JP2007170863A - Water-quality evaluation method, ultrapure water evaluation device using the same and ultrapure water producing system - Google Patents
Water-quality evaluation method, ultrapure water evaluation device using the same and ultrapure water producing system Download PDFInfo
- Publication number
- JP2007170863A JP2007170863A JP2005365412A JP2005365412A JP2007170863A JP 2007170863 A JP2007170863 A JP 2007170863A JP 2005365412 A JP2005365412 A JP 2005365412A JP 2005365412 A JP2005365412 A JP 2005365412A JP 2007170863 A JP2007170863 A JP 2007170863A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ultrapure water
- silicon
- dissolved hydrogen
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021642 ultra pure water Inorganic materials 0.000 title claims abstract description 128
- 239000012498 ultrapure water Substances 0.000 title claims abstract description 128
- 238000011156 evaluation Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000013441 quality evaluation Methods 0.000 title claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 124
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 106
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 106
- 239000010703 silicon Substances 0.000 claims abstract description 106
- 239000001257 hydrogen Substances 0.000 claims abstract description 69
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 69
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 claims abstract description 56
- 239000000126 substance Substances 0.000 claims abstract description 32
- 239000013078 crystal Substances 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 19
- 239000004065 semiconductor Substances 0.000 abstract description 15
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 150000002431 hydrogen Chemical class 0.000 abstract 1
- 230000000630 rising effect Effects 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000012535 impurity Substances 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 239000003456 ion exchange resin Substances 0.000 description 8
- 229920003303 ion-exchange polymer Polymers 0.000 description 8
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 8
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- -1 amines Chemical compound 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000010206 sensitivity analysis Methods 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/30—H2
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本願発明は水質評価方法に関するものである。更に詳しくは、特に半導体や液晶製造用の洗浄水として使用される超純水のエッチング性などの水質について、シリコン物質に対する影響度を指標として簡易かつ高感度に評価する水質評価方法、該方法を用いる超純水評価装置及び超純水製造システムに関する。 The present invention relates to a water quality evaluation method. More specifically, a water quality evaluation method for evaluating water quality such as etching properties of ultrapure water used as cleaning water for manufacturing semiconductors and liquid crystals in a simple and highly sensitive manner using the influence on silicon substances as an index, The present invention relates to an ultrapure water evaluation apparatus and an ultrapure water production system to be used.
半導体や液晶製造用に使用される超純水は、不純物濃度が極めて低い水を安定に供給する必要がある。このために試料水を採取し、高感度の分析装置を使用して不純物濃度を測定し、水質を確認している。 Ultrapure water used for manufacturing semiconductors and liquid crystals needs to stably supply water having an extremely low impurity concentration. For this purpose, sample water is collected and the concentration of impurities is measured using a highly sensitive analyzer to confirm the water quality.
従来から、超純水中の不純物が、電気的な方法で測定・指標化できる項目や、不純物が直接分析できる水質モニターが超純水製造装置の出口等に設置されて、水質が監視されている。例えば、抵抗率計(比抵抗計)、TOC計、シリカ計等の計測機器が用いられてきた。しかし最近の超純水のように不純物濃度が極めて低い水に含まれる不純物濃度を正確に測定するためには、従来の水質モニターでは不十分であり、試料採取による高感度分析が不可欠である。例えば、NaやFe等の金属元素の濃度は1pptという極低濃度を測定する必要があり、これに対応できる水質モニターは存在しないため、サンプリングして高感度分析をしなければならない。 Conventionally, water quality is monitored by installing an item that can measure and index impurities in ultrapure water using an electrical method and a water quality monitor that can analyze impurities directly at the outlet of ultrapure water production equipment. Yes. For example, measuring instruments such as a resistivity meter (specific resistance meter), a TOC meter, and a silica meter have been used. However, in order to accurately measure the impurity concentration contained in water with extremely low impurity concentration such as recent ultrapure water, a conventional water quality monitor is insufficient, and high sensitivity analysis by sampling is indispensable. For example, the concentration of metal elements such as Na and Fe needs to be measured at an extremely low concentration of 1 ppt, and there is no water quality monitor that can cope with this, so sampling and high sensitivity analysis must be performed.
一方、超純水の製造方法によっては、その製造工程中にイオン交換樹脂や分離膜から溶出したアミン類が混入することがある。このアミン類が混入した超純水を用いてシリコンウエハを洗浄すると、リンス工程では好ましくないエッチング作用を起こすことが知られている。従来、このエッチング作用を確認するために、例えばシリコンウエハを評価対象の超純水に浸漬したのち、その表面を走査型電子顕微鏡で観察する方法がとられていた。しかしながら、この方法においては、走査型電子顕微鏡を取り扱う高い技術が必要であり、かつ測定に時間がかかりすぎるなどの問題があった。 On the other hand, depending on the method for producing ultrapure water, amines eluted from ion exchange resins and separation membranes may be mixed during the production process. It is known that when a silicon wafer is cleaned using ultrapure water mixed with amines, an undesirable etching action is caused in the rinsing process. Conventionally, in order to confirm this etching action, for example, a method of observing the surface of a silicon wafer with a scanning electron microscope after being immersed in ultrapure water to be evaluated has been used. However, in this method, there is a problem that a high technique for handling a scanning electron microscope is required and that it takes too much time for measurement.
特開2001−208748号公報には、シリコンウエハの洗浄に用いられる超純水の水質評価方法として、シリコンウエハを試料水に接触させて、試料水中の不純物をウエハに付着させ、付着した不純物を溶離して、該不純物を分析する水質評価方法が提案されている。しかし、この方法は、その測定対象を試料水中の微粒子や金属類の不純物を測定対象とするものであって、試料水のエッチング性の評価を成しえるものではない。
半導体製造工程においては、半導体デバイスの高精細化が進むに従い、シリコン表面の清浄度の維持、平坦度の維持が重要になってくる。高精細度の半導体を製造する工程においては、表面のシリコンをわずかでも溶解させる超純水は、表面のエッチングに伴う表面荒れの原因になる可能性があり、それに伴い電気特性を低下させるなどの問題発生の原因になる。 In the semiconductor manufacturing process, it is important to maintain the cleanliness and flatness of the silicon surface as the semiconductor devices become more precise. In the process of manufacturing high-definition semiconductors, ultrapure water that dissolves even a small amount of silicon on the surface can cause surface roughness associated with surface etching, and as a result, electrical characteristics are degraded. Cause problems.
