置および試料の自動分析方法
JP2008298755A (ja) 医用光度計
CN114088648B (zh) 一种多通阀微试剂取样的气液双重隔离方法