従って、半導体製造工程においては、超純水で洗浄時にシリコン表面荒れの少ない水を使用することが必要であり、使用する水がシリコン表面をエッチングする性質を有するか否かを判断することは工業的に極めて重要な課題である。 Therefore, in the semiconductor manufacturing process, it is necessary to use water with little roughness on the silicon surface when cleaning with ultrapure water, and it is an industrial matter to determine whether the water used has the property of etching the silicon surface. This is an extremely important issue.
本願発明は、このような事情のもとで、特に半導体や液晶製造用の洗浄水として使用される超純水のエッチング性などの水質について、シリコン物質に対する影響度を指標として簡易かつ高感度に評価する水質評価方法を提供することを目的としている。更に、本願発明は、当該水質評価方法を用いる超純水評価装置及びこの超純水評価装置を備えた超純水製造システムを提供することを目的としてなされたものである。 Under such circumstances, the present invention is simple and highly sensitive, particularly with respect to the water quality such as etching properties of ultrapure water used as cleaning water for manufacturing semiconductors and liquid crystals, using the degree of influence on the silicon substance as an index. The purpose is to provide a water quality evaluation method. Furthermore, this invention is made | formed for the purpose of providing the ultrapure water evaluation apparatus using the said water quality evaluation method, and the ultrapure water manufacturing system provided with this ultrapure water evaluation apparatus.
そこで、発明者は、シリコン表面のエッチングと当該シリコンに接触後の試料水中の溶存水素濃度との関係を鋭意検討した結果、シリコン表面をエッチングし易い水にシリコンウエハを接触させた場合、その水中の溶存水素濃度が相対的に大きくなり、シリコン表面をエッチングする程度が小さい水の場合、その水中に含有される溶存水素濃度も小さくなるという関係を見出し、この知見に基づいて本願発明を完成するに至った。 Therefore, as a result of intensive studies on the relationship between the etching of the silicon surface and the concentration of dissolved hydrogen in the sample water after contact with the silicon, the inventor found that when the silicon wafer was brought into contact with water that was easy to etch the silicon surface, In the case where the dissolved hydrogen concentration of the water is relatively large and the degree of etching of the silicon surface is small, the relationship is found that the dissolved hydrogen concentration contained in the water is also reduced, and the present invention is completed based on this finding. It came to.
すなわち本願発明は、試料水をシリコン物質と接触させ、該シリコン物質に接触後の試料水に含有されるシリカ濃度に相関する物性値である溶存水素濃度を測定し、該シリコン物質との接触によって上昇した溶存水素濃度に基づいて、試料水の水質を評価することを特徴とする水質評価方法を提供するものである。更に、本願発明は、当該水質評価方法を用いる超純水評価装置及びこの超純水評価装置を備えた超純水製造システムを提供するものである。 That is, the present invention contacts sample water with a silicon substance, measures the dissolved hydrogen concentration, which is a physical property value correlated with the silica concentration contained in the sample water after contact with the silicon substance, and makes contact with the silicon substance. The present invention provides a water quality evaluation method characterized by evaluating the quality of sample water based on the increased dissolved hydrogen concentration. Furthermore, this invention provides the ultrapure water evaluation apparatus which uses the said water quality evaluation method, and the ultrapure water manufacturing system provided with this ultrapure water evaluation apparatus.
上記したように、試料水中にアミン類などのようにシリコンをエッチングし易い物質が混入していると、試料水をシリコン物質に接触させた際にシリコン表面にエッチングが生じ、試料水中にシリコンが溶出する。溶出したシリコンはOH-イオンもしくは、水分子と反応し、イオン状シリカ(ケイ酸イオン)(SiO3 2-)になり、一方残余する水素は溶存水素となって水中に存在していると考えられる。従って、溶存水素濃度はシリカ濃度と相関関係にあるため、溶存水素濃度の上昇をモニタリングすることによって試料水中がシリコンにエッチングを生じさせる水質かどうかを評価することができる。 As described above, if a substance that easily etches silicon, such as amines, is mixed in the sample water, etching occurs on the silicon surface when the sample water is brought into contact with the silicon substance, and silicon is contained in the sample water. Elute. The eluted silicon reacts with OH - ions or water molecules to form ionic silica (silicate ion) (SiO 3 2- ), while the remaining hydrogen is considered to exist as dissolved hydrogen in water. It is done. Therefore, since the dissolved hydrogen concentration has a correlation with the silica concentration, it is possible to evaluate whether the sample water is water quality that causes etching in silicon by monitoring the increase in the dissolved hydrogen concentration.
溶存水素濃度の上昇については、溶存水素濃度の分析手法及びその分析装置を用いることにより、シリコンウエハの破片またはシリコン結晶、球状シリコン粒子等のシリコン物質と接触した後の超純水中の溶存水素濃度を測定し、当該物質との接触前の溶存水素濃度と比較すれば、当該物質との接触によって上昇した溶存水素濃度を測定することができる。尚、上記シリコン物質として、シリコン単結晶体以外に、シリコン多結晶体を用いることもできる。また、上記シリコン物質としては特に限定されないが、高純度のシリコン、例えばシリコンウエハやその破砕粒子、単結晶シリコン粒子を用いることが好ましい。 Regarding the increase in dissolved hydrogen concentration, dissolved hydrogen concentration in ultrapure water after contact with silicon materials such as silicon wafer debris or silicon crystals, spherical silicon particles, etc. by using the dissolved hydrogen concentration analysis method and its analyzer If the concentration is measured and compared with the dissolved hydrogen concentration before contact with the substance, the dissolved hydrogen concentration increased by contact with the substance can be measured. In addition to the silicon single crystal, a silicon polycrystal can be used as the silicon material. The silicon substance is not particularly limited, but it is preferable to use high-purity silicon such as a silicon wafer, crushed particles thereof, or single crystal silicon particles.
そうすると、定期的或いは連続的に溶存水素濃度を直接測定或いはモニタリングすることにより、超純水等の水質、特にエッチング性の変動をモニタリングすることができる。また、シリコンへの接触条件を一定のものにすることで、複数種の試料水がシリコンに対して有するエッチング能力を相対的に比較対比することができる。 Then, by measuring or monitoring the dissolved hydrogen concentration directly or continuously, it is possible to monitor the quality of water such as ultrapure water, particularly the etching property. Further, by making the contact condition with silicon constant, it is possible to relatively compare and compare the etching ability of a plurality of types of sample water with respect to silicon.
また、試料中に含有される溶存水素濃度の分析手法は、特に制限されないが、隔膜を用いた電気化学測定法が最も簡易で好ましい。 Further, the method for analyzing the concentration of dissolved hydrogen contained in the sample is not particularly limited, but an electrochemical measurement method using a diaphragm is the simplest and preferable.
以上の本願発明の水質評価方法は、試料水、特に超純水をシリコン物質と接触させて該超純水中の溶存水素濃度を測定することによって、この超純水がシリコンウエハ表面をエッチングする性質を有するか否かを容易に判定できるので、半導体製造上の不具合の発生防止に極めて有効である。 In the water quality evaluation method of the present invention described above, the ultrapure water etches the silicon wafer surface by contacting sample water, particularly ultrapure water, with a silicon substance and measuring the dissolved hydrogen concentration in the ultrapure water. Since it can be easily determined whether or not it has properties, it is extremely effective in preventing the occurrence of defects in semiconductor manufacturing.
上記した本願発明の水質評価方法を用いる超純水評価装置は、試料水通水口と試料水排出口とを有し、内部にシリコン物質を装填する接触容器と、該排出口から排出された試料水中の溶存水素濃度を測定する溶存水素濃度測定装置とを備えることを特徴とする。 The ultrapure water evaluation apparatus using the water quality evaluation method of the present invention described above has a sample water passage opening and a sample water discharge opening, a contact container loaded with a silicon substance inside, and a sample discharged from the discharge opening And a dissolved hydrogen concentration measuring device for measuring a dissolved hydrogen concentration in water.
上記した本願発明の超純水評価装置は、その実施形態として例えば、超純水製造装置からユースポイントへの超純水送り配管及びユースポイントからの超純水戻り配管における任意の位置の水経路において、水質評価用のシリコン接触容器と、溶存水素濃度測定装置とを接続した構成とすることができる。 The above-described ultrapure water evaluation apparatus of the present invention includes, for example, an ultrapure water feed pipe from the ultrapure water production apparatus to the use point and a water path at an arbitrary position in the ultrapure water return pipe from the use point. , A silicon contact container for water quality evaluation and a dissolved hydrogen concentration measuring device can be connected.
当該溶存水素濃度測定装置は、シリコン接触容器と連結し、シリコン接触容器でシリコンと接触した試料水を溶存水素濃度測定装置に導入し、溶存水素濃度を測定しても良いし、また、溶存水素濃度測定装置をシリコン接触容器とは別な場所に用意し、シリコン接触容器でシリコンと接触した試料水を水採取容器に採り、溶存水素測定装置のある場所へ運び、溶存水素濃度測定装置で測定しても良い。また、シリコンと接触させる前の溶存水素濃度を測定する場合は、シリコン接触容器の上流側の試料水を溶存水素濃度測定装置へ導入、供給するようにすれば良い。 The dissolved hydrogen concentration measuring device may be connected to a silicon contact vessel, and sample water that is in contact with silicon in the silicon contact vessel may be introduced into the dissolved hydrogen concentration measuring device to measure the dissolved hydrogen concentration. Prepare a concentration measuring device in a place separate from the silicon contact container, take the sample water that has contacted the silicon in the silicon contact container to the water sampling container, carry it to the place where the dissolved hydrogen measuring device is located, and measure with the dissolved hydrogen concentration measuring device You may do it. Moreover, when measuring the dissolved hydrogen concentration before making it contact with silicon, the sample water on the upstream side of the silicon contact vessel may be introduced and supplied to the dissolved hydrogen concentration measuring device.
ここで、上記実施形態において、超純水評価装置を構成するシリコン接触容器に制限はなく、半導体基板に試料水を接触させた後、該基板の表面の分析によって試料水中の不純物を検出又は測定する水質の評価方法で使用する半導体基板の保持容器を用いることも出来るが、接触表面積のより大きい粒子状シリコンまたはシリコン基板破砕物を充填したカラムを用いることが好ましい。 Here, in the above embodiment, the silicon contact vessel constituting the ultrapure water evaluation apparatus is not limited. After the sample water is brought into contact with the semiconductor substrate, impurities in the sample water are detected or measured by analyzing the surface of the substrate. Although the holding | maintenance container of the semiconductor substrate used with the evaluation method of the water quality to be used can also be used, it is preferable to use the column filled with the particulate silicon or silicon substrate crushed material with a larger contact surface area.
本願発明の超純水評価装置は、一次純水製造装置から供給される純水を更に精製処理してユースポイントへ供給するサブシステムを備えた超純水製造処理装置において好適に使用される。該超純水製造処理装置を構成する一次純水製造装置は、凝縮沈殿装置、砂ろ過器、活性炭ろ過器、逆浸透膜装置、紫外線照射装置、真空脱気又は窒素ガス脱気を行う脱ガス装置、触媒脱気装置、非再生型イオン交換装置等を原水水質に応じて適宜選択し、任意の順に並べて形成する。サブシステムは、紫外線殺菌装置、混床式脱塩装置、限外ろ過膜(UF)装置等を適宜組み合わせて形成する。 The ultrapure water evaluation apparatus of the present invention is suitably used in an ultrapure water production processing apparatus including a subsystem that further purifies pure water supplied from a primary pure water production apparatus and supplies the purified water to a use point. The primary pure water production apparatus constituting the ultrapure water production treatment apparatus includes a condensation precipitation apparatus, a sand filter, an activated carbon filter, a reverse osmosis membrane apparatus, an ultraviolet irradiation apparatus, vacuum degassing or nitrogen gas degassing. An apparatus, a catalyst degassing apparatus, a non-regenerative ion exchange apparatus, and the like are appropriately selected according to the quality of raw water and are arranged in an arbitrary order. The subsystem is formed by appropriately combining an ultraviolet sterilizer, a mixed bed desalting apparatus, an ultrafiltration membrane (UF) apparatus, and the like.
超純水の循環配管には分岐管を予め必要箇所に設け、例えば、超純水製造装置の出口直後、ユースポイント近傍、ユースポイントから超純水製造装置へ戻る位置等の任意の位置に分岐管を1箇所以上設置する。本願発明の効果を十分に発揮するため、分岐管は、3箇所以上設けることが好ましい。また、本願発明の超純水評価装置は、水質評価を行う都度に、分岐管に取り付けることができるが、緊急時に直ちに水質評価することを可能にするため、常設しておくのが好ましい。 A branch pipe is provided in a necessary place in the ultrapure water circulation pipe in advance, for example, immediately after the exit of the ultrapure water production apparatus, near the use point, or at any position such as a position returning from the use point to the ultrapure water production apparatus. Install one or more tubes. In order to fully demonstrate the effects of the present invention, it is preferable to provide three or more branch pipes. The ultrapure water evaluation apparatus of the present invention can be attached to the branch pipe every time the water quality is evaluated. However, it is preferable that the apparatus is permanently installed so that the water quality can be immediately evaluated in an emergency.
試料水とシリコン物質との接触は、例えば、シリコン物質を装填した接触容器内部に試料水を連続的に供給した後、この供給された試料水を当該接触容器と接続された溶存水素測定装置又は水採取容器に連続的或いは間欠的に供給することにより行うことができる。この場合の接触条件は、任意に設定することができ、シリコン物質の充填量或いはシリコンウエハの充填枚数、当該シリコンの表面積、単位時間当たりの通水量、接触時間等の所定の接触条件を設定することができる。例えば、6インチのシリコンウエハ1枚に対しては、超純水等の試料水を1L/minで供給することが好ましい。 The contact between the sample water and the silicon substance is, for example, by continuously supplying the sample water into the contact container loaded with the silicon substance, and then supplying the supplied sample water to the dissolved hydrogen measuring device connected to the contact container or It can be carried out by supplying the water collection container continuously or intermittently. The contact conditions in this case can be arbitrarily set, and predetermined contact conditions such as the filling amount of silicon substance or the number of filling silicon wafers, the surface area of the silicon, the amount of water per unit time, and the contact time are set. be able to. For example, it is preferable to supply sample water such as ultrapure water at 1 L / min to one 6-inch silicon wafer.
水質評価は、予め設定した接触条件に基づいて試料水とシリコン物質を接触させ、試料水の溶存水素濃度の上昇値を測定し、予め定めた許容上昇値と比較することにより、試料水が使用可能か、或いは何らかの対策をたてるべきかを判断する。例えば、ある超純水製造装置が製造した超純水の水質評価においては、まず上記のごとく条件を定め、当該定めた条件と同一条件で、許容される水質の標準水として、超純水の溶存水素濃度の上昇値を基準にして、その後、時間経過毎に試料水の溶存水素濃度の測定を行い、溶存水素濃度が許容上昇値以上の上昇が認められるケースが発生したときは、超純水として不適格と判定する。また、試料水とシリコン物質との接触条件を一定のものにすることにより、異なる場所に設けられた超純水製造装置から供給される超純水について、それぞれ評価することができる。 The water quality is evaluated by contacting the sample water with a silicon substance based on the preset contact conditions, measuring the increase in dissolved hydrogen concentration of the sample water, and comparing it with a predetermined allowable increase value. Determine if it is possible or if some action should be taken. For example, in the evaluation of the quality of ultrapure water produced by a certain ultrapure water production device, the conditions are first set as described above, and ultrapure water is used as the standard water with acceptable water quality under the same conditions as those set forth above. Measure the dissolved hydrogen concentration of the sample water every time, using the dissolved hydrogen concentration as a reference, and if there is a case where the dissolved hydrogen concentration rises above the allowable increase value, Judged as ineligible as water. Further, by making the contact condition between the sample water and the silicon substance constant, it is possible to evaluate each of the ultrapure water supplied from the ultrapure water production apparatus provided at different locations.
溶存水素濃度の上昇値は、シリコンとの接触前後の溶存水素濃度を測定し、その前後の溶存水素濃度の差から、溶存水素濃度の上昇分として求めることができる。この場合、正常時の超純水の溶存水素濃度が把握されている場合は、接触前の溶存水素濃度の測定は省略することができる。溶存水素濃度の許容上昇値は、上記接触条件や超純水の使用目的等によって異なるが、溶存水素濃度の上昇値が0.5ppbを越えるときは、対策を講じるのが良い。 The increase value of the dissolved hydrogen concentration can be obtained as an increase in the dissolved hydrogen concentration by measuring the dissolved hydrogen concentration before and after contact with silicon and from the difference between the dissolved hydrogen concentrations before and after the contact. In this case, when the dissolved hydrogen concentration of ultrapure water at normal times is known, the measurement of the dissolved hydrogen concentration before contact can be omitted. The allowable increase value of the dissolved hydrogen concentration varies depending on the contact conditions and the purpose of use of the ultrapure water. However, when the increase value of the dissolved hydrogen concentration exceeds 0.5 ppb, measures should be taken.
かかる対策としては、溶存水素濃度の上昇値が許容上昇値を超える場合は警告を発した後、当該超純水の使用を中止し、超純水製造装置の水質低下原因を排除することなどを行う。例えば、超純水中に混入するアミンは、イオン交換樹脂等から溶出したものと考えられるので、溶出防止を施したイオン交換樹脂等に取り替えることにより、水質回復を図ることができる。尚、本願発明の超純水評価装置を用いた超純水の水質評価は、例えば1回/月程度の頻度で定期的に行うだけでなく、トラブル発生時等、随時行うこともできる。なお吸光度によってシリカ濃度を直接測定することも可能だが、一般にシリカ濃度の高精度計測においては試料水の濃縮工程を別途設ける必要があり、処理が煩雑になるため、簡易な測定方法である本発明を用いる方がより好ましい。 As a countermeasure, if the increase in dissolved hydrogen concentration exceeds the allowable increase, a warning is issued, the use of the ultra pure water is stopped, and the cause of water quality deterioration in the ultra pure water production equipment is eliminated. Do. For example, it is considered that amine mixed in ultrapure water is eluted from an ion exchange resin or the like, so that the water quality can be recovered by replacing it with an ion exchange resin or the like that has been prevented from being eluted. In addition, the quality evaluation of ultrapure water using the ultrapure water evaluation apparatus of the present invention can be performed not only periodically, for example, at a frequency of about once / month, but also at any time when trouble occurs. Although it is possible to directly measure the silica concentration by the absorbance, it is generally necessary to provide a sample water concentration step separately in the high-precision measurement of the silica concentration. Is more preferable.
本願発明の水質評価方法及び当該水質評価方法を用いる超純水評価装置は、試料水、特に超純水をシリコン物質と接触させて該超純水中の溶存水素濃度を測定することによって、この超純水がシリコンウエハ表面をエッチングする性質を有するか否かを容易に判定できるので、半導体製造上の不具合の発生防止に極めて有効である。 The water quality evaluation method of the present invention and the ultrapure water evaluation apparatus using the water quality evaluation method are obtained by contacting sample water, particularly ultrapure water, with a silicon substance and measuring the dissolved hydrogen concentration in the ultrapure water. Since it can be easily determined whether or not ultrapure water has the property of etching the surface of a silicon wafer, it is extremely effective in preventing the occurrence of defects in semiconductor manufacturing.
本願発明の超純水評価装置は、超純水製造装置直近、製造装置内、工場への供給配管途上等、任意の位置にサンプリングのための器具を常備して、シリコン物質を用いた水質評価が迅速に実行できることによって、半導体製造上の不具合の原因及びその発生源の解明に役立ち、解決に大きく寄与する。 The ultrapure water evaluation apparatus of the present invention is a water quality evaluation using a silicon substance, which is equipped with an instrument for sampling at any position, such as the ultrapure water production apparatus immediately, in the production apparatus, in the middle of supply piping to the factory, etc. Can be performed quickly, which helps to elucidate the causes of semiconductor manufacturing defects and their sources, and greatly contributes to the solution.
また、上記の本願発明の超純水評価装置を備えた超純水製造システムによれば、生産している超純水について、該超純水中における溶存水素濃度上昇分を指標とし、この指標が一定の数値範囲内に収まるように運転管理することによって、半導体製造を安定に維持することができる。また、水質に異常が起きたときに実際の工程で結果が出る以前に検知することができ、損害が大きくなる前に対策を打つことができる。 Further, according to the ultrapure water production system provided with the ultrapure water evaluation apparatus of the present invention, the index of the increase in dissolved hydrogen concentration in the ultrapure water is used as an index for the produced ultrapure water. Semiconductor operation can be stably maintained by managing the operation so as to be within a certain numerical range. In addition, when an abnormality occurs in the water quality, it can be detected before the result is obtained in the actual process, and measures can be taken before the damage increases.
以下、図面を参照して本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の実施の形態に係る超純水製造システムの模式図、第2図は第1図の超純水製造システムに組み込まれた超純水評価装置を構成するシリコン接触容器の断面図である。 FIG. 1 is a schematic diagram of an ultrapure water production system according to an embodiment of the present invention, and FIG. 2 is a diagram of a silicon contact container constituting an ultrapure water evaluation apparatus incorporated in the ultrapure water production system of FIG. It is sectional drawing.
図1の超純水製造システム1は、一次純水製造装置及びサブシステムからなる超純水製造装置、超純水のユースポイント、並びに前記超純水製造装置からユースポイントへの超純水送り配管及びユースポイントからの超純水戻り配管から構成されている。そして、上記の超純水製造システム1において、サブシステムの最終出口及びユースポイント前後の3箇所に試料水取り出し口を取り付け、それぞれの試料水取り出し口につき清浄な分岐管4a、4b、4cで本願発明のシリコン接触容器と溶存水素測定装置とからなる超純水評価装置2a、2b、2cを接続し、各超純水評価装置に対して常時試料水を供給可能とした。尚、図1において、超純水製造システムを構成する一次純水製造装置には、公知の純水製造装置が使用されており、図1におけるサブシステムは、紫外線酸化装置、限外ろ過膜装置、イオン交換樹脂塔を順次組み合わせて構成されている。
The ultrapure
図2のシリコン接触容器は、図1の超純水製造システム1に組み込まれた超純水評価装置2a、2b、2cをそれぞれ構成するものであり、シリコン物質充填用のカラム12と、カラム12を両端から挟みこんだメッシュ付きの目皿11と、カラム12と目皿11の接合部に設けたOリングから構成されている。カラム12に粒子状シリコン物質を所定量充填し、充填物上方から試料水を供給すると共に充填物下方から接触済みの試料水を排出する。シリコン接触容器の主要構成材料としては水と接触しても溶出物が極めて少ない材料であれば特に限定されず、例えばアクリル樹脂が好ましい。
2 constitutes the ultrapure
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
[実施例1]
図1の超純水製造システムにより製造された超純水がシリコンウエハ表面をエッチングする性質を有するか否かについて、次の方法にて超純水の水質を評価した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[Example 1]
Whether or not the ultrapure water produced by the ultrapure water production system of FIG. 1 has the property of etching the surface of the silicon wafer was evaluated by the following method.
まず、粒子状単結晶シリコンを200ml用意し、当該シリコンを0.5%濃度の希フッ化水素酸水溶液で洗浄して、この粒子状シリコン表面に形成された自然酸化膜を除去した。次いで、自然酸化膜を除去した粒子状シリコンを図2のシリコン接触容器内に充填した後、図1の超純水製造システムにより製造された超純水を1L/minの流量で、当該接触容器に通水した。図2のシリコン接触容器を通水した超純水(以下、「分析用の試料水」という。)は当該シリコン接触容器の排出口へ接続した隔膜電極式の溶存水素濃度計へ通水し、測定を実施した。 First, 200 ml of particulate single crystal silicon was prepared, and the silicon was washed with a 0.5% concentration dilute hydrofluoric acid aqueous solution to remove the natural oxide film formed on the surface of the particulate silicon. Next, after filling the silicon contact container of FIG. 2 with the particulate silicon from which the natural oxide film has been removed, the ultra pure water produced by the ultra pure water production system of FIG. 1 is flowed at a flow rate of 1 L / min. Water was passed through. The ultrapure water (hereinafter referred to as “sample water for analysis”) that has passed through the silicon contact container of FIG. 2 is passed through a diaphragm electrode type dissolved hydrogen concentration meter connected to the discharge port of the silicon contact container. Measurements were performed.
分析用の試料水、すなわち、粒子状シリコン接触後の試料水に含有される溶存水素濃度は、0.51ppbであった。粒子状シリコン接触前の超純水について、上記測定方法と同様にして溶存水素濃度を測定したところ、0.02ppbであった。この結果から、製造された超純水は、粒子状シリコン接触に起因して、溶存水素濃度が0.49ppb上昇したことが分かる。
[比較例1]
上記実施例1と同様に、0.5%濃度の希フッ化水素酸水溶液で洗浄された粒子状単結晶シリコンを図2のシリコン接触容器内に装着した。次いで、図1の超純水製造システムにより製造された超純水に水酸化テトラメチルアンモニウムを加え、水酸化テトラメチルアンモニウム濃度が5ppbになるように試料水を調製した。この試料水を上記シリコン接触容器に通水し、当該シリコン接触容器の排出口へ接続した隔膜電極式の溶存水素濃度計へ通水し、測定を実施した。この分析用の試料水について、上記実施例1と同様にして溶存水素濃度を測定したところ、粒子状シリコン接触に起因して、溶存水素濃度は5.05ppb上昇したことが分かった。
[比較例2]
上記実施例1と同様に、0.5%濃度の希フッ化水素酸水溶液で洗浄された粒子状単結晶シリコンを図2のシリコン接触容器内に装着した。次いで、図1の超純水製造システムにより製造された超純水に水酸化テトラメチルアンモニウムを加え、水酸化テトラメチルアンモニウム濃度が10ppbになるように試料水を調製した。この試料水を上記シリコン接触容器に通水し、当該シリコン接触容器の排出口へ接続した隔膜電極式の溶存水素濃度計へ通水し、測定を実施した。この分析用の試料水について、上記実施例1と同様にして溶存水素濃度を測定したところ、粒子状シリコン接触に起因して、溶存水素濃度は8.10ppb上昇したことが分かった。
The dissolved hydrogen concentration contained in the sample water for analysis, that is, the sample water after contact with the particulate silicon was 0.51 ppb. With respect to the ultrapure water before contact with the particulate silicon, the dissolved hydrogen concentration was measured in the same manner as in the above measurement method, and found to be 0.02 ppb. From this result, it can be seen that the ultrapure water produced increased the dissolved hydrogen concentration by 0.49 ppb due to the particulate silicon contact.
[Comparative Example 1]
In the same manner as in Example 1, particulate single crystal silicon washed with a 0.5% dilute hydrofluoric acid aqueous solution was placed in the silicon contact container of FIG. Next, tetramethylammonium hydroxide was added to the ultrapure water produced by the ultrapure water production system of FIG. 1 to prepare sample water so that the tetramethylammonium hydroxide concentration was 5 ppb. The sample water was passed through the silicon contact vessel and passed through a diaphragm electrode type dissolved hydrogen concentration meter connected to the discharge port of the silicon contact vessel, and measurement was performed. With respect to the sample water for analysis, when the dissolved hydrogen concentration was measured in the same manner as in Example 1, it was found that the dissolved hydrogen concentration increased by 5.05 ppb due to the particulate silicon contact.
[Comparative Example 2]
In the same manner as in Example 1, particulate single crystal silicon washed with a 0.5% dilute hydrofluoric acid aqueous solution was placed in the silicon contact container of FIG. Next, tetramethylammonium hydroxide was added to the ultrapure water produced by the ultrapure water production system in FIG. 1 to prepare sample water so that the tetramethylammonium hydroxide concentration was 10 ppb. The sample water was passed through the silicon contact vessel and passed through a diaphragm electrode type dissolved hydrogen concentration meter connected to the discharge port of the silicon contact vessel, and measurement was performed. With respect to the sample water for analysis, when the dissolved hydrogen concentration was measured in the same manner as in Example 1, it was found that the dissolved hydrogen concentration increased by 8.10 ppb due to contact with particulate silicon.
上記実施例1及び比較例1、2の各評価試験に使用されたシリコンウエハについて、走査型電子顕微鏡(SEM)を用いて30000倍の倍率で観察したところ、実施例1に使用されたシリコンウエハ表面は平坦であった。しかしながら、比較例1及び2に使用されたシリコンウエハ表面は、いずれも凹凸が形成され、その表面はかなり荒れていることが観察された。このように、超純水等の試料水について、エッチングする性質として許容できる範囲は溶存水素濃度の上昇値が0.5ppb以下になる範囲であって、シリコン物質との接触後の溶存濃度の上昇値が0.5ppbを越えるときは、対策を講じるのが良いことが確認できた。
[実施例2]
超純水製造システムにより製造された超純水がシリコンウエハ表面をエッチングする性質を有するか否かについて、次の方法にて超純水の水質を評価した。
When the silicon wafer used in each evaluation test of Example 1 and Comparative Examples 1 and 2 was observed at a magnification of 30000 times using a scanning electron microscope (SEM), the silicon wafer used in Example 1 was observed. The surface was flat. However, it was observed that the surface of the silicon wafer used in Comparative Examples 1 and 2 was uneven, and the surface was considerably rough. Thus, for sample water such as ultrapure water, the allowable range for etching properties is the range where the increase in dissolved hydrogen concentration is 0.5 ppb or less, and the increase in dissolved concentration after contact with a silicon substance. When the value exceeded 0.5 ppb, it was confirmed that it was better to take measures.
[Example 2]
Whether or not the ultrapure water produced by the ultrapure water production system has the property of etching the silicon wafer surface was evaluated by the following method.
まず、シリコン接触容器としてのアクリルカラムに1mm〜10mm程度に破砕したシリコンウエハの破片を厚さ50mm程度に充填した。次いで、0.5%濃度の希フッ化水素酸水溶液を上記アクリルカラムに通水することにより、充填されたシリコンウエハの破片を洗浄して、該シリコンウエハ破片の表面に形成された自然酸化膜を除去し、更に超純水を上記アクリルカラムに通水することにより、該アクリルカラム内部を十分に洗浄した。 First, silicon wafer fragments crushed to about 1 mm to 10 mm were filled in an acrylic column as a silicon contact container to a thickness of about 50 mm. Next, a 0.5% concentration dilute hydrofluoric acid aqueous solution is passed through the acrylic column to clean the filled silicon wafer fragments, and a natural oxide film formed on the surface of the silicon wafer fragments And the inside of the acrylic column was sufficiently washed by passing ultrapure water through the acrylic column.
次に、イオン交換樹脂を使用開始から12ヶ月間未交換の状態で、図1の超純水製造システムを用いて超純水の製造を行い、当該製造された超純水について、この超純水製造システムを構成する上記超純水評価装置を用いて溶存水素濃度を連続的に測定した。その結果、製造された超純水は、0.5〜1.1ppbと高いレベルの溶存水素濃度を有することが分かった。この場合、対策を講じるのが望ましいと考えられる。 Next, in a state where the ion exchange resin has not been exchanged for 12 months from the start of use, ultrapure water is produced using the ultrapure water production system shown in FIG. The concentration of dissolved hydrogen was continuously measured using the ultrapure water evaluation apparatus constituting the water production system. As a result, it was found that the produced ultrapure water has a high dissolved hydrogen concentration of 0.5 to 1.1 ppb. In this case, it is desirable to take measures.
そこで、上記超純水製造システムのイオン交換樹脂を新品のものに取り替えて、超純水の製造を行った。当該製造された超純水について、この超純水製造システムを構成する上記超純水評価装置を用いて溶存水素濃度を連続的に測定したところ、製造された超純水の溶存水素濃度は、0.01〜0.02ppbと低いレベルで安定することが分かった。この場合の溶存水素濃度の上限値は小さく、シリコン物質との接触後の溶存水素濃度の上昇値も0.5ppb以下であった。このことから、高い溶存水素濃度が測定された場合、イオン交換樹脂を新品に交換することは、製造された超純水の超純水のエッチング性を改善するのに極めて有効であることが分かる。また、本願発明の水質評価方法及び当該水質評価方法を用いる超純水評価装置によれば、イオン交換樹脂の交換時期を精度良く知ることができるので、半導体製造上の不具合の発生防止に極めて有効であることが分かる。 Therefore, the ultra-pure water was produced by replacing the ion exchange resin of the ultra-pure water production system with a new one. About the produced ultrapure water, when the dissolved hydrogen concentration was continuously measured using the ultrapure water evaluation apparatus constituting the ultrapure water production system, the dissolved hydrogen concentration of the produced ultrapure water was: It was found to be stable at a low level of 0.01 to 0.02 ppb. In this case, the upper limit value of the dissolved hydrogen concentration was small, and the increased value of the dissolved hydrogen concentration after contact with the silicon substance was 0.5 ppb or less. From this, it can be seen that, when a high dissolved hydrogen concentration is measured, replacing the ion exchange resin with a new one is extremely effective in improving the etching property of the ultrapure water produced. . In addition, according to the water quality evaluation method of the present invention and the ultrapure water evaluation apparatus using the water quality evaluation method, it is possible to know the replacement time of the ion exchange resin with high accuracy, which is extremely effective in preventing the occurrence of problems in semiconductor manufacturing. It turns out that it is.
1 超純水製造システム
2a、2b、2c 超純水評価装置
3 (超純水の)循環配管
4a、4b、4c 分岐管
10 Oリング
11 目皿
12 カラム
DESCRIPTION OF
Claims (5)
The ultrapure water production apparatus, the ultrapure water use point, the ultrapure water feed pipe from the ultrapure water production apparatus to the usepoint, and the ultrapure water return pipe from the usepoint, The ultrapure water production system according to claim 4, wherein the ultrapure water evaluation device according to claim 4 is provided at any position of the final outlet, the ultrapure water feed pipe, or the ultrapure water return pipe.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005365412A JP5087839B2 (en) | 2005-12-19 | 2005-12-19 | Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method |
CN200610168085XA CN1987457B (en) | 2005-12-19 | 2006-12-18 | Water quality evaluation method, ultrapure water evaluation device using the same, and ultrapure water production system |
KR1020060130275A KR101239394B1 (en) | 2005-12-19 | 2006-12-19 | Method of estimating water quality, estimation apparatus and preparation system of ultra-pure water using the same |
TW095147715A TWI322265B (en) | 2005-12-19 | 2006-12-19 | Water quality evaluation method, ultra purified water evaluation device and ultra purified water production system using same method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005365412A JP5087839B2 (en) | 2005-12-19 | 2005-12-19 | Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007170863A true JP2007170863A (en) | 2007-07-05 |
JP5087839B2 JP5087839B2 (en) | 2012-12-05 |
Family
ID=38184336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005365412A Active JP5087839B2 (en) | 2005-12-19 | 2005-12-19 | Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5087839B2 (en) |
KR (1) | KR101239394B1 (en) |
CN (1) | CN1987457B (en) |
TW (1) | TWI322265B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010236906A (en) * | 2009-03-30 | 2010-10-21 | Kurita Water Ind Ltd | Water quality evaluation method and device |
JP2010249651A (en) * | 2009-04-15 | 2010-11-04 | Kurita Water Ind Ltd | Water quality evaluation method and apparatus |
JP2011072963A (en) * | 2009-10-01 | 2011-04-14 | Kurita Water Ind Ltd | Method and apparatus for determining finish of cleaning process of ion exchange resin |
JP2011174869A (en) * | 2010-02-25 | 2011-09-08 | Kurita Water Ind Ltd | Water quality evaluation method and apparatus |
JP2011214879A (en) * | 2010-03-31 | 2011-10-27 | Kurita Water Ind Ltd | Water-quality evaluation method and apparatus |
JP2019160875A (en) * | 2018-03-08 | 2019-09-19 | 株式会社フジミインコーポレーテッド | Surface-processing composition, manufacturing method thereof, surface-processing method and method for manufacturing semiconductor substrate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102113468B (en) * | 2010-11-29 | 2013-12-25 | 大连海洋大学 | Method for forecasting diseases for seawater pond culture |
CN108982186A (en) * | 2018-09-06 | 2018-12-11 | 邢振华 | A kind of alloy and detection method for tubular steam boiler water quality detection |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07201940A (en) * | 1993-12-29 | 1995-08-04 | Nec Corp | Analysis method for impurities in silicon thin film |
JP2000321266A (en) * | 1999-05-11 | 2000-11-24 | Kurita Water Ind Ltd | Apparatus and method for evaluation of water quality of ultrapure water |
JP2003202309A (en) * | 2002-01-07 | 2003-07-18 | Kurita Water Ind Ltd | Water quality-measuring apparatus |
JP2004353070A (en) * | 2003-05-30 | 2004-12-16 | Toyota Central Res & Dev Lab Inc | Production method for structure |
JP2005142509A (en) * | 2003-11-10 | 2005-06-02 | Renesas Technology Corp | Method for manufacturing semiconductor device |
JP2005334874A (en) * | 2004-04-30 | 2005-12-08 | Sharp Corp | Micro channel and manufacturing method therefor and micro system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11121417A (en) * | 1997-10-09 | 1999-04-30 | Mitsubishi Electric Corp | Treating system and treating method for semiconductor substrates |
KR20010052580A (en) * | 1998-06-08 | 2001-06-25 | 헨넬리 헬렌 에프 | Process for monitoring the concentration of metallic impurities in a wafer cleaning solution |
JP2000117208A (en) * | 1998-10-13 | 2000-04-25 | Kurita Water Ind Ltd | Electronic material washing method |
JP3381250B2 (en) * | 1998-11-16 | 2003-02-24 | 栗田工業株式会社 | Gas dissolving cleaning water flow pipe |
US6277329B1 (en) * | 1999-03-22 | 2001-08-21 | Camp Dresser & Mckee Inc. | Dissolved hydrogen analyzer |
JP4449135B2 (en) | 2000-01-25 | 2010-04-14 | 栗田工業株式会社 | Semiconductor substrate holding container |
JP2002282850A (en) * | 2001-03-26 | 2002-10-02 | Mitsubishi Electric Corp | Ultrapure water producing equipment |
JP4228732B2 (en) * | 2003-03-14 | 2009-02-25 | 栗田工業株式会社 | Ultrapure water production system |
JP2004281894A (en) * | 2003-03-18 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Cleaning water for electronic material, manufacturing method thereof, and cleaning method of electronic material |
-
2005
- 2005-12-19 JP JP2005365412A patent/JP5087839B2/en active Active
-
2006
- 2006-12-18 CN CN200610168085XA patent/CN1987457B/en not_active Expired - Fee Related
- 2006-12-19 KR KR1020060130275A patent/KR101239394B1/en active IP Right Grant
- 2006-12-19 TW TW095147715A patent/TWI322265B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07201940A (en) * | 1993-12-29 | 1995-08-04 | Nec Corp | Analysis method for impurities in silicon thin film |
JP2000321266A (en) * | 1999-05-11 | 2000-11-24 | Kurita Water Ind Ltd | Apparatus and method for evaluation of water quality of ultrapure water |
JP2003202309A (en) * | 2002-01-07 | 2003-07-18 | Kurita Water Ind Ltd | Water quality-measuring apparatus |
JP2004353070A (en) * | 2003-05-30 | 2004-12-16 | Toyota Central Res & Dev Lab Inc | Production method for structure |
JP2005142509A (en) * | 2003-11-10 | 2005-06-02 | Renesas Technology Corp | Method for manufacturing semiconductor device |
JP2005334874A (en) * | 2004-04-30 | 2005-12-08 | Sharp Corp | Micro channel and manufacturing method therefor and micro system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010236906A (en) * | 2009-03-30 | 2010-10-21 | Kurita Water Ind Ltd | Water quality evaluation method and device |
JP2010249651A (en) * | 2009-04-15 | 2010-11-04 | Kurita Water Ind Ltd | Water quality evaluation method and apparatus |
JP2011072963A (en) * | 2009-10-01 | 2011-04-14 | Kurita Water Ind Ltd | Method and apparatus for determining finish of cleaning process of ion exchange resin |
JP2011174869A (en) * | 2010-02-25 | 2011-09-08 | Kurita Water Ind Ltd | Water quality evaluation method and apparatus |
JP2011214879A (en) * | 2010-03-31 | 2011-10-27 | Kurita Water Ind Ltd | Water-quality evaluation method and apparatus |
JP2019160875A (en) * | 2018-03-08 | 2019-09-19 | 株式会社フジミインコーポレーテッド | Surface-processing composition, manufacturing method thereof, surface-processing method and method for manufacturing semiconductor substrate |
JP7330668B2 (en) | 2018-03-08 | 2023-08-22 | 株式会社フジミインコーポレーテッド | Surface treatment composition, method for producing surface treatment composition, method for surface treatment, and method for production of semiconductor substrate |
Also Published As
Publication number | Publication date |
---|---|
CN1987457B (en) | 2012-05-23 |
JP5087839B2 (en) | 2012-12-05 |
KR20070065246A (en) | 2007-06-22 |
TW200730823A (en) | 2007-08-16 |
CN1987457A (en) | 2007-06-27 |
KR101239394B1 (en) | 2013-03-05 |
TWI322265B (en) | 2010-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5087839B2 (en) | Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method | |
WO2006006370A1 (en) | Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production | |
JP4972971B2 (en) | Inspection method of ion exchange resin or ultrafiltration membrane | |
JP5428483B2 (en) | Water quality evaluation method and apparatus | |
JP2001153854A (en) | Monitoring method and system for impurity concentration | |
JP2003305465A (en) | System for making pure water and method for monitoring water quality | |
JP6205775B2 (en) | Water quality measurement method | |
JP5707670B2 (en) | Water quality evaluation method and apparatus | |
JP4923654B2 (en) | Inspection method of ion exchange resin or ultrafiltration membrane | |
WO2020250495A1 (en) | Ph-adjusted water production device | |
JP2008145384A (en) | Method for evaluating ion-exchange resin | |
JP5625447B2 (en) | Water quality evaluation method and apparatus | |
JP5549274B2 (en) | Water quality evaluation method and apparatus | |
JP6205865B2 (en) | Operation management method for pure water production equipment | |
JP5556111B2 (en) | Method and apparatus for determining completion of cleaning process of ion exchange resin | |
KR0173948B1 (en) | Wet Filter Wetting System | |
JP2002083853A (en) | Evaluation method of semiconductor wafer and its apparatus | |
KR20240142068A (en) | Ultrapure water inspection system and ultrapure water inspection mehtod | |
US20240025785A1 (en) | Production device for ph/redox potential-adjusted water | |
JPH09145653A (en) | Method and instrument for measuring content of total organic carbon of high-conductivity sample water | |
Krapf et al. | High Purity Water for Semiconductor Manufacturing | |
JP2002148156A (en) | Sampling vessel for metal impurity | |
Stucki et al. | High Purity Water for Semiconductor Manufacturing | |
TW202313188A (en) | Water quality measurement device | |
JP4508469B2 (en) | Manufacturing method of ultrapure water for electronic parts cleaning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120827 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5087839 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